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Chapter 1Introdu
tionIn this work, several problems have been studied with the 
ommon goal of pro-viding robust, parti
ularly easy to implement, fast and powerful algorithms. Thee�
ien
y of the algorithms is required by the operational 
ontext of the methods,and by a need to pro
ess more and more data in an in
reasingly short time. Theother 
onstraint that we parti
ularly took into a

ount is the ease of use and imple-mentation of the methods we have developed.In 
hapter 2, we will ta
kle various problems in image pro
essing by an originalapproa
h in the �eld: topologi
al asymptoti
 analysis, or more simply the topologi
algradient.There has re
ently been a renewed interest in image pro
essing thanks to newappli
ations in tele
ommuni
ations and medi
ine: on one hand, new te
hnologiesin tele
ommuni
ations and di�usion of information, whi
h now involve sending andre
eiving massive �ows of numeri
al data (e.g. images), and on the other hand themedi
al world, in whi
h huge progress has been made, in parti
ular for the earlydete
tion of tumors, thanks to more powerful imaging te
hniques.Our study is motivated by several observations. First, the topologi
al gradientis generally used for stru
tural me
hani
s, design, and shape optimization problems.Also, it has been su

essfully applied in ele
tromagnetism for the dete
tion of 
ra
ksor hidden obje
ts. However, many image pro
essing problems rely on the good iden-ti�
ation of a subset of the image, for instan
e edges or 
hara
teristi
 obje
ts. This
ommon feature seemed interesting to us, and allowed us to adapt the topologi
al gra-dient method, initially used for 
ra
k dete
tion, to several image pro
essing problems(restoration, 
lassi�
ation, segmentation, inpainting).The se
ond interesting aspe
t is the speed of the method. In various �elds, topo-logi
al asymptoti
 analysis has made it possible to obtain good results very qui
kly.However, medi
al imaging and audiovisual di�usion (e.g. satellite television or inter-net broad
asting) both require the pro
essing time to be negligible. If the pro
essingtime is too large, it will delay the medi
al diagnosis, or the �ow of data. It is thusimportant to build extremely fast s
hemes for solving these various problems, in real7



8 CHAPTER 1. INTRODUCTION
time for movies and a negligible time (e.g. smaller than one se
ond) for images.As we will see hereafter, the topologi
al gradient method a
tually adapts perfe
tlyto image pro
essing problems, allowing us to obtain very interesting results for a par-ti
ularly small 
omputation 
ost.In 
hapter 3, we will study data assimilation for environmental and geophysi
alproblems, and more parti
ularly within the framework of atmospheri
 and o
eani
observations. For several years, one of the major 
on
erns has been to appre
iablyimprove our knowledge of these turbulent systems, one of the major goals being theability to predi
t their evolution with a high reliability.Several di�erent 
hallenges appear in data assimilation: short-range (e.g. a fewdays) weather fore
asting, the study of global warming and 
limate 
hange, dete
tionof extreme 
limati
 phenomena several weeks in advan
e, . . . For all these problems,the goals are almost similar. They 
onsist of estimating qui
kly and with a veryhigh degree of a

ura
y the state of a turbulent system, from the 
ombined knowl-edge of models and data: on one hand mathemati
al equations modeling the 
oupledatmosphere-o
ean system, and on the other hand observations of di�erent nature (e.g.in situ, or satellite observations), 
orresponding to various physi
al quantities.Beyond the extreme size of the problem to be solved (several billions of values tobe identi�ed from hundreds of millions of observations) and the 
omputational timeneeded to solve it, another fa
tor appears: the 
ost of development and use of a dataassimilation method. Presently, it is extremely di�
ult to implement su
h a method,even on a relatively simple problem. This motivated us to study the possibility ofimproving one of the simplest methods of data assimilation, nudging (also known asNewtonian relaxation), in order to obtain mu
h better results without 
ompli
atingthe method.By applying the nudging method to the ba
kward (in time) problem, we notedthat it is possible to stabilize the ba
kward system, whi
h is unstable be
ause of theirreversibility of the physi
al problem. Thus, as detailed in 
hapter 3, we 
an goba
k in time, and obtain a more reliable estimate of the system at a previous time,from whi
h fore
asts may be dedu
ed. By applying alternatively and repeatedly thestandard nudging method to the forward and ba
kward models, we obtain an itera-tive algorithm that is very easy to implement and provides de�nitely better resultsthan the standard nudging. Indeed, the results are of similar quality, and are oftenobtained mu
h more qui
kly than by using the standard variational data assimilationmethod.Chapter 4 presents a study at the interfa
e of these two �elds: the assimilation ofimages. Presently, a huge quantity of observations 
oming from satellite images is es-sentially not used to improve the knowledge of the system state. However, sequen
esof images obtained by satellites de�nitely show various 
hara
teristi
 stru
tures (hur-ri
anes, swirls, 
urrents of hot water, pollution, . . . ) moving and evolving in time.Several approa
hes 
an be 
onsidered to solve this kind of problem, and we madethe 
hoi
e to try to identify and extra
t velo
ity �elds from the sequen
es of images.
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That appeared to us to be the most adapted 
hoi
e for rapidly extra
ting 
onventionaldata (i.e. dire
tly related to the model variables), and then being able to use themin a standard assimilation system.The idea that we develop in 
hapter 4 is based on the 
onstant brightness assump-tion, whi
h 
onsists of looking for a displa
ement �eld that transports an image toanother one. The originality of our approa
h lies in the nonlinearization of the 
ostfun
tion to be minimized, 
ombined with a fast method to assemble the Ja
obian ma-trix. Finally, a multi-grid approa
h makes it possible to guarantee the quality of theminimum. Thanks to all these te
hniques, we are able to extra
t 
omplete velo
ity�elds in a very short time, and it is also possible to provide a quality estimate of theidenti�ed �elds, whi
h 
an be viewed as error statisti
s of these pseudo-observationswithin the framework of data assimilation.Finally some general 
on
lusions and resear
h perspe
tives are given in 
hapter5.



10 CHAPTER 1. INTRODUCTION



Chapter 2Image pro
essing by topologi
alasymptoti
 analysisThis 
hapter summarizes the work presented in [9, 10, 12, 13, 16, 22, 26℄.2.1 Introdu
tionThe idea of topologi
al asymptoti
 analysis is to measure the impa
t of a pertur-bation of the domain on a 
ost fun
tion. We only 
onsider here the approa
h that hasbeen introdu
ed for topologi
al optimization purpose, in whi
h the goal is to identifyan optimal shape and its 
omplementary in a given domain [133, 98, 104℄.Topologi
al shape optimization seems parti
ularly well adapted to solve imagepro
essing problems (like 
lassi�
ation, segmentation, enhan
ement, inpainting, . . . ),as they mainly 
onsist of identifying a parti
ular subdomain of the image: its edges.At �rst sight, the main issue of topologi
al shape analysis is the non-di�erentiabilityof the problem. To �nd the optimal domain is indeed equivalent to identify its
hara
teristi
 fun
tion. Several 
lassi
al approa
hes have been developed to makethis problem di�erentiable. We 
an 
ite here the relaxation te
hnique, whi
h al-lows the 
hara
teristi
 fun
tion to take all possible values in the interval [0; 1], andthe level set approa
h where the 
hara
teristi
 fun
tion is repla
ed by a regularlevel set fun
tion whi
h is positive inside the optimal domain and negative outside[133, 34, 33, 36, 51, 157℄.The idea of topologi
al asymptoti
 analysis is to swit
h the 
hara
teristi
 fun
tionfrom one to zero (or from zero to one) in a (in�nitely) small area. Thus, the variationof the 
ost fun
tion is small when we swit
h a very small part from the subdomainto its 
omplementary. The topologi
al asymptoti
 expansion provides this variation,and allows one to derive a topologi
al gradient of the 
ost fun
tion [133, 98, 158, 157℄.In this 
hapter, we �rst present the basi
 tools of topologi
al asymptoti
 analysis,and we then study several appli
ations to image pro
essing problems: inpainting(where the goal is to �ll a hidden part of an image), restoration and enhan
ement,
lassi�
ation, and segmentation. Then, we present a very e�
ient way to speed up11
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all the algorithms introdu
ed in this 
hapter, based on dis
rete 
osine transforms andan appropriate pre
onditioning. Finally, we present a 
oupled approa
h 
ombiningthe topologi
al gradient and the minimal path te
hnique in order to improve the edgedete
tion, and to avoid non-
onnex 
ontours.2.2 Topologi
al asymptoti
 analysis2.2.1 Presentation of the methodLet Ω be a regular open bounded domain of R

2 (or R
3). Let us 
onsider a PartialDi�erential Equation (PDE) problem de�ned in Ω, written in its variational formu-lation: �nd u ∈ V su
h that a(u,w) = l(w),∀w ∈ V, (2.1)where V is a Hilbert spa
e on Ω, usually H1(Ω), a is a bilinear 
ontinuous and 
oer
iveform de�ned on V, and l is a linear 
ontinuous form on V. We �nally 
onsider a 
ostfun
tion J(Ω, u) to be minimized, where u is the solution of equation (2.1).We now 
onsider a small perturbation of the domain, e.g. by the insertion of a
ra
k σρ = x0 +ρσ(n), where x0 ∈ Ω represents the point where the 
ra
k is inserted,

σ(n) is a straight 
ra
k 
ontaining the origin of the domain, and n is a unit ve
tornormal to the 
ra
k. Finally, ρ > 0 represents the size of the perturbation, assumedto be small. Let Ωρ = Ω\σρ be the perturbed domain. We 
an 
onsider the samePDE problem as before, but on the perturbed domain:�nd uρ ∈ Vρ su
h that aρ(uρ, w) = lρ(w),∀w ∈ Vρ, (2.2)where Vρ, aρ and lρ represent the restri
tion of the Hilbert spa
e V to Ωρ, and theperturbed bilinear and linear forms respe
tively.We 
an rewrite the 
ost fun
tion J as a fun
tion of ρ by 
onsidering the followingmap:
j : ρ 7→ Ωρ 7→ uρ solution of (2.2) 7→ j(ρ) := J(Ωρ, uρ). (2.3)The topologi
al sensitivity theory provides an asymptoti
 expansion of j when ρtends to zero. It takes the general form:

j(ρ) − j(0) = f(ρ)G(x0) + o(f(ρ)), (2.4)where f(ρ) is an expli
it positive fun
tion going to zero with ρ, and G(x0) is 
alledthe topologi
al gradient at point x0 [133℄.Then to minimize the 
riterion j, one has to insert small holes (or 
ra
ks) atpoints where the topologi
al gradient G is the most negative, in order to make the
ost fun
tion j de
rease qui
kly (see the asymptoti
 expansion (2.4)).2.2.2 Main resultIn the following, we will 
onsider several times this main result [37℄:
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Theorem 2.1 If there exists a linear form Lρ de�ned on Vρ, a fun
tion f : R

+ → R
+,and four real numbers δJ1, δJ2, δa and δl su
h that

• lim
ρ→0

f(ρ) = 0,
• J(Ωρ, uρ) − J(Ωρ, u0) = Lρ(uρ − u0) + f(ρ)δJ1 + o(f(ρ)),

• J(Ωρ, u0) − J(Ω, u0) = f(ρ)δJ2 + o(f(ρ)),

• (aρ − a0)(u0, pρ) = f(ρ)δa+ o(f(ρ)),

• (lρ − l0)(pρ) = f(ρ)δl + o(f(ρ)),where the adjoint state pρ is the solution of the adjoint equation
aρ(w, pρ) = −Lρ(w),∀w ∈ Vρ, (2.5)and uρ is the solution of the dire
t equation (2.2), then the 
ost fun
tion j has theasymptoti
 expansion (2.4), where the topologi
al gradient G(x) is given by
G(x) = δJ1 + δJ2 + δa− δl. (2.6)2.3 Inpainting [9, 13℄In this se
tion, we present an appli
ation of the topologi
al asymptoti
 analysisto the inpainting problem. The goal of inpainting is to �ll a hidden part of an image.In other words, if we denote by Ω the original image and ω the hidden part of theimage, the goal is to re
over the hidden part ω from the known part of the image Ω\ω.There are many appli
ations, for instan
e removing some spots on a badly preservedmovie or image, or deleting en
rusted logos and images on television programs, . . .This problem has been widely studied. Several methods have been 
onsidered:learning approa
hes (neural networks, radial basis fun
tions, support ve
tor ma
hine,. . . ), in whi
h the learning data is taken in Ω\ω, and then the approximate fun
tionis evaluated in ω [177, 178℄; minimization of an energy 
ost fun
tion in ω based ona total variation norm [67, 68℄; morphologi
al analysis for the re
onstru
tion of both
artoon and texture [87℄; . . .In order to study the inpainting problem, we �rst 
onsider a 
ra
k lo
alizationmethod. Cra
k dete
tion allows us to identify the edges of the hidden part of theimage, and the inpainting problem 
an then be easily solved. We will 
onsider the
lassi
al thermal di�usion te
hnique [142, 66, 174, 175, 150℄ and improve it by mod-eling the edges by 
ra
ks. These 
ra
ks are supposed to be highly insulating and toallow the temperature to jump a
ross edges. As both the Diri
hlet and Neumann
onditions are known on the boundary of the hidden subset, we 
an de�ne a 
riterionmeasuring the dis
repan
y between the solutions of a Diri
hlet and a Neumann prob-lem respe
tively [118℄. This problem is similar to the inverse 
ondu
tivity problem,also known as the Calderón problem [65℄, whi
h 
onsists of identifying the 
oe�
ients
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of a partial di�erential equation from the knowledge of the Diri
hlet to Neumann oper-ator. Only two measurements are needed to re
over several simple 
ra
ks [30, 31, 48℄.From the numeri
al point of view, several methods [40, 49, 50, 64, 96, 152, 151℄ havebeen proposed, but the topologi
al gradient approa
h seems to be the most e�
ientmethod for 
ra
k lo
alization. The minimization of the 
riterion allows us to identifythe main edges inside the hidden part of the image. The image is �nally �lled betweenthe edges thanks to the Lapla
e operator.This se
tion summarizes the work introdu
ed in [9, 13℄. We also refer to thesereferen
es for the results of many numeri
al experiments.2.3.1 Cra
k lo
alization problemLet Ω be a bounded open set of R

2. We assume in this se
tion that Ω 
ontains aperfe
tly insulating 
ra
k σ∗. We impose a �ux φ ∈ H−1/2(Γ) on the boundary Γ of
Ω, and we want to �nd σ ⊂ Ω su
h that the solution u ∈ H1(Ω\σ) of





∆u = 0 in Ω\σ,
∂nu = φ on Γ,
∂nu = 0 on σ,

(2.7)satis�es u|Γ = T , where T ∈ H1/2(Γ) is a given fun
tion. We also assume some
ompatibility 
onditions in order to have a well-posed dire
t problem.A topologi
al gradient approa
h has been introdu
ed in [37℄, and 
onsists of de�n-ing a Diri
hlet and a Neumann problem, as we have an over-determination in theboundary 
onditions:
uD ∈ H1(Ω\σ) su
h that 




∆uD = 0 in Ω\σ,
uD = T on Γ,
∂nuD = 0 on σ,

(2.8)
uN ∈ H1(Ω\σ) su
h that 




∆uN = 0 in Ω\σ,
∂nuN = φ on Γ,
∂nuN = 0 on σ.

