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1 Introduction

The dynamics of the oceans play a major role in the knowledge of our envi-
ronment and especially in the Earth’s climate. Over the past twenty years,
the new satellite techniques for observing the oceans, and especially the use of
altimeter measurements, have greatly improved our knowledge of the oceans
by allowing synoptic monitoring of the surface. The measurements of the sea-
surface height have clearly demonstrated the feasibility and the usefulness of
satellite altimetry. It was with the availability of Topex/Poseidon data since
1992, that the oceanographic community began intensive exploitation of this
new observational source. It has already given incomparable information to
study the general circulation of the ocean, to estimate the energy levels of
the upper ocean, and to examine the local dynamics of different regions of
particular interest, such as the Gulf Stream area, the Kuroshio extension, the
Antarctic circumpolar current and the tropical oceans.
At the interface between the two major components of oceanographic science,
i.e. observations and models, lies the domain of so-called data assimilation
(DA). DA covers all the mathematical and numerical techniques which allow
us to blend as optimally as possible all the sources of information coming from
theory, models and other types of data. Clearly these techniques may not only
apply in oceanography but also to other environmental disciplines. DA allows
us to recreate the time-space structure of a system from a set of information
which has, in general, a large disparity in nature, in space-time distribution
and in accuracy. There are two main categories of DA methods: variational
methods based on the optimal control theory [Lio68] and statistical methods
based on the theory of optimal statistical estimation. The prototype of the first
class which is actually of interest here is the optimal control method which was
first introduced in meteorology (see [Lew85], [LeD86], [Tal87]) and more re-
cently for the ocean (see [Tha88], [She90], [Moo91], [Sch93], [Nec94], [Luo98]).
The prototype of statistical methods is the Kalman filter whose introduction



2 Didier Auroux and Jacques Blum

in oceanography dates back roughly a decade (see, for example, [Ghi89] and
[Ghi91]). The Kalman filter was extended to nonlinear cases ([Jaz70], [Gel74])
but it has been mostly applied in oceanography to quasi-linear situations of
the tropical oceans ([Gou92], [Fuk95], [Fuk93], [Can96], [Ver99]). We also refer
to the recent book of Bennett [Ben02] on inverse methods, both for oceanog-
raphy and meteorology.
All DA techniques encounter major difficulties in practice for computing rea-
sons: memory size and computing costs. The full Kalman filter would, in
principle, require the manipulation of (N ×N) matrices where N is the state
vector dimension which is typically 107 or 108 in an oceanic problem. The
optimal control adjoint method often requires several hundred iterations of
the minimization process to converge, thus implying an equivalent number of
model runs.
In this paper, we first focus our interest on the use of the variational ad-
joint method in a relatively simple ocean model in order to try to reconstruct
the four-dimensional ocean system from altimetric surface observations of the
ocean. The variational method uses the strong constraint hypothesis, i.e. the
ocean circulation model is assumed to be exact. The assimilation process is
carried out by an identification of the initial state of the dynamical system
which minimizes a cost function. This cost function is the mean-square dif-
ference between the observations and the corresponding model variables. The
functional will be minimized using a numerical unconstrained optimization
method such as the limited memory BFGS algorithm (see [Gil89]). The gra-
dient vector is obtained analytically from the adjoint state, which can be
interpreted as the Lagrange multiplier of the model equations. We then use
a dual method, which consists in considering the model as a weak constraint.
The use of an observation vector as a Lagrange multiplier for this constraint
allows us to consider the minimization problem in a dual way. The dual cost
function, measuring the difference between the data and the model state corre-
sponding to a vector of the observation space, is minimized in the observation
space, still using the BFGS algorithm.
In section 2, we introduce the physical model used for the theorical and nu-
merical results. The primal and dual methods applied to our ocean model are
introduced in sections 3 and 4 respectively. Some numerical results are given
in section 5. A few conclusions will be given in section 6.

