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Abstract. In data assimilation for geophysical problems, the increasing

amount of satellite data to analyze makes it more and more challenging to
guarantee near real time forecasting. Thus, low time and memory consuming

data assimilation methods become very attractive. The back-and-forth nudg-

ing (BFN) method is a non-classical data assimilation method that can be seen
as a deterministic and smoothing version of the Kalman filter. From a practical

point of view, the BFN method is very valuable for its simplicity of implemen-

tation (no optimization, no differentiation,...) and its rapidity of convergence.
Under observability conditions, we prove the mathematical convergence of BFN

at deep layers for a multi-layer quasi-geostrophic (MQG) ocean circulation

model using an infinite dimensional variant of LaSalle’s invariance principle.
We also extend the BFN to the problem of joint state-parameter identifica-

tion. The numerical experiments, performed on 120km large swath sea surface
height (SSH) simulated data of the Surface Water Ocean Topography (SWOT)

satellite, show the high robustness of the algorithm to uncertainties and the

few iterations needed to reach convergence, whereas some problems remain
due to non-reversibility properties in time. We also give a strategy to improve

geophysical model accuracy, considering the large number of uncertain param-

eters inherent to models and their impacts on state estimation performance.
We propose here a joint state-parameter estimation, tested on the baroclinic

wavenumber as an unobserved parameter.

1. Introduction. Reliable weather maps are necessary for many operational and
climatological applications. For instance in weather forecasting a special effort is
usually made to fully reconstruct the initial state, essential to start a forecast pro-
cess. In practice information provided by measurements is too limited to define a
complete field based only on collected data. Data assimilation techniques are used
to solve this underdetermined inverse problem. The idea is to provide an estima-
tion that is both close to the available observations and satisfying the dynamical
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evolution of the physical phenomenon. The nudging method is a data assimilation
method historically used for meteorological problems [23, 38], also known as Luen-
berger observer in control theory [31]. It consists in adding, in some equations of
the dynamical model, a relaxation term towards available observations. This term
is supposed to draw the simulated state of the nudging system towards the real
state of the observed system [10].

Another variant of the standard nudging method called back-and-forth nudging
(BFN) was introduced by Auroux and Blum [6, 7]. The novelty of BFN is to use
a backward nudged integration of the model, and multiple iterations of forward
and backward model integrations until convergence. This allows the algorithm to
converge on finite time windows, while the standard nudging (or asymptotic ob-
server) usually requires a very long time window (theoretically, an infinite time) to
converge. BFN is a simple method that does not require linearization, making it
a valuable candidate for most nonlinear geophysical problems. The back-and-forth
strategy has the advantage, over the classical time asymptotic data assimilation
methods, of assimilating each data as many times as necessary to obtain a sat-
isfactory estimation and most importantly of providing an accurate estimation of
the initial condition. This drives us to explore theoretical and practical results of
convergence for state reconstruction with the BFN method.

The convergence of BFN was widely studied for well-posed linear dynamical
ODEs or PDEs, such as transport equation [9]. For ODE systems, the pole shifting
theorem demonstrates that an asymptotically stable nudging model exists if the
system is exactly observable. Donovan et al. [17] have proposed an explicit way
to determine the corresponding nudging gain matrix. But for nonlinear problems,
these techniques are hard to transpose and a careful examination on theoretical con-
vergence of BFN is still required. To our knowledge, few work has been undertaken
to prove the BFN convergence for nonlinear problems; we can mention the work
of Auroux and Nodet [9] on the Burgers equation. In the context of Luenberger
observer, Boulanger at al. [13] worked on nonlinear hyperbolic conservation laws
admitting a linear kinetic formulation which brings us back to the linear case. We
can also cite [14], in which the authors design asymptotic observers for discrete-time
nonlinear systems and prove their convergence [14]. In addition, several successful
applications of the BFN assimilation technique have shown in practice the conver-
gence of this method for nonlinear problems [7, 36] and this motivates our study to
develop theoretical tools for nonlinear problems assimilating incomplete data. The
BFN has also been used to interpolate altimetric data on a quasi-geostrophic model
[28].

The first purpose of this paper is to study the convergence of BFN with the
multi-layer quasi-geostrophic (MQG) dynamics commonly used to simulate the mid-
latitude ocean circulation. We propose a proof of convergence based on Lyapunov
theory. A Lyapunov function is constructed using physical considerations of energy
decay that lead to asymptotic convergence. This function must be identical for
forward and backward equations in order to ensure continuity and, by the iterative
aspect of BFN method, to lead to the initial state convergence. Because observations
are not available at every layer of the model, we cannot construct a strict Lyapunov
function, meaning that the time derivative of the Lyapunov function cannot be
found definite-negative but only semi-definite negative. The LaSalle’s invariance
principle allows us to overcome this problem [11, 22, 25, 26, 27, 40].
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The same principle can be used for joint state-parameter estimation when only
the prognostic state variable is observed. Finally, and considering realistic observa-
tions sampling, the Lyapunov analysis is extended to a partially observed system.

The second main purpose of this paper is to experimentally support our the-
oretical analysis with numerical experiments. We consider a single-layer quasi-
geostrophic ocean model assimilating synthetic altimetric observations mimicking
the future Surface Water and Ocean Topography (SWOT; [20, 33]) satellite mission.
The SWOT mission, a joint NASA/CNES project with contributions from CSA and
UKSA, will be launched in 2022. It will considerably improve the present-day al-
timetry by providing kilometric-resolution, two-dimensional images of sea surface
height (SSH) with a swath wide of 120km and a repeat period of 21 days.