(2.9)It is 
lear that for the a
tual 
ra
k σ∗, the two solution uD and uN are equal. Theidea is then to 
onsider and minimize the following 
ost fun
tion
J(σ) =

1

2
‖uD − uN‖2

L2(Ω). (2.10)The topologi
al asymptoti
 expansion of this 
ost fun
tion is detailed in [37℄.2.3.2 Diri
hlet and Neumann formulations for the inpainting prob-lemIn our approa
h, we now denote by Ω the image and Γ its boundary, ω ⊂ Ω themissing part of the image and γ its boundary. Let v be the image that we want torestore. We assume that v is known in Ω\ω, and unknown in ω.
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The idea is to adapt the 
ra
k lo
alization method to inpainting: 
ra
k dete
tion�rst allows us to identify the 
ra
ks (or edges) σ of the hidden part ω of the image, andthen we will impose that the Lapla
ian of the restored image is equal to zero in ω\σ.For a given 
ra
k σ ⊂ ω, as v (Diri
hlet 
ondition) and ∂nv (Neumann 
ondition) areknown on the boundary γ of ω, we 
an solve two di�erent problems inside ω.For a given 
ra
k σ, we denote by uD ∈ H1(Ω\σ) the solution of the followingDiri
hlet problem: 




∆uD = 0 in ω\σ,
uD = v on γ,

∂nuD = 0 on σ,

uD = v in Ω\ω.
(2.11)Outside ω, the solution is equal to the original image, and inside ω, we use equation(2.8).In the same way, if we assume v to be enough regular, we 
an 
onsider the solution

uN ∈ H1(Ω\σ) of the following Neumann problem:




∆uN = 0 in ω\σ,
∂nuN = ∂nv on γ,

∂nuN = 0 on σ,

uN = v in Ω\ω.
(2.12)Note that from the numeri
al point of view, it is mu
h more easy to solve an approx-imated Neumann problem:





∆uN = 0 in ω\σ,
∂nuN = ∂nv on γ,

∂nuN = 0 on σ,

−α∆uN + uN = v in Ω\ω,
(2.13)where α is a small positive number.2.3.3 Asymptoti
 expansionThe 
ost fun
tion remains un
hanged, and is still de�ned by (2.10), as the ideais to �nd some 
ra
ks σ ⊂ ω that minimize the di�eren
e between the two solutions

uN and uD. We assume that the 
ra
k σ is equal to x + ρσ, where x is the point ofinsertion of the 
ra
k, ρ is the size of the inserted 
ra
k (assumed to be small), and σis a referen
e 
ra
k, of unit normal ve
tor n. Then, we 
an rewrite the 
ost fun
tion
J de�ned by equation (2.10) as a fun
tion j(ρ) of ρ. The asymptoti
 expansion isthen the following:

j(ρ) − j(0) = f(ρ)g(x, n) + o(f(ρ)), (2.14)where the topologi
al gradient g is de�ned by
g(x, n) = − [(∇uD(x).n)(∇pD(x).n) + (∇uN (x).n)(∇pN (x).n)] , (2.15)
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where uD and uN are the solutions of (2.11) and (2.12) respe
tively, but withoutany inserted 
ra
k (σ = ∅). Also, pD and pN are the 
orresponding adjoint states,respe
tively solutions in H1(Ω) of the following equations:





pD = 0 in Ω\ω,
pD = 0 on γ,

−∆pD = −(uD − uN ) in ω,

(2.16)




pN = 0 in Ω\ω,
∂npN = 0 on γ,

−∆pN = +(uD − uN ) in ω.

(2.17)The topologi
al gradient de�ned by equation (2.15) 
an be rewritten in the fol-lowing way:
g(x, n) = nTM(x)n, (2.18)where M(x) is the 2× 2 (resp. 3× 3 in the 
ase of 3D images, or movies) symmetri
matrix de�ned by

M(x) = −sym(∇uD(x) ⊗∇pD(x) + ∇uN (x) ⊗∇pN (x)). (2.19)From this equation, we 
an dedu
e that the minimum of g(x, n) is rea
hed when
n is the eigenve
tor asso
iated to the lowest eigenvalue λmin(M(x)) of M(x).2.3.4 AlgorithmThe inpainting algorithm is then the following:

• Cal
ulation of uD and uN , solutions of the dire
t problems (2.11) and (2.12)respe
tively, without any inserted 
ra
k (unperturbed problem: σ = ∅).
• Cal
ulation of pD and pN the two 
orresponding adjoint states, respe
tivelysolutions of equations (2.16) and (2.17).
• Computation of the matrix M(x) de�ned by equation (2.19).
• Lo
alization of the 
ra
ks: de�ne

σ = {x ∈ ω;λmin(M(x)) < δ < 0}, (2.20)where δ is a negative threshold.
• Cal
ulation of the solution of the Neumann problem (2.12) perturbed by theinsertion of σ.This image is then equal to the original image in Ω\ω, and it has been re
onstru
tedin ω.
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2.3.5 RemarksFrom the numeri
al point of view, 
ra
ks are modeled by a very small 
ondu
-tivity instead of 
onsidering real holes in the domain. The previous algorithm has a
omplexity of O(n. log(n)), where n is the size of the image, i.e. the number of pixels,as explained in se
tion 2.7.The main advantage of this algorithm is that the re
onstru
tion is done in onlyone iteration of the topologi
al gradient algorithm, whi
h 
onsists of 5 resolutions ofa PDE (the two dire
t and two adjoint unperturbed problems, and then one dire
tperturbed problem) in the domain Ω representing the image. Several numeri
al resultsare presented in [9℄ and show the quality and e�
ien
y of the re
onstru
tion.The only 
ontrol parameter of this method is the negative threshold: below a givenvalue, the pixels are 
onsidered as being part of the edge set, whereas it is not the 
asebeyond the threshold. The re
onstru
ted image is provided by the resolution of thedire
t perturbed problem (2.12), and the quality of the image relies on the 
onnexityof the identi�ed edges. If a given identi�ed edge is not 
onnex, the Lapla
ian indeedprodu
es a blurred zone. Then, the threshold is usually set su
h that the mainidenti�ed edges are 
onnex. Of 
ourse, it may lead to the wrong identi�
ation ofedges. But the various numeri
al experiments have shown that the threshold 
anbe �xed to an a priori value, as the optimal threshold is almost independent of theimages.Another solution to this problem is presented in se
tion 2.8.2.4 Restoration [16, 22℄In this se
tion, we 
onsider the restoration problem, with the aim of restoringnoisy images. The main idea is to use the topologi
al gradient for dete
ting the edgesof the noisy image in order to preserve them during the restoration pro
ess.This method is based on thermal di�usion, like many other variational methods.In order to avoid blurring e�e
ts, several nonlinear isotropi
 and anisotropi
 methodshave been introdu
ed, some of them relying on the minimization of the total variation[142, 66, 124, 174, 175, 43℄. We should mention that some non variational approa
hesalso exist, mainly statisti
al methods [86℄.This se
tion summarizes the work presented in [16, 22℄. We also refer to thesereferen
es for the results of numeri
al experiments.2.4.1 Variational formulationLet Ω ⊂ R

2 be an open bounded domain, and v ∈ L2(Ω) be the noisy image. Theenhan
ement of v is based on the resolution of the following problem:�nd u ∈ H1(Ω) su
h that {
−div(c∇u) + u = v in Ω,
∂nu = 0 on ∂Ω,

(2.21)where n is the outward unit normal to ∂Ω, and c is the 
ondu
tivity, to be de-�ned in the following. Several 
hoi
es 
an be made for the 
ondu
tivity, mainly c
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equal to a 
onstant value (linear di�usion method: it is fast, but it blurs importantstru
tures), or c de�ned by a nonlinear fun
tion of ∇u (nonlinear di�usion method,edge-preserving [175, 43℄). In the topologi
al gradient approa
h, c takes only twovalues: a 
onstant value c0 (
lose to 1) in the smooth part of the image, and a verysmall values ε (
lose to 0) on the edges or 
ra
ks in order to preserve them.Setting c = 0 on a part of the image is equivalent to perturbing the domain bythe insertion of 
ra
ks. For a given point x0 ∈ Ω and for a given small parameter
ρ > 0, we 
onsider Ωρ = Ω\σρ the perturbed domain by the insertion of a 
ra
k
σρ = x0 + ρσ(n), where σ(n) is a straight 
ra
k and n is a unit ve
tor normal to the
ra
k. The variational formulation of the perturbed problem is the following:�nd uρ ∈ H1(Ωρ) su
h that aρ(uρ, w) = lρ(w), ∀w ∈ H1(Ωρ), (2.22)where aρ (resp. lρ) is the following bilinear (resp. linear) form de�ned on H1(Ωρ)(resp. L2(Ωρ)) by

aρ(u,w) =

∫

Ωρ

(c∇u∇w + uw) dx, lρ(w) =

∫

Ωρ

vw dx. (2.23)Edge dete
tion if equivalent to looking for a subdomain of Ω where the energy issmall. So our goal is to minimize the energy norm outside edges:
j(ρ) = J(Ωρ, uρ) =

∫

Ωρ

‖∇uρ‖2. (2.24)2.4.2 Topologi
al gradientFrom theorem 2.1, we 
an derive the following asymptoti
 expansion of the 
ostfun
tion (2.24):
j(ρ) − j(0) = ρ2G(x0, n) + o(ρ2), (2.25)where

G(x0, n) = −πc(∇u0(x0).n)(∇p0(x0).n) − π|∇u0(x0).n|2, (2.26)where p0 is the solution of the unperturbed adjoint problem:
{

−div(c∇p0) + p0 = −∂uJ(Ω, u0) in Ω,
∂np0 = 0 on ∂Ω.

(2.27)As previously seen, the topologi
al gradient 
an be rewritten: G(x, n) = 〈M(x)n, n〉,where M(x) is the following 2 × 2 symmetri
 matrix:
M(x) = −πc∇u0(x)∇p0(x)

T + ∇p0(x)∇u0(x)
T

2
− π∇u0(x)∇u0(x)

T . (2.28)
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2.4.3 AlgorithmOur algorithm 
onsists of inserting small heterogeneities (or 
ra
ks) in regionswhere the topologi
al gradient is smaller than a given threshold. There regions arethe edges of the image. The algorithm is as follows:

• Initialization: c = c0 (
onstant value everywhere).
• Cal
ulation of u0 and p0, respe
tively solutions of the dire
t (2.21) and adjoint(2.27) unperturbed problems.
• Computation of the 2 × 2 matrix M(x) de�ned by (2.28), and of its lowesteigenvalue λmin(M(x)) at ea
h point of the domain.
• Set the new 
ondu
tivity:

c1 =

{
ε if x ∈ Ω is su
h that λmin(M(x)) < α < 0,
c0 elsewhere, (2.29)where ε > 0 is assumed to be small, and α is a negative threshold.

• Cal
ulation of u1, the solution of the perturbed dire
t problem (2.21) using
c = c1.The image u1 is the restored image.2.4.4 RemarksFrom the numeri
al point of view, it is more 
onvenient to simulate the 
ra
ks by asmall value of c instead of 
onsidering topologi
al perturbations of Ω. The resolutionof problem (2.21) with c = c1 is an approximation of the resolution of the perturbedproblem (2.22), be
oming more pre
ise as ε goes to 0.As in the previous se
tion (inpainting problems), our algorithm is extremely ef-�
ient as it requires only 3 resolutions of a partial di�erential equation in Ω: thedire
t and adjoint original problems, and then the dire
t perturbed problem. Andthe 
omplexity of this algorithm is still O(n. log(n)) (see se
tion 2.7).As shown in [16℄, the quality of the numeri
al results is very good. On
e again,the algorithm relies on a thresholding of the topologi
al gradient in order to de�ne theedge set. Contrary to inpainting problems, the 
onnexity of the edges is not 
ru
ialsin
e it does not 
hange signi�
antly the quality of the restored image. However,se
tion 2.8 presents a way to identify 
onnex edges, with fewer badly identi�ed edges.2.4.5 Extension to 
olor imagesIn this se
tion, we adapt the topologi
al gradient approa
h to 
olor images. Colorimages 
an be represented or modeled in various ways, for instan
e the RGB (Red-Green-Blue) spa
e in whi
h images are viewed as fun
tions from Ω to R

3 instead of
R. A �rst approa
h 
onsists of de
oupling the three 
hannels, and in solving dire
t
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and adjoint problems for ea
h 
hannel. But it is also possible to 
onsider dire
tly theve
torial minimization problem, involving the resolution of ve
torial problems. Thetopologi
al asymptoti
 expansion is still given by equations (2.25-2.26) and (2.28),where all fun
tions are ve
torial, i.e. the topologi
al gradient is the sum on all 
hannelsof the 
orresponding expressions for ea
h 
hannel [22℄.Another approa
h has also been studied in [22℄, in whi
h we use a di�erent normfor 
oupling the di�erent 
hannels. In order to identify the lo
al variations of the
olor image, Di Zenzo de�nes a multi-spe
tral tensor asso
iated to the image ve
tor�eld [83℄:

T =

(
t11 t12
t21 t22

)
, tij =

3∑

k=1

∂uk

∂xi

∂uk

∂xj
, 1 ≤ i, j ≤ 2, (2.30)in the 
ase of bidimensional images. This tensor des
ribes the �rst order di�erentialstru
ture of the image, and the Di Zenzo gradient is given by the square root of thelargest eigenvalue of the stru
ture tensor:

‖∇u‖DZ =
1√
2

[
t11 + t22 +

√
(t11 − t22)2 + 4t212

] 1

2

. (2.31)It is possible to rewrite this gradient in a di�erent way with the following fun
tion:
H(∇u) =

1 +
√

1 − 4f(∇u)
2

, (2.32)where
f(∇u) =

det2(∇u1,∇u2) + det2(∇u1,∇u3) + det2(∇u2,∇u3)

(|∇u1|2 + |∇u2|2 + |∇u3|2)2
, (2.33)

det2(∇us,∇ut) =

(
∂us

∂x1

∂ut

∂x2
− ∂ut

∂x1

∂us

∂x2

)2

. (2.34)Then, we 
an derive the asymptoti
 expansion of the 
ost fun
tion de�ned by equation(2.24) in whi
h the norm is the Di Zenzo norm (2.31):
G(x0, n) =

3∑

k=1

[
−πc(∇uk

0(x0).n)(∇vk
0 (x0).n) − πH(∇u0(x0))|∇uk

0(x0).n|2
] (2.35)with our standard notations.In [22℄, we show that this approa
h has the same 
omputational 
ost as the ve
-torial approa
h (in whi
h the di�erent 
hannels are de
oupled), while it improves theedge dete
tion, and hen
e it produ
es a better restored image, more pre
ise on theedges of the image.
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2.5 Classi�
ation [10, 16℄In this se
tion, we now fo
us on the regularized and unsupervised image 
lassi�-
ation problem.Inspired by the work presented in [150, 43℄, in whi
h the authors propose a 
lassi-�
ation model 
oupled with a restoration pro
ess, we adapt here our approa
h basedon the topologi
al asymptoti
 analysis.This se
tion summarizes the work presented in [16, 10℄. We refer to these referen
esfor the numeri
al results.2.5.1 Introdu
tion to the 
lassi�
ation problemLet v be the original image de�ned on an open set Ω of R

2, and let Ci, 1 ≤ i ≤ n, be
n 
lasses (i.e. grey or 
olor levels). We �rst assume that thesse 
lasses are prede�ned.The goal of image 
lassi�
ation is to �nd a partition of Ω in subsets {Ωi}i=1...n, su
hthat v is 
lose to Ci in Ωi.A variational approa
h 
an be de�ned: it 
onsists of a 
ost fun
tion measuringthe di�eren
e between the original image and the 
lassi�ed image:

J((Ωi)i=1...n) =
n∑

i=1

∫

Ωi

(v(x) − Ci)
2 dx+ α

∑

i6=j

|Γij |, (2.36)where Γij represents the interfa
e Ωi ∩ Ωj between two subsets.The main di�
ulty of this approa
h is that the unknowns are sets, and not vari-ables. This is why the topologi
al asymptoti
 analysis seems to be appropriate forsolving this problem. The topologi
al gradient and the 
orresponding numeri
al re-sults are presented in [10℄.2.5.2 Restoration and 
lassi�
ation 
ouplingAnother solution 
onsists of 
oupling 
lassi�
ation with restoration, and to adaptthe approa
h introdu
ed in se
tion 2.4. The idea is to �rst 
onsider an iteration of thetopologi
al asymptoti
 analysis for the image restoration problem in order to smooththe image, and then to 
lassify this smooth image without any regularization. If weremove the regularization term from equation (2.36), whi
h leads to the unregularized
lassi�
ation problem, then the optimal subset Ωi is the set of pixels that are 
loserto Ci than to any other Cj . In other words, ea
h pixel is assigned to the subset
orresponding to its 
losest 
lass.In the perturbed problem (2.29), instead of setting c = 0 (or c = ε from thenumeri
al point of view) on the edge set and c = c0 elsewhere, we set
c1 =