2 Physical model

2.1 Quasi-geostrophy

The system which governs the behaviour of the ocean is called the primitive
equation system, constituted by the conservation laws of mass, momentum
(Navier-Stokes equations), temperature and salinity. Most large-scale geo-
physical flows are based on the geostrophic equilibrium between the rotational
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effect due to the Coriolis force and the horizontal pressure gradient.
We will use here a simplified quasi-geostrophic ocean model. This model arises
from the primitive equations, assuming first that the rotational effect (Corio-
lis force) is much stronger than the inertial effect. This can be quantified by
the fact that the ratio between the characteristic time of the rotation of the
Earth and the inertial time is small. This ratio is called the Rossby number.
The quasi-geostrophic model also assumes that the size of the ocean is small
compared to the size of the Earth, and that this ratio is close to the Rossby
number. Quasi-geostrophy finally assumes that the depth of the basin is small
compared to its width (the ocean is supposed to be a thin layer of the Earth).
In the case of the Atlantic Ocean, all these assumptions are not valid, but it
has been shown that this approximate model reproduces quite well the ocean
circulations at intermediate latitudes, such as the Gulf Stream.
The thermodynamic effects are neglected, and we also assume that the forc-
ing is due to the wind at the surface of the ocean and that the dissipation is
essentially due to bottom and lateral friction.

2.2 Equations of the model

The ocean is supposed to be stratified in n layers, each of them having a
constant fluid density [Hol78]. The quasi-geostrophic model is obtained by
making a first order expansion of the Navier-Stokes equation with respect to
the Rossby number [Ped79]. The model system is then composed of n coupled
equations resulting from the conservation law of the potential vorticity. The
equations can be written as :

D1 (θ1(Ψ) + f)

Dt
− β∆2Ψ1 = F1 in Ω×]0, T [, (1)

at the surface layer (k = 1),

Dk (θk(Ψ) + f)

Dt
− β∆2Ψk = 0 in Ω×]0, T [, (2)

at intermediate layers (k = 2, . . . , n − 1), and

Dn (θn(Ψ) + f)

Dt
+ α∆Ψn − β∆2Ψn = 0 in Ω×]0, T [, (3)

at the bottom layer (k = n), where

• Ω ⊂ R
2 is the circulation basin and ]0, T [ is the time interval,

• n is the number of layers,

• Ψk is the stream function at layer k, Ψ is the vector (Ψ1, . . . , Ψn)T ,
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• θk is the sum of the dynamical and thermal vorticity at layer k :

θk(Ψ) = ∆Ψk − (WΨ)k,

with −(WΨ)k =
f2
0 ρ

Hkg

(

Ψk+1 − Ψk

ρk+1 − ρk

−
Ψk − Ψk−1

ρk − ρk−1

)

.

• f is the Coriolis force (f0 is the Coriolis force at the reference latitude of
the ocean).
In the β-plane approximation, the Coriolis force varies linearly with respect
to the latitude.

• g represents the gravity, ρk the fluid density at layer k (and ρ the average
fluid density), and Hk the depth of the layer k,

•
Dk

Dt
is the Lagrangian particular derivative :

Dk

Dt
=

∂

∂t
+ J(Ψk, .),

where J is the Jacobian operator J(f, g) =
∂f

∂x

∂g

∂y
−

∂f

∂y

∂g

∂x
,

• ∆Ψn represents the bottom friction dissipation, ∆2Ψk represents the lat-
eral friction dissipation,

• and F1 is the forcing term, the wind stress applied to the ocean surface.

2.3 Boundary conditions

The tridiagonal matrix W (used to couple the stream functions at different
layers) can be diagonalized :

W = P.diag(λ1, . . . , λn).P−1, (4)

where 0 = λ1 < λ2 ≤ . . . ≤ λn are the eigenvalues, and P is the transformation
matrix. We can then define the mode vector of the stream functions Φ =
(Φ1, . . . , Φn)T :

Φ = P−1Ψ.

The first mode Φ1 corresponds to the eigenvalue 0 and is called the barotropic
mode. The next modes ares the baroclinic modes. The boundary conditions
result from the mass conservation law (Holland 1978), and can then be written
as :

Φ1 = 0 in ∂Ω×]0, T [,
∫

Ω

Φk(t)dσ = 0 ∀t ∈ [0, T ], ∀k ≥ 2,
(5)

and
∆Ψk(t) = 0 in ∂Ω×]0, T [, ∀k. (6)

The initial conditions Ψk(0) complete the equations of the direct model.



