ERASMUS MUNDUS - Optimization Exercise

Year 2010-2011

Exercise n ${ }^{\circ} 3$: Least Square Minimization

Let A be a $m \times n$ matrix. One tries to solve "at best" the linear system

$$
\begin{equation*}
A x=b, x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, \tag{1}
\end{equation*}
$$

when $n \neq m$ or when $n=m$, but with A non inversible.
One notes

$$
\|y\|=\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{1 / 2}
$$

the euclidian norm of y on \mathbb{R}^{n}.
Part 1: One notes $J(x)=\|A x-b\|^{2}$ for all $x \in \mathbb{R}^{n}$.
1.1. Prove that the minimization problem :

$$
\begin{equation*}
\text { Find } x \in \mathbb{R}^{n} \text { such that } J(x)=\min _{y \in \mathbb{R}^{n}} J(y) \tag{2}
\end{equation*}
$$

has at least one solution. One notes X_{b} the set of solutions of (2).
1.2. Prove that (2) is equivalent to :

$$
\begin{equation*}
\text { Find } x \in \mathbb{R}^{n} \text { such that }{ }^{t} A A x={ }^{t} A b \text {. } \tag{3}
\end{equation*}
$$

1.3. Discuss the existence and uniqueness of a solution of (3) according to the rank of A.
1.4. Prove that the minimization problem :

$$
\begin{equation*}
\text { Find } x \in X_{b} \text { such that }\|x\|^{2}=\min _{y \in X_{b}}\|y\|^{2} \tag{4}
\end{equation*}
$$

has a unique solution \bar{x} that one calls a pseudo-solution of (1).
1.5. Prove that \bar{x} is characterized by $\bar{x} \in X_{b} \cap\left(\operatorname{Ker}^{t} A A\right)^{\perp}$.

Part 2 : Let $\varepsilon>0$, one notes $J_{\varepsilon}(x)=\|A x-b\|^{2}+\varepsilon\|x\|^{2}$ for all $x \in \mathbb{R}^{n}$.
One considers then the problem :

$$
\begin{equation*}
\text { Find } x \in \mathbb{R}^{n} \text { such that } J_{\varepsilon}(x)=\min _{y \in \mathbb{R}^{n}} J_{\varepsilon}(y) \text {. } \tag{5}
\end{equation*}
$$

2.1. Prove that (5) has a unique solution x_{ε}.
2.2. Prove that for all $y \in X_{b},\left\|x_{\varepsilon}\right\| \leq\|y\|$.
2.3. Express x_{ε} in terms of A, b and ε.
2.4. Deduce that x_{ε} converges to \bar{x} solution of (4) when $\varepsilon \rightarrow 0$.

Part 3 : Let $\varepsilon>0$, one notes $\overline{J_{\varepsilon}}(x)=\frac{1}{\varepsilon}| |^{t} A A x-{ }^{t} A b\left\|^{2}+\right\| x \|^{2}$ for all $x \in \mathbb{R}^{n}$.
One considers then the problem :

$$
\begin{equation*}
\text { Find } x \in \mathbb{R}^{n} \text { such that } \overline{J_{\varepsilon}}(x)=\min _{y \in \mathbb{R}^{n}} \overline{J_{\varepsilon}}(y) \text {. } \tag{6}
\end{equation*}
$$

3.1. Prove that (6) has a unique solution $\overline{x_{\varepsilon}}$.
3.2. Express $\overline{x_{\varepsilon}}$ in terms of A, b and ε.
3.3. Deduce that $\overline{x_{\varepsilon}}$ converges to \bar{x} solution of (4) when $\varepsilon \rightarrow 0$.

