5 Optimization algorithms

We present in this chapter some algorithms which allow us to find or approximate the solution
of optimization problems.

5.1 Unconstrained optimization

We consider the following minimization problem: find v € V such that J(u) = inf,ecy J(v).
The goal is to find a minimizing sequence (ux) € V (i.e. such that J(ux) — J(u)). Then
J(ug) — J(ugs1) should be as large as possible. For any w € V,

I (ug + w) = J(ur) + (' (ug), w) + [Jwle(w).

[(J' (ug), w)| < || (ug)]].||w]|, with equality if w = A\J'(ug), A € R. Then, based on the first
order approximation of J (by neglecting the second and higher order derivatives), J(uy) —
J(ug + w) is the largest for w opposite to the gradient:

U1 = ug — prd’ (ug),
with pr € Ry.

Gradient algorithms consist
of following the line of greatest
slope, given by the gradient of
the cost function.

5.1.1 Gradient algorithm with fixed step

Let V' be a Hilbert space. The fixed step gradient algorithm is:
Upr1 = u — pJ' (ug).

Theorem 5.1 Let J : V — R be a Gdteauz-differentiable and a-convex function. If J' is
Lipschitz continuous (i.e. IM such that ||J'(v1) — J' (v2)|| < M||vy — va||, Yv1,v2 € V), and

2a
if0<p< ek then the fized step gradient algorithm converges to the minimum: u, — u,

and the convergence is geometric (||up+1 — || < yllug — ).

Proof
w is given by J'(u) = 0. Let wy = ug — u. Then wi41 = wr — p(J' (ur) — J'(u)). Then

w1 |1? = lJwel® = 2p(ur, —u, J'(ur) = J"(w)) + p?|| I (ur) = ' (w)|®

< lwell? = 2pafux — ul® + p* M [lur — ull* = 7 [lwi|?
with 72 =1 —2pa + p?M? = 1 — p(2a — pM?) < 1 (quadratic function of p, maximum value
=1 for p =0 or 2a/M?). Then |Jw| < ~7*|jwo]. O

Example of a quadratic functional: J(v) = 3(Av,v) — (b,v) ~ ugs1 = w, — p(Auy, — b).
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5.1.2 Gradient algorithm with optimal step
J(ur = pid"(ur)) = 10 J (i — pJ" (ur)),
U1 = up — prJ’ (ug)
This is an improvement of the fixed step algorithm, with a one-dimensional minimization

problem on the step size.

Theorem 5.2 If J is Gdteauz-differentiable, a-convez, and if J' is Lipschitz continuous on
every bounded subset of V', then the optimal step gradient algorithm converges.

Proof

i) Assume that J'(ug) # 0 (otherwise uy is the minimum and the algorithm has con-
verged). Let £(p) = J(u, — pJ'(ug)). Then f'(p) = —(J'(ug — p.I'(us)), T (1))

(p2 = p1)(f'(p2) = f'(p1)) = —(p2 = p1)(J (ur = p2J" (ur) = J' (ur, — p1J" (up)), J' (ur))

> alpz — p1)?|1J (ug) .

Then f(p) is a-convex, and has then a unique minimum, defined by f’'(px) = 0. And
then (J'(ug+1),J'(ur)) = 0 (the successive descent directions are orthogonal). Then
(J'(up41), ukg1 — ug) = 0, and then J(uz) — J(up+1) > 5 [|ur — up1 ).

ii) (J(ug)) is a decreasing sequence, bounded below (by J(u)), and then it is a convergent
sequence. Then J(uy) — J(ur+1) — 0. Then |lup — up41]] — 0.

i) (|7 (ur) 12 = (I (un), ' (i) =" (ur1)) < [T (i) [ (wr) =T (uern) || Then [ (we)|| <
17 (ur) = J" (g1 ||

iv) As (J(ug)) is a decreasing sequence, (uy) is bounded. Otherwise, if ||ug| — 400, then
J(ug) — 400 as J(ug) = J(ug) + (J' (o), ur — uo) + 5 |lur — uoll*.
Moreover, J' is Lipschitz continuous. Using iii), the Lipschitz continuity on a bounded
subset, and ii), J'(ux) — 0.

v) ellup — ull® < (J'(ur) = J'(w),up — u) < (1 (u)ll luk — ull. Then [jup — ul| <
S o) = o. -

Note that the last inequality of the proof gives an estimation of the error.
Application to quadratic functionals:
1
J(U) = §<AU7U> - <ba U>a

where A is a symmetric positive definite matrix, and b € R™. Then J'(v) = Av — b. The
optimal step p* is characterized by (J'(ug), J'(ugs1)) = O:

<Auk - b,A (uk — pk(Auk — b)) — b> =0

[

Let wy = Aup—0b. Then py = . An iteration of the optimal step gradient algorithm

<Awk7 wk>
consists in computing wy, pr and then ug41.