Data assimilation methods for an oceanographic problem 5

3 Primal variational method

We suppose that the data we want to assimilate come from satellite measure-
ments of the sea-surface height, which is directly related to the upper layer

stream function Ψ1 by h =
f0

g
Ψ1. Thus, we assume that we have an observa-

tional stream function Ψ obs
1 . These observations are only available at times ti,

i = 1 . . . N , over the data assimilation period [0, T ], and are also discrete in
space. We consider then that the vector Ψ obs

1 (ti) represents the observations
of the ocean surface available at time ti.
The control vector u (which has to be determined) is the initial state of the
stream functions at all layers (Ψk(0))

k=1...n
.

3.1 Cost function

We can define a cost function

J (u) =
1

2

N
∑

i=1

〈R−1
i

(

HiΨ1(ti) − Ψobs

1 (ti)
)

, HiΨ1(ti) − Ψobs

1 (ti)〉

+
1

2
〈P−1

0 u, u〉,

(7)

where P0 and Ri are covariance matrices, Hi are (linear) observation opera-
tors connecting observations Ψ obs

1 and model solutions Ψ1, and 〈 . , . 〉 is the
canonical real scalar product.
The first part of the cost function quantifies the difference between the obser-
vations and the state function, and the second part is a regularisation term.
The inverse problem which consists in the minimization of J is then well-
posed.

3.2 Adjoint model

In order to minimize the cost function, we need its gradient ∇J . Because
of the large dimension of the model state vector (more than 106), it is not
possible to compute directly the gradient by using finite difference methods.
The gradient vector of the functional is then obtained by solving backwards
in time the adjoint model ([LeD86]). The quasi-geostrophic adjoint equations
are :

∂θT
1 (Λ)

∂t
− ∆J(Ψ1, Λ1) − (WT J(Ψ,Λ))1 − J (Λ1 , θ1(Ψ) + f)

−β∆2Λ1 = E1

(8)

at the surface layer,
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∂θT

k
(Λ)

∂t
− ∆J(Ψk, Λk) − (WT J(Ψ,Λ))k − J (Λk , θk(Ψ) + f)

−β∆2Λk = 0
(9)

at the intermediate layers, and

∂θT
n (Λ)

∂t
− ∆J(Ψn, Λn) − (WT J(Ψ,Λ))n − J (Λn , θn(Ψ) + f)

+α∆Λn−β∆2Λk = 0
(10)

at the bottom layer, in Ω×]0, T [, where

• Λ1, . . . , Λn is the adjoint vector,

• θT

k
(Λ) = −∆Λk + (WT Λ)k is the vorticity corresponding to the adjoint

state,

• and E1 is the derivative of J with respect to Ψk :

E1(t) =

N
∑

i=1

R−1
i

(HiΨ1(t) − Ψobs

1 (t)) δ(t − ti).

If we denote by χ = (χ1, . . . , χn)T the modal adjoint vector :

χ = PT Λ,

the space boundary conditions satisfied by the adjoint state Λ are :

χ1 = 0 in ∂Ω×]0, T [,
∫

Ω

χk(t)dσ = 0 ∀t ∈ [0, T ], ∀k ≥ 2,
(11)

and
∆Λk(t) = 0 in ∂Ω×]0, T [, ∀k. (12)

The gradient of the first part of J is obtained by solving equations (8-12) with
a final condition of nullity of the adjoint state. The gradient of the second part
of J is obtained directly by deriving it with respect to u, and we obtain :

∇J = H(−∆ + W )H−1







Λ1(0)
...

Λn(0)






+ P−1

0 u (13)

where H is the diagonal matrix with the layers’ depths Hk on the diagonal.
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3.3 Minimization process

The numerical minimization of the cost function J can be realized using
a quasi-Newton method. The Newton class of minimization algorithms is
based on an iterative process, using at iteration k the descent direction
dk = −H−1

k
.∇J (xk), where Hk = ∇2J (xk) is the Hessian matrix of the

cost function. The direct computation of the Hessian matrix is impossible (its
dimension being too large), but it is possible to evaluate it, using the second
order adjoint equations. However, the inversion of H is nearly impossible. The
quasi-Newton algorithms consist in replacing the inverse of the Hessian ma-
trix by a succession of matrices (Wk)k∈N which are symmetric positive definite
approximations to H−1.
The BFGS algorithm ([Bro69]) uses the following update formula :

