
5 Optimization algorithms

We present in this chapter some algorithms which allow us to find or approximate the solution
of optimization problems.

5.1 Unconstrained optimization

We consider the following minimization problem: find u ∈ V such that J(u) = infv∈V J(v).
The goal is to find a minimizing sequence (uk) ∈ V (i.e. such that J(uk) → J(u)). Then
J(uk)− J(uk+1) should be as large as possible. For any w ∈ V ,

J(uk + w) = J(uk) + (J ′(uk), w) + ‖w‖ε(w).

|(J ′(uk), w)| ≤ ‖J ′(uk)‖.‖w‖, with equality if w = λJ ′(uk), λ ∈ R. Then, based on the first
order approximation of J (by neglecting the second and higher order derivatives), J(uk) −
J(uk + w) is the largest for w opposite to the gradient:

uk+1 = uk − ρkJ ′(uk),

with ρk ∈ R+.

Gradient algorithms consist
of following the line of greatest
slope, given by the gradient of
the cost function.

5.1.1 Gradient algorithm with fixed step

Let V be a Hilbert space. The fixed step gradient algorithm is:

uk+1 = uk − ρJ ′(uk).

Theorem 5.1 Let J : V → R be a Gâteaux-differentiable and α-convex function. If J ′ is
Lipschitz continuous (i.e. ∃M such that ‖J ′(v1)− J ′(v2)‖ ≤ M‖v1 − v2‖, ∀v1, v2 ∈ V ), and

if 0 < ρ <
2α

M2
, then the fixed step gradient algorithm converges to the minimum: uk → u,

and the convergence is geometric (‖uk+1 − u‖ ≤ γ‖uk − u‖).

Proof
u is given by J ′(u) = 0. Let wk = uk − u. Then wk+1 = wk − ρ(J ′(uk)− J ′(u)). Then

‖wk+1‖2 = ‖wk‖2 − 2ρ〈uk − u, J ′(uk)− J ′(u)〉+ ρ2‖J ′(uk)− J ′(u)‖2

≤ ‖wk‖2 − 2ρα‖uk − u‖2 + ρ2M2‖uk − u‖2 = γ2‖wk‖2

with γ2 = 1− 2ρα + ρ2M2 = 1− ρ(2α− ρM2) < 1 (quadratic function of ρ, maximum value
= 1 for ρ = 0 or 2α/M2). Then ‖wk‖ ≤ γk‖w0‖. �

Example of a quadratic functional: J(v) = 1
2 〈Av, v〉 − 〈b, v〉  uk+1 = uk − ρ(Auk − b).
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5.1.2 Gradient algorithm with optimal step{
J(uk − ρkJ ′(uk)) = inf

ρ>0
J(uk − ρJ ′(uk)),

uk+1 = uk − ρkJ ′(uk)

This is an improvement of the fixed step algorithm, with a one-dimensional minimization
problem on the step size.

Theorem 5.2 If J is Gâteaux-differentiable, α-convex, and if J ′ is Lipschitz continuous on
every bounded subset of V , then the optimal step gradient algorithm converges.

Proof

i) Assume that J ′(uk) 6= 0 (otherwise uk is the minimum and the algorithm has con-
verged). Let f(ρ) = J(uk − ρJ ′(uk)). Then f ′(ρ) = −〈J ′(uk − ρJ ′(uk)), J ′(uk)〉.

(ρ2 − ρ1)(f ′(ρ2)− f ′(ρ1)) = −(ρ2 − ρ1)〈J ′(uk − ρ2J
′(uk)− J ′(uk − ρ1J

′(uk)), J ′(uk)〉

≥ α(ρ2 − ρ1)2‖J ′(uk)‖2.
Then f(ρ) is α-convex, and has then a unique minimum, defined by f ′(ρk) = 0. And
then 〈J ′(uk+1), J ′(uk)〉 = 0 (the successive descent directions are orthogonal). Then
〈J ′(uk+1), uk+1 − uk〉 = 0, and then J(uk)− J(uk+1) ≥ α

2 ‖uk − uk+1‖2.

ii) (J(uk)) is a decreasing sequence, bounded below (by J(u)), and then it is a convergent
sequence. Then J(uk)− J(uk+1) → 0. Then ‖uk − uk+1‖ → 0.