{
ε on the edge set,
c0

ε
elsewhere. (2.37)The algorithm is then the following:
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• Appli
ation of the restoration algorithm de�ned in se
tion 2.4, with c1 de�nedby (2.37) instead of (2.29).
• Unregularized 
lassi�
ation of the image u1, using for example the 
losest 
lassalgorithm (in whi
h ea
h pixel is assigned to the subset 
orresponding to its
losest 
lass).As previously seen, the 
omplexity of this algorithm is O(n. log(n)), and the vari-ous numeri
al results presented in [10℄ show the relative e�
ien
y of these approa
hes.Moreover, it is possible to regularize more or less the image by 
hoosing di�erent val-ues of c1, and it allows us to also obtain good results on noisy images.2.5.3 Extension to unsupervised 
lassi�
ationIf the number n of 
lasses is given, but not their values Ci, it is possible todetermine them in an optimal way. This 
lassi�
ation problem 
an be de�ned as

min
(Ωi),(Ci)

j((Ωi), (Ci)) =
n∑

i=1

∫

Ωi

|v(x) − Ci|2 dx+ α
∑

i6=j

|Γij |. (2.38)The idea is to minimize the 
ost fun
tion j((Ωi), (Ci)) alternatively with respe
t to
Ωi and with respe
t to Ci. The minimization with respe
t to Ωi 
onsists of 
lassifyingthe image, while the minimization with respe
t to Ci is obtained straightforward bythe mean of the image in ea
h 
lass:

Ci =
1

|Ωi|

∫

Ωi

v(x) dx. (2.39)The unsupervised 
lassi�
ation algorithm is then as follows:
• Initialization: de�ne an initial guess C1, . . . , Cn (e.g. equi-distributed 
lasses).
• Repeat until 
onvergen
e:� Cal
ulate the 
lassi�ed image using the 
lasses C1, . . . , Cn (see previousalgorithm).� Update the values of the 
lasses using (2.39).If the number n of 
lasses is not given, we 
an add a penalization term �+βn�in the 
ost fun
tion (2.38), measuring the number of 
lasses. The minimization withrespe
t to n provides the optimal number of 
lasses. The number of 
lasses is 
learlyrelated to the 
hoi
e of the weighting 
oe�
ient β.
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2.6 Segmentation [12, 13℄This se
tion is 
on
erned with image segmentation, whi
h aim is to �nd a partitionof an image into its 
onstituent parts. The idea is still to apply our topologi
al gradientbased algorithm for the dete
tion of edges in the image.Several approa
hes have been studied in the literature. One 
an 
ite variationalmethods, for example based on the minimization of the Mumford-Shah fun
tional[136℄, the a
tive 
ontours and snake methods [55, 156℄, sto
hasti
 approa
hes [54, 61℄,wavelets, . . . [43, 45, 42, 140, 149, 150, 176℄.This se
tion summarizes the main results presented in [12, 13℄. Several numer-i
al experiments are also detailed in these referen
es and show the e�
ien
y of ourapproa
h.2.6.1 From restoration to segmentationWe still 
onsider the restoration algorithm, in whi
h the following 
ondu
tivity isused for the perturbed problem:

c(ε) =

{
ε in ω,
1

ε
outside ω, (2.40)where ω ⊂ Ω represents the edge set. We �rst assume that ω is thi
kened (i.e. of
odimension 0 in Ω). From equation (2.40), the algorithm now 
onsists of solving thefollowing problem:

(Pε)





−div(ε∇uε) + uε = v in ω,

−div
(

1

ε
∇uε

)
+ uε = v in Ω\ω,

∂nuε = 0 on ∂Ω,

(2.41)where uε ∈ H1(Ω), i.e. with the impli
it boundary 
ondition that c(ε)∂nuε has thesame value on both sides of ∂ω.Then we have the following asymptoti
 result [12℄:Theorem 2.2 If we denote by uε the unique solution of problem (Pε) in H1(Ω), then
lim
ε→0

(‖∇uε −∇u0‖L2(Ω\ω) + ‖uε − u0‖L2(ω)) = 0, (2.42)where u0 ∈ H1(Ω\ω) ∩ L2(Ω) is the solution to the following problem
(P0)





u0 = v in ω,

−div (∇u0) = 0 in Ω\ω,
∂nu0 = 0 on ∂ω,

∂nu0 = 0 on ∂Ω.

(2.43)
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This result proves that the segmented image u0 
an be approximated by uε if εis small. We now assume that the edge set ω is of 
odimension 1 in Ω. From thepoint of view of appli
ations, it is 
ompletely natural to assume that the edges are�at in the image. In order to have 
oherent notations, we will further denote by σ theedge set. We assume that σ is known, e.g. provided by the 
ra
k dete
tion algorithmpreviously seen.We 
an rewrite the approximated segmentation problem (Pε) as follows:

(P̃ε)





−div
(

1

ε
∇uε

)
+ uε = v in Ω\σ,

∂nuε = 0 on σ,

∂nuε = 0 on ∂Ω,

(2.44)where uε ∈ H1(Ω\σ). If v ∈ L2(Ω), then problem (P̃ε) has a unique solution in
H1(Ω\σ). As a 
orollary of the previous result, we have the following one [12℄:Theorem 2.3 If we denote by uε the unique solution of problem (P̃ε) in H1(Ω\σ),then

‖uε‖L2(Ω) ≤ ‖v‖L2(Ω), ‖∇uε‖L2(Ω\σ) ≤
√
ε‖v‖L2(Ω), (2.45)and

lim
ε→0

‖∇uε −∇u0‖L2(Ω\σ) = 0, (2.46)where u0 ∈ H1(Ω\σ) is the unique solution to the following problem:
(P̃0)





−div (∇u0) = 0 in Ω\σ,∫

Ωi

u0 =

∫

Ωi

v ∀Ωi 
onnex 
omponent of Ω\σ,
∂nu0 = 0 on σ,

∂nu0 = 0 on ∂Ω.

(2.47)For numeri
al reasons, it 
an be very di�
ult to solve dire
tly problem (P̃0), andeven problem (P̃ε) for too small values of ε > 0. Indeed the 
onditioning of the systemto be solved goes to in�nity when ε → 0. In order to over
ome this issue, we willexpand the solution uε of problem (P̃ε) into a power series of ε.2.6.2 Power series expansionFrom the knowledge of the power series expansion of uε and the 
omputation ofseveral solutions uε for not too small 
oe�
ients ε > 0, it is possible to approximatethe asymptoti
 solution u0 [12℄:Theorem 2.4 There exist a 
onstant εR > 0 and a family of fun
tions (un)n∈N of
H1(Ω\σ) su
h that for all 0 ≤ ε ≤ εR,

uε =
∞∑

n=0

unε
n. (2.48)
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Moreover, u0 is the unique solution in H1(Ω\σ) of problem (P̃0), and the other fun
-tions (un) are the unique solutions in H1(Ω\σ) of the following problems:

(P̃1)





−div (∇u1) = −u0 + v in Ω\σ,∫

Ωi

u1 = 0 ∀Ωi 
onnex 
omponent of Ω\σ,
∂nu1 = 0 on σ,

∂nu1 = 0 on ∂Ω,

(2.49)
n ≥ 2, (P̃n)





−div (∇un) = −un−1 in Ω\σ,∫

Ωi

un = 0 ∀Ωi 
onnex 
omponent of Ω\σ,
∂nun = 0 on σ,

∂nun = 0 on ∂Ω.

(2.50)We 
an de�ne a fun
tion of ε ∈ R
+ as follows

f(ε) := uε ∈ H1(Ω\σ). (2.51)From the previous theorem, we know that f has a power series expansion at theorigin given by (2.48). We 
onsider a family of N points (εi) in [εc, εR], where εc isthe smallest value of ε for whi
h it is easy to numeri
ally 
ompute f(ε), and εR issmaller than the 
onvergen
e radius of the power series. We 
an then 
ompute aninterpolation polynomial gN of degree N − 1 de�ned by:
gN (ε) =

N∑

i=1




N∏

j=1,j 6=i

ε− εj

εi − εj


uεi

, (2.52)where N is the number of points εi.The analy
ity of f allows us to estimate the approximation error:
‖u0 − gN (0)‖H1(Ω\σ) = O(εNc ). (2.53)2.6.3 AlgorithmWe 
an then de�ne a segmentation algorithm, based on the restoration algorithmpreviously de�ned in se
tion 2.4:

• Solve the dire
t (2.21) and adjoint (2.27) unperturbed problems with c = c0everywhere.
• Compute the 2 × 2 matrix M(x) de�ned by equation (2.28) and its lowesteigenvalue λmin(M(x)) at ea
h point of the domain Ω.
• De�ne σ = {x ∈ Ω; λmin < α < 0} the edge set, where α is a small negativethreshold.
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• Set εc > 0 the minimal value of ε for whi
h it is easy to 
ompute numeri
allythe solution uε of problem (P̃ε).
• Choose N ∈ N

∗ in order to have an approximation error in O(εNc ), and 
hoose
N di�erent values (εi).

• Compute the solutions (uεi
) in H1(Ω\σ) of problems (P̃εi

).
• Compute the interpolation polynomial gN of degree N − 1, de�ned by equation(2.52), for ε = 0.This algorithm has a 
omplexity in O(N.n. log(n)), where n is the number of pixelsin the image, and N is the degree of the interpolation approximation. In numeri
alexperiments, N is typi
ally of the order of 2 to 5.Several numeri
al tests are detailed in [12℄.2.7 Complexity and speeding up [13, 16℄In this se
tion, we present the te
hniques that we have used for solving the PDEproblems previously seen, and that lead to a theoreti
al 
omplexity in O(n. log(n))[13℄. Several numeri
al experiments have 
on�rmed this 
omplexity [16, 13℄.2.7.1 Dis
rete 
osine transformIn all the algorithms we presented in the previous se
tions, we only have to solvethe following PDE {

−div(c∇u) + u = v in Ω,
∂nu = 0 on ∂Ω,

(2.54)for various 
oe�
ients c. The �rst resolutions are done with a 
onstant value of c. Itis then possible to largely speed up the 
omputation time by using the dis
rete 
osinetransform (DCT) method. Problem (2.54) is then equivalent to
∑

m,n

(
1 + c(mπ)2 + c(nπ)2

)
um,nφm,n =

∑

m,n

vm,nφm,n, (2.55)where we denote by φm,n = δm,n cos(mπx) cos(nπy) a 
osine basis of R
2, and where

(vm,n) represent the DCT 
oe�
ients of the original image v. It is then straightforwardto identify (um,n), the DCT 
oe�
ients of u in equation (2.55):
um,n =

vm,n

1 + c(mπ)2 + c(nπ)2
. (2.56)The 
omplexity of su
h a resolution is O(n. log(n)), where n is the number of pixels ofthe image. The resolution of all unperturbed problems is then done in the followingway:

• Computation of vm,n, the DCT 
oe�
ients of the original image v.
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• Computation of um,n, the DCT 
oe�
ients of u from equation (2.56).
• Computation of u using an inverse DCT.2.7.2 Pre
onditioned 
onjugate gradientThen, the solution of all previously detailed problems 
omes from the resolution ofa perturbed problem. For the last resolution of a dire
t problem with a non 
onstant
oe�
ient c, we 
an rewrite the problem in the following way:

A(c)u = B, (2.57)where u is the unknown image. If c is 
onstant, equation (2.57) is easy to solve.The idea is to pre
ondition equation (2.57) with the DCT solver used in the �rstresolution. Problem (2.57) is equivalent to
[
A(c0)

−1A(c)
]
u =

[
A(c0)

−1B
]
. (2.58)As c is 
lose to c0 (c is indeed equal to c0, ex
ept in a negligible part of the domain),the system matrix [A(c0)

−1A(c)] is 
lose to the identity operator, and the resolutionof (2.58) is then easy: we use a pre
onditioned 
onjugate gradient (PCG) method tosolve this problem. As the 
oe�
ient c is 
lose to c0, we 
an expe
t a O(n. log(n))
omplexity for the resolution of the perturbed problem. The numeri
al experiments
learly 
on�rm this 
omplexity, both for small and large problems.The main advantage is that it allows us to pro
ess images in a very short time(e.g. 1600 × 1200 images in less than one se
ond) and movies in real time (providedthe movie is split into short sequen
es of a few se
onds) with a 
++ 
ode.2.8 Coupling between the topologi
al gradient and theminimal path te
hnique [26℄As previously seen, e.g. in se
tion 2.3, it is 
ru
ial to identify 
onne
ted (or
ontinuous) 
ontours. Up to now, we had to threshold the topologi
al gradient witha not too small value, in order to identify 
onne
ted 
ontours, but this leads to thi
kidenti�ed edges, and also to 
onsider more noisy points as potential edges.We noti
ed that the edges 
orrespond to valley lines of the topologi
al gradient.It is of 
ourse possible to identify them by adapting the threshold 
oe�
ient, but wepropose here to use the minimal path and fast mar
hing te
hniques for identifyingthe valley lines of the topologi
al gradient [71, 73, 82, 84, 179, 145, 164℄.In the following, we 
onsider any of the previous image pro
essing problems. Weonly assume that the topologi
al gradient g has been de�ned and 
omputed every-where. The goal is to identify the valley lines 
orresponding to the most negativeparts of the topologi
al gradient.This se
tion summarizes the study presented in [26℄, in whi
h several numeri
alexperiments are shown in the 
ase of segmentation and inpainting.
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2.8.1 Minimal pathsLet g be the topologi
al gradient. The idea of the minimal path te
hnique is tode�ne a potential fun
tion, measuring in some sense for any point of Ω the 
ost for apath to 
ontain this point. As we want to identify paths in the most negative part ofthe topologi
al gradient, and 
onsidering that the potential fun
tion must be positive,we de�ne the following fun
tion:

P (x) = g(x) − min
y∈Ω

{g(y)} . (2.59)We simply shift the topologi
al gradient from its minimal value, in order to obtain apositive fun
tion. We 
an see that the points where the topologi
al gradient g rea
hesits minimal value are 
ostless. This is a way to 
onsider that these points must be onthe minimal paths.We denote by C(s) a path (or 
urve) in the image, where s represents the 
urvilign
oordinate. We 
an now de�ne a 
ost fun
tion, measuring the 
ost of su
h a path:
J(C) =

∫

C
(P (C(s)) + α) ds, (2.60)where α > 0 is a positive regularization 
oe�
ient, measuring the length of this path.The goal is to minimize J , in order to �nd the shortest and least 
ostly pathbetween two points. For this purpose, we de�ne the following distan
e fun
tion:

D(x;x0) = inf
C∈A(x,x0)

J(C), (2.61)where A(x, x0) is the set of all paths going from x0 to x in the image.2.8.2 Fast mar
hingThe fastest way to 
ompute the distan
e fun
tion de�ned by equation (2.61) is tosolve a front propagation equation:
∂C(s, t)

∂t
=

1

P (C(s, t)) + α
nC(s, t), (2.62)where nC(s, t) is the outer normal unit ve
tor to the front C. We initialize thepropagation with C(s, 0) equal to a in�nitely small 
ir
le 
entered at x0.This path evolves with a propagation speed inversely proportional to the potentialfun
tion. If for example a point in the outer part of the front has a large potential(i.e. a large 
ost), then the propagation speed will be nearly equal to 0 and the frontwill not expand at this point. From the theory of Eikonal equations, the distan
e