It can be difficult to find the optimal py. An easy approximation consists in approximating
f(p) = J(ur, — pJ'(ur)) by a parabola f(p) (quadratic function), uniquely determined by

f(0) == f(0) = J(ug), f(0) := f'(0) = —||J(ug)||?>, and a third value (e.g. f(pr_1) =
f(pr-1)).
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5.1.3 Conjugate gradient

The main issue of the optimal step (or fixed step) gradient algorithm is that it usually does
not converge in a finite number of iterations.

Let J be a quadratic functional defined on R™:
1
'](U) = §<A’U,U> - <b,’U>,
where A is symmetric definite positive.
Conjugate gradient algorithm: Assume that uq, ..., ux have been computed. We assume

that J'(u;) # 0, Vi < k, otherwise the algorithm has converged. Then let ugy; be the
minimum of J on the affine subset containing uy, and spanned by (J'(u;))o<i<k:

J(uk+1) = aei]{glli-l J (uk + Zal Wi ) ’

where o = (o, ..., a). Note that J has a unique minimum on this subset.

Remark: The conjugate gradient (inf over o € R¥*1) is better than the optimal step gradi-
ent (inf over (0,...,0,ag)).

Remark: The successive gradients J’(u;) are mutually orthogonal.

Proof

The derivative is equal to zero at the optimum: (J'(ugy1),J (u;)) =0, V0 < i < k. O
Corollary 5.1 The gradients (J'(u;))o<i<k are linearly independent.

Corollary 5.2 The conjugate gradient algorithm converges in at most n iterations.

Definition 5.1 Two non-zero vectors p; and p; are conjugate with respect to A (A being
a symmetric positive definite matriz) if (p;, Ap;) = 0.

Proposition 5.1 Conjugate vectors are linearly independent.

Proof i
Assume that there exist (A1, ..., A;) such that Z Aip; = 0. Then 0 = <A(Zf:o NiDi), pj) =
Ni(Apj,p;). As p; # 0 and A is symmetric posifsizx?e definite, A; = 0. O
k
Let dy = ugyr1 —ug = Z 5fJ'(ui) be the descent direction at iteration k.
i=0

Proposition 5.2 The descent directions (d;) are mutually conjugate.

Proof

J(ugy1) = J'(ug + di) = Alug +d) — b = J'(ur) + Adg. Then for 0 < i < j < k,
0= (S (uj41), J"(wi)) = (J'(u;), J'(ui)) + (Ady, J'(uq)) = (Ady, J'(us)).-

Then (Adj, d;) = (Adj, >_o 61 (w)) =0, V0 <i < j <k. O
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Computation of the direction d; using Gram-Schmidt: the first direction is dy =
J'(ug). Then, as the direction lives in the subspace spanned by (J'(u;)), the second direction
can be set to

di = J'(u1) + Bodo-

We then use the conjugation constraint to find Bp: 0 = (d1, Adp) = (J'(u1), Ado)+Bo{do, Adp)

and then
(J'(uy1), Adp)

Po = =70, Ado)
Using a similar process, at iteration k,
k
dp1 = ' (uri1) + > Bids
i=0

as the successive directions span the same vector subspace as the successive derivatives. Then,
the conjugation constraint gives: 0 = (dg41, Adg) = (J'(ug+t1, Adk) + Br{dk, Ady) + 0, and

then i, = _%

Moreover, for i < k, 0 = (dgt1,Ad;) = (J'(ups1), Ad;) + Bi{d;, Ad;). But J'(uip1) =
Aui+1 —b=Au; — b+ A(ui_H - ui) = J’(u,) — Ap;d;.

Then (J'(ug+1), Ad;) = i(J’(ukH), J(uir1 — J'(u;)) = 0 as the gradients are orthogonal.
Then §; = 0 for ¢ < k. Finally,

(J (1), Adi)

diy1 = J (ukg1) + Brdy, with G = — (dk, Ady)

Computation of the step size pg:
The iterate is defined by ug11 = u + prdi. As the derivative is equal to zero at the optimum
(with respect to p), (J'(ug+1),drx) = 0. Then, as J'(up11) = J'(u + prdi) = J'(ur) + Aprd,
the step size is given by
_ J(uk), di)
Pl = =
<Adka dk>

Algorithm:
e Choose any ug; set do = J'(up);

(' (ug), dk) .
(Ady, dy)

(J' (1), Ady,)
(di, Ady)

® Uyl = up — prdy, with pg =

o dipt1 = J (upy1) + Brdy, with 8, = —

This is one of the best method for solving linear systems Ax = b, where A is symmetric
positive definite. Note that this algorithm can be extended to non quadratic functionals.
5.2 Constrained optimization

5.2.1 Gradient algorithm with projection

We consider the following optimization problem:

)

where K is a closed convex subset of V' (a Hilbert space), and J is Gateaux-differentiable and
a-convex. The minimum u of .J over K is characterized by Euler’s inequality: (J'(u),v—u) >

26



0, Vv € K. Then for p > 0, (u —u+ pJ'(u),v —u) > 0 and {((u — pJ' (u)) —u,v —u) < 0. As
K is convex, then
u= Projg(u— pJ'(u)).

