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1. Introduction 
 

In this paper, we generalize the so-called “nudging” algorithm in order to identify the 
initial condition of a dynamical system from experimental observations. The standard 
nudging algorithm consists in adding to the state equations of a dynamical system a 
feedback term, which is proportional to the difference between the observation and 
its equivalent quantity computed by the resolution of the state equations.  
 
The Back and Forth Nudging algorithm consists in solving first the forward nudging 
equation and then a backward equation, where the feedback term which is added to 
the state equations has an opposite sign to the one introduced in the forward 
equation. The initial state of this backward resolution is the final state obtained by the 
standard nudging method. After resolution of this backward equation, one obtains an 
estimate of the initial state of the system. We iteratively repeat these forward and 
backward resolutions (with the feedback terms) until convergence of the algorithm.  
 
This algorithm is presented in section 2. Then, we present in section 3 a way to 
choose the forward and backward nudging matrices in order to have well-posed 
problems, and to obtain the convergence of the algorithm. Then we report in section 
4 the results of numerical experiments on several oceanographic models, including 
comparison and hybridization with the 4D-VAR algorithm. Finally, some conclusions 
are given in section 5. 
 
2. Back and Forth Nudging (BFN) algorithm 
 
In order to simplify the notations, we assume that the model equations have been 
discretized in space by a finite difference, finite element, or spectral discretization 
method. The time continuous model satisfies dynamical equations of the form: 

     ,0),( TtXF
dt
dX
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with an initial condition . In this equation,  represents all the linear or 
nonlinear operators of the model equation, including the spatial differential operators. 
We will denote by 

0)0( xX = F

H  the observation operator, allowing us to compare the 
observations  with the corresponding , deduced from the state vector 

. We do not particularly assume 
obsX ))(( tXH

)(tX H  to be a linear operator. 
 
If we apply nudging to the model (1), we obtain 
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with the same initial condition, and where K  is the nudging (or gain) matrix. Note that 
it may also be a nudging scalar coefficient in some simple cases. The model then 
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appears as a weak constraint, and the nudging term forces the state variables to fit 
as well as possible to the observations. In the linear case (where  is a matrix, and F
H  is a linear operator), the forward nudging method is nothing else than the 
Luenberger observer (Luenberger, 1966), also called asymptotic observer, where the 
matrix K  can be chosen so that the error goes to zero when time goes to infinity. 
Unfortunately, in most geophysical applications, the assimilation period is not long 
enough to have the nudging method giving good results. Then, one can apply the 
nudging technique to the model, but backwards in time, in order to come back to the 
initial state. 
 
The back and forth nudging algorithm, see e.g. (Auroux et al., 2008), consists of first 
solving the forward nudging equation and then the backward nudging equation (i.e. 
the model equation backwards in time, with a nudging feedback to the observations). 
The initial condition of the backward integration is the final state obtained after 
integration of the forward nudging equation. At the end of this process, one obtains 
an estimate of the initial state of the system. We repeat these forward and backward 
integrations (with the feedback terms) until convergence of the algorithm: 
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with the notation 00 )0(~ xX = . Note that this algorithm can be compared with the 4D-
VAR algorithm (Le Dimet et al, 1986), which also consists in a sequence of forward 
and backward resolutions. But in our algorithm, it is useless to linearize (or 
differentiate) the system and the backward system is not the adjoint equation but the 
model equation, with an extra feedback term that stabilizes the ill-posed backward 
resolution. 
 
3. Choice of the nudging matrices and interpretation 
 
3.1. Variational interpretation of the nudging 
 
The standard nudging method has been widely studied in the past decades (see e.g. 
Bao et al (1997)). Thus, there are several ways to choose the nudging matrix K  in 
the forward part of the algorithm. One can for example consider the optimal nudging 
matrix , as discussed in (Vidard et al, 2003). In such an approach, a variational 
data assimilation scheme is used in a parameter estimation mode to determine the 
optimal nudging coefficients. This choice theoretically provides the best results for 
the forward part of the BFN scheme, but the computation of the optimal gain matrix is 
costly. 

optK

 
When , the forward nudging problem (2) simply becomes the direct model (1). 
On the other hand, setting 

0=K
+∞=K  forces the state variables to be equal to the 

observations at discrete times, as is done in Talagrand (1981). These two choices 
have the common drawback of considering only one of the two sources of 
information (model and data). 
 
