ERASMUS MUNDUS - Optimization Exercise Year 2010-2011

Exercise n°3 : Least Square Minimization

Let A be a $m \times n$ matrix. One tries to solve "at best" the linear system

$$Ax = b, x \in \mathbb{R}^n, b \in \mathbb{R}^m, \tag{1}$$

when $n \neq m$ or when n = m, but with A non inversible.

One notes

$$||y|| = \left(\sum_{i=1}^n y_i^2\right)^{1/2}$$

the euclidian norm of y on \mathbb{R}^n .

Part 1 : One notes $J(x) = ||Ax - b||^2$ for all $x \in \mathbb{R}^n$.

1.1. Prove that the minimization problem :

Find
$$x \in \mathbb{R}^n$$
 such that $J(x) = \min_{y \in \mathbb{R}^n} J(y)$ (2)

has at least one solution. One notes X_b the set of solutions of (2).

1.2. Prove that (2) is equivalent to :

Find
$$x \in \mathbb{R}^n$$
 such that ${}^t AAx = {}^t Ab.$ (3)

1.3. Discuss the existence and uniqueness of a solution of (3) according to the rank of A.

1.4. Prove that the minimization problem :

Find
$$x \in X_b$$
 such that $||x||^2 = \min_{y \in X_b} ||y||^2$ (4)

has a unique solution \overline{x} that one calls a pseudo-solution of (1).

1.5. Prove that \overline{x} is characterized by $\overline{x} \in X_b \cap (\operatorname{Ker}^t AA)^{\perp}$.

Part 2 : Let $\varepsilon > 0$, one notes $J_{\varepsilon}(x) = ||Ax - b||^2 + \varepsilon ||x||^2$ for all $x \in \mathbb{R}^n$.

One considers then the problem :

Find
$$x \in \mathbb{R}^n$$
 such that $J_{\varepsilon}(x) = \min_{y \in \mathbb{R}^n} J_{\varepsilon}(y)$. (5)

- 2.1. Prove that (5) has a unique solution x_{ε} .
- 2.2. Prove that for all $y \in X_b$, $||x_{\varepsilon}|| \le ||y||$.
- 2.3. Express x_{ε} in terms of A, b and ε .
- 2.4. Deduce that x_{ε} converges to \overline{x} solution of (4) when $\varepsilon \to 0$.

Part 3 : Let $\varepsilon > 0$, one notes $\overline{J_{\varepsilon}}(x) = \frac{1}{\varepsilon} ||^t A A x - t^t A b||^2 + ||x||^2$ for all $x \in \mathbb{R}^n$. One considers then the problem :

Find
$$x \in \mathbb{R}^n$$
 such that $\overline{J_{\varepsilon}}(x) = \min_{y \in \mathbb{R}^n} \overline{J_{\varepsilon}}(y).$ (6)

- 3.1. Prove that (6) has a unique solution $\overline{x_{\varepsilon}}$.
- 3.2. Express $\overline{x_{\varepsilon}}$ in terms of $A,\,b$ and $\varepsilon.$
- 3.3. Deduce that $\overline{x_{\varepsilon}}$ converges to \overline{x} solution of (4) when $\varepsilon \to 0$.