The final purpose is to explore oceanic model improvement by joint state-para-
meter estimation techniques. The idea is to promote altimetry data, initially de-
signed for state forecasting, to forecast time-varying and hardly observable model
parameters. Besides, the inaccuracy of model parameters is a usually neglected
aspect that explains some limits of weather forecasting. Yet, highly sensitive pa-
rameters badly parametrized have a real impact on state forecasting even with full
and perfect available data, as studied in this paper.

The paper is organized as follows. In Section 2, we describe the BFN method
applied to the MQG model and partial ocean surface data. A theorem on data as-
similation asymptotic convergence is presented in Section 3 for the state estimation.
Then, in Section 4, we consider the problem of a joint state-parameter estimation,
and we give a framework for the convergence of the BFN algorithm. In Section 5,
BFN is used to assimilate synthetic SWOT observations into a quasi-geostrophic
model of the ocean circulation in the Gulf Stream region. Our objective is to re-
construct daily maps of the stream function (proportional to SSH) over a period of
21 days. An application to joint state and celerity parameter reconstruction is also
presented, associated with a theoretical convergence proof. In Section 6 we draw
conclusions.

2. Data assimilation method. The ocean is a stratified fluid that can be ap-
proximately depicted by a stack of layers k ∈ {1, . . . , N} of uniform densities ρk
with a depth at rest of hk. The quasi-geostrophic model is a first-order approxima-
tion of the Navier-Stokes equations with respect to the Rossby number [34]. The
prognostic equation at layer k is:

∂qk
∂t

+ J(ψk, qk) = Fk +Dk, (1)

with the following notations :

• ψk is the stream function at layer k,
• qk is the potential vorticity corresponding to the sum of the dynamical vortic-

ity, the thermal (or stretching) vorticity and the planetary vorticity expressed
as

qk = ∆ψk︸︷︷︸
dynamical

+ (Mψ)k︸ ︷︷ ︸
thermal

+ fk︸︷︷︸
planetary

, (2)

where M is a tri-diagonal matrix defining the inter-connection between layers
[25] and fk = f0 + β0y is the Coriolis force supposed to vary linearly in the
latitude y (β-plane approximation),
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• J is the Jacobian operator, a bilinear and skew-symmetric operator defined
by

J(f, g) =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
, (3)

• F is the forcing term driving the dynamics of the model, here the wind stress
applied to the surface of the ocean only,

• D represents the dissipation terms due to lateral friction and the bottom
friction dissipation at the boundaries of the basin.

We assume that there are no incoming or outgoing fluxes at the boundary ∂Ω of the
two-dimensional domain Ω, which is characteristic of land borders. Mathematically
speaking, it is described by Dirichlet boundary conditions

ψ∗k(t, x, y) = Ck(t), (x, y) ∈ ∂Ω, (4)

where the constant Ck(t) can be calculated at each time step in order to satisfy
the mass conservation condition on the space domain. Finally, ψ∗k is the stream
function spectral coefficient associated to ψk, using the eigenvector basis of the
matrix M [25].

2.1. Sea surface height data. We assimilate observations Y(t) of the sea surface
height (SSH) collected by the altimeter over a finite time window t ∈ T = [t0, tf ].
Given a fixed region, at times ti and on the satellite track ωi ⊂ Ω depending on the
satellite’s motion, the satellite captures information expressed as

Y(t, x, y) =

Nt∑
i=1

δ(t− ti)1ωi(x, y)SSH(ti, x, y), (5)

where δ(t) is the Dirac function and 1ω(x, y) is defined as

1ω(x, y) =

{
1, (x, y) ∈ ω,
0, otherwise.

A proportional relation between SSH and the upper layer stream function can be
found out [39], given by

SSH(x, y, t) =
f0

g
ψ1(t, x, y).

2.2. Back-and-forth nudging method. The standard forward nudging method
is an asymptotic observer method forcing the model towards observations, by adding
a correction term proportional to the misfit between the observations and the model
state. Only asymptotic estimation is achievable for standard nudging (also called
asymptotic observer, because it is asymptotically convergent when time goes to
infinity), whereas BFN method provides a state estimation over a finite time interval
[t0, tf ] and consequently an initial state estimation [6, 7].

The forward nudging model associated to the MQG model (1) with the observa-
tion (5) is expressed as

∂q̂k
∂t

+ J(ψ̂k, q̂k) = Fk +Dk + λ(Y(ψ̂k)− Y(ψk)), (6)

where the nudging gain λ > 0 controls the weight given to the data-correction term.

It may depend on the confidence in the data. The term Y(ψ̂k) is the projection of
the state estimation on the satellite observation domain at layer k.
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The backward nudging model is obtained by incorporating a data correction
term of the opposite sign (compared to the forward nudging) to the MQG model in
decreasing time from tf to t0. By change of variable in time π : t 7→ tf + t0 − t, the
backward nudging model defined on [t0, tf ] is expressed as

∂q̂bk
∂t
− J(ψ̂bk, q̂

b
k) = −Fk −Dk + λb(Y(ψ̂bk)− Y(ψbk)), (7)

where the backward nudging gain λb is strictly positive but not necessarily equal to
the forward nudging gain λ.

To maintain the continuity during the back-and-forth iterations, the forward
model (6) is initialized with the last value (at time t0) of the backward model
integration and conversely, the backward model (6) is initialized with the last value
(at time tf ) of the forward model integration.