Wk+1 = U(Wk, sk, ηk) :=
(

I −
sk ⊗ ηk

〈ηk, sk〉

)

Wk

(

I −
ηk ⊗ sk

〈ηk, sk〉

)

+
sk ⊗ sk

〈ηk, sk〉

with sk = xk+1 − xk, ηk = ∇J (xk+1) −∇J (xk) and a ⊗ b : c 7→ 〈b, c〉a. The
disadvantage of this formula is the need to store all pairs (sk, ηk).
The L-BFGS algorithm ([Liu89]) is a limited memory version of the previous
algorithm. Only the last M pairs are stored, M being often equal to 5. The
update formula is then :

Wk = U(Wk−1, sk−1, ηk−1), 1 ≤ k ≤ M,

and










W 0
k

= Dk,

W i+1
k

= U(W i

k
, sk−M+i, ηk−M+i), i = 0 . . . M − 1,

Wk = WM

k
,

for k ≥ M +1, where Dk is a diagonal matrix. The update formula for Dk is :

D
(i)
k+1 =

(

1

D
(i)
k

+
η
(i)
k

2

〈ηk, sk〉
−

s
(i)
k

2

(D
(i)
k

)2〈D−1
k

sk, sk〉

)−1

.

4 Dual method

4.1 General description

The primal method has many disadvantages. First, the minimization process
is often stopped before convergence to the minimum, because of the size of
the state vector. Moreover, it is also impossible to take into account a model
error : in the previous section, we have supposed that the model and the
equations were perfect. This is obviously not the case (for example, not all
parameters are well known). The only solution to incorporate the model error
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into the minimization process is to add corrective terms to the model, consider
them as part of the control vector, and add a third term to the cost function.
This is not computationally realistic because the size of the control vector
would be multiplied by the number of time steps. Therefore, it is not possible
to take into account in a straightforward way the model error in the primal
variational approach.
A new approach to data assimilation problems has been recently introduced
([Amo95], [Ben92], [Cou97]). Rather than minimizing a cost function on the
state space, the dual method consists in working in the observation space
(which is smaller than the state space).

4.2 Dual algorithm

Instead of solving first the direct equations and then the adjoint equations in
the primal variational approach, the dual method consists in solving first the
adjoint equations in order to use the information contained in the observation
vector, and then the direct equations in order to reconstruct a trajectory. The
dual algorithm for the quasi-geostrophic model can be constructed as follows :

• Let m be an observation vector that can be directly related to Ψ1 (assume
that m is a vector containing an observation of a part of the ocean surface
at different times ti),

• Solve the adjoint equations (with a final condition equal to zero) :

∂θT
1 (Λ)

∂t
− ∆J(Ψ1, Λ1) − (WT J(Ψ,Λ))1 − J (Λ1, θ1(Ψ) + f)

− β∆2Λ1 = Ẽ1(m),

∂θT

k
(Λ)

∂t
− ∆J(Ψk, Λk) − (WT J(Ψ,Λ))k − J (Λk, θk(Ψ) + f)

− β∆2Λk = 0, 1 < k < n,

∂θT
n (Λ)

∂t
− ∆J(Ψn, Λn) − (WT J(Ψ,Λ))n − J (Λn, θn(Ψ) + f)

+ α∆Λn − β∆2Λk = 0,

(14)

where

Ẽ1(m)(t) =

N
∑

i=1

HT

i R−1
i

(m(t) − Ψobs

1 (t)) δ(t − ti).

• Solve the direct equations
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D1 (θ1(Ψ) + f)

Dt
− β∆2Ψ1 = F1 + (QΛ)1,

Dk (θk(Ψ) + f)

Dt
− β∆2Ψk = (QΛ)k, 1 < k < n

Dn (θn(Ψ) + f)

Dt
+ α∆Ψn − β∆2Ψn = (QΛ)n,

(15)

with the initial conditions

Ψk(0) = Ψe

k(0) + (P0Λ(0))k,

where Q and P0 are statistical preconditioning matrices, and Ψ e

k
(0) is an

a priori estimation of Ψk(0).

• Define the operator D : (Dm)(t) =
N
∑

i=1

HiΨ1(ti) δ(t − ti).