Let us assume that we know the statistics of errors on observations, and denote by 
R  the covariance matrix of observation errors. This matrix is involved in all standard 
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data assimilation, either variational or sequential. Usually, it is impossible to know the 
exact statistics of errors, and thus only an approximation of R  is available, assumed 
to be symmetric positive definite. 
 
We assume here the direct model to be linear (or linearized). We consider a temporal 
discretization of the forward nudging problem (2), using for example an implicit 
scheme. If we denote by nX  the solution at time  and nt

1+nX  the solution at time , 
and , then equation (2) is equivalent to the following optimization 
problem: 
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if  is symmetric and if the nudging matrix is set to be F 1−= RHK T . The first two 
terms correspond exactly to the energy of the discretized direct model, and the last 
term is the observation part of the variational cost function. This variational principle 
shows that at each time step, the nudging state is a compromise between minimizing 
the energy of the system and the distance to the observations. 
 
As a consequence, there is no need to consider an additional term ensuring an initial 
condition close to the background state like in variational algorithms, neither for 
stabilizing or regularizing the problem, nor from a physical point of view. One can 
simply initialize the BFN scheme with the background state, without any information 
on its statistics of errors. 
 
3.2. Pole assignment method and backward nudging matrix 
 
The goal of the backward nudging term is both to have a backward data assimilation 
system and to stabilize the integration of the backward system, as this system is 
usually ill posed. The choice of the backward nudging matrix is then imposed by this 
stability condition. 
 
If we consider a linearized situation, in which the system and observation operators 
(  and F H , respectively) are linear, and if we make the change of time variable 

, then the backward equation can be rewritten as tTt −='

( ) .'0,'
'

TtHXXKFX
dt
dX

obs <<−−=−        (5) 

Then, the matrix to be stabilized is HKF '−− , i.e. the eigenvalues of this matrix 
should have negative real parts. The pole assignment result (see e.g. (Trélat, 2005)) 
claims that if the system is observable, then there exists at least one matrix  such 
that 

'K
HKF '−−  is a Hurwitz matrix, i.e. all its eigenvalues are in the negative half-

plane. However, such a matrix may be hard to compute, as it usually requires the 
resolution of a Riccati equation. 
 
4. Numerical experiments 
 
4.1. Numerical choice of the nudging matrices 
 
All numerical experiments have been performed with an easy-to-implement nudging 
matrix:  where  is a positive scalar gain, and ,1−= RkHK T k R  is the covariance 
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matrix of observation errors. This choice does not require a costly numerical 
integration of a parameter estimation problem for the determination of the optimal 
coefficients. Choosing LHK T= , where  is a square matrix in the observation 
space, has another interesting property: if the observations are not located at a 
model grid point, or are a function of the model state vector, i.e. if the observation 
operator 

L

H  involves interpolation/extrapolation or some change of variables, then the 
nudging matrix K  will contain the adjoint operations, i.e. some 
interpolation/extrapolation back to the model grid points, or the inverse change of 
variable. 
 
As in the forward part of the algorithm, for simplicity reasons we make the following 
choice for the backward nudging matrix: . The only parameters of the 
BFN algorithm are then the coefficients  and . In the forward mode,  is 
usually chosen such that the nudging term remains small in comparison with the 
other terms in the model equation. The coefficient  is usually chosen to be the 
smallest coefficient that makes the numerical backward integration stable. 

1' −= RHkK T

k 'k 0>k

'k

 
4.2. Experimental approach 
 
The experimental approach consists of performing twin experiments with simulated 
data. First, a reference experiment is run and the corresponding data are extracted. 
From now on this reference trajectory will be called the exact solution. Experimental 
data are supposed to be obtained every  grid-points of the model, and every  
time steps. The simulated data are then optionally noised with a Gaussian white 
noise distribution, and provided as observations to the assimilation scheme. 

xn tn

 
The first guess of the assimilation experiments is chosen to be either a constant field 
or the reference model state some time before the beginning of the assimilation 
period. Finally, the results of the assimilation process are compared with the exact 
solution. 
 