3. Theoretical analysis. We want to show that the total energy, defined as

V (t) =

N∑
k=1

Ek(t) +

N−1∑
k=1

Kk(t) +

N−2∑
k=1

Pk(t), (8)

decays at each back-and-forth iteration towards zero along the error trajectory
between the real and the estimated states. The energy Ek represents the enstrophy
at layer k defined as

Ek(t) =
hk
2

∫
Ω

(∆ψ̃k)2dx,

the energy Kk is the first order finite difference between layers of kinetic energy
defined as

Kk(t) = ν2
k+1

∥∥∥∇(ψ̃k+1 − ψ̃k)
∥∥∥2

L2(Ω)
,

and Pk is the second order finite difference between layers of potential energy defined
as

Pk(t) =
1

2

∥∥∥νk+2(ψ̃k+2 − ψ̃k+1)− νk+1(ψ̃k+1 − ψ̃k)
∥∥∥2

L2(Ω)
.

where νk+1 =
f2
0

g
k+1

2

, with gk+ 1
2
, the so-called reduced gravity, expressed as

gk+ 1
2

= g0
ρk+1 − ρk

ρ0
,

with g0 the average constant of gravity and ρ0 the average fluid density in the basin

Ω. Finally, ψ̃k = ψ̂k − ψk is the difference between the real (MQG) and estimated
(BFN) stream functions, respectively solutions of (1), and (6)-(7).

Nonlinearities are usually an obstacle for convergence proof. Working on the
linearized model is a way to get around it, but higher order information is lost. In
this paper nonlinearities of the model will be left unchanged and Lyapunov analysis
on V , defined by (8), is particularly suitable for nonlinear equations. An important
issue is the unavailability of measurements at deeper ocean levels while our goal is
to obtain the convergence at every layer. In such a case the LaSalle’s invariance
principle, also known as Krasovskii-LaSalle principle, will be used. More specifically,
because data are not available continuously in time, we will use the discrete time
version of LaSalle’s invariance principle, as reminded in the following theorem. Note
that V is implictly defined as a function of the stream function ψ [27].
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Lemma 3.1 (Barbalat’s Lemma). Let X = L2(T ;H3
0 (Ω) ∩ L∞(Ω)). Let V : T ×

X → R be a continuously differentiable function such that limt→+∞ V (t) = α with

α < +∞. If V̇ is uniformly continuous then limt→+∞ V̇ (t) = 0.

Theorem 3.2 (Time-discrete LaSalle’s invariance principle). Let ψ = 0 ∈ X be an
equilibrium and V : T ×X → R+ be a continuously differentiable function such that

• V is positive definite :

α1(ψ(t)) ≤ V (t, ψ(t)) ≤ α2(ψ(t)), t ∈ T ,
where α1, α2 are functions of class K∞(X )1,

• ∆V is semi-negative definite with a period of ε > 0 :

∆V (t, ψ(t)) = V (t)− V (t− ε) ≤ 0, t ∈ T ,
• V is uniformly continuous;

then the equilibrium ψ = 0 is globally asymptotically stable.

Assumption 1. Assume there exists a constant ε > 0 such that the MQG model
associated to the observation (5) is backwardly observable on [t− ε, t] for all t ∈ T ,
meaning that there exists a constant γ > 0 such that

N∑
k=1

∫ t

t−ε
‖Yk(s, x, y)‖2Xds ≥ γ‖ψ1(t, x, y)‖2X .

Assumption 2. Assume the stream function belongs to X = L2(T ;H3
0 (Ω)∩L∞(Ω)),

ψk
∂qk
∂y is continuous with regards to y and ψk

∂qk
∂x is continuous with regards to x.

Theorem 3.3. Under Assumptions 1-2, the total energy defined as (8) decays along

the back-and-forth error trajectory such that ψ̃k = ψ̂k − ψk and ψ̃bk = ψ̂bk − ψbk are
both global asymptotically stable equilibria.

See Appendix for the proof of this result.

4. Joint state-parameter estimation. An inaccurate representation of model
parameters contributes to the model error, and then to the growth of the solution
error when time evolves. It therefore affects the ability of our model to accurately
fit the observations, and also to predict the evolution of the true state. In the
context of geophysical science, most models are either chaotic or highly sensitive
to several parameters, which strongly affect long term forecasting results. Some
model parameters can be determined only indirectly through classical altimeter
data. By sensitivity analysis [15], a technical tool providing the response of a
selected function to a certain perturbation, we can evaluate the response of altimeter
data to parameter perturbation in order to select the most impacting parameter to
be estimated in priority.

State-parameter estimation is based on an augmented state assumption, first in-
troduced by Jazwinski in [24]. The state space is augmented by adding parameters
to the control vector to be identified, thanks to data assimilation, so that similar
data assimilation techniques developed for state estimation can also be used to pa-
rameter estimation. It then assumes that the parameter dynamic is known, which
is the case for constant (in time) parameters, but less suitable for unpredictable
parameters (e.g. additional model noise that is not governed by deterministic dy-
namics). Even if it is a well-known research area for standard data assimilation

1the functions of class K∞ are continuous, strictly increasing, unbounded, vanishing at zero
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methods, very few research has been made on state-parameter estimation with
nudging data assimilation method. We can nevertheless cite the recent work of Afri
[1] addressing semi-nonlinear ODEs (i.e. state model is linear but augmented state
model is nonlinear) with standard nudging.

Nudging method can be a very practical method for state-augmentation method.
Other data assimilation methods usually require the covariance matrix of error on
the background parameter, which can be difficult to determine. This problem is
usually overcome with ensemble techniques [29, 30]. For nudging method it is even
more simple, as the covariance matrix is unnecessary and replaced by a deterministic
gain matrix. Besides, the low computational cost of nudging methods can be very
useful in a context where the dimension of the (joint state-parameter) space has
been increased.