We can then define the dual cost function as follows :

JD(m) =
1

2
〈Dm,m〉 − 〈Ψobs

1 ,m〉. (16)

JD measures the difference between Dm and Ψ obs
1 , i.e. between the trace (in

the observation space) of a solution of the direct model and the observation
vector.
As D is a linear symmetric positive definite operator, the gradient is obviously
given by

∇JD(m) = Dm − Ψobs

1 . (17)

It is therefore easy to perform the minimization of JD, given its gradient,
simply by using a quasi-Newton method such as a BFGS algorithm. Once
the minimum has been found, it is easy to reconstruct the corresponding
trajectory in the state space by solving (14-15).
We can observe that the minimization of the dual cost function takes place
over a smaller space than the minimization of the primary one. Moreover,
this method also takes into account the model error, which was numerically
impossible in the classical approach.

5 Numerical results

5.1 Model parameters

The numerical experiments are performed for a square three-layered ocean.
The basin has horizontal dimensions of 4000 km × 4000 km and its depth is
5 km. The layers’ depths are 300 meters for the surface layer, 700 meters for
the intermediate layer, and 4000 meters for the bottom layer. The ocean is
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discretized by a Cartesian mesh of 200 × 200 ×3 grid zones. The time step is
1.5 hour. The initial conditions are chosen equal to zero for a six-year ocean
spin-up phase, the final state of which being then the initial state for the data
assimilation period. Then the assimilation period starts (time t = 0) with this
initial condition (Ψk(0)), and lasts 5 days (time t = T ), i.e. 80 time steps. The
numerical method used to minimize the cost functions is a limited memory
BFGS quasi-Newton method. The M1QN3 code by Gilbert and Lemaréchal
([Gil89]) is used for our experiments.
The experimental approach consists in performing twin experiments with sim-
ulated data. First, a reference experiment is run and the corresponding data
are extracted. This reference trajectory will be further called the exact solu-
tion. Experimental surface data are supposed to be obtained on every fifth
gridpoint of the model, with a time sampling of 7.5 hours (every 5 time steps).
Simulated surface data are then noised with a blank Gaussian distribution,
and provided as observations for the cost function. The first guess of the as-
similation experiments is chosen as the reference state of the ocean one year
before the assimilation period. The results of the identification process are
then compared to the reference experiment.

5.2 Exact solution, noised observations

Fig. 1. Exact solution at the beginning (a), resp. the end (b), of the assimilation
period.

Fig. 1 represents the stream function Ψ1 at the surface layer, at the begin-
ning and at the end of the assimilation period. These fields will be useful to
measure the identification of the initial state, and also the reconstruction of
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the stream function at the final time. One can observe the turbulent structure
of the ocean, with a main current simulating a Gulf Stream type configura-
tion.

Fig. 2. Noised extracted data at the surface layer (a) and corresponding state at
the end of the assimilation period (b)

The first part of fig. 2 represents the noised data extracted from the reference
run, still at the surface layer. The second part of this figure is the corre-
sponding state after a model run using the noised data as initial condition.
This experiment clearly shows the importance of data assimilation. The model
will indeed not smooth the trajectory, and it is not possible to obtain good
predictions by simply integrating the model with observation data as initial
conditions.

5.3 Primal method

The initial estimated vector to start the minimization process is chosen to
be the reference state of the ocean one year before the assimilation period.
The minimization process is stopped after 40 iterations, each iteration con-
sisting of one integration of the forward direct model (in order to compute
J ) and one integration of the backward adjoint model (in order to compute
∇J ). The result of the minimization is shown on fig. 3-a. The direct model is
then integrated over the assimilation period, using the computed minimizer
as initial condition, and the corresponding state of the ocean at the end of
the assimilation period is shown on fig. 3-b.
We can notice that the stream function of the solution at time t = 0 at the
surface layer is comparable to the exact solution at the same time, but to a
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Fig. 3. Result of the minimization of the primal cost function. Solution at the
beginning (a) and the end (b) of the assimilation period

lesser extent at time t = T . This can be explained by the fact that the primal
algorithm gives more importance to the state at t = 0 than to any other time,
as it is the control vector.

