Exercise $\mathbf{n}^{\circ} 4$: minimization under equality constraints

Exercise 1 : Let the following function :

$$
\begin{equation*}
f(x, y)=x^{4}+y^{4}+4 x y \tag{1}
\end{equation*}
$$

1.1. Prove that f has a global minimum on \mathbb{R}^{2}.
1.2. Compute the hessian matrix of f and determine if the function f is convex on all \mathbb{R}^{2}.
1.3. Determine the critical points of f and give their nature : local minimum, local maximum, saddle-point.
1.4. At which points does f reach its global minimum? What is the minimal value of f ? Explain why f cannot be convex.

Exercise 2 :

We deal with the following problem :

$$
\begin{equation*}
\sup _{x^{2}+y^{2}=1} x y . \tag{2}
\end{equation*}
$$

2.1. Justify the existence of a solution of (2).
2.2. Solve with the help of Lagrange multipliers.
2.3. Give a geometric interpretation of the results.