For the sake of simplicity, let us consider here a one-layer, quasi-geostrophic
ocean model (N = 1), describing the dynamics of the first baroclinic mode of a
flow:

∂q

∂t
+ J(ψ, q) = 0, (9)

where the potential vorticity q is proportional to the first eigenmode of the Sturm-
Liouville equation (see e.g. [2]). Then Equation 2 becomes:

q = ∆ψ − 1

L2
R

ψ + f, (10)

with LR the first Rossby radius of deformation [39], and f the Coriolis parameter.
The model parameter to be estimated is the barotropic deformation wavenumber

κ =
1

L2
R

=
f2

c2
(11)

where c is the phase speed and f = 2Ω sin(ν) is the Coriolis parameter at latitude
ν for the Earth rotation rate Ω (Chelton at al. [16]). This parameter being time
independent, it can be seen as a time function solution of

∂κ

∂t
= 0. (12)

The augmented model is then:

∂q

∂t
+ J(ψ, q) = 0,

q = (∆− κ)ψ + f,

∂κ

∂t
= 0.

(13)

For the theoretical study and the design of the feedback term, we consider here
the ideal case where the observation operator is the identity operator, i.e. y(t, x, y) =
f0
g ψ(t, x, y) for all t ∈ T and (x, y) ∈ Ω (complete observations). In this case, we

propose the following state-parameter nudging (Luenberger) observer. Let κ̂ be the

estimated parameter, and (ψ̂, q̂) the estimated state, governed by the simultaneous
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state-parameter BFN formulated as follows
∂q̂

∂t
+ J(ψ̂, q̂) = λ(ψ̂ − ψ),

q̂ = (∆− κ)ψ̂ − κ̂ψ̂ + f,

∂κ̂

∂t
= − 1

α
〈ψ̂, ∂

∂t
(ψ̂ − ψ)〉,

(14)

where the nudging gains α and λ are strictly positive real numbers to be determined
and 〈·, ·〉 is the standard L2 scalar product on Ω.

The error for the augmented model can then be expressed as
∂q̃

∂t
+ J(ψ̂, q̂)− J(ψ, q) = λψ̃,

q̃ = (∆− κ)ψ̃ − κ̃ψ̂,
∂κ̃

∂t
= − 1

α
〈ψ̂, ∂

∂t
ψ̃〉,

(15)

where X̃ = X̂ −X for X = q, ψ, κ.

Theorem 4.1. Assume that the stream functions belong to H1
0 (Ω), then the aug-

mented model error governed by (15) is asymptotically convergent towards zero,
associated to a the following positive definite Lyapunov function:

V (t) =
1

2

∫
Ω

{
|∇ψ̃|2 + 2κ̃ψ̂ · ψ̃ + κ|ψ̃|2

}
+
α

2
κ̃2, (16)

where the real number α ∈ R+
∗ satisfies

α ≥ 1

κ
sup
s≥0
‖ψ̂(s, x)‖2L2(Ω). (17)

The proof of this theorem is again based on LaSalle’s invariance principle. We
refer the reader to [2] for a detailed proof.

Remark 1. Note that another Lyapunov function can be found in the one-layer
case, expressed as

W (t) =
1

2

∫
Ω

q̃2 dx, (18)

representing the error on the potential vorticity.

5. Numerical results. We now present numerical experiments in order to con-
firm the theoretical results we obtained in the previous section, and to illustrate the
efficiency of the BFN algorithm in the SWOT framework for a multi-layer quasi-
geostrophic model. We first look at the numerical schemes used for solving the
original MQG (1) and BFN (6)-(7) models.

5.1. Discretization scheme and time-reversibility problems. Time-rever-
sibility property of the time-discretization scheme represents the ability to pre-
serve the solution after back-and-forth integration without introducing round-off
errors. Considering the number of back-and-forth iterations to be performed before
reaching convergence, this property is very important for not perturbing the data
assimilation process. We can also argue that in many cases time-reversible schemes
guarantee the conservation of energy, angular momentum or other quantities.

For this reason, we choose the leap-frog scheme that is a second-order explicit and
time-reversible scheme evaluating the same number of functions as the first order
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forward-Euler scheme. To prevent the instabilities of the leap-frog scheme caused by
the amplitude growth of the computational mode in time, known as time splitting
[18], we use a Robert-Asselin time filter [4, 35]. Thus, the time-discretization of the
MQG model (1) with this scheme reads

qn+1
k = q̄n−1

k + 2∆t
(
−J(ψnk , q

n
k ) + Fnk +Dn−1

k

)
,

with
q̄nk = qnk + µ(qn+1

k − 2qnk + q̄n−1
k ),

where µ = 0 refers to the standard leap-frog scheme. In our case, we will choose
µ = 0.2 [37].

For spatial discretization, the two-dimensional rectangular domain Ω is divided
into a uniform grid and the finite difference (FD) method is applied. It has been
observed by Phillips [12] that the FD method applied to the discretization of the
Jacobian operator leads to instabilities, not coming from poor choice of boundary
condition or coarse space grid, but as an inherent feature of the scheme called
aliasing. As an alternative, Arakawa [3] has proposed a stable discrete Jacobian
that conserves kinetic energy, enstrophy and average wave number. The elliptic
equation (2) is discretized with a second-order centered FD scheme.

The dissipative terms Dk make the backward model ill-posed which is very prob-
lematic for the use of back-and-forth data assimilation method. In ocean dynamics
the dissipation terms are very small compared to the other terms in the model
equation (such as wind stress, for example) but cannot be totally neglected. These
dissipation terms are mainly designed to take into account subscale phenomena. So,
here, this numerical problem is addressed with the diffusive-BFN (DBFN) method
[8], that changes the sign of the diffusive terms of the backward model, in order to
still account for subscale phenomena in a similar way as in the forward model.