4.3. Shallow water model 
 
The shallow water model (or Saint-Venant's equations) is a basic model, 
representing quite well the temporal evolution of geophysical flows. This model is 
usually considered for simple numerical experiments in oceanography, meteorology 
or hydrology. The shallow water equations are a set of three equations, describing 
the evolution of a two-dimensional horizontal flow. These equations are derived from 
a vertical integration of the three-dimensional fields, assuming the hydrostatic 
approximation, i.e. neglecting the vertical acceleration. There are several ways to 
write the shallow water equations, considering either the geopotential or height or 
pressure variables. We consider here the following configuration: 
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where uv yx ∂−∂=ς  is the relative vorticity, )(
2
1 22* vuhgB ++=  is the Bernoulli 

potential,  is the reduced gravity,  is the Coriolis parameter (in the *g f β -plane 
approximation), 0ρ  is the water density, r  is the friction coefficient, and ν  is the 
viscosity (or dissipation) coefficient. The unknowns are  and  the horizontal 
components of the velocity, and  the geopotential height. Finally, 

u v
h τ  is the forcing 

term of the model (e.g. the wind stress) (Durbiano, 2001). 
 
In the following experiments (see (Auroux, 2009) for all numerical results), the 
observations are available every 5 gridpoints and 24 time steps. The assimilation 
period lasts 720 time steps, corresponding to 15 days, and the forecast period ends 
2880 time steps (or 2 months) after the initial time. As shown in Table 1, the BFN 
converges in 5 iterations, and we compared it with the 4D-VAR, either at 
convergence (16 iterations), or stopped after a similar time computation (5 iterations). 
Several conclusions can be drawn from this table. First the BFN is more efficient than 
the 4D-VAR in the same time (5 iterations of each). Then, if we compare the results 
when both algorithms have achieved convergence, the initial condition identified by 
the 4D-VAR is closer to the true initial state, but the BFN algorithm provides a better 
solution between time T and 4T, which is a keypoint for the quality of predictions. 
 

 
Table 1 – Relative error of the forecast solutions corresponding to the BFN (5 iterations, converged), 
4D-VAR (16 iterations, converged) and 4D-VAR (5 iterations) identified initial conditions, for the three 
variables, at various times: initial time, end of the assimilation period, and end of the prediction period. 
 
Figure 1 shows a comparison between the BFN and 4D-VAR algorithms, and also a 
hybrid scheme. As the BFN provides at each iteration a new estimation of the initial 
condition, it is very easy to hybridize it with another data assimilation method, e.g. the 
4D-VAR. We compare in Figure 1 the evolution of the identified trajectories by the 
BFN and 4D-VAR algorithms (stopped after 5 iterations only), and also the BFN+4D-
VAR hybrid scheme in the same computation time. We compare then 5 iterations of 
BFN, 5 iterations of 4D-VAR, and 2 iterations of BFN followed by 3 iterations of 4D-
VAR. We can see that during the assimilation period, the best solution is provided by 
the hybrid algorithm. Note that it would have been improved a little bit by the 4D-VAR 
at convergence, but we stop all algorithms after 5 iterations here. But during the 
forecast period, it is still provided by the BFN algorithm, except at the beginning. The 
results are comparable for u and v, except that the BFN gives a better solution a little 
earlier. In all the experiments performed, with several levels of noise and different 
background states, the hybrid method was the best during the assimilation period, 
and sometimes it was also the best at the beginning of the prediction period, but in 
most cases, the BFN solution is the best at the end. We can deduce from these 
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results that a very cheap and simple way to largely improve the 4D-VAR algorithm is 
to perform very few (2 or 3) iterations of BFN before starting the 4D-VAR 
minimization process. 
 

 
Fig. 1 – Relative difference between the true solution and the forecast trajectory corresponding to the 
BFN, 4D-VAR and BFN-preprocessed 4D-VAR identified initial conditions, after 5 iterations, versus 
time, for the height variable in the case of noisy observations. 
 
