EXERCISE n°1 : Fréchet differentiability

Definition : $f : \mathbb{R}^n \to \mathbb{R}^m$ is Fréchet differentiable at point x if there exists a linear form $df_x : \mathbb{R}^n \to \mathbb{R}^m$ such that $f(x+h) = f(x) + df_x(h) + ||h||\varepsilon(h), \forall h \in \mathbb{R}^n$, where $\varepsilon(h) \to 0$ when $h \to 0$ (instead of $||h||\varepsilon(h)$, one can write o(h)). The gradient of $f : \mathbb{R}^n \to \mathbb{R}$ is the vector $\nabla f = \left(\frac{\partial f}{\partial x_i}\right)$. The Hessian of f is the matrix $\nabla^2 f = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)$. The Jacobian of $F : \mathbb{R}^n \to \mathbb{R}^m$ is the matrix $JF = \left(\frac{\partial F_i}{\partial x_j}\right)$.

Exercise 1 : Computation of Fréchet differentials

1.1. Let $f: \mathbb{R}^n \to \mathbb{R}$,

 $x \to f(x) := \langle c, x \rangle + b$, where $c \in \mathbb{R}^n$, $b \in \mathbb{R}$.

Compute the differential df_x of f at point x, then the gradient $\nabla f(x)$. Compute the second order differential $d^2 f_x$, then the hessian $\nabla^2 f(x)$.

1.2. Let $F: \mathbb{R}^n \to \mathbb{R}^m$,

 $x \to F(x) := Ax + b$, where $A \in \mathcal{M}_{m,n}(\mathbb{R}), b \in \mathbb{R}^m$. Compute the differential dF_x , then the Jacobian JF(x).

1.3. Let $f: \mathbb{R}^n \to \mathbb{R}$,

 $x \to f(x) := \frac{1}{2} < Ax, x > + < b, x > +c, \text{ where } A \in \mathcal{M}_{n,n}(\mathbb{R}), b \in \mathbb{R}^n, c \in \mathbb{R}.$

Compute the differential df_x^2 , then the gradient $\nabla f(x)$. Compute the second order differential $d^2 f_x$, then the hessian $\nabla^2 f(x)$.

1.4. Let
$$g: \mathbb{R}^n \to \mathbb{R}$$
,
 $x \to g(x) := \sum_{i=1}^m (r_i(x))^2$, where the $r_i: \mathbb{R}^n \to \mathbb{R}$ are twice differentiable.

Compute the differential dg_x , then the gradient $\nabla g(x)$. Compute the second order differential d^2g_x , then the hessian $\nabla^2 g(x)$.

Exercise 2 : Differentiability

2.1. Let
$$g: \mathbb{R}^n \to \mathbb{R}$$
, where the $f_i: \mathbb{R}^n \to \mathbb{R}$ are twice differentiable and $x \to g(x) := \sum_{i=1}^m (f_i^+(x))^2$,

 $a^+ = \max(0, a)$. Is the function g differentiable, twice differentiable?

differentiable.

Determine ∇g and $\nabla^2 g$ in terms of ∇f and $\nabla^2 f$.

Application : let $f : \mathbb{R}^n \to \mathbb{R}$, twice differentiable, $x_0 \in \mathbb{R}^n$ and $d \in \mathbb{R}^n$. One sets $\varphi(t) := f(x_0 + td)$.

Compute $\varphi'(t)$ (resp. $\varphi''(t)$) in terms of $\nabla f(x_0 + td)$ (resp. $\nabla^2 f(x_0 + td)$).