5.2. Simulation framework. The reference solution to be retrieved by data as-
similation is the solution of the quasi-geostrophic model initialized with an output
from the MITgcm [32] Ocean General Circulation Model (OGCM) that simulates
the 3D dynamics of the ocean. This model output, shown on Figure 2(a), was
distributed along with the SWOT simulator in the first versions of the tool.

The SWOT data are simulated from the reference solution using version 1 of the
SWOT simulator. The SWOT simulator [21] is an open-source software developed
by NASA and written in Python. From gridded, model fields of SSH, the SWOT
simulator generates the SWOT observations grid based on the satellite orbit, inter-
polates SSH values from the model grid to the SWOT grid, then generates and adds
measurement noise consistent with the expected error budget of the satellite [19].
These errors are quantified from numerical simulations of the satellite platform and
instrument carried out by the mission project team, and include instrumental errors
and geophysical errors due to the presence of water vapor in the troposphere. Note
that this error budget has sometimes been modified, and will probably be again
modified until the actual use of SWOT satellite, but this should not deeply affect
the conclusions of the current study. In the rest of the paper these data with the
corresponding errors will be called noisy data.

Consistently with the initial model input, our study is restricted to a spatial
domain Ω of size 3099×2052 km covering the highly dynamical Gulf Stream region in
the North-Atlantic ocean, divided into a uniform grid of 18 km resolution composed
of 170×113 nodes. The time window, into which a state estimate is provided daily,
has a length of 21 days, equal to the revisit period of the satellite. After 21 days,
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(a) after 5 days

(b) after 10 days

(c) after 21 days

Figure 1. SWOT satellite SSH data coverage after 5 days, 10
days or 21 days.

we consider that the coverage of the zone (see Figure 1) is sufficient to satisfy the
observability conditions of Assumption 1. The time step is ∆t = 600s, a model
integration of 21 days requires then Nt = 3024 steps.

To initialize the data assimilation process, the background state comes from the
quasi-geostrophic model integrated 10,000 time steps starting from the reference
initial state, what we consider to be a sufficiently large number to make the back-
ground state distinct from the initial state to be estimated (see Figure 2(b)). As in
[25], the wind force is approximated by a steady zonal wind expressed as

F (x, y) = −τ sin

(
2πy

L

)
,

where y represents the latitude and L = 3099 km is the characteristic length of the
basin. During the assimilation process over a 21 days time period, we fix τ = 0,
thus no external force is applied in our simulations, the nudging term added to the
model will play the role of a driving force.
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(a) Reference SSH

(b) Background SSH

Figure 2. Comparison of initial time sea-surface height.

5.3. Data assimilation parameters. Observations are only available at certain
discrete times, creating discontinuities in the data correction term and as a re-
sult in the assimilated state. Nothing indicates in our theoretical results that data
frequency has an impact on the asymptotic convergence. Indeed, no matter the
amount of data gathered inside the time window, the asymptotic convergence to-
wards the exact solution is theoretically ensured. In practice though, due to the
discretization, round-off errors, and non-reversibility, the asymptotic convergence
does not necessarily lead to the exact solution.

To measure the influence of data frequency in the data assimilation results, two
different frequencies will be tested numerically: one SSH snapshot per 10 time steps
and one SSH snapshot per 150 time steps. The last case approximately represents
one observation per day for a data acquisition of 21 days. As confirmed by Figure
3, the convergence rate does not seem to be impacted by data frequency. To reduce
the discontinuities arising in case of sparse data, we use a mollifier with a compact
support of size σ that spreads data around observation times. This mollifier, called
bump function, is defined by:

ψσ(s) =


exp

(
−1(

σ
2

)2 − |s|2
)

if |s| < σ

2

0 if |s| ≥ σ

2

which is infinitely differentiable, has a compact support of size σ and finally has an
integral equal to one after normalization

ϕσ(s) =
ψσ(s)∫ σ

2

−σ2
ψσ(t)dt

,
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with its integral calculated numerically. It can be proven that spreading data at
observation times introduces a bias in the error convergence evaluated as

V̇ (t) ≤ h1
λf0

2g

Nt∑
i=1

ϕσ(t− ti)
(
−
∫
ωi

ψ̃1(t)2dx

+σ sup
s∈R+

∫
Ω

|∂tψ̃1(s)|2dx
)
,

where the Lyapunov function increases proportionally to σ. In order to spread data
in such a way that we always assimilate at most one observation at a time, the size
of the compact support σi around the ith observation is calculated as follows

σi = 2 min(ti+1 − ti, ti − ti−1),

where tj is the mean time where the jth observation is captured in the region. In
practice, this choice of compact support ideally balances the effects of smoothing
and decorrelation of data to state in time.

(a) Frequency of 1
10

(b) Frequency of 1
150

Figure 3. Lyapunov function versus time, during 10 back-and-
forth successive iterations (forward integrations in blue, backward
integrations in red), while assimilating time-sampled and space-
complete data: one observation every 10 time steps (left) and every
150 time steps (right).

The nudging gains are fixed to λ = λb = 1e−16 in our experiments. Theoreti-
cally, the higher these coefficients, the faster the convergence. In practice, the data
collected should not always be trusted due to instrumental errors and enforcing
convergence towards these data may lead to poor or non-physical state estimates.
Also, high feedback gains amplify the effects previously described due to numerical
shocks between observed and non-observed times. Moreover, using small nudging
gains allows the model to smooth data along the back and forth iterations (see e.g.
[8]). The value 1e−16 has been selected after analyzing a range of gain values for
one iteration of BFN.