4.4. Quasi-geostrophic ocean model 
 
We have also considered a layered quasi-geostrophic ocean model. This model 
arises from the primitive equations (conservation laws of mass, momentum, 
temperature and salinity), assuming first that the rotational effect (Coriolis force) is 
much stronger than the inertial effects. The Rossby number, ratio between the 
characteristic time of the Earth's rotation and the inertial time, must then be small 
compared to 1. Second, the thermodynamic effects are completely neglected in this 
model. Quasigeostrophy assumes that the horizontal dimension of the ocean is small 
compared to the size of the Earth, with a ratio of the order of the Rossby number. We 
finally assume that the depth of the basin is small compared to its width. In the case 
of the Atlantic Ocean, not all these assumptions are valid, notably the horizontal 
extension of the ocean. But it has been shown that the quasi-geostrophic 
approximation is fairly robust in practice, and that this approximate model reproduces 
quite well the ocean circulations at mid-latitudes, such as the jet stream (e.g. Gulf 
Stream in the case of the North Atlantic Ocean) and ocean boundary currents. The 
model system is then composed of  coupled equations resulting from the 
conservation law of the potential vorticity. The equations can be written as: 

n

[.,0]),()())((
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+Ψ δδθ       (7) 

Ω  is the circulation basin,  is the stream function at layer , kΨ k kθ  is the sum of the 
dynamical and thermal vorticities at layer ,  is the Coriolis force, and the 
dissipative terms correspond to the lateral friction and the bottom friction dissipation. 

k f
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Finally,  is the forcing term of the model, the wind stress applied to the ocean 
surface. We refer to (Blayo et al, 1994) for more details about this model and its 
equations. 

1F

 
The numerical experiments have been made on a three-layered square ocean. The 
basin has horizontal dimensions of 4000 km x 4000 km and its depth is 5 km. The 
layers’ depths are 300m for the surface layer, 700m for the intermediate layer, and 
4000m for the bottom layer. The ocean is discretized by a Cartesian mesh of 
200×200×3 grid points. The time step is 1.5 h. The initial conditions are chosen equal 
to zero for a six-year ocean spin-up phase, the final state of which becoming the 
initial state of the data assimilation period. Then the assimilation period starts (time 
t=0) with this initial condition, and lasts 5 days (time t=T), i.e. 80 time steps. Data are 
available every 5 gridpoints of the model, with a time sampling of 7.5 h (i.e. every 5 
time steps). We refer to (Auroux et al, 2008) for all these numerical results. 
 

 

 
 

Fig. 2 – Evolution in time of the RMS relative 
difference between the reference trajectory 
and the identified trajectories for the BFN 
(solid line) and 4D-VAR (dotted line) 
algorithms, versus time, for each layer: from 
surface (1) to bottom (3). 

 
Figure 2 shows, for each of the three layers, the RMS relative difference between the 
BFN trajectory (computed using the last BFN state at time t=0 as initial condition) and 
the reference trajectory as a solid line, and between the 4D-VAR trajectory 
(computed using the last initial state produced by the minimization process) and the 
reference trajectory as a dotted line, versus time. The first 5 days correspond to the 
assimilation period, and the next 15 days correspond to the forecast period. 
 
The first point is that the BFN and 4D-VAR reconstruction errors have similar global 
behaviours: first decreasing at the beginning, during the assimilation period, and then 
increasing over the forecast period (see e.g. (Pires et al., 1996) for a detailed study 
of the 4D-VAR estimation error). Even if the reconstruction error on the initial 
condition is much higher with the BFN algorithm than with 4D-VAR, the BFN error 
decreases much more steeply and for a longer time than the 4D-VAR one, and 
increases less quickly at the end of the forecast period. The quality of the initial 
condition reconstruction is better using the 4D-VAR algorithm, but the BFN algorithm 
provides a comparable final estimation, and even a better forecast. 
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Another interesting point is that, even if only surface observations are assimilated, 
the identification of the intermediate and bottom layers is quite good. The 4D-VAR 
algorithm was already known to propagate surface information to all layers (Luong et 
al., 1998), but it is also the case for the BFN algorithm, even if this algorithm is less 
efficient on the bottom layer. 
 
5. Conclusions 
 
We have proved on several idealized situations that, provided that the feedback term 
is large enough as well as the assimilation period, we have convergence of the 
algorithm to the real initial state. 
 
Numerical results have been performed on Burgers, shallow-water and layered 
quasi-geostrophic models. Numerical tests are currently investigated on a full 
primitive ocean model (NEMO). Twice less iterations than the 4D-VAR are necessary 
to obtain the same level of convergence. This algorithm is hence very promising in 
order to obtain a correct trajectory, with a smaller number of iterations than in a 
variational method, with a very easy implementation. 
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