D(x;x0) is simply the instant t at whi
h the front, initialized at point x0, rea
hespoint x [179, 84℄.
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2.8.3 Coupled algorithmWe 
an 
ertainly 
onsider that the global minimum of the topologi
al gradient ispart of the edge set. So we 
an 
hoose the referen
e point x0 as being this minimum.It is then possible to 
ompute the distan
e between x0 and any other point x. Agradient des
ent algorithm 
an then be used to minimize the distan
e fun
tion, inorder to �nd the minimal path between x0 and the initial point of the optimizations
heme. If these two points are part of the same edge, as the potential fun
tion hasbeen de�ned su
h that it is relatively 
ostless to remain on the edge (thanks to thetopologi
al gradient), the minimal path will be a very good approximation of thisedge. The main advantage is now that we are sure that this path 
orresponds to a
ontinuous 
ontour.For a small additional 
omputation 
ost, it is possible to 
onsider more than onereferen
e point. The distan
e fun
tion 
orresponds then to the distan
e to the set ofthese points. The 
orresponding Voronoï diagram 
an be seen as a dual mesh, andthe minimum of the distan
e fun
tion on ea
h edge of this mesh is a saddle-point:minimal distan
e along the edges of the mesh, maximal distan
e to the referen
epoints.The hybrid algorithm we propose is the following:

• Compute the topologi
al gradient of the image (see previous se
tions).
• Choose N key-points; the main one will be for example the global minimum ofthe topologi
al gradient.
• Fast mar
hing: 
omputation of the distan
e fun
tion to all these key-points,and of the 
orresponding Voronoï diagram.
• Saddle-points: on ea
h edge of the Voronoï diagram, determine the point ofminimal distan
e.
• Sort all these saddle-points, from smaller to larger distan
e.
• For ea
h of these points, from smaller to larger distan
e, 
he
k if it will not beused for 
onne
ting two key-points, one of whi
h is already 
onne
ted to twoother key-points.
• If this is not the 
ase, use this point as an initialization for a des
ent typealgorithm in order to 
onne
t the two 
orresponding key-points.This algorithm 
learly 
onverges, and all the key-points are 
onne
ted to at mosttwo other key-points at 
onvergen
e. This provides a 
ontinuous 
ontour, 
onne
tingthe key-points. It is then an approximation of one of the main 
ontours of the imageas it 
orresponds to a valley line of the topologi
al gradient.As seen in [26℄, it allows us to appre
iably improve our inpainting algorithm. It alsoimproves the quality of the segmentation. For all other image pro
essing problems,there were no noti
eable improvements.
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2.9 Con
lusions and perspe
tivesWe presented in this 
hapter many appli
ations in image pro
essing of the 
ra
kdete
tion te
hnique, based on the topologi
al gradient. It provides an ex
ellent framefor solving all these image pro
essing problems. It has been su

essfully applied toimage inpainting, restoration, 
lassi�
ation and segmentation. In all these 
ases, weobtain ex
ellent results and the 
omputing time is very small.We have also seen that this te
hnique 
an be applied to 
olor images as well asgrey-level images, but also three-dimensional images, or movies, without any trouble.The theoreti
al 
omplexity, 
on�rmed by numeri
al experiments, allows us to pro
essmovies in nearly real time (on a dual-pro
essor laptop, with a 
++ 
ode).Another interesting point is that all these algorithms rely on the same kernel, aswe always solve the same kind of PDE problems. This makes the implementationmu
h more easy.Several perspe
tives are 
urrently under study. We 
an 
ite here the possibilityof taking into a

ount higher order di�erential operators, with the aim of a betterre
onstru
tion of the gradient of the image. For instan
e, in the 
ase of inpaintingproblems, the inpainted image is pie
ewise a�ne. With the same kind of approa
h,we should be able to re
onstru
t more pre
isely the gradient of the image, and thenthe image itself.



Chapter 3Data assimilation: the Ba
k andForth Nudging (BFN) algorithmThis 
hapter summarizes the work presented in [8, 11, 14, 18, 21, 24, 25℄.3.1 Introdu
tionThe aim of data assimilation is to 
ombine the observations and models, in orderto retrieve a 
oherent and pre
ise state of the system from a set of dis
rete spa
etimedata, and then to provide reliable fore
asts of its evolution. Data assimilation 
oversall the mathemati
al and numeri
al te
hniques in whi
h the observed informationis a

umulated into the model state by taking advantage of 
onsisten
y 
onstraintswith laws of time evolution and physi
al properties, and whi
h allow us to blend asoptimally as possible all the sour
es of information 
oming from theory, models andother types of data [116, 53, 163℄.Nudging is a data assimilation method that uses dynami
al relaxation to adjust amodel towards observations. The standard nudging algorithm 
onsists of adding to thestate equations of a dynami
al system a feedba
k term proportional to the di�eren
ebetween the observation and the equivalent quantity 
omputed by integration of thestate equations. The model then appears as a weak 
onstraint, and the nudging termfor
es the state variables to �t as well as possible to the observations. This for
ingterm in the model dynami
s has a tunable 
oe�
ient that represents the relaxationtime s
ale. This 
oe�
ient is 
hosen by numeri
al experimentation so as to keep thenudging terms small in 
omparison to the state equations, and large enough to for
ethe model to the observations. The nudging term 
an also be seen as a penalty term,whi
h penalizes the system if the model is too far from the observations. Note thatin the linear 
ase, the standard nudging method is nothing else than the Luenbergerobserver, also 
alled asymptoti
 observer [129℄.The nudging method is a �exible assimilation te
hnique, and 
omputationallymu
h more e
onomi
al than variational data assimilation methods [123℄. First usedin meteorology [106℄, the nudging method has been su

essfully introdu
ed in o
eanog-31



32 CHAPTER 3. BACK AND FORTH NUDGING
raphy in a quasi-geostrophi
 model [168, 170, 57℄ and has been applied to a mesos
alemodel of the atmosphere with synopti
-s
ale data [160℄. The nudging 
oe�
ients
an be optimized by a variational method [159, 180℄, where a parameter estimationapproa
h is proposed to obtain optimal nudging 
oe�
ients, in the sense that thedi�eren
e between the model solution and the observations is as small as possible. A
omparison between optimal nudging and Kalman �ltering 
an be found in [172℄. Adrawba
k of this optimal nudging te
hnique is that it requires the 
omputation of theadjoint state of the model equations, whi
h is not ne
essary in the standard nudgingmethod.The ba
kward nudging algorithm 
onsists of solving ba
kwards in time the stateequations of the model, starting from the observation of the system state at the �naltime of the assimilation period. A nudging term, with the opposite sign 
ompared tothe standard nudging algorithm, is added to the state equations, and the �nal state
omputed in the ba
kward integration is in fa
t an approximation of the initial stateof the system [1℄.The Ba
k and Forth Nudging (BFN) algorithm, introdu
ed in [18℄, 
onsists ofsolving �rst the forward nudging equation, and then the model equation ba
kwardsin time with a relaxation term (with the opposite sign in 
omparison with the relax-ation term introdu
ed in the forward equation). The initial 
ondition of this ba
kwardintegration is the �nal state obtained by the standard nudging method. After inte-gration of this ba
kward equation, one obtains an estimate of the initial state of thesystem. We then repeat these forward and ba
kward integrations (with the relaxationterms) until 
onvergen
e of the algorithm.Su
h a forward-ba
kward assimilation te
hnique had already been introdu
ed in[162, 161℄. In that algorithm, at ea
h observation time, the values predi
ted by themodel for the observed parameters were just repla
ed by the observed values. This
orresponds to the parti
ular 
ase of our BFN algorithm where the nudging 
oe�
ientsgo to in�nity.The BFN algorithm 
an be 
ompared to the four-dimensional variational algo-rithm (4D-VAR, see e.g. [123℄), whi
h also 
onsists of a sequen
e of forward andba
kward integrations. In our algorithm it is useless to linearize the system, evenfor nonlinear problems, and the ba
kward system is not the adjoint equation but themodel equations, with an extra feedba
k term that stabilizes the numeri
al integrationof this ill-posed ba
kward problem.Let us �nally mention another ba
k and forth data assimilation method, 
alled thequasi-inverse method [116℄. In that method, there are no nudging terms, and in theba
kward integration, the sign of the dissipation terms is 
hanged for stability reasons.The idea of introdu
ing relaxation (or nudging) terms in our algorithm enables us tokeep the dissipation terms with the 
orre
t sign in the ba
kward integration, as thenudging terms have a stabilizing role.In this 
hapter, we �rst present the standard nudging algorithm in a general 
ase(nonlinear model), then the nudging algorithm applied to the 
orresponding ba
k-ward model, and �nally we introdu
e the Ba
k and Forth Nudging algorithm. Wethen present some theoreti
al 
onvergen
e results in simpli�ed 
ases (full observa-
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tions) on various types of models: linear models, transport equations (both linearand nonlinear, with or without vis
osity). Then, we present the numeri
al appli
a-tion of this algorithm to various physi
al models. Finally, nudging 
an be seen asa parti
ular type of observer, and we de�ne a spe
i�
 nudging-based observer for ashallow-water model, allowing us to preserve the natural symmetries of the model, toredu
e the sensitivity to the observation noise, and also to 
orre
t the non-observedvariables with the observed ones. Several 
on
lusions and perspe
tives are given atthe end of this 
hapter.3.2 �Ba
k and Forth Nudging� (BFN) algorithm [8, 11,18℄3.2.1 Forward nudgingIn order to simplify the notations, we assume that the model equations have beendis
retized in spa
e by a �nite di�eren
e, �nite element, or spe
tral dis
retizationmethod. The time 
ontinuous model satis�es dynami
al equations of the form:

dX

dt
= F (X), 0 < t < T, (3.1)with an initial 
ondition X(0) = x0. In this equation, F represents all the linear ornonlinear operators of the model equation, in
luding the spatial di�erential operators.We will denote by C the observation operator, allowing us to 
ompare the ob-servations Xobs(t) with the 
orresponding C(X(t)), dedu
ed from the state ve
tor

X(t). The observation operator usually involves interpolation/extrapolation, andsome 
hange of variables. The various measurements are not extra
ted at the samelo
ation as the model gridpoints, leading to some ne
essary interpolation and extrap-olation operators. Also, satellites do not observe the physi
al variables of the model(e.g. temperature, velo
ity, . . . ) but some other physi
al parameters, that 
an berelated to the model state: for instan
e, many satellites measure radian
es, that 
anbe related to the sea surfa
e height or temperature. We do not parti
ularly assumethat C is a linear operator.If we apply nudging to the model (3.1), we obtain
dX

dt
= F (X) +K(Xobs − C(X)), 0 < t < T, (3.2)with the same initial 
ondition, and where K is the nudging (or gain) matrix. Notethat it may also be a nudging s
alar 
oe�
ient in some simple 
ases. The modelthen appears as a weak 
onstraint, and the nudging term for
es the state variablesto �t as well as possible to the observations. In the linear 
ase (where F is a matrix,and C is a linear operator), the forward nudging method is nothing else than theLuenberger observer [129℄, also 
alled asymptoti
 observer, where the matrix K 
anbe 
hosen so that the error goes to zero when time goes to in�nity. Unfortunately, inmost geophysi
al appli
ations, the assimilation period is not long enough to have thenudging method give good results.
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3.2.2 Ba
kward nudgingWe now assume that we have a �nal 
ondition in equation (3.1) instead of aninitial 
ondition. This leads to the following ba
kward equation:

dX̃

dt
= F (X̃), T > t > 0, (3.3)with a �nal 
ondition X̃(T ) = x̃T . The ba
kward nudging algorithm 
onsists of solv-ing ba
kwards in time the state equations of the model, starting from the observationof the system state at the �nal time [1℄. If we apply nudging to this ba
kward modelwith a feedba
k term of the opposite sign (in order to have a well posed problem), weobtain

dX̃

dt
= F (X̃) −K ′(Xobs − C(X̃)), T > t > 0, (3.4)where K ′ is the ba
kward nudging matrix.The ba
kward integration of this equation provides a state ve
tor at time t = 0,whi
h 
an be seen as an identi�ed initial 
ondition for our data assimilation period.3.2.3 BFN algorithmThe ba
k and forth nudging algorithm, introdu
ed in [18℄, 
onsists of �rst solvingthe forward nudging equation and then the ba
kward nudging equation. The initial
ondition of the ba
kward integration is the �nal state obtained after integration ofthe forward nudging equation. At the end of this pro
ess, one obtains an estimate ofthe initial state of the system. We repeat these forward and ba
kward integrations(with the feedba
k terms) until 
onvergen
e of the algorithm:

k ≥ 1





dXk

dt
= F (Xk) +K(Xobs − C(Xk)),

Xk(0) = X̃k−1(0),

k ≥ 1





dX̃k

dt
= F (X̃k) −K ′(Xobs − C(X̃k)),

X̃k(T ) = Xk(T ),

(3.5)
with the notation X̃0(0) = x0.If K = K ′ and if the forward and ba
kward traje
tories Xk(t) and X̃k(t) 
onvergetowards the same limit traje
tory X∞(t), then it is 
lear by adding the two equa-tions of (3.5) that X∞(t) also sati�es the model equation (3.1), and that K(Xobs −
C(X∞)) = 0.When the observations are dis
rete in time, i.e. the observation ve
tor Xobs isonly available at some times (ti)i=1...N , then the nudging term is only added at thesetime steps:

dX

dt
= F (X) +

N∑

i=1

K(Xobs − C(X))δ(t− ti), 0 < t < T. (3.6)
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3.2.4 Choi
e of the nudging matri
es and interpretationVariational interpretation of the nudgingThe standard nudging method has been widely studied in the past de
ades [106,168, 160, 159℄. Thus, there are several ways to 
hoose the nudging matrix K in theforward part of the algorithm. One 
an for example 
onsider the optimal nudgingmatrix Kopt, as dis
ussed in [180, 172℄. In su
h an approa
h, a variational dataassimilation s
heme is used in a parameter estimation mode to determine the optimalnudging 
oe�
ients. This 
hoi
e theoreti
ally provides the best results for the forwardpart of the BFN s
heme, but the 
omputation of the optimal gain matrix is 
ostly.When K = 0, the forward nudging problem (3.2) simply be
omes the dire
t model(3.1). On the other hand, setting K = +∞ for
es the state variables to be equal tothe observations at dis
rete times, as is done in [162, 161℄. These two 
hoi
es have the
ommon drawba
k of 
onsidering only one of the two sour
es of information (modeland data).Let us assume that we know the statisti
s of errors on observations, and denote by
R the 
ovarian
e matrix of observation errors. This matrix is involved in all standarddata assimilation, either variational (3D-VAR, 4D-VAR, 4D-PSAS, . . . ) or sequential(Kalman �lters) [78, 90, 144, 99, 100℄. Usually, it is impossible to know the exa
tstatisti
s of errors, and thus only an approximation of R is available, assumed to besymmetri
 positive de�nite.We assume here the dire
t model to be linear (or linearized). We 
onsider atemporal dis
retization of the forward nudging problem (3.2), using for example animpli
it s
heme. If we denote by Xn the solution at time tn and Xn+1 the solutionat time tn+1, and ∆t = tn+1 − tn, then equation (3.2) be
omes

Xn+1 −Xn

∆t
= FXn+1 +K(Xobs − CXn+1). (3.7)We now set the nudging matrix to be
K = CTR−1. (3.8)Then, it is straightforward to see that problem (3.7) is equivalent to the followingoptimization problem:

Xn+1 = argmin
X

[
1

2
〈X −Xn, X −Xn〉 − ∆t

2
〈FX,X〉 (3.9)

+
∆t

2
〈R−1(Xobs − CX), Xobs − CX〉

]
.The �rst two terms 
orrespond exa
tly to the energy of the dis
retized dire
t model,and the last term is the observation part of the variational 
ost fun
tion. This vari-ational prin
iple shows that at ea
h time step, the nudging state is a 
ompromisebetween minimizing the energy of the system and the distan
e to the observations.
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As a 
onsequen
e, there is no need to 
onsider an additional term ensuring aninitial 
ondition 
lose to the ba
kground state like in variational algorithms, neitherfor stabilizing or regularizing the problem, nor from a physi
al point of view. One 
ansimply initialize the BFN s
heme with the ba
kground state, without any informationon its statisti
s of errors.The nudging method naturally provides a 
orre
tion to the model equations fromthe observations. The model equations are hen
e weak 
onstraints in the BFN s
heme.In some nonlinear 
ases, the 〈FX,X〉 term in equation (3.9) 
an be repla
ed by