iii) ‖J ′(uk)‖2 = 〈J ′(uk), J ′(uk)−J ′(uk+1)〉 ≤ ‖J ′(uk)‖ ‖J ′(uk)−J ′(uk+1)‖. Then ‖J ′(uk)‖ ≤
‖J ′(uk)− J ′(uk+1)‖.

iv) As (J(uk)) is a decreasing sequence, (uk) is bounded. Otherwise, if ‖uk‖ → +∞, then
J(uk) → +∞ as J(uk) ≥ J(u0) + 〈J ′(u0), uk − u0〉+ α

2 ‖uk − u0‖2.
Moreover, J ′ is Lipschitz continuous. Using iii), the Lipschitz continuity on a bounded
subset, and ii), J ′(uk) → 0.

v) α‖uk − u‖2 ≤ 〈J ′(uk) − J ′(u), uk − u〉 ≤ ‖J ′(uk)‖ ‖uk − u‖. Then ‖uk − u‖ ≤
1
α‖J

′(uk)‖ → 0.
�

Note that the last inequality of the proof gives an estimation of the error.

Application to quadratic functionals:

J(v) =
1
2
〈Av, v〉 − 〈b, v〉,

where A is a symmetric positive definite matrix, and b ∈ Rn. Then J ′(v) = Av − b. The
optimal step ρk is characterized by 〈J ′(uk), J ′(uk+1)〉 = 0:

〈Auk − b, A (uk − ρk(Auk − b))− b〉 = 0

Let wk = Auk−b. Then ρk =
‖wk‖2

〈Awk, wk〉
. An iteration of the optimal step gradient algorithm

consists in computing wk, ρk and then uk+1.

It can be difficult to find the optimal ρk. An easy approximation consists in approximating
f(ρ) = J(uk − ρJ ′(uk)) by a parabola f̃(ρ) (quadratic function), uniquely determined by
f̃(0) := f(0) = J(uk), f̃ ′(0) := f ′(0) = −‖J ′(uk)‖2, and a third value (e.g. f̃(ρk−1) :=
f(ρk−1)).
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5.1.3 Conjugate gradient

The main issue of the optimal step (or fixed step) gradient algorithm is that it usually does
not converge in a finite number of iterations.

Let J be a quadratic functional defined on Rn:

J(v) =
1
2
〈Av, v〉 − 〈b, v〉,

where A is symmetric definite positive.

Conjugate gradient algorithm: Assume that u1, . . . , uk have been computed. We assume
that J ′(ui) 6= 0, ∀i ≤ k, otherwise the algorithm has converged. Then let uk+1 be the
minimum of J on the affine subset containing uk and spanned by (J ′(ui))0≤i≤k:

J(uk+1) = inf
α∈Rk+1

J

(
uk +

k∑
i=0

αiJ
′(ui)

)
,

where α = (α0, . . . , αk). Note that J has a unique minimum on this subset.

Remark: The conjugate gradient (inf over α ∈ Rk+1) is better than the optimal step gradi-
ent (inf over (0, . . . , 0, αk)).

Remark: The successive gradients J ′(ui) are mutually orthogonal.
Proof
The derivative is equal to zero at the optimum: 〈J ′(uk+1), J ′(ui)〉 = 0, ∀0 ≤ i ≤ k. �

Corollary 5.1 The gradients (J ′(ui))0≤i≤k are linearly independent.

Corollary 5.2 The conjugate gradient algorithm converges in at most n iterations.

Definition 5.1 Two non-zero vectors pi and pj are conjugate with respect to A (A being
a symmetric positive definite matrix) if 〈pi, Apj〉 = 0.

Proposition 5.1 Conjugate vectors are linearly independent.

Proof

Assume that there exist (λ1, . . . , λk) such that
k∑

i=0

λipi = 0. Then 0 = 〈A(
∑k

i=0 λipi), pj〉 =

λj〈Apj , pj〉. As pj 6= 0 and A is symmetric positive definite, λj = 0. �

Let dk = uk+1 − uk =
k∑

i=0

δk
i J ′(ui) be the descent direction at iteration k.

Proposition 5.2 The descent directions (di) are mutually conjugate.