The gradient algorithm with projection is the following:
U1 = Proji (ux, — pJ'(ur)), p>0.
Note that if K =V, this algorithm is exactly the fixed step gradient algorithm.

Theorem 5.3 If K is a closed non-empty convex subset of V', if J : V — R is Gateauz-
differentiable and a-convez, if J' is Lipschitz continuous on V (let M be the Lipschitz con-
stant), and if

2a
O<a§p§b<w,

then the gradient algorithm with projection converges, and
s, = ull < B [luo — u]
with B < 1.

Proof

The projection on K is Lipschitz continuous, with a Lipschitz constant of 1. Then ||ux+1 —
ull < [l(ue —u) = p(J"(ur) — J'(w)]l. Then [Jugir —ul? < [[(ur — w)l* + p?|(J"(wr) —
J' ()| =2p{ur —u, J' (ug)—J'(u)). Using the Lipschitz continuity of J’ and a-convexity of J,
letpr =l < [ —10) 24 92 M2 (s — )| —2p0 (g —10) |2 = (1—~2p00-+ 2 M) | (g —10) 2
f(p) == (1—2pa+p*M?) is a-convex, and reaches its maximum value 1 for p = 0 and p = %
Then for 0 <a<p<b< 2%, f(p) <B* < 1. O
5.2.2 Identification of a saddle-point: Uzawa’s algorithm

As the projection operator is not explicity known in general, the projection at each itera-
tion can be very difficult. The idea is then to consider the Lagrangian associated to the
constrainted minimization problem, and to identify the saddle-points of the Lagrangian.
We consider the convex minimization problem:

inf
F(lﬁgo‘](”>’

where J : V — R is convex, and F : V — R™ is convex. We assume that the hypotheses
of Kuhn-Tucker theorem are satisfied. Let £(v,q) = J(v) + (g, F(v)). Then, by definition,
(u,p) is a saddle-point if

Vg e RY, L(u,q) < L(u,p) < L(v,p), YveV.

We deduce that (p—q, F(u)) > 0 for all ¢ € R7?. This is equivalent to (p—q,p— (p+pF(u))) <
0, with p > 0. Then
p = Projry(p+ pF(u)), Vp>0.

Uzawa’s algorithm is then the following;:
e one chooses py € R7;

e p, being known, compute u,, solution of the (unconstrained) optimization problem

L(tn,pn) = I}ggﬁ(v,pnh YveV;
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e compute the next Lagrange multiplier:
Pn41 = PTOj]RT (pn + PnF(Un)), Pn > 0.

Note that the minimization problem is now unconstrained, and the Lagrange multiplier is
given by a projection on R, which is straightforward.

Theorem 5.4 Under the previous hypotheses, and if 0 < a < p, < b < %, then the
algorithm converges: uy, — u in V.

Note that the convergence of (p,,) is not ensured.

Proof
u, and u are characterized by the following inequalities (see proposition 2.15):

(J' (un),v — up) + (pn, F(v) — F(uy)) >0, Yo €V,
(J'(u),v —u) + (pn, F(v) — F(u)) >0, Vv e V.
If we denote by r, = p, — p, by choosing respectively v = v and v = uy,,
— (' (un) = J' (), tn — u) = (r, Fun) — F(u)) > 0.

(ro, F(vn) = F(u)) < =(J"(un) = J' (), un — u) < —aflup — ul®

and ||rpp1|l < ||rn + pn(F(un) — F(u))|| (by Lipschitz-continuity of the projection). Then
ot < 12 20n (s Ftn) = F(0)) + 2211 F(ttn) — Pa)|P< ral — 2pnesflun — ]2 +
A2 [un — ]2

AsO <a<py <b< g & 200, —ppM> >8>0, |Irna® < [lral® = Bllun — ul®.
Then the sequence (||r,||) is decreasing, and bounded below, and then it converges. As
0 < Bllun — ul* < 17all? = Nrnsal, fun — ull — 0. .

Remark: Uzawa’s algorithm has a dual interpretation: it is exactly the gradient algorithm
with fixed step and projection applied to the dual problem.
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