3 Existence of a minimum

3.1 Existence of minima in finite dimension

We now study the **existence of minima** for optimization problems in finite dimension.

Definition 3.1 A minimizing sequence of the criterion J on the set K is a sequence $(u^n)_{n\in\mathbb{N}}$ such that $u^n \in K$ and

$$\lim_{n \to +\infty} J(u^n) = \inf_{v \in K} J(v).$$

We now study the particular case $V = \mathbb{R}^n$, provided with the Euclidean norm.

Theorem 3.1 Let K be a nonempty closed set of \mathbb{R}^n , and J a continuous function over K with values in \mathbb{R} , such that $J(v) \to +\infty$ if $||v|| \to +\infty$. Then there exists at least one minimum of J over K. Moreover, from every minimizing sequence of J over K, one can extract a subsequence converging to a minimum of J.

Proof

Let (u^n) be a minimizing sequence of J over K. As $J(u^n)$ is bounded, (u^n) is bounded. Then there exists a subsequence (u^{n_k}) which converges to $u \in \mathbb{R}^n$. As K is closed, $u \in K$. As J is continuous, $J(u^{n_k}) \to J(u)$. Then $J(u) = \inf_{v \in K} J(v)$.

Remark: If K is bounded, the assumption "J infinite at infinity" can be relaxed.

3.2 Infinite dimension

3.2.1 Convex analysis: existence of a minimum in a Hilbert space

Theorem 3.2 Let K be a nonempty closed convex set of a Hilbert space V, and $J: V \to \mathbb{R}$ be a convex Gâteaux-differentiable function. If K is bounded, or if J is infinite at infinity, then there exists at least one minimum of J over K

$$J(u) = \inf_{v \in K} J(v).$$

3.2.2 Application to quadratic functions:

$$J(v) = \frac{1}{2}a(v,v) - L(v)$$

where a is a continuous symmetric bilinear coercive form over V, and L is a continuous linear form over V. Let K be a nonempty closed convex subset of V.

Proposition 3.1 There exists a unique u such that

$$J(u) = \inf_{v \in K} J(v).$$

It is given by

$$a(u, v - u) \ge L(v - u), \ \forall v \in K,$$

 $and \ i\!f \ \!K = V, \ by$

$$a(u,v) = L(v), \ \forall v \in K.$$

All the following is introduced for the proof of theorem 3.2.

3.2.3 Weak convergence

Definition 3.2 Let x_n be a sequence of V, $x_n \rightharpoonup x$ in V (x_n converges weakly to x) if

$$\langle f, x_n \rangle \to \langle f, x \rangle, \ \forall f \in V.$$

Remark: The definition is the same in a Banach space E, with $f \in E'$.

Proposition 3.2 Strong convergence implies weak convergence.

Corollary 3.1 A weakly closed set is strongly closed.

Proposition 3.3 Let C be a convex subset of V. Then C is weakly closed iff C is strongly closed.

Proposition 3.4 In a Hilbert space of finite dimension, strong and weak convergence are equivalent.

Theorem 3.3 Weak compacity of the closed unit ball: Let V be a Hilbert space, and (x_n) a bounded sequence of V. Then there exists a subsequence (x_{n_k}) that converges weakly in V.

3.2.4 Lower semicontinuous functions and epigraphs

Definition 3.3 A function $J: V \to] - \infty; +\infty[$ is lower semicontinuous if $\forall x \in V, \forall \varepsilon > 0, \exists a \text{ neighborhood } \mathcal{V}(x) \text{ such that}$

$$J(y) \ge J(x) - \varepsilon, \ \forall y \in \mathcal{V}(x).$$

Example: J(x) = 0 if $x \le 0$, and J(x) = 1 if x > 0.

Proposition 3.5 J is lower semicontinuous iff

$$J(x) \le \liminf_{x_n \to x} J(x_n).$$

Definition 3.4 The epigraph of J is the set

$$Epi(J) = \{ (\lambda, v) \in \mathbb{R} \times V, \ \lambda \ge J(v) \}.$$

Example: the previous function J.

Proposition 3.6 J is convex iff Epi(J) is convex.

Proposition 3.7 J is lower semicontinuous iff Epi(J) is closed.

Proposition 3.8 If J is convex lower semicontinuous over V, then J is also lower semicontinuous for the weak topology.

Proof

Epi(J) is convex, and strongly closed. Then it is convex and weakly closed.

3.2.5 Proof of the existence of a minimum in a Hilbert space

Proof

Let (v^n) be a minimizing sequence of J over $K: J(v^n) \to \inf_{v \in K} J(v)$ (note that the infimum can be $-\infty$).

As (v^n) is bounded, there exists a subsequence v^{n_k} such that $v^{n_k} \rightharpoonup u \in V$ (weak convergence).

We now prove that $u \in K$. Let $\bar{u} = Proj_K(u)$ the projection of u on K. As K is convex, $\langle u - \bar{u}, w - \bar{u} \rangle \leq 0$, $\forall w \in K$. Considering $w = v^{n_k}$, $\langle \bar{u} - u, v^{n_k} \rangle \rightarrow \langle \bar{u} - u, u \rangle$ and $\langle \bar{u} - u, v^{n_k} - \bar{u} \rangle \leq 0$. Then $0 \leq \langle u - \bar{u}, u - \bar{u} \rangle \leq 0$. Then $\bar{u} = u$ and $u \in K$. We now prove that $J(u) \leq \liminf_{k \to +\infty} J(v^{n_k})$. As J is convex and Gâteaux-differentiable,

We now prove that $J(u) \leq \liminf_{k \to +\infty} J(v^{n_k})$. As J is convex and Gâteaux-differentiable, $J(v^{n_k}) \geq J(u) + (J'(u), v^{n_k} - u) \to J(u)$. Then $J(u) \leq \liminf J(v^{n_k})$. Then J is weakly lower semicontinuous.

Finally, $J(v^{n_k}) \to \inf J(v)$.

$$J(u) \le \inf_{k \to +\infty} J(v^{n_k}) = \inf_{v \in K} J(v)$$

and then u is the optimum