EXERCISE n¹ : Fréchet differentiability

Definition : $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is Fréchet differentiable at point x if there exists a linear form $d f_{x}$: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $f(x+h)=f(x)+d f_{x}(h)+\|h\| \varepsilon(h), \forall h \in \mathbb{R}^{n}$, where $\varepsilon(h) \rightarrow 0$ when $h \rightarrow 0$ (instead of $\|h\| \varepsilon(h)$, one can write $o(h)$).
The gradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the vector $\nabla f=\left(\frac{\partial f}{\partial x_{i}}\right)$. The Hessian of f is the matrix $\nabla^{2} f=$ $\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)$. The Jacobian of $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the matrix $J F=\left(\frac{\partial F_{i}}{\partial x_{j}}\right)$.

Exercise 1 : Computation of Fréchet differentials

$\begin{array}{ll}\text { 1.1. Let } f: & \mathbb{R}^{n} \rightarrow \mathbb{R}, \\ & x \rightarrow f(x):=<c, x>+b, \text { where } c \in \mathbb{R}^{n}, b \in \mathbb{R} .\end{array}$
Compute the differential $d f_{x}$ of f at point x, then the gradient $\nabla f(x)$. Compute the second order differential $d^{2} f_{x}$, then the hessian $\nabla^{2} f(x)$.
1.2. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$,

$$
x \rightarrow F(x):=A x+b, \text { where } A \in \mathcal{M}_{m, n}(\mathbb{R}), b \in \mathbb{R}^{m}
$$

Compute the differential $d F_{x}$, then the Jacobian $J F(x)$.
1.3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
x \rightarrow f(x):=\frac{1}{2}<A x, x>+<b, x>+c, \text { where } A \in \mathcal{M}_{n, n}(\mathbb{R}), b \in \mathbb{R}^{n}, c \in \mathbb{R}
$$

Compute the differential $d f_{x}$, then the gradient $\nabla f(x)$. Compute the second order differential $d^{2} f_{x}$, then the hessian $\nabla^{2} f(x)$.
1.4. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
x \rightarrow g(x):=\sum_{i=1}^{m}\left(r_{i}(x)\right)^{2}, \text { where the } r_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { are twice differentiable. }
$$

Compute the differential $d g_{x}$, then the gradient $\nabla g(x)$. Compute the second order differential $d^{2} g_{x}$, then the hessian $\nabla^{2} g(x)$.

Exercise 2: Differentiability

2.1. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$,
where the $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are twice differentiable and

$$
x \rightarrow g(x):=\sum_{i=1}^{m}\left(f_{i}^{+}(x)\right)^{2}
$$

$a^{+}=\max (0, a)$. Is the function g differentiable, twice differentiable ?
2.2. Let $\mathbb{R}^{m} \xrightarrow{A} \mathbb{R}^{n}$, where $A: u \rightarrow A_{0} u+b$ with $A_{0} \in \mathcal{M}_{n, m}(\mathbb{R}), b \in \mathbb{R}^{n}$ and f twice

differentiable.
Determine ∇g and $\nabla^{2} g$ in terms of ∇f and $\nabla^{2} f$.
Application : let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, twice differentiable, $x_{0} \in \mathbb{R}^{n}$ and $d \in \mathbb{R}^{n}$. One sets $\varphi(t):=$ $f\left(x_{0}+t d\right)$.

Compute $\varphi^{\prime}(t)\left(\right.$ resp. $\left.\varphi^{\prime \prime}(t)\right)$ in terms of $\nabla f\left(x_{0}+t d\right)$ (resp. $\nabla^{2} f\left(x_{0}+t d\right)$).