−G(X), where G is the energy of the system at equilibrium.Sequential interpretationIt is also possible to give a sequential interpretation of the standard nudgingalgorithm by seeing it as a Kalman �lter. Indeed, when no observations are available,the nudging method simply 
onsists of solving the model equations, like Kalman�lters. On the other hand, when some observations are available, in both nudgingand Kalman �lters, the model solution is 
orre
ted with the innovation ve
tor, i.e.the di�eren
e between the observations and the 
orresponding model state [8℄.If at any time, the nudging matri
es are set in an optimal way, then the standardnudging method is equivalent to the standard Kalman �lter. In the other 
ases, it
an be seen as a suboptimal Kalman �lter. However, the iterative and alternativeresolutions of forward and ba
kward models appre
iably improves the e�
ien
y ofthe standard nudging method.Pole assignment method and ba
kward nudging matrixThe goal of the ba
kward nudging term is both to have a ba
kward data as-similation system and to stabilize the integration of the ba
kward system (3.4), asthis system is usually ill posed. The 
hoi
e of the ba
kward nudging matrix is thenimposed by this stability 
ondition.If we 
onsider a linearized situation, in whi
h the system and observation operators(F and C, respe
tively) are linear, and if we make the 
hange of time variable t′ =
T − t, then the ba
kward equation 
an be rewritten as

− dX̃

dt′
= FX̃ −K ′(Xobs − CX̃). (3.10)Then, the matrix to be stabilized is −F − K ′C, i.e. the eigenvalues of this matrixshould have negative real parts.We now re
all the pole assignment result (see e.g. [80, 41, 60, 167℄):Theorem 3.1 If (F,C) is an observable system, where F is a n × n matrix and Cis a m× n matrix (here n is the size of the 
ontrol ve
tor X and m is the size of theobservation ve
tor Xobs), then there exists at least one matrix K ′ su
h that −F −K ′Cis a Hurwitz matrix, i.e. all its eigenvalues are in the negative half-plane.
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We should also re
all that (F,C) is an observable system if and only if the rankof [C,CF, . . . , CFn−1] is equal to n. Hen
e, we 
an assume that there exists at leastone matrix K ′ su
h that the ba
kward nudging system (3.4) is stable. However, su
ha matrix K ′ may be hard to 
ompute, as it usually requires the resolution of a Ri

atiequation.3.3 Numeri
al experiments [11, 14, 21℄3.3.1 Numeri
al 
hoi
e of the nudging matri
esAll numeri
al experiments have been performed with an easy-to-implement nudg-ing matrix:

K = CT (kI) = kCT , (3.11)where k is a positive s
alar gain, and I is the identity matrix of the observationspa
e. This 
hoi
e is motivated by the following remarks. First, the 
ovarian
ematrix of observation errors is usually not well known (but if it is available, then oneshould 
onsider equation (3.8) for the de�nition of K). Se
ondly, this 
hoi
e doesnot require a 
ostly numeri
al integration of a parameter estimation problem for thedetermination of the optimal 
oe�
ients. Choosing K = CTL, where L is a squarematrix in the observation spa
e, has another interesting property: if the observationsare not lo
ated at a model grid point, or are a fun
tion of the model state ve
tor, i.e.if the observation operator C involves interpolation/extrapolation or some 
hange ofvariables, then the nudging matrix K will 
ontain the adjoint operations, i.e. someinterpolation/extrapolation ba
k to the model grid points, or the inverse 
hange ofvariable.As in the forward part of the algorithm, for simpli
ity reasons we make the fol-lowing 
hoi
e for the ba
kward nudging matrix K ′:
K ′ = CT (k′I) = k′CT . (3.12)The only parameters of the BFN algorithm are then the 
oe�
ients k and k′.In the forward mode, k > 0 is usually 
hosen su
h that the nudging term remainssmall in 
omparison with the other terms in the model equation. The 
oe�
ient k′is usually 
hosen to be the smallest 
oe�
ient that makes the numeri
al ba
kwardintegration stable.3.3.2 Experimental approa
hThe same approa
h has been used for all the numeri
al experiments. This ap-proa
h 
onsists of performing twin experiments with simulated data. First, a refer-en
e experiment is run and the 
orresponding data are extra
ted. From now on thisreferen
e traje
tory will be 
alled the exa
t solution. Experimental data are supposedto be obtained every nx gridpoints of the model, and every nt time steps. The sim-ulated data are then optionally noised with a Gaussian white noise distribution, andprovided as observations to the assimilation s
heme.
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The �rst guess of the assimilation experiments is 
hosen to be either a 
onstant�eld or the referen
e model state some time before the beginning of the assimilationperiod. Finally, the results of the assimilation pro
ess are 
ompared with the exa
tsolution.3.3.3 Physi
al modelsIn this se
tion, we brie�y des
ribe the various models on whi
h the BFN algorithmhas been implemented and 
ompared with other data assimilation methods. For ea
hexperiment, we refer to some referen
es for the details and results of the 
orrespondingnumeri
al experiments.Lorenz equationsThe BFN algorithm has been tested on Lorenz' 
haoti
 system [127℄:





dx

dt
= 10(y − x),

dy

dt
= 28x− y − xz,

dz

dt
= −8

3
z + xy.

(3.13)The Lorenz attra
tor is a nonlinear three-dimensional stru
ture 
orresponding tothe long-term behaviour of a 
haoti
 �ow, noted for its butter�y shape. Several numer-i
al experiments, 
onvergen
e results, and 
omparisons with the standard variationaldata assimilation method are presented in [11℄.1-D vis
ous Burgers' equationWe have then 
onsidered a very simple nonlinear geophysi
al model. The evolutionmodel is the vis
ous Burgers' equation over a one-dimensional 
y
li
 domain:
∂X

∂t
+

1

2

∂(X2)

∂s
− ν

∂2X

∂s2
= 0, (3.14)where X is the state variable, s represents the distan
e in meters around the 45oN
onstant-latitude 
ir
le, and t is the time. The sampling of the observations providea spatial and temporal density similar to the longitudinal distribution of the mid-latitude radiosonde network. The period of the domain, the di�usion 
oe�
ient, andthe length of the assimilation period also make the situation as realisti
 as possible.Note that this system is nonlinear and the vis
osity makes it irreversible. How-ever, it is possible to stabilize the ba
kward resolution with the nudging term. Thenumeri
al and 
onvergen
e results, as well as the 
omparison with the variationals
heme, are detailed in [11℄. Some other numeri
al experiments and 
omparisons aredetailed in [21℄ in a slightly di�erent situation (i.e. di�erent physi
al parameters).
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Shallow water modelThe shallow water model (or Saint-Venant's equations) is a basi
 model, repre-senting quite well the temporal evolution of geophysi
al �ows. This model is usually
onsidered for simple numeri
al experiments in o
eanography, meteorology or hydrol-ogy. The shallow water equations are a set of three equations, des
ribing the evolutionof a two-dimensional horizontal �ow. These equations are derived from a verti
al in-tegration of the three-dimensional �elds, assuming the hydrostati
 approximation,i.e. negle
ting the verti
al a

eleration. There are several ways to write the shallowwater equations, 
onsidering either the geopotential or height or pressure variables.We 
onsider here the following 
on�guration:





∂tu− (f + ζ)v + ∂xB =
τ

ρ0h
− ru+ ν∆u,

∂tv + (f + ζ)u+ ∂yB =
τ

ρ0h
− rv + ν∆v,

∂th+ ∂x(hu) + ∂y(hv) = 0,

(3.15)where ζ = ∂xv − ∂yu is the relative vorti
ity, B = g∗h +
1

2
(u2 + v2) is the Bernoullipotential, g∗ is the redu
ed gravity, f is the Coriolis parameter (in the β-plane ap-proximation), ρ0 is the water density, r is the fri
tion 
oe�
ient, and ν is the vis
osity(or dissipation) 
oe�
ient. The unknowns are u and v the horizontal 
omponents ofthe velo
ity, and h the geopotential height. Finally, τ is the for
ing term of the model(e.g. the wind stress) [56℄.Many numeri
al experiments and 
omparisons with the variational s
heme arepresented in [14℄. This arti
le also reports the results of an hybridization between theBFN and variational s
hemes.Layered quasi-geostrophi
 o
ean modelWe have �nally 
onsidered a layered quasi-geostrophi
 o
ean model [107, 169, 57℄.This model arises from the primitive equations (
onservation laws of mass, momen-tum, temperature and salinity), assuming �rst that the rotational e�e
t (Coriolisfor
e) is mu
h stronger than the inertial e�e
ts. The Rossby number, ratio betweenthe 
hara
teristi
 time of the Earth's rotation and the inertial time, must then besmall 
ompared to 1. Se
ond, the thermodynami
 e�e
ts are 
ompletely negle
tedin this model. Quasigeostrophy assumes that the horizontal dimension of the o
eanis small 
ompared to the size of the Earth, with a ratio of the order of the Rossbynumber. We �nally assume that the depth of the basin is small 
ompared to its width.In the 
ase of the Atlanti
 O
ean, not all these assumptions are valid, notably thehorizontal extension of the o
ean. But it has been shown that the quasi-geostrophi
approximation is fairly robust in pra
ti
e, and that this approximate model repro-du
es quite well the o
ean 
ir
ulations at mid-latitudes, su
h as the jet stream (e.g.Gulf Stream in the 
ase of the North Atlanti
 O
ean) and o
ean boundary 
urrents.
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The model system is then 
omposed of n 
oupled equations resulting from the
onservation law of the potential vorti
ity. The equations 
an be written as:

D1 (θ1(Ψ) + f)

Dt
+A4∇6Ψ1 = F1 in Ω×]0, T [, (3.16)at the surfa
e layer (k = 1);

Dk (θk(Ψ) + f)

Dt
+A4∇6Ψk = 0 in Ω×]0, T [, (3.17)at the intermediate layers (k = 2, . . . , n− 1);

Dn (θn(Ψ) + f)

Dt
+A1∆Ψn +A4∇6Ψn = 0, (3.18)in Ω×]0, T [, at the bottom layer (k = n).

Ω is the 
ir
ulation basin, ψk is the stream fun
tion at layer k, θk is the sum of thedynami
al and thermal vorti
ities at layer k, f is the Coriolis for
e, and the dissipativeterms 
orrespond to the lateral fri
tion and the bottom fri
tion dissipation. Finally,
F1 is the for
ing term of the model, the wind stress applied to the o
ean surfa
e. Werefer to [107, 169, 57℄ for more details about this model and its equations.We refer to [11℄ for the reports of numeri
al simulations on this model: 
onver-gen
e, 
omparison with the 4D-VAR algorithm, sensitivity studies, . . .3.3.4 Con
lusions emerging from the numeri
al experimentsThe BFN algorithm appears to be a very promising data assimilation method. It isextremely easy to implement: no linearization of the model equations, no 
omputationof the adjoint state, no optimization algorithm. The only ne
essary work is to add arelaxation term to the model equations. The key point in the ba
kward integration isthat the nudging term (with the opposite sign to the forward integration one) makesit numeri
ally stable. Hen
e the nudging (or relaxation) term has a double role: itfor
es the model to the observations and it stabilizes the numeri
al integration. It issimultaneously a penalization and regularization term.The BFN algorithm has been 
ompared with the variational method on severaltypes of non-linear systems: Lorenz (
haoti
 1D ODE), Burgers (1D PDE), shallowwater model (2D) and quasi-geostrophi
 model (3D). The 
on
lusion of these variousexperiments is that the BFN algorithm is better than the variational method for thesame number of iterations (and hen
e for the same 
omputing time). It 
onverges in asmall number of iterations. Of 
ourse the initial 
ondition is usually poorly identi�edby the BFN s
heme, but on the other hand, the �nal state of the assimilation periodis mu
h better identi�ed by the BFN algorithm than by the variational assimilationalgorithm, whi
h is a key point for the predi
tion phase that starts at the end of theassimilation period. Hen
e the predi
tion phase is usually better when it 
omes after
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an assimilation period treated by the BFN algorithm, rather than by a variationalassimilation method.The two algorithms 
an be 
ombined: we have introdu
ed a new hybrid s
heme,in whi
h a very small number of BFN iterations are performed (2 or 3 for instan
e),before providing the identi�ed initial 
ondition to the standard 4D-VAR algorithm.By doing this, the 
onvergen
e of the 4D-VAR is rea
hed more qui
kly, as it sometimesdivides by two the number of iterations required. Also, for a �xed given number ofiterations (or for a given 
omputation time), the quality of the identi�ed solutionis signi�
antly improved by this prepro
essing (note that the number of 4D-VARiterations is de
reased by the number of BFN iterations in this s
heme, in orderto 
onsider the same number of iterations in the standard 4D-VAR and the hybrids
heme).Finally the BFN algorithm enables one to 
onsider the problem of imperfe
t mod-els at no additional 
ost, as the model equations are not strong 
onstraints in thisnudging method (while they are usually strong 
onstraints in a variational method)and the relaxation term 
an be seen as a model error term.3.4 Theoreti
al 
onvergen
e results [18, 24℄3.4.1 Linear 
aseWe 
onsider here a linear situation, although simple, that des
ribes quite well howthe BFN algorithm works. We assume that the observation operator C is equal tothe identity, and that the model F is linear. We also assume that F and K 
ommute.Note that this assumption is valid in our experiments as K is set proportional to theidentity matrix. In this pretty simple situation, we 
an expli
it the BFN traje
tories.For the sake of 
on
ision and 
larity, we assume that K ′ = K, but the followingresults remain valid if K ′ 6= K. We �nally assume that the length of the assimilationperiod is T > 0.Then, for all n > 1,
Xn(0) =

(
I − e−2KT

)−1 (
I − e−2nKT

) ∫ T

0

(
e−(K+F )s + e−2KT e(K−F )s

)
KXobs(s)ds

+e−2nKTx0 (3.19)and for all t ∈ [0, T ],
Xn(t) = e−(K−F )t

∫ t

0
e(K−F )sKXobs(s)ds+ e−(K−F )tXn(0). (3.20)The following result proves the existen
e of a limit traje
tory [18℄:Theorem 3.2 If n→ +∞, then Xn(0) 
onverges and

lim
n→+∞

Xn(0) = X∞(0) =
(
I − e−2KT

)−1
∫ T

0

(
e−(K+F )s + e−2KT e(K−F )s

)
KXobs(s)ds.(3.21)
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Moreover, if T > 0, for any t ∈ [0, T ],

lim
n→+∞

Xn(t) = X∞(t) = e−(K−F )t

∫ t

0
e(K−F )sKXobs(s)ds+ e−(K−F )tX∞(0). (3.22)Under the same hypothesis, we have a similar result for ba
kward traje
tories, i.e.there exists a fun
tion X̃∞(t) su
h that lim
n→+∞

X̃n(t) = X̃∞(t), for all t ∈ [0, T ]. Thisproves the 
onvergen
e of the BFN algorithm in su
h a situation.Note that the limit fun
tion X∞ (resp. X̃∞) is totally independent of the initial
ondition x0 of the algorithm.Moreover, if the observations are perfe
t, i.e. Xobs satis�es the dire
t modelequation (3.1), then for all t ∈ [0, T ],
Xobs(t) = eFtXobs(0). (3.23)It is then straightforward to see in equations (3.21) and (3.22) that

lim
n→∞

Xn(t) = Xobs(t), ∀t ∈ [0, T ]. (3.24)The BFN algorithm also has a similar behaviour on linear paraboli
 operators inin�nite dimension (e.g. the heat operator). A Fourier de
omposition of the traje
to-ries allows us to study only �rst order ordinary di�erential equations, and gives thenthe 
onvergen
e of the algorithm.3.4.2 Transport equationsIn this se
tion, we only 
onsider one iteration of the ba
k and forth nudgingalgorithm, i.e. one forward and one ba
kward resolution with nudging terms. Theidea 
onsists of studying the de
rease of the error (between the BFN traje
tory andthe true solution) during one iteration. All the results 
an then be extended very easilyto an arbitrary number of BFN iterations. For instan
e, if the error de
reases by a
onstant fa
tor of less than 1 during one iteration, then the algorithm is 
ontra
tiveand the error de
reases exponentially to 0 with the iterations.We refer to [24℄ for the proofs of all the following results.Linear vis
ous transportWe �rst 
onsider a linear vis
ous transport equation.
(F )





∂tu− ν∂xxu+ a(x)∂xu = −K(u− uobs),
u|x=0 = u|x=1 = 0,

u|t=0 = u0,

(B)





∂tũ− ν∂xxũ+ a(x)∂xũ = K ′(ũ− uobs),
ũ|x=0 = ũ|x=1 = 0,

ũ|t=T = u(T ),

(3.25)where the following notations hold for all further 
ases:
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• the time period 
onsidered here is t ∈ [0, T ];
• the �rst equation (F ) is 
alled the forward equation, the se
ond one (B) is 
alledthe ba
kward one;
• K and K ′ are positive fun
tions, and may depend on t and x, but for simpli
ityreasons, we will always assume that there exists a 
onstant κ ∈ R

∗
+ su
h that

K ′(t, x) = κK(t, x);
• a(x) ∈W 1,∞(Ω), Ω being the 
onsidered spa
e domain, either the interval [0, 1]or the torus [0, 1];
• the vis
osity 
oe�
ient ν > 0 is 
onstant;
• the observation fun
tion uobs is a solution of the forward equation (without anynudging term) with initial 
ondition u0

obs:




∂tuobs − ν∂xxuobs + a(x)∂xuobs = 0,
u|x=0 = u|x=1 = 0,

u|t=0 = u0
obs.

