Exercise n ${ }^{\circ} 5$: Minimization under (equality and) inequality constraints

Exercise 1 :

One considers the following minimization problem in \mathbb{R}^{2} :

$$
\begin{equation*}
\inf f_{a}\left(x_{1}, x_{2}\right)=x_{1}^{2}+a x_{2}^{2}+x_{1} x_{2}+x_{1} \text { under the constraint } x_{1}+x_{2}-1 \leq 0 . \tag{1}
\end{equation*}
$$

1.1. For which values of $a \in \mathbb{R}$, the function f_{a} is convex?
1.2. For these values of a, can we apply the Kuhn-Tucker theorem? If yes, write the KuhnTucker relations.
1.3. Solve then problem (1) according to the values of a.

Exercise 2 :

Let C be the set of \mathbb{R}^{2} defined by $C=\{(x, y) / x+y \leq 1, x \geq 0, y \geq 0\}$, and f the function of \mathbb{R}^{2} to \mathbb{R} defined by $f(x, y)=-x-2 y-x y+x^{2}+y^{2}$.
2.1. Is f convex? concave?
2.2. Is C open? closed? convex? is it an affine sub-space?
2.3. One wants to minimize f on C. Prove that each minimum (including the local minima) is located on the boundary of C.
2.4. Determine the minima of f on C (with the help of Kuhn-Tucker, or directly by using question 2.3).

Exercise 3 :

Let the following problem :
$\min \frac{1}{2}\left(x_{1}-1\right)^{2}+\frac{1}{2}\left(x_{2}-2\right)^{2}$ under the constraints $x_{1}-x_{2}=1, x_{1}+x_{2} \leq 2, x_{1} \geq 0$ and $x_{2} \geq 0$.
3.1. Prove that problem (2) has a unique solution.
3.2. Solve problem (2) with the help of Lagrange multipliers.