Proof
J ′(uk+1) = J ′(uk + dk) = A(uk + dk) − b = J ′(uk) + Adk. Then for 0 ≤ i < j ≤ k,
0 = 〈J ′(uj+1), J ′(ui)〉 = 〈J ′(uj), J ′(ui)〉+ 〈Adj , J

′(ui)〉 = 〈Adj , J
′(ui)〉.

Then 〈Adj , di〉 = 〈Adj ,
∑i

l=0 δi
lJ
′(ul)〉 = 0, ∀0 ≤ i < j ≤ k. �
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Computation of the direction dk using Gram-Schmidt: the first direction is d0 =
J ′(u0). Then, as the direction lives in the subspace spanned by (J ′(ui)), the second direction
can be set to

d1 = J ′(u1) + β0d0.

We then use the conjugation constraint to find β0: 0 = 〈d1, Ad0〉 = 〈J ′(u1), Ad0〉+β0〈d0, Ad0〉
and then

β0 = −〈J
′(u1), Ad0〉
〈d0, Ad0〉

.

Using a similar process, at iteration k,

dk+1 = J ′(uk+1) +
k∑

i=0

βidi

as the successive directions span the same vector subspace as the successive derivatives. Then,
the conjugation constraint gives: 0 = 〈dk+1, Adk〉 = 〈J ′(uk+1, Adk〉 + βk〈dk, Adk〉 + 0, and
then βk = − 〈J′(uk+1),Adk〉

〈dk,Adk〉 .

Moreover, for i < k, 0 = 〈dk+1, Adi〉 = 〈J ′(uk+1), Adi〉 + βi〈di, Adi〉. But J ′(ui+1) =
Aui+1 − b = Aui − b + A(ui+1 − ui) = J ′(ui)−Aρidi.
Then 〈J ′(uk+1), Adi〉 = 1

ρi
〈J ′(uk+1), J ′(ui+1 − J ′(ui)〉 = 0 as the gradients are orthogonal.

Then βi = 0 for i < k. Finally,

dk+1 = J ′(uk+1) + βkdk, with βk = −〈J
′(uk+1), Adk〉
〈dk, Adk〉

.

Computation of the step size ρk:
The iterate is defined by uk+1 = uk +ρkdk. As the derivative is equal to zero at the optimum
(with respect to ρ), 〈J ′(uk+1), dk〉 = 0. Then, as J ′(uk+1) = J ′(uk +ρkdk) = J ′(uk)+Aρkdk,
the step size is given by

ρk = −〈J
′(uk), dk〉
〈Adk, dk〉

.

Algorithm:

• Choose any u0; set d0 = J ′(u0);

• uk+1 = uk − ρkdk, with ρk =
〈J ′(uk), dk〉
〈Adk, dk〉

;

• dk+1 = J ′(uk+1) + βkdk, with βk = −〈J
′(uk+1), Adk〉
〈dk, Adk〉

.

This is one of the best method for solving linear systems Ax = b, where A is symmetric
positive definite. Note that this algorithm can be extended to non quadratic functionals.

5.2 Constrained optimization

5.2.1 Gradient algorithm with projection

We consider the following optimization problem:

inf
v∈K

J(v)

where K is a closed convex subset of V (a Hilbert space), and J is Gâteaux-differentiable and
α-convex. The minimum u of J over K is characterized by Euler’s inequality: 〈J ′(u), v−u〉 ≥
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0, ∀v ∈ K. Then for ρ > 0, 〈u− u + ρJ ′(u), v− u〉 ≥ 0 and 〈(u− ρJ ′(u))− u, v− u〉 ≤ 0. As
K is convex, then

u = ProjK(u− ρJ ′(u)).

The gradient algorithm with projection is the following:

uk+1 = ProjK(uk − ρJ ′(uk)), ρ > 0.

Note that if K = V , this algorithm is exactly the fixed step gradient algorithm.

Theorem 5.3 If K is a closed non-empty convex subset of V , if J : V → R is Gâteaux-
differentiable and α-convex, if J ′ is Lipschitz continuous on V (let M be the Lipschitz con-
stant), and if

0 < a ≤ ρ ≤ b <
2α

M2
,

then the gradient algorithm with projection converges, and

‖uk − u‖ ≤ βk‖u0 − u‖

with β < 1.