The BFN time window is fixed to 21 days, i.e. the revisit period of SWOT. This
is theoretically the best choice with respect to observability, since it is the shortest
period within which all possibly observed locations are actually observed at least
once. Longer time windows may be detrimental to the backward model integrations.
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Data type Error decay Error decay Error decay
at t0 at tf in average

Complete data 97.39% 99.99% 99.41%
Time-sampled complete data 88.58% 99.63 % 96.71%
SWOT-like perfect data 77.77% 95.52 % 91.20%
SWOT-like noisy data 77.29% 95.34 % 90.96%

Table 1. Percentage of error decay at initial time (t0 = 0 day), at
final time (tf = 21 days) and in average over time on [t0, tf ] after
10 iterations of BFN for different types of data.

5.4. State estimation. To validate the theoretical analysis of convergence devel-
oped in previous sections, three different scenarios will be experimented: (i) full,
perfect (i.e. noise-free) and time-sampled (one data per day) altimetric observations
considered as a benchmark with respect to which we measure the performance and
the success of other datasets, (ii) perfect SWOT data, and (iii) noisy SWOT data
with realistic instrumental and geophysical perturbations.

Figure 4 shows that in all three scenarios, the Lyapunov function is decreasing
rapidly during the first BFN iterations, until stabilization around a solution. For
full and perfect data, only two iterations are necessary to reach this plateau and
for SWOT-like data around ten iterations are necessary. These small numbers of
iterations combined with the algorithm simplicity lead to little CPU computing
times. For time-sampled complete data in space, the Lyapunov function has been
significantly decreased by 96.71% on average over time after 10 iterations of back-
and-forth nudging. In comparison, we measure that the Lyapunov function has
been decreased by 91.20% for SWOT-like perfect data and 90.96% for SWOT-like
noisy data. These results suggest that convergence is very satisfactory considering
the sparsity of data. We also note that noise does not have a high impact (see Table
1 for more details). As shown in Figure 4, there is an accumulation phenomenon
for the last iterations, and after reaching this plateau, increasing the number of
iterations does not improve the final result, the algorithm almost already converged.
For instance after 20 iterations the average error decay using SWOT-like data is of
90.71% when after 10 iterations it is of 90.96%, meaning that the final solution did
not significantly change during the 10 additional iterations.

We observe in Figure 4 (and also in Figure 3) that the error is not constant over
the time window. The error is generally larger at the initial time t0 than at the final
time tf , and at convergence, it is globally decreasing with time (or increasing with
backward time). In the case of full and perfect data, as expected from theoretical
analysis, the error is almost equal to 0 at the final time (error decay of 99.99%),
but this is not exactly the case at the initial time (error decay of only 97.39%).
Backward integrations (from tf to t0) indeed tend to make the error increase, leading
to a slightly degraded estimation of the initial state, compared with the final one.
Previous experiments on the BFN algorithm have shown similar behaviours, but it
has also been shown (see e.g. [5]) that the estimated initial state, even if it has a
larger error, will lead to an as accurate forecast as the estimated final state, the
initial error being concentrated along the stable modes of the forward model. So
that the estimated final state can be used to forecast in the future (t > tf ); and the
estimated initial state can also be used to forecast, starting from t = t0.

Figure 5 shows the reference SSH solution and the SSH reconstructed by BFN
in the three observational scenarios, for both the initial time t0 and the final time
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tf . Figure 6 shows the associated errors in the three scenarios, i.e. the differences
between the reconstructed SSH and the reference solution.

Overall, and in all scenarios, BFN provides a fair, though not perfect, reconstruc-
tion of SSH, particularly at the end of the time window. As it can be expected and
is confirmed in Table 1, the reconstruction is better (the residual errors are smaller)
in the first, full-observation scenario. The noise in the SWOT observations does
not seem to drastically affect the quality of the reconstruction. The reasons behind
the non-perfect fit of the BFN solutions to the reference simulation are numerous:
the dynamics are not reversible in time when diffusion is included; round-off errors
are present; the mollifier plays as if extra, imperfect observations were introduced;
the reference simulation is initialized from an OGCM, which physics are poorly
represented by a quasi-geostrophic model.

In all scenarios again, the estimation of the state at initial time is less accurate
than at final time, as we have seen it on Figure 4, where the Lyapunov function
tends to grow during the backward model integration.

0 5 10 15 20
time (days)

0.00

0.02

0.04

0.06

0.08

0.10

W
(t

)

(a) Full and perfect data
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(b) SWOT-like perfect data

0 5 10 15 20
time (days)

0.00

0.02
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0.08

0.10

W
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)

(c) SWOT-like noisy data

Figure 4. Lyapunov function during 10 back-and-forth successive
iterations (forward integration in blue and backward integration in
red) while assimilating different sets of data.
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(a) Exact SSH at initial time

280 290 300

30

35

40

-0.800

-0.800

-0.800

-0.800

-0.600

-0.600

-0.400

-0.400

-0.200

-0.200

0.000

0.000

0.0
00

0.000

0
.0

0
0

0.
00

0

0.200

0.200

0.2
00

0
.2

0
0 0.

20
0

0.400

0.400

0.400

0.400

0.600

0.800

1.5

1.0

0.5

0.0

0.5

1.0

(b) Exact SSH after 21 days
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(c) SSH with time-sampled full
data at initial time
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(d) SSH with time-sampled full
data after 21 days
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fect data at initial time
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(f) SSH with SWOT-like per-

fect data after 21 days
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(g) SSH with SWOT-like noisy
data at initial time
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(h) SSH with SWOT-like noisy
data after 21 days

Figure 5. Sea-Surface Height (exact or assimilated by BFN) in
the spatial region Ω at different times : t=0 (first column) and
t=21 days (second column).