(3.26)Then, the following result holds true for linear vis
ous transport equations [24℄:Theorem 3.3 We 
onsider one step of the BFN algorithm (3.25) with observations
uobs satisfying equation (3.26). We denote

w(t) = u(t) − uobs(t),
w̃(t) = ũ(t) − uobs(t),

(3.27)the forward and ba
kward errors.1. If K(t, x) = K, then for all t ∈ [0, T ]:
w̃(t) = e(−K−K′)(T−t)w(t). (3.28)2. If K(t, x) = K(x), with Support (K) ⊂ [a, b] where a < b and a 6= 0 or b 6= 1,then equation (3.25) is ill-posed: there does not exist a solution (u, ũ) in general.3. If K(t, x) = K1[t1,t2](t) with 0 ≤ t1 < t2 ≤ T , then we have
w̃(0) = e(−K−K′)(t2−t1)w(0). (3.29)This result shows that, when applied to linear vis
ous transport equations, theBFN algorithm 
onverges if the feedba
k a
ts on the entire domain. For instan
e, inthe �rst point of theorem 3.3, equation (3.28) shows that the error has been de
reasedby a fa
tor of e(−K−K′)T during one iteration. Thus, the error de
reases by a fa
torof e−N(K+K′)T during N iterations. As K > 0 (or K ′ > 0) and T > 0, this 
learlyproves the 
onvergen
e of the BFN algorithm in this 
ase. On the 
ontrary, if apart of the spa
e domain is not observed (i.e. the support of K does not 
over theentire domain), then the algorithm does not 
onverge as the di�usion term 
annot be
ontrolled and the ba
kward resolution is ill-posed.
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Vis
ous BurgersWe now 
onsider the vis
ous Burgers' equation, a standard nonlinear transportequation. We also 
onsider only one iteration of the BFN algorithm:

(F )





∂tu− ν∂xxu+ u∂xu = −K(u− uobs),
u|x=0 = u|x=1 = 0,

u|t=0 = u0,

(B)





∂tũ− ν∂xxũ+ ũ∂xũ = K ′(ũ− uobs),
ũ|x=0 = ũ|x=1 = 0,

ũ|t=T = u(T ),

(3.30)
with the same notations as before. The observations uobs also satisfy the forwardBurgers' equation:





∂tuobs − ν∂xxuobs + uobs∂xuobs = 0,
u|x=0 = u|x=1 = 0,

u|t=0 = u0
obs.

(3.31)Then, the following result holds true [24℄:Theorem 3.4 If K(t, x) 6≡ 0, then the BFN iteration (3.30) for vis
ous Burgers'equation, with observations satisfying (3.31), is ill-posed, even when K(t, x) is 
on-stant: there does not exist, in general, a solution (u, ũ).In the parti
ular 
ase where K ≡ K ′ ≡ 0, the ba
kward problem is ill-posed in thesense of Hadamard (the solution does not depend 
ontinuously on the data), but ithas a unique solution if the �nal 
ondition ũ|t=T is set to a �nal solution of the dire
tequation. Moreover, in this parti
ular 
ase, the ba
kward solution is exa
tly equal tothe forward one: ũ(t) = u(t) for all t ∈ [0, T ]. The main result is the following [24℄:Proposition 3.1 If K ≡ K ′ ≡ 0, then problem (3.30) is well-posed in the sense ofHadamard, and there exists a unique solution (u, ũ). Moreover, u = ũ.The BFN algorithm is then ill-posed (ex
ept if K ≡ K ′ ≡ 0) when applied to avis
ous Burgers' equation, as there does not exist a solution to the ba
kward problem.However, from the numeri
al point of view, the BFN algorithm has been su

essfullyapplied to this model [11℄. This phenomenon is probably due to the fa
t that wenumeri
ally solve a dis
rete problem and not the exa
t 
ontinuous one.
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Invis
id linear transportWe now 
onsider the invis
id 
ase for a linear transport equation. The BFNequations are:

(F )





∂tu+ a(x)∂xu = −K(u− uobs),
u|x=0 = u|x=1,

∂xu|x=0 = ∂xu|x=1,

u|t=0 = u0,

(B)





∂tũ+ a(x)∂xũ = K ′(ũ− uobs),
ũ|x=0 = ũ|x=1,

∂xũ|x=0 = ∂xũ|x=1,

ũ|t=T = u(T ),

(3.32)
where a(x) 
an be 
onstant or not. The following result holds true [24℄:Theorem 3.5 We 
onsider the non vis
ous one-step BFN (3.32), with observations
uobs satisfying (3.32-F) with K = 0. We denote

w(t) = u(t) − uobs(t),
w̃(t) = ũ(t) − uobs(t).

(3.33)We denote by
(s, ψ(s, x)) (3.34)the 
hara
teristi
 
urve of equation (3.32-F) with K = 0, with foot x in time s = 0,i.e. su
h that

(s, ψ(s, x))|s=0 = (0, x). (3.35)We assume that the �nal time T is su
h that the 
hara
teristi
s are well de�ned anddo not interse
t over [0, T ]. Then:1. If K(t, x) = K, then we have, for all t ∈ [0, T ],
w̃(t) = w(t)e(−K−K′)(T−t). (3.36)2. If K(t, x) = K1[t1,t2](t) with 0 ≤ t1 < t2 ≤ T , then we have
w̃(0) = w(0)e(−K−K′)(t2−t1). (3.37)3. If K(t, x) = K(x), then we have, for all t ∈ [0, T ],

w̃(t, ψ(t, x)) = w(t, ψ(t, x)) exp

(
−

∫ T

t
K(ψ(s, x)) +K ′(ψ(s, x)) ds

)
. (3.38)From this result, we dedu
e that the BFN algorithm applied to invis
id lineartransport equation does 
onverge if all the domain is observed (�rst two 
ases oftheorem 3.5). Moreover, if the support of K does not 
over all the domain (third 
aseof theorem 3.5, e.g. when the system is not fully observed), the algorithm 
onverges assoon as all the 
hara
teristi
s interse
t the support of K. This 
onstraint is satis�edas soon as the system is observable (see remarks below proposition 3.2).
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Invis
id BurgersWe �nally 
onsider non vis
ous Burgers' equation, with periodi
 boundary 
ondi-tions, and for a time T su
h that there is no sho
k in the interval [0, T ]:

(F )





∂tu+ u∂xu = −K(u− uobs),
u|x=0 = u|x=1,

∂xu|x=0 = ∂xu|x=1,

u|t=0 = u0,

(B)





∂tũ+ ũ∂xũ = K ′(ũ− uobs),
ũ|x=0 = ũ|x=1,

∂xũ|x=0 = ∂xũ|x=1,

ũ|t=T = u(T ).

(3.39)
Then, the following result holds true [24℄:Theorem 3.6 We 
onsider one step of the BFN algorithm applied to the non vis
ousBurgers' equation (3.39), with observations uobs satisfying (3.39-F) with K = 0. Wedenote

w(t) = u(t) − uobs(t),
w̃(t) = ũ(t) − uobs(t).

(3.40)We assume that uobs ∈W 1,∞([0, T ] × Ω), i.e. there exists M > 0 su
h that
|∂xuobs(t, x)| ≤M, ∀t ∈ [0, T ],∀x ∈ Ω. (3.41)Then:1. If K(t, x) = K, then we have, for all t ∈ [0, T ],

‖w̃(t)‖ ≤ e(−K−K′+M)(T−t)‖w(t)‖. (3.42)2. If K(t, x) = K1[t1,t2](t) with 0 ≤ t1 < t2 ≤ T , then we have
‖w̃(0)‖ ≤ e(−K−K′)(t2−t1)+MT ‖w(0)‖. (3.43)Proposition 3.2 We 
onsider one forward (resp. ba
kward) BFN step of the nonvis
ous Burgers' equation (3.39-F) (resp. (3.39-B)). With the notations of theorem3.6, if K(t, x) = K(x), then we have

w(T, ψ(T, x)) = w(0, x) exp

(
−

∫ T

0
K(ψ(σ, x))dσ −

∫ T

0
∂xuobs(σ, ψ(σ, x))dσ

)
.(3.44)
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Remark: For the spe
ial 
ase K(t, x) = K(x) = K1[a,b](x), where K is a 
onstantand [a, b] is a sub-interval of [0, 1], we have

w(T, ψ(T, x)) = w(0, x) exp

(
−Kχ(x) −

∫ T

0
∂xuobs(σ, ψ(σ, x))dσ

)
, (3.45)where

χ(x) =

∫ T

0
1Supp(K)(ψ(σ, x))dσ (3.46)is the time during whi
h the 
hara
teristi
 
urve ψ(σ, x) with foot x of equation(3.39-F) with K = 0 lies in the support of K.The system is then observable if and only if the fun
tion χ has a non-zero lowerbound, i.e. m := min

x
χ(x) > 0, the observability being de�ned by (see e.g. [147℄):

∃C,∀u solution of (3.39-F) with K = 0, ‖u(T, .)‖2 ≤ C

∫ T

0
‖K(.)u(s, .)‖2 ds.(3.47)In this 
ase, proposition 3.2 proves the global exponential de
rease of the error, pro-vided K is larger than MT

m
, where M is de�ned by equation (3.41).From this remark, we 
an easily dedu
e that if for ea
h iteration, both in theforward and ba
kward integrations, the observability 
ondition is satis�ed, then thealgorithm 
onverges and the error de
reases exponentially to 0. Note that this is nota ne
essary 
ondition, as even if χ(x) = 0, the last exponential of equation (3.45) isbounded.Remarks on the theoreti
al resultsIn real geophysi
al appli
ations (either meteorology or o
eanography), there isusually no vis
osity. In this 
ase, assuming the observability 
ondition, the BFNalgorithm is well posed, and theorem 3.6 and proposition 3.2 show that the solutiontends to the observation traje
tory everywhere, and not only on the support of K[24℄.From a numeri
al point of view, we 
an observe that even with dis
rete andsparse observations in spa
e, the numeri
al solution is 
orre
ted everywhere. We alsoobserved that, with a not too large vis
osity 
oe�
ient, the behaviour of the algorithmremains un
hanged [11℄.3.5 Nudging and observers [25℄In this se
tion, we 
onsider nudging as a parti
ular type of observers, e.g. Lu-enberger observer, or Kalman �lters [129, 114℄. In most Kalman-type �lters andobservers, the gain matri
es do not take into a

ount the symmetries of the model.They are mainly designed to provide for ea
h time step the optimal estimate of thesystem state. However, it seems interesting to preserve the model symmetries while
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adding a nudging term in the equations. Inspired by the re
ent works in observer de-sign, we de�ne symmetry-preserving nudging (or feedba
k) terms for a shallow-watermodel. This se
tion summarizes the work presented in [25℄.3.5.1 Observers for a shallow water modelWe 
onsider here a shallow water model, similar to the model introdu
ed in se
tion3.3.3. However, the equations are rewritten in order to 
learly see the symmetries.We refer to [113℄ for more details about these equations. In the following, h is the�uid height, and v is the bi-dimensional velo
ity �eld. The equations write:
∂(hv)

∂t
+ (∇.(hv) + (hv).∇) v = −g′h∇h− k × f(hv) + (A∇2 −R)(hv) +

τ̃

ρ
i (3.48)for the ve
torial velo
ity, and

∂h

∂t
= −∇.(hv) (3.49)for the s
alar height. In these equations, g′ represents the redu
ed gravity, ρ is the�uid density, f is the Coriolis parameter, i is the longitudinal unit ve
tor (pointingtowards East) and k is the upward unit ve
tor. Finally, R, A and τ̃ represent fri
tion,lateral vis
osity, and the for
ing term (zonal wind stress) respe
tively.We assume that the physi
al system is observed by several satellites that providemeasurements of the sea surfa
e height (SSH) h only.An observer (ĥ, v̂) for the system (3.48-3.49) writes:

∂(ĥv̂)

∂t
+

(
∇.(ĥv̂) + (ĥv̂).∇

)
v̂ = −g′ĥ∇ĥ−k×f(ĥv̂)+(A∇2−R)(ĥv̂)+

τ̃

ρ
i+Fv(h, v̂, ĥ)(3.50)and

∂ĥ

∂t
= −∇.(ĥv̂) + Fh(h, v̂, ĥ). (3.51)The only di�eren
e between the observer and model equations 
omes from the inno-vation terms Fv(h, v̂, ĥ) and Fh(h, v̂, ĥ). The 
orre
tion terms must vanish when theestimated height ĥ is equal to the observed height h. The goal is to de�ne fun
tions

Fh and Fv su
h that the observer tends to the true solution. Moreover, these feedba
kterms also have to preserve the symmetries of the model.3.5.2 Invariant 
orre
tion termsThe shallow-water equations do not depend neither on the orientation nor onthe origin of the frame in whi
h the 
oordinates are expressed: they are invariantunder the a
tion of SE(2), the Spe
ial Eu
lidean group of isometries of the plane
R

2. Consequently, fun
tions Fh and Fv must be invariant under the a
tion of SE(2).Symmetries have been very re
ently introdu
ed for observer design in [28, 59℄ forengineering problems. The aim of this work is to 
onsider 
orre
tion terms thatrespe
t the underlying physi
s of the system.
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To �nd the s
alar term Fh, we use the standard result (see e.g. [155℄), whi
h statesthat any s
alar di�erential operator invariant by rotation and translation writes Q(∆),where Q is a polynomial and ∆ is the Lapla
ian. By 
onsidering the invarian
e byrotation for the ve
torial velo
ity [139℄, we get the following family of s
alar terms:

Fh = Q1(∆, h, |v̂|2, ĥ− h) + ∇
(
Q2(∆, h, |v̂|2, ĥ− h)

)
.v̂ + fh, (3.52)where Q1 and Q2 are s
alar polynomials in ∆, and fh is an integral term de�nedbelow. More pre
isely,

Qi(∆, h, |v̂|2, ĥ− h) =
N∑

k=0

ai
k(h, |v̂|2, ĥ− h)∆k

(
bik(h, |v̂|2, ĥ− h)