Proof
The projection on K is Lipschitz continuous, with a Lipschitz constant of 1. Then ‖uk+1 −
u‖ ≤ ‖(uk − u) − ρ(J ′(uk) − J ′(u))‖. Then ‖uk+1 − u‖2 ≤ ‖(uk − u)‖2 + ρ2‖(J ′(uk) −
J ′(u))‖2−2ρ〈uk−u, J ′(uk)−J ′(u)〉. Using the Lipschitz continuity of J ′ and α-convexity of J ,
‖uk+1−u‖2 ≤ ‖(uk−u)‖2+ρ2M2‖(uk−u)‖2−2ρα‖(uk−u)‖2 = (1−2ρα+ρ2M2)‖(uk−u)‖2.
f(ρ) := (1−2ρα+ρ2M2) is α-convex, and reaches its maximum value 1 for ρ = 0 and ρ = 2α

M2 .
Then for 0 < a ≤ ρ ≤ b < 2α

M2 , f(ρ) ≤ β2 < 1. �

5.2.2 Identification of a saddle-point: Uzawa’s algorithm

As the projection operator is not explicity known in general, the projection at each itera-
tion can be very difficult. The idea is then to consider the Lagrangian associated to the
constrainted minimization problem, and to identify the saddle-points of the Lagrangian.
We consider the convex minimization problem:

inf
F (v)≤0

J(v),

where J : V → R is convex, and F : V → Rm is convex. We assume that the hypotheses
of Kuhn-Tucker theorem are satisfied. Let L(v, q) = J(v) + 〈q, F (v)〉. Then, by definition,
(u, p) is a saddle-point if

∀q ∈ Rm
+ , L(u, q) ≤ L(u, p) ≤ L(v, p), ∀v ∈ V.

We deduce that 〈p−q, F (u)〉 ≥ 0 for all q ∈ Rm
+ . This is equivalent to 〈p−q, p−(p+ρF (u))〉 ≤

0, with ρ > 0. Then
p = ProjRm

+
(p + ρF (u)), ∀ρ > 0.

Uzawa’s algorithm is then the following:

• one chooses p0 ∈ Rm
+ ;

• pn being known, compute un solution of the (unconstrained) optimization problem

L(un, pn) = inf
v∈V

L(v, pn), ∀v ∈ V ;
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• compute the next Lagrange multiplier:

pn+1 = ProjRm
+

(pn + ρnF (un)), ρn > 0.

Note that the minimization problem is now unconstrained, and the Lagrange multiplier is
given by a projection on Rm

+ , which is straightforward.

Theorem 5.4 Under the previous hypotheses, and if 0 < a ≤ ρn ≤ b < 2α
M2 , then the

algorithm converges: un → u in V .

Note that the convergence of (pn) is not ensured.

Proof
un and u are characterized by the following inequalities (see proposition 2.15):

〈J ′(un), v − un〉+ 〈pn, F (v)− F (un)〉 ≥ 0, ∀v ∈ V,

〈J ′(u), v − u〉+ 〈pn, F (v)− F (u)〉 ≥ 0, ∀v ∈ V.

If we denote by rn = pn − p, by choosing respectively v = u and v = un,

−〈J ′(un)− J ′(u), un − u〉 − 〈rn, F (un)− F (u)〉 ≥ 0.

〈rn, F (vn)− F (u)〉 ≤ −〈J ′(un)− J ′(u), un − u〉 ≤ −α‖un − u‖2

and ‖rn+1‖ ≤ ‖rn + ρn(F (un) − F (u))‖ (by Lipschitz-continuity of the projection). Then
‖rn+1‖2 ≤ ‖rn‖2 + 2ρn〈rn, F (un)− F (u)〉+ ρ2

n‖F (un)− F (u)‖2≤ ‖rn‖2 − 2ρnα‖un − u‖2 +
ρ2

nM2‖un − u‖2.
As 0 < a ≤ ρn ≤ b < 2α

M2 ⇔ 2αρn − ρ2
nM2 ≥ β > 0, ‖rn+1‖2 ≤ ‖rn‖2 − β‖un − u‖2.

Then the sequence (‖rn‖) is decreasing, and bounded below, and then it converges. As
0 ≤ β‖un − u‖2 ≤ ‖rn‖2 − ‖rn+1‖2, ‖un − u‖ → 0. �

Remark: Uzawa’s algorithm has a dual interpretation: it is exactly the gradient algorithm
with fixed step and projection applied to the dual problem.
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