5.5. Joint state-parameter estimation. We study here not only the data assim-
ilation process (time window from 0 to 21 days) but also the impact of the possibly
wrong parameter value on the forecast (time window from 21 to 84 days). We only
consider here the case of noisy SWOT-like data, and we consider ten iterations of
BFN on the time window [0, 21] days.

Three scenarios are investigated: (i) the model uses the true value of the phase
speed, c = 2.5 (value used for the reference simulation); (ii) the model uses a
spurious value c = 1.0 that is not corrected by the standard BFN assimilation (only
state correction); and (iii) the model starts with a spurious value c = 1.0 that is
corrected among the variables by the joint state-parameter BFN assimilation. Note
that the phase speed is the only parameter that could be estimated in this system.
Even if we do not drastically change the dynamic regime by slightly modifying the
parameter, it is a relatively sensitive parameter of the model.
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Figure 6. Sea-Surface Height spatial error between assimilated
and exact maps in the spatial region Ω at different times : t=0
(first column) and t=21 days (second column).

Figure 7 illustrates the results of the three experiments described right above.
The first three plots (a-b-c) present the time evolution of the Lyapunov function V
(see Equation 16) over the BFN time window and the forecast window. The last
plot (d) shows the evolution of the Lyapunov function W (see Equation 18) over
the BFN time window.

In the first scenario, as we use the true model parameter, we are in a very
similar situation to previous experiments, in the (only) state estimation case. The
Lyapunov function, and thus the error on the state, decreases along BFN iterations,
and reaches a very small value after several iterations. The error remains small
during the forecast period, as the true model parameter is used, and the identified
state used for forecasting is almost perfect.

In the second scenario, we use a wrong model parameter, but we assume it is
true in the sense that we do not try to correct it. The state estimation process is
still efficient, although less than in the first scenario, and the error on the identified
state is very small after 10 iterations. But then, using a wrong model parameter
quickly leads to a strong increase of the error during the forecast.

In the last scenario, we use a wrong model parameter, but we consider a joint
state-parameter estimation, so that the parameter is also corrected during the BFN
iterations. The second nudging cœfficient α, for the parameter equation, is fixed
according to Equation 17. And as it can be seen on Figure 7-(c), the error on the
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state decreases quite quickly and reaches a minimum after less than 10 iterations.
And as the parameter is also corrected, the error does not increase much during the
forecast period.

Finally, Figure 7-(d) shows the decrease of the Lyapunov function W (see Equa-
tion 18) during the assimilation window in the third scenario (joint state-parameter

estimation). As ψ̃ decreases to 0 quite quickly (from the decrease of V on figure
(c)), the residual in q̃ is then quickly proportional to κ̃, the error on the parameter,
which is extremely small after 3 iterations. This confirms that the parameter κ is
also very efficiently corrected, and the identified parameter is very close to the true
parameter. This was expected as the forecast in figure (c) remains very good all
along the forecast window.

As a summary, Figure 7 (d) shows that the BFN algorithm extended to joint
state-parameter estimation leads to a very accurate identification of the model pa-
rameter. The figures (a-b-c) show that the joint state-parameter estimation not
only improves the state estimation within the BFN time window, but also during
the forecast.

Figure 8 shows the forecasted SSH at 84 days, the end of the forecast window
(after 21 days of assimilation and then 63 days of forecast), for the same three
scenarios as before: (a) exact speed parameter c = 2.5 used for the assimilation and
forecast; (b) wrong speed parameter c = 1.0 used for the assimilation and forecast;
(c) initially wrong speed parameter c = 1.0 corrected with data assimilation during
the assimilation.

The SSH map in the third scenario is extremely close to the first one, showing
again the efficiency of the joint state-parameter identification, as the model param-
eter has been corrected, allowing the forecast to remain accurate. In the second
scenario (wrong and uncorrected model parameter), even if the error on the state is
very small after the assimilation window, using a wrong model parameter quickly
leads to a poor forecast. The SSH map on figure (b) is indeed far away from the
two other maps.

6. Conclusion. The assimilation of large datasets as provided by the future SWOT
satellite is a challenging task. Most data assimilation methods currently employed
require fine tuning of some control parameters, differentiation of complex state
operators or large-scale matrix inversion. In this paper, we have investigated some
properties and performance of an alternative method called back-and-forth nudging,
a simple and reliable method where none of these tasks are needed. Few studies
have been dedicated to testing the assimilation of realistically distributed and big
data with back-and-forth nudging.

We first studied the theoretical convergence of the back-and-forth nudging algo-
rithm on the quasi-geostrophic ocean model. We introduced an energy functional,
which is actually a Lyapunov function, and proved that it decays with the back-
and-forth nudging iterations. We also extended this convergence result to a joint
state-parameter estimation problem, where one of the model parameters is not
known. Considering another Lyapunov function, we proved that the error (on both
state and model parameter) is asymptotically convergent towards zero.

We then carried out numerical experiments to study the actual convergence and
efficiency of this algorithm for a quasi-geostrophic ocean model with simulated
SWOT data. The major difficulty concerns model time-reversibility, considering
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Figure 7. Evolution of the Lyapunov functions V (a-b-c) during
the assimilation and forecast windows, and of W (d) during the as-
similation window: (a) exact speed parameter c = 2.5 used during
assimilation and forecast; (b) wrong speed parameter c = 1.0 used
during assimilation and forecast; (c) initially wrong speed parame-
ter c = 1.0 that is corrected during data assimilation; (d) decrease
of W during the assimilation window in the third case (c).

the numerous backward integrations in time of this method. The model theoreti-
cally needs to be time-reversible, but some specific techniques have been developed
if it is not the case. The D-BFN method has been introduced in such a frame-
work, with the idea of changing the sign of the diffusive term in the numerical
scheme [8]. But even for time-reversible models, the numerical schemes for time-
discretization must conserve the time-reversibility property. The leap-frog scheme
is a second-order centered scheme satisfying the time-reversibility requirement, but
its tendency to amplify the computational modes can generate severe instabilities.
Instead, we have used a filtered leap-frog scheme with a Robert-Asselin filter that
guarantees stability, but slightly affects the time-reversibility.