5.4 Dual method

Fig. 4. Result of the minimization of the dual cost function. Solution at the begin-
ning (a) and the end (b) of the assimilation period
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The initial estimated vector is the same. The minimization process is still
stopped after 40 iterations, each iteration consisting now of one integration
of the backward adjoint equations and one integration of the direct equations
(in order to compute JD and ∇JD). The result of the minimization process
is shown on fig. 4-a at time t = 0 and fig. 4-b at time t = T .
The stream function appears to be less smooth than in the primal case. This
is due to the fact that the observations are noised and the dual algorithm
works over the observation space. The corresponding state at the end of the
assimilation period is closer to the exact solution than in the primal case.
The dual algorithm looks indeed for a global acceptable solution : the control
vector is a set of observations all over the assimilation period.

5.5 Comparison between the two methods

0
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Fig. 5. RMS errors of the different methods versus number of time steps over the
assimilation period, using as initial conditions: the first noised observation (thin
line), the primal algorithm (bold line) and the dual algorithm (dot line).

Fig. 5 represents the root mean square (RMS) error over the entire as-
similation period between the exact solution and an identified solution, using
either the observations, the primal solution, or the dual one. The RMS error
at time t for one of these solutions is :

rms(t) =

∫

Ω

[

Ψsol
1 (t) − Ψexact

1 (t)
]2

dσ

∫

Ω

[

Ψexact
1 (t)

]2

dσ

.
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The error reaches nearly 10% in the case of the trajectory resulting from the
observations, and increases in time. This is due to the inherent non-linearities
of the model.
In the case of the two data assimilation methods, the RMS error is clearly
smaller (by a factor of more than 5). This proves once again the usefulness
of data assimilation, which makes it possible to reconstruct a trajectory with
less than 2% RMS error using noised observations with a 10% RMS error.
The RMS error of the primal method tends to increase in time. This is in
agreement with the remark concerning the resemblance between the stream
function of the primal solution and that of the exact solution at initial time,
and the loss of this similarity at final time. The RMS error of the dual solution
is a little larger, but it tends to remain constant (and even decrease a little
bit sometimes) in time. Moreover, as the dimension of the control vector u in
the primal variational approach is 121203 (201 × 201 × 3), versus 28577 in
the dual one (41 × 41 × 17), the minimization of the dual cost function is
faster than for the primal approach.

6 Conclusion

As a matter of fact, the oceanic circulation model is governed by complex
equations and behave as certain typical characteristics of the turbulent flow.
Besides, in practice, the observation data are of various nature and should
be combined together in the same functional to be minimized. In the present
work, synthetic data are sampled using the whole surface layer. Generally, in
the framework of the realistic oceanic data assimilation, the data are available
only along ground tracks for time intervals corresponding to the satellite re-
peat period. Therefore, the optimal initial state would not be as well estimated
because of the relatively small number of observations and their heterogeneous
spatial distribution. Also, we notice that the performances of these methods
have been assessed with a quasi-geostrophic model. It is necessary to apply
them to a more complicated model such as the primitive equation model.
The dual data assimilation method is promising taking into account the com-
puting time which is smaller than the primal optimal control method because
of the smaller dimension of the observation space. Moreover, it enables to in-
troduce an error in the model and not to consider the equations of the fluid
as a strong constraint. The non linear character of the equations remains a
problem for the proof of convergence of the dual method.
It remains a promising step towards operational oceanography.
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dérivées partielles. Dunod (1968)

[Liu89] Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale
optimization. Math. Prog., 45, 503–528 (1989)

[Luo98] Luong, B., Blum, J., Verron, J.: A variational method for the resolution
of a data assimilation problem in oceanography. Inverse Problems, 14, 979–997
(1998)

[Moo91] Moore, A.M.: Data assimilation in a quasigeostrophic open-ocean model of
the Gulf-Stream region using the adjoint model. J. Phys. Oceanogr., 21, 398–427
(1991)

[Nec94] Nechaev, V., Yaremchuk, M.I.: Application of the adjoint technique to pro-
cessing of a standard section data set: world ocean circulation experiment section
S4 along 67S in the Pacific ocean. J. Geophys. Res., 100(C1), 865–879 (1994)



16 Didier Auroux and Jacques Blum

[Ped79] Pedlosky, J.: Geophysical fluid dynamics. Springer-Verlag, New-York (1979)
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