
3 Existence of a minimum

3.1 Existence of minima in finite dimension

We now study the existence of minima for optimization problems in finite dimension.

Definition 3.1 A minimizing sequence of the criterion J on the set K is a sequence
(un)n∈N such that un ∈ K and

lim
n→+∞

J(un) = inf
v∈K

J(v).

We now study the particular case V = Rn, provided with the Euclidean norm.

Theorem 3.1 Let K be a nonempty closed set of Rn, and J a continuous function over
K with values in R, such that J(v) → +∞ if ‖v‖ → +∞. Then there exists at least one
minimum of J over K. Moreover, from every minimizing sequence of J over K, one can
extract a subsequence converging to a minimum of J .

Proof
Let (un) be a minimizing sequence of J over K. As J(un) is bounded, (un) is bounded. Then
there exists a subsequence (unk) which converges to u ∈ Rn. As K is closed, u ∈ K. As J is
continuous, J(unk) → J(u). Then J(u) = infv∈K J(v). �

Remark: If K is bounded, the assumption “J infinite at infinity” can be relaxed.

3.2 Infinite dimension

3.2.1 Convex analysis: existence of a minimum in a Hilbert space

Theorem 3.2 Let K be a nonempty closed convex set of a Hilbert space V , and J : V → R
be a convex Gâteaux-differentiable function. If K is bounded, or if J is infinite at infinity,
then there exists at least one minimum of J over K

J(u) = inf
v∈K

J(v).

3.2.2 Application to quadratic functions:

J(v) =
1
2
a(v, v)− L(v)

where a is a continuous symmetric bilinear coercive form over V , and L is a continuous linear
form over V . Let K be a nonempty closed convex subset of V .

Proposition 3.1 There exists a unique u such that

J(u) = inf
v∈K

J(v).

It is given by
a(u, v − u) ≥ L(v − u), ∀v ∈ K,

and if K = V , by
a(u, v) = L(v), ∀v ∈ K.

All the following is introduced for the proof of theorem 3.2.
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3.2.3 Weak convergence

Definition 3.2 Let xn be a sequence of V , xn ⇀ x in V (xn converges weakly to x) if

〈f, xn〉 → 〈f, x〉, ∀f ∈ V.

Remark: The definition is the same in a Banach space E, with f ∈ E′.

Proposition 3.2 Strong convergence implies weak convergence.

Corollary 3.1 A weakly closed set is strongly closed.

Proposition 3.3 Let C be a convex subset of V . Then C is weakly closed iff C is strongly
closed.

Proposition 3.4 In a Hilbert space of finite dimension, strong and weak convergence are
equivalent.

Theorem 3.3 Weak compacity of the closed unit ball: Let V be a Hilbert space, and (xn) a
bounded sequence of V . Then there exists a subsequence (xnk

) that converges weakly in V .

3.2.4 Lower semicontinuous functions and epigraphs

Definition 3.3 A function J : V →]−∞; +∞[ is lower semicontinuous if ∀x ∈ V , ∀ε > 0,
∃ a neighborhood V(x) such that

J(y) ≥ J(x)− ε, ∀y ∈ V(x).

Example: J(x) = 0 if x ≤ 0, and J(x) = 1 if x > 0.

Proposition 3.5 J is lower semicontinuous iff

J(x) ≤ lim inf
xn→x

J(xn).

Definition 3.4 The epigraph of J is the set

Epi(J) = {(λ, v) ∈ R× V, λ ≥ J(v)}.

Example: the previous function J .

Proposition 3.6 J is convex iff Epi(J) is convex.

Proposition 3.7 J is lower semicontinuous iff Epi(J) is closed.

Proposition 3.8 If J is convex lower semicontinuous over V , then J is also lower semicon-
tinuous for the weak topology.

Proof
Epi(J) is convex, and strongly closed. Then it is convex and weakly closed. �
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3.2.5 Proof of the existence of a minimum in a Hilbert space

Proof
Let (vn) be a minimizing sequence of J over K: J(vn) → infv∈K J(v) (note that the infimum
can be −∞).
As (vn) is bounded, there exists a subsequence vnk such that vnk ⇀ u ∈ V (weak conver-
gence).
We now prove that u ∈ K. Let ū = ProjK(u) the projection of u on K. As K is con-
vex, 〈u − ū, w − ū〉 ≤ 0, ∀w ∈ K. Considering w = vnk , 〈ū − u, vnk〉 → 〈ū − u, u〉 and
〈ū− u, vnk − ū〉 ≤ 0. Then 0 ≤ 〈u− ū, u− ū〉 ≤ 0. Then ū = u and u ∈ K.
We now prove that J(u) ≤ lim infk→+∞ J(vnk). As J is convex and Gâteaux-differentiable,
J(vnk) ≥ J(u) + (J ′(u), vnk − u) → J(u). Then J(u) ≤ lim inf J(vnk). Then J is weakly
lower semicontinuous.
Finally, J(vnk) → inf J(v).

J(u) ≤ inf
k→+∞

J(vnk) = inf
v∈K

J(v)

and then u is the optimum �
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