We have seen in our simulations that an empirical determination of the nudging
gain (balancing data correction magnitude) is sufficient to obtain convergence in



BACK-AND-FORTH NUDGING: QUASI-GEOSTROPHIC OCEAN DYNAMICS 19

(a) SSH with true parameter c = 2.5

(b) SSH with perturbed parameter c = 1.0

(c) SSH with perturbed and corrected parameter c = 1.0

Figure 8. Forecasted SSH at 84 days with different scenarios dur-
ing the full process (data assimilation of 21 days then forecast of
3 × 21 days): (a) exact speed parameter c = 2.5; (b) wrong speed
parameter c = 1.0; (c) initially wrong speed parameter c = 1.0
corrected with data assimilation.

very few iterations. The nudging gain does not need to be optimally determined.
In fact, the theoretical analysis we have performed at the continuous level tells us
that there are no constraints on the nudging gain to prove convergence, except to
be strictly positive for a scalar value and positive definite for a matrix.

Finally, we have seen that the proposed BFN method for a joint state-parameter
identification also works in a very similar way. Only few iterations are required to
identify both the state and the parameter, so that forecasts are then much more
accurate using the corrected parameter.

Additional experiments should be necessary to numerically investigate the ob-
servability condition, that may not be completely fulfilled in some cases.

Appendix. In this section, we provide a sketch of the proof of Theorem 3.3. We
want to verify if V defined as (8) verifies the three conditions of LaSalle’s invariance
principle :
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• First, we verify that V is a positive definite function with respect to the
stream function. Since ψ̃k and ∂nψ̃k vanish at the boundary ∂Ω, by Poincaré’s
inequality the enstrophy is equivalent to the H2 norm

C1
khk‖ψ̃k‖H2(Ω) ≤ Ek ≤ C2

khk‖ψ̃k‖H2(Ω).

The other terms of V are positive, so V is also equivalent to H2 norm.
• Second, by noticing that V can be rewritten with the potential vorticity:

V (t) =

N∑
k=1

hk
2
‖q̃k‖2L2(Ω),

then the time derivative of V is expressed as

V̇ (t) =

N∑
k=1

hk

∫
Ω

(
J(ψ̂k, q̂k)− J(ψk, qk)

)
q̃kdx

−
Nt∑
i=1

h1λ
f0

g
δ(t− ti)

∫
ωi

ψ̃1q̃1dx.

By Green’s inequality, V̇ satisfies then:

V̇ (t) ≤
N∑
k=1

hk

∫
Ω

(
J(ψ̃k, q̂k)− J(ψk, q̃k)

)
q̃kdx

−
Nt∑
i=1

h1λ
f0

g
δ(t− ti)‖∇ψ̃1‖2L2(ωi)

.

From a property of the Jacobian operator J(·, ·), for ψ ∈ H1
0 (Ω) and ϕ ∈

H1(Ω) ∫
Ω

J(ψ,ϕ)ψ = 0.

From another property of J(·, ·), if there exists two functions f, g ∈ C1(Ω)
such that

ψ
∂ϕ

∂y
=
∂f

∂y
, ψ

∂ϕ

∂x
=
∂g

∂x
,

then we can deduce that ∫
Ω

J(ψ,ϕ)ξ ≤ 0,

where ψ,ϕ in H1(Ω), ξ ∈ L∞(Ω). Thus,

V̇ (t) ≤ −h1

Nt∑
i=1

λ
f0

g
δ(t− ti)‖∇ψ̃1‖2L2(ωi)

= −h1
f0

g

N∑
k=1

‖∇yk‖2L2(Ω).
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By time integration over [t− ε, t] for all t ∈ T and by using the observability
assumption 1, we obtain

V (t)− V (t− ε) ≤ −h1
f0

g

∫ t

t−ε

N∑
k=1

‖∇yk‖2L2(Ω)ds

≤ −h1γ
f0

g
‖∇ψ̃1‖2L2(Ω).

which is semi-negative definite.
• Third, let us show that the error stream function trajectory is uniformly con-

tinuous. By mutliplication of the error at layer k with ∂tψ̃k, we can show that
there exists a strictly positive constant Dk such that

∂

∂t
‖ψ̃k‖2H1(Ω) ≤ Dk‖ψ̃k‖2H2(Ω). (19)

Because V̇ is non-increasing and non-negative, the state error ψ̃(t) is bounded
in the H2 space by

N∑
k=1

C1
k‖ψ̃k‖2H2(Ω) ≤ V (t) ≤ V (t0).

Thus, by the inequality (19), the time derivative of the state ∂tψ̃(t) is bounded

in the H1 space. Meaning that the state trajectory ψ̃(t) is uniformly contin-
uous in the H1 space.
Then, by Barbalat’s Lemma we can deduce that limt→+∞ ‖ψ̃k(t)‖H1(Ω) = 0,
which proves the asymptotic stability of the stream function error, and thus
proves Theorem 3.3 by considering back and forth iterations as a unique, for-
ward in time, trajectory (using changes of variable on the time variable), and
the corresponding time going to infinity when BFN iterations go to infinity.
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