)
, (3.53)where ai

k and bik are smooth s
alar fun
tions su
h that
ai

k(h, |v̂|2, 0) = bik(h, |v̂|2, 0) = 0. (3.54)For the ve
torial 
orre
tion term Fv, we use the ve
torial 
ounterpart:
Fv = P1(∆, h, |v̂|2, ĥ− h)v̂ + ∇

(
P2(∆, h, |v̂|2, ĥ− h)

)
+ fv, (3.55)where P1 and P2 are polynomials in ∆, like Q1 and Q2.Let us now �nd the integral terms fv and fh that are invariant by rotation andtranslation. They 
an be expressed as a 
onvolution between the previous invariantdi�erential terms and a two-dimensional kernel ψ(ξ, ζ). The previous terms beinginvariant by rotation, the value of the kernel should not depend on a parti
ular di-re
tion, and so ψ must be a fun
tion of the invariant ξ2 + ζ2. The integral 
orre
tionterms write:

fv(x, y, t) =

∫∫ [
R1(∆, h, |v̂|2, ĥ− h)v̂ + ∇

(
R2(∆, h, |v̂|2, ĥ− h)

)]

(x−ξ,y−ζ,t)
φv(ξ

2+ζ2) dξdζ,(3.56)
fh(x, y, t) =

∫∫ [
S1(∆, h, |v̂|2, ĥ− h) + ∇

(
S2(∆, h, |v̂|2, ĥ− h)

)
.v̂

]

(x−ξ,y−ζ,t)
φh(ξ2+ζ2) dξdζ,(3.57)where Ri and Si are de�ned like Qi and Pi.The support of φv (resp. φh) is a subset of R. Its 
hara
teristi
 size de�nes azone in whi
h it is signi�
ant to 
orre
t the estimation with the measurements. Theintegral formulation is a
tually quite general: if φv and φh are set equal to Dira
fun
tions, one obtains the di�erential terms.3.5.3 Convergen
e study on a linearized simpli�ed systemIn order to avoid the ampli�
ation of the measurement noise by a di�erentiationpro
ess, only the integral 
orre
tion terms are kept: one sets Q1 = Q2 = P1 = P2 = 0,

R1 = S2 = 0 and S2 = R1 = h− ĥ.
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For the sake of 
larity, we now simplify the model equations, by assuming thatthere is no Coriolis for
e, no fri
tion, no dissipation, and no wind stress. An observerfor this simpli�ed system satis�es then:

∂ĥ

∂t
= −∇(ĥv̂) + φh ∗ (h− ĥ), (3.58)

∂v̂

∂t
= −v̂∇v̂ − g∇ĥ+ φv ∗ ∇(h− ĥ). (3.59)Note that in the degenerate 
ase where φh = Khδ0 and φv = Kvδ0, Kh and Kvbeing positive s
alars, we �nd the standard nudging terms, or Luenberger observer.As it seems di�
ult to �rst study the 
onvergen
e on the nonlinear system, wenow linearize the equations around an equilibrium position h = h̄ and v = v̄. We only
onsider small velo
ities δv = v− v̄ ≪

√
gh̄ and heights δh = h− h̄≪ h̄, where h̄ and

v̄ = 0 represent the equilibrium height and speed respe
tively. We denote by h̃ (resp.
ṽ) the estimation errors, di�eren
es between the observer and true solution, for theheight (resp. velo
ity). These errors are solution of the following linear equations:

∂h̃

∂t
= −h̄∇ṽ − φh ∗ h̃, (3.60)

∂ṽ

∂t
= −g∇h̃− φv ∗ ∇h̃. (3.61)A reasonable 
hoi
e for the kernels φh and φv is the following:

φh(x, y) = βh exp(−αh(x2 + y2)), (3.62)
φv(x, y) = βv exp(−αv(x

2 + y2)), (3.63)as one usually assumes that the observation error is a white Gaussian noise. However,the following 
onvergen
e results 
an be extended to more general kernel fun
tionsde�ned by
φh(x, y) = (f(x) ∗ f(x)) (f(y) ∗ f(y)), (3.64)
φv(x, y) = (g(x) ∗ g(x)) (g(y) ∗ g(y)), (3.65)(3.66)where f and g are smooth even fun
tions, all their Fourier 
oe�
ients being stri
tlypositive.Eliminating the velo
ity ṽ in equations (3.60-3.61) leads to a modi�ed dampedwave equation with external vis
ous damping:
∂2h̃

∂t2
= gh̄∆h̃+ h̄ φv ∗ ∆h̃− φh ∗ ∂h̃

∂t
. (3.67)Equation (3.67) 
an be rewritten in the following way:

∂2h̃

∂t2
= φv ∗ ∆h̃− φh ∗ ∂h̃

∂t
, (3.68)
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if φv is now the following fun
tion

φv(x, y) = gh̄δ0 + h̄ βv exp(−αv(x
2 + y2)), (3.69)where δ0 is the Dira
 measure at the origin.Then, we have the following result [25℄:Theorem 3.7

lim
t→+∞

∫

Ω


‖∇h̃‖2 +

∣∣∣∣∣
∂h̃

∂t

∣∣∣∣∣

2

 = 0. (3.70)This result proves the strong and asymptoti
 
onvergen
e of the error h̃ towards 0,and then it also gives the same 
onvergen
e for ṽ. We dedu
e that the observer tendsto the true state when time goes to in�nity. Note that even if only the height isobserved, all variables are 
orre
ted.A dimensional analysis also provides the following gain tuning (see equations (3.62)and (3.69)):

βh = 2ξ0ω0, h̄βv = L2
0ω

2
0 − gh̄, (3.71)where ω0 and L0 are 
hara
teristi
 pulsation and length of the �ow respe
tively, and

ξ0 is the damping 
oe�
ient of the system equation. Moreover, α−2
h = α−2

v is the sizeof the region of in�uen
e. This region 
an be related to the level of observation noise,and to the spatial density of the observations.3.5.4 Numeri
al experimentsThe results of many numeri
al simulations on both the linearized and nonlinearshallow water models are reported in [25℄. The following feedba
k terms have been
onsidered: φh ∗ (h− ĥ) for the �uid height, and φv ∗∇(h− ĥ) for the velo
ity, where
φh and φv are de�ned by equations (3.62) and (3.63). Several values of the parameters
αh, αv, βh and βv are 
onsidered, as well as several levels of observation noise. A
omparison between the standard nudging (or Luenberger observer) and this observeris also given in [25℄.All these simulations show the interest of su
h a 
hoi
e of invariant gains. Theyprovide better results than the standard nudging, even on the nonlinear system, be-
ause the error 
onverges faster, the residual error is smaller, and noise is better�ltered. Indeed the observer is nearly insensible to gaussian white noise. The numer-i
al experiments also 
on�rm that, as predi
ted by the theory, it is possible to 
orre
tthe non-observed variables with the observed ones, thanks to model 
oupling.Note that the 
omputational 
ost of su
h an observer is not mu
h larger than forthe standard nudging, as we have 
onsidered a trun
ated 
onvolution integral insteadof the 
omplete 
onvolution over the whole domain. The trun
ation radius 
an be setequal to at most 10 pixels in similar experiments.Several other gain fun
tions should now be studied to see if it is possible to �lterother types of observation noise. Some experiments will also be 
arried out in the
ase of sparse observations, both in time and spa
e.
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3.6 Con
lusionThe BFN algorithm appears to be a very promising data assimilation method. It isextremely easy to implement: no linearization of the model equations, no 
omputationof the adjoint state, no optimization algorithm. The only ne
essary work is to add arelaxation term to the model equations. The key point in the ba
kward integration isthat the nudging term (with the opposite sign to the forward integration one) makesit numeri
ally stable. Hen
e the nudging (or relaxation) term has a double role: itfor
es the model to the observations and it stabilizes the numeri
al integration. It issimultaneously a penalization and regularization term.The BFN algorithm has been 
ompared with the variational method on severaltypes of non-linear and turbulent systems. The 
on
lusion of the various experimentsis that the BFN algorithm is better than the variational method for the same numberof iterations (and hen
e for the same 
omputing time). It 
onverges in a small numberof iterations. Of 
ourse the initial 
ondition is usually poorly identi�ed by the BFNs
heme, but on the other hand, the �nal state of the assimilation period is mu
h betteridenti�ed by the BFN algorithm than by the variational assimilation algorithm, whi
his a key point for the predi
tion phase that starts at the end of the assimilation period.Hen
e the predi
tion phase is usually better when it 
omes after an assimilation periodtreated by the BFN algorithm, rather than by a variational assimilation method.The two algorithms 
an be 
ombined, in the sense that one 
an perform severalBFN iterations before swit
hing to the variational method and this will 
onsiderablya

elerate the 
onvergen
e of the variational method. Finally the BFN algorithmenables one to 
onsider the problem of imperfe
t models at no additional 
ost, asthe model equations are not strong 
onstraints in this nudging method (while theyusually are in a variational method) and the relaxation term 
an be seen as a modelerror term.Finally, several theoreti
al results explain and justify the e�
ien
y of this algo-rithm in simple situations.The main perspe
tive is the following: the determination of the nudging 
oe�-
ients (or matri
es) should be improved, parti
ularly by a numeri
al stability studyof the ba
kward integration. This will give the optimal nudging 
oe�
ients thatmake the ba
kward integration stable, while preserving the extreme simpli
ity of thealgorithm.



Chapter 4Image data assimilationThis 
hapter summarizes the work presented in [23℄.4.1 Introdu
tionThis 
hapter presents a study at the interfa
e of image pro
essing and data as-similation: the assimilation of images. The numeri
al fore
ast of geophysi
al �uidsis extremely di�
ult, mainly be
ause they are governed by the general nonlinearequations of �uid dynami
s. Over the past 20 years, observations of o
ean and at-mosphere 
ir
ulation have be
ome mu
h more readily available, as a result of newsatellite te
hniques. However, the huge amount of information provided by satelliteimages must therefore be exploited, as more and more spa
e-borne observations ofin
reasing quality are available.Several ideas have been very re
ently developed to assimilate image data. A �rstidea 
onsists of identifying some 
hara
teristi
 stru
tures of the image and then intra
king them in time. This is 
urrently developed in meteorology, using an adaptivethresholding te
hnique for radian
e temperatures in order to identify and tra
k several
ells [135℄. Another idea is to 
onsider a dual problem and to 
reate some modelimages, 
oming from the numeri
al model itself, and to 
ompare the satellite imageswith these model images, using for example a 
urvlet approa
h [132℄.We propose here to de�ne a fast and e�
ient way to identify, or extra
t, velo
ity�elds from several images (or a 
omplete sequen
e of images). Assuming this point,we would then be able to obtain billions of pseudo-observations, 
orresponding tothe extra
ted velo
ity �elds, that 
ould be 
onsidered in the usual data assimilationpro
esses. The main advantage of su
h an approa
h is to provide a lot of informationon the velo
ity, whi
h is a state variable of all geophysi
al models, as it is mu
h moreeasy to assimilate data that are dire
tly related to the state variables. We shouldmention that a satellite image 
an have a resolution of 5000 × 5000 pixels, and thatsome satellites transmit su
h images every 15 to 60 minutes [103℄. We propose in thispaper a way to identify one velo
ity ve
tor for ea
h pixel of the image. Of 
ourse,we will see that all the identi�ed velo
ity �elds are not reliable, mainly when there is53
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no visible 
hara
teristi
 phenomenon, but we should be able to provide an amount ofinformation that is 
omparable to the 
urrently assimilated observations.The hypothesis that is underlying this work is that the grey level of the points arepreserved during the motion, this is known as the 
onstant brightness hypothesis. The
onstant brightness hypothesis was introdu
ed in [109℄, and the linearized equationderived from this hypothesis is the 
ornerstone of opti
al �ow methods [128, 39, 47℄.This hypothesis is sometimes repla
ed by an integrated 
ontinuity equation in orderto take into a

ount the spreading of intensity sour
es [93, 94, 76, 122℄.This hypothesis is justi�ed here in the framework of o
eanography, as the objetof interest, allowing us to tra
k the �uid and identify its velo
ity, is usually a passivetra
er, at least on relative short time periods: 
hlorophyll, sea surfa
e temperature,
hemi
al pollutants (e.g. hydro
arbons), . . . All these tra
ers do not intera
t with thewater on a short time period, and they are passively transported by the �uid.We propose here to use an integrated version of the 
onstant brightness hypothe-sis. Instead of linearizing the 
onstant brightness hypothesis like in standard opti
al�ow te
hniques, we de�ne a nonlinear 
ost fun
tion that takes into a

ount the fa
tthat time sampling o

urs at a �nite rate. The 
ost fun
tion obtained from the inte-grated 
onstant brightness assumption is minimized in nested subspa
es of admissibledispla
ement ve
tor �elds. Several regularization norms are 
onsidered.We refer to [23℄ for the results of many numeri
al experiments, on both simulatedand real data. These results show that our method provides very qui
kly full velo
ity�elds, with an estimator of the quality of the results, while the PIV (Parti
le ImagingVelo
imetry) method, 
urrently 
onsidered as a referen
e method in �uid me
hani
sand o
eanography, is unable to provide more than one pertinent velo
ity ve
tor every
10 × 10 pixels.4.2 Des
ription of the algorithm [23℄This se
tion is devoted to the des
ription of the algorithm that we propose.4.2.1 Constant brightness assumptionLet Ω ⊂ R

2 be the re
tangular domain where the images are de�ned. The motionbetween the instants t0 and t1 where the images are I0 and I1 is then the ve
tor �eld
(u, v) su
h that for every point (x, y) ∈ Ω,

I1(x+ u(x, y), y + v(x, y)) = I0(x, y). (4.1)A ve
tor �eld satisfying equation (4.1) is not unique, this is known as the apertureproblem in opti
al �ow. Moreover, measurement errors make the equality (4.1) un-likely to be stri
tly satis�ed.
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4.2.2 Cost fun
tionWe propose then a leat square optimization to repla
e the exa
t equality (4.1):

J(u, v) =
1

2

∫

Ω
[F (I0, I1;u, v)(x, y)]

2 dxdy +
1

2
αR(u, v), (4.2)where R(u, v) is a spatial regularization term, and α > 0 is the regularization fa
tor.Finally, F is the following fun
tion:

F (I0, I1;u, v)(x, y) = I1(x+ u(x, y), y + v(x, y)) − I0(x, y). (4.3)4.2.3 RegularizationThe following regularization terms were used in our numeri
al experiments:
R0(u, v) = ‖u‖2 + ‖v‖2, (4.4)
R1(u, v) = ‖∇u‖2 + ‖∇v‖2 = ‖∂xu‖2 + ‖∂yu‖2 + ‖∂xv‖2 + ‖∂yv‖2, (4.5)

Rdiv(u, v) = ‖div(u, v)‖2 = ‖∂xu+ ∂yv‖2, (4.6)
Rcurl(u, v) = ‖curl(u, v)‖2 = ‖∂yu− ∂xv‖2, (4.7)

Rdiv/curl(u, v) = ‖div(u, v)‖2 + ‖curl(u, v)‖2 = ‖∂xu+ ∂yv‖2 + ‖∂yu− ∂xv‖2, (4.8)
R∇div(u, v) = ‖∇div(u, v)‖2 = ‖∂2

xxu+ ∂2
xyv‖2 + ‖∂2

xyu+ ∂2
yyv‖2, (4.9)

R∇div/∇curl(u, v) = ‖∇div(u, v)‖2 + ‖∇curl(u, v)‖2 (4.10)
= ‖∂2

xxu+ ∂2
xyv‖2 + ‖∂2

xyu+ ∂2
yyv‖2 + ‖∂2

xyu− ∂2
xxv‖2 + ‖∂2

yyu− ∂2
xyv‖2.In all the 
ases, we 
an write R(u, v) = ‖S(u, v)‖2, where S is a linear operator. Somes
alar 
oe�
ients have also been 
onsidered in order to weight the di�erent terms ofa given regularization.4.2.4 Muti-grid approa
h and optimizationThe minimization of the 
ost fun
tion J is performed in nested subspa
es:

C16 ⊂ C8 ⊂ C4 ⊂ C2 ⊂ C1, (4.11)where Cq is the set of admissible displa
ement �elds at the s
ale q, 
ontaining pie
ewisea�ne ve
tor �elds with respe
t to ea
h spa
e variable, on squares of size q× q pixels.The di�eren
e with hierar
hi
al te
hniques issued from the opti
al �ow family (seee.g. [134, 146℄) is that we do not linearize the 
ost fun
tion. This should help to �ndlarge displa
ements, where the domain of linearity of the luminan
e fun
tion is notvalid.The spa
e C16 is typi
ally of small dimension, hen
e the minimization of J on
C16 is fast and robust when a zero ve
tor �eld is used as initial guess. The optimalve
tor �eld obtained at a given s
ale in the spa
e Cq is used as initial guess to �nd
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the minimum at the �ner s
ale in the spa
e Cq/2. This pro
ess is iteratively repeated,until an optimal solution is identi�ed on the �nest grid.All the optimizations of the nonlinear 
ost fun
tion are performed by a Gauss-Newton method. When an initial guess (u0, v0) is given (a 
onstant null �eld, in ourexperiments), the k-th iteration read

(uk, vk) := (uk−1, vk−1) + (duk, dvk), (4.12)where (duk, dvk) solves
(DF TDF + αSTS)(du, dv) = −DF TF − αSTS(u, v), (4.13)where F = F (I0, I1;u

k−1, vk−1) is the error, DF = DF (I0, I1;u
k−1, vk−1) is the Ja
o-bian matrix of the error, and S is the linear operator asso
iated to the regularizationterm.Another innovation of the present work is the e�
ient 
omputation of the produ
t

DF TDF of the Ja
obian of the �rst term of the 
ost fun
tion (4.2) by its transpose.This e�
ient 
omputation 
omes from the observation that this matrix is sparse and
an be assembled like a �nite-element matrix using one loop over the data.Let V ∈ Cq be a ve
tor �eld. Let (ei) be the 
anoni
al orthonormal basis of Cq,
ontaining ve
tor �elds that are equal to 0 at every but one 
ontrol point, where theve
tor �eld is dire
ted along the horizontal or verti
al axis. The (k, l)th 
oe�
ient ofthe matrix DF TDF is
(DF TDF )k,l = (DF TDFek|el) = (DFek|DFel)L2(Ω). (4.14)Sin
e the elementary displa
ements ek are non zero at only one 
ontrol point, thematrix DF TDF has a sparse stru
ture. If we 
onsider the following formulation ofthe ja
obian matrix:
DF (u, v).d(x, y) = ∇I1(x+ u(x, y), y + v(x, y)).d(x, y), (4.15)then the matrix DF TDF 
an be assembled like a �nite-element matrix:

DF TDF =
∑

k,l

(DF TDF )k,l ek ⊗ el

=
∑

k,l

∫

Ω
(∇I1(x′) | ek(x)) (∇I1(x′) | el(x)) ek ⊗ el dx

=
∑

k,l

∑

R∈Rq

∫

R
(∇I1(x′) | ek(x)) (∇I1(x′) | el(x)) ek ⊗ el dx

=
∑

R∈Rq

∑

k,l

∫

R
(∇I1(x′) | ek(x)) (∇I1(x′) | el(x)) ek ⊗ el dx, (4.16)where we write x′ = x+ V (x), and where Rq represents the set of all squares of the

q× q grid. There are 8 quantities of the form (∇I1(x+ V (x))|ek(x)) to be 
omputed
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for ea
h element of Rq, and the matrix DF TDF 
an be assembled by reading on
ethe data. The ve
tor �eld DF TF 
an be assembled rapidly in a similar way, and theterm STS is easy to 
ompute.Finally, equation (4.13) is solved using a 
onjugate gradient method wihtout pre-
onditioning.4.2.5 Quality estimateAn estimation of the quality of our results is highly motivated by the appli
ationthat we presented in the introdu
tion, namely data assimilation. A well known issueand a 
ru
ial point in data assimilation is the knowledge of the statisti
s of observationerrors. Hen
e, we propose here an estimation of the quality of the pseudo-observationsidenti�ed by our algorithm.We propose a normalized quality estimate, where the quality of the motion de-pends on the ratio between the grey-level di�eren
es before and after registration:

e(I0, I1;u, v)(x, y) = 1 − |I1(x+ u(x, y); y + v(x, y)) − I0(x, y)|
|I1(x, y) − I0(x, y)|

(4.17)if the denominator is non-zero, otherwise we de�ne e(I0, I1;u, v) = 0.We 
an 
learly see that if the two images were quite di�erent on a pixel (x, y)before the pro
ess, and mu
h less di�erent after, then the estimate e is nearly equalto 1. We will further see that in some regions of the images, there is almost no signal,and then the two images are equal, both before and after the identi�
ation pro
ess.This leads to an estimate e equal to 0, not be
ause the identi�ed velo
ity is wrong,but be
ause we 
annot quantify whether it is good or not. This estimator is providedby our algorithm, so that it 
an be used along with the identi�ed velo
ity �elds indata assimilation experiments.4.3 Numeri
al experiments [23℄In this se
tion, we brie�y present the numeri
al experiments that have been 
ar-ried out on both simulated and real data. We refer to [23℄ for the results of theseexperiments.4.3.1 Simulated dataWe �rst try our algorithm on simulated data. We 
onsider a basi
 model, the shal-low water model (or Saint-Venant's equations), representing quite well the temporalevolution of geophysi
al �ows. This model is detailed in se
tion 3.3.3 (with di�erentparameters), or in [23℄.This model is then 
oupled with an adve
tion-di�usion equation, modeling thefa
t that the 
on
entration of a passive tra
er is transported by the �uid velo
ity:
∂tc+ u∂xc+ v∂yc = 0, (4.18)
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where c is the 
on
entration of the passive tra
er (e.g. 
hlorophyll in o
eans). Wealso add to this equation an initial 
ondition c(t = 0). We 
onsider then a traje
toryof this shallow water model 
oupled with a 
on
entration equation, from whi
h a
on
entration image is extra
ted every 100 time steps (in order to reprodu
e the timesampling of the satellite images).Two 
onse
utive images are extra
ted from these simulated data, and we applyour algorithm to these two images, with the aim of identifying the entire velo
ity �eld.As shown in [23℄, our algorithm qui
kly extra
ts very a

urate velo
ity �elds. Thisis mainly due to the 
ombination of a multi-grid approa
h and an e�
ient optimiza-tion s
heme (no a priori information and no linearization). The registration betweentwo images is almost perfe
t after a few iterations, and the identi�ed velo
ity �eldreprodu
es very well the global stru
ture of the true velo
ity (a rotating vortex in atranslation �eld in our experiments).Con
erning the regularization, we 
an note that the best results 
orrespond tothe R1 norm (see equation (4.5)). The most physi
al regularization is probably Rdiv(see equation (4.6)), as we expe
t a null divergen
e velo
ity �eld in geophysi
al �ows.But the de
rease of the 
ost fun
tion is not as good as for some other regularizations.Considering that the images are a
quired every 100 time steps only, the velo
ity wewant to identify between these two images is a time Lagrangian integration of manyinstantaneous velo
ities, and it 
annot have a divergen
e equal to zero.We also present an interesting appli
ation of the identi�
ation pro
ess. Assumethat we have a parti
ular obje
t in the �rst image, e.g. a 
hara
teristi
 stru
ture,that has been manually sele
ted. In our 
ase, we 
an identify one spe
i�
 vortex. We
an then limit the identi�
ation pro
ess to a region around this obje
t. This regionis propagated from one pair of images to the next one by the mean of the identi�edvelo
ity. This allows us to tra
k this obje
t in time, in a fully automati
 way.4.3.2 Experimental dataWe have then 
onsidered data extra
ted from several experiments on the Coriolisrotating platform [75℄. A large rotating turntable (diameter: 13 meters) allows us toreprodu
e the o
eani
 or atmospheri
 �ows. Depending on the experiments, eithersome 
olorant or parti
les are inserted in the water as the platform rotates, and amongthe various measurement devi
es, a 
amera takes pi
tures of the experiment [95℄.Several test 
ases have been studied, 
orresponding to either small or large a
-quisition times between two 
onse
utive images. In all these di�erent situations, theglobal stru
ture of the displa
ement �eld mat
hes perfe
tly with the real displa
e-ment of the �uid. The multi-grid approa
h has been 
ompared with the standardapproa
h, in whi
h the minimization is dire
tly performed on the �ne grid. Both the
omputation time and the quality of the results are degraded.These results have been 
ompared with those produ
ed by the PIV (Parti
le Imag-ing Velo
imetry) method. PIV is the referen
e method for the extra
tion of velo
ity�elds in geophysi
s and �uid me
han
i
s. The results are qualitatively equivalent,in the sense that the identi�ed �elds look alike. However, our algorithm represents
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two main improvements: the 
omputation time, allowing us to extra
t velo
ity �eldsfrom several hundreds of images in a relatively short time; and the pre
iseness of theresults, as we extra
t one velo
ity ve
tor for ea
h pixel of the image, while the PIVmethod usually gives only one ve
tor every nearly 10 × 10 pixels. This allows us totra
k the evolution of very small stru
tures.4.4 Con
lusionsWe presented in this se
tion an algorithm to estimate the motion between twoimages. This algorithm is based on the 
onstant brightness assumption. A multis
aleapproa
h allows us to perform a minimization of the 
ost fun
tion in nested subspa
es,the Ja
obian matrix of the 
ost fun
tion being rapidly assembled at ea
h s
ale using a�nite element method. The 
oarse estimation allows one to avoid lo
al minima, whilethe �ne s
ales give more pre
ise details. Several regularization terms are dis
ussed,and it appears that the L2 norm of the gradient gives reliable results.The results of this algorithm on both simulated data and real �uid �ows arepresented, and they are en
ouraging, both from their 
omputational e�
ien
y andfrom the quality of the estimated motion. Our algorithm has also been tested on fullhigh-resolution movies provided by the Coriolis platform, 
on�rming the e�
ien
y ofthe proposed method.As previously explained, the extra
ted velo
ity �elds 
an be viewed as pseudo-observations of the �uid velo
ity, and the next step will be to 
onsider the assimilationof these data. However, be
ause of the time sampling of the images, these �elds
orrepond to Lagrangian velo
ities, and a Lagrangian data assimilation method isthen required. Note that if the time between the a
quisition of two images is small,then the identi�ed (or apparent) velo
ity 
an be dire
tly assimilated as a standardEulerian velo
ity.
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Chapter 5General 
on
lusions andperspe
tivesWe presented in this work several algorithms for solving image pro
essing anddata assimilation problems. All these algorithms are robust, easy to implement,fast and powerful. This work has been essentially motivated by the appli
ations ofsu
h problems. In the 
ase of image pro
essing, one of these 
onstraints 
ould beto be able to pro
ess movies in real time or large images in a negligible time. Fordata assimilation problems, the goal is to assimilate a huge amount of data in agiven time, bounded by some operational 
ontraints (e.g. of providing some short ormedium-range weather fore
asts in a given time).It seemed 
ru
ial to us to develop some algorithms that are quite far from thestate of the art in both image pro
essing and data assimilation. For instan
e, thetopologi
al gradient has been introdu
ed in the image pro
essing �eld, providing amore global information than the standard gradient of the image. Also, the dataassimilation 
ommunity is 
urrently split into two parts: variational and sequentialmethods. The �rst ones (e.g. the 4D-VAR algorithm) require a huge human 
ost forthe implementation of the adjoint 
ode, and the se
ond ones (e.g. Kalman �lters)rely on the very pre
ise knowledge of the error statisti
s. Thus, we made the 
hoi
e ofintrodu
ing an algorithm at the interfa
e of these two 
ategories, in order to 
ombinethe advantages without the main drawba
ks.There are still many perspe
tives in these resear
h �elds, be
ause some problemshave not been studied yet, and also be
ause our algorithms 
an still be improved.For instan
e, all the algorithms introdu
ed for image pro
essing problems are basedon the edge dete
tion by topologi
al gradient. It seems interesting to de�ne morethan two 
ondu
tivity values, in order to identify more than one edge set, as theedges do not 
orrespond to the same level of dis
ontinuities. In data assimilation, theba
k and forth nudging algorithm 
an also be improved, for instan
e by automati
allyde
reasing or in
reasing the gain 
oe�
ients with the iterations, in order to keep arelative equilibrium between the physi
al model and the feedba
k to the observations.61
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As long term perspe
tives in image pro
essing, we 
an 
ite for instan
e the 
om-pression and deblurring problems, for whi
h it should also be possible to de�ne anapproa
h by topologi
al asymptoti
 analysis. Also, an interesting 
hallenge in dataassimilation is to test the ba
k and forth nudging algorithm on a primitive equa-tion model with real data, in order to study the behaviour of this algorithm in real
onditions.
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Résumé:Dans une première partie, nous avons étudié des problèmes de traitement d'images. Nousavons utilisé l'analyse asymptotique topologique pour la déte
tion des 
ontours d'une image.Cela permet de 
onsidérer alors plusieurs appli
ations: restauration/débruitage, 
lassi�
a-tion. L'inpainting est traité d'une façon un peu di�érente, et la double donnée Diri
hlet etNeumann sur le bord du domaine 
a
hé permet de re
onstruire les 
ontours dans la partie
a
hée de l'image. En�n la segmentation peut être traitée 
omme limite de la 
lassi�
ation,en s'appuyant sur des résultats d'analy
ité de la solution quand on fait tendre un paramètrevers 0. La rapidité de 
ette méthode permet de traiter 
es di�érents 
as en temps réel, y
ompris pour des �lms.Dans une se
onde partie, nous avons abordé l'assimilation de données, le but étantd'identi�er la 
ondition initiale d'un système à partir d'observations partielles. Nous avonsdé�ni un nouvel algorithme, basé sur le �nudging� (méthode de relaxation 
onsistant à rajouterun terme de rappel vers les observations dire
tement dans l'équation a�n de tirer la solutionvers les observations). En 
onsidérant itérativement et alternativement des résolutions du sys-tème dire
t et rétrograde en temps, ave
 à 
haque fois un terme de rappel vers les observations,on peut améliorer l'estimation de la 
ondition initiale. Là en
ore, la méthode est performanteet extrêmement rapide, 
omme de nombreux tests numériques l'ont démontré. En parallèle,plusieurs résultats théoriques de 
onvergen
e ont été obtenus dans des 
as simpli�és.En�n, une étude a été réalisée à l'interfa
e de 
es deux thématiques: l'extra
tion de données,et plus pré
isement de 
hamps de vitesses, à partir de séquen
es d'images météorologiquesou o
éanographiques. L'idée 
onsiste à 
her
her un 
hamp de vitesse (ou dépla
ement) quitransporte une image sur la suivante. L'appro
he 
onsidérée est variationnelle, et basée sur laminimisation d'une fon
tionnelle non linéaire dépendant du 
hamp de vitesse. Une appro
hemulti-grille permet d'obtenir très rapidement des 
hamps de vitesse. Ces vitesses peuventalors être assimilées dire
tement dans un système d'assimilation.Summary:In a �rst 
hapter, we 
onsider image pro
essing problems. We applied the topologi
alasymptoti
 analysis to the edge dete
tion problem. On
e the edges are identi�ed, one 
an easily
onsider the restoration/enhan
ement and 
lassi�
ation problems. The inpainting problemhas also been 
onsidered, but from a slightly di�erent point of view: given the Diri
hlet andNeumann 
onditions on the boundary of the unknown part of the image, the topologi
algradient allows one to retrieve the missing edges of the hidden zone, and then to re
onstru
tan unblurred image. Finally, the segmentation problem has been 
onsidered with the samemathemati
al tools, using the analy
ity of the enhan
ed solution with respe
t to a smallparameter. All these algorithms are extremely e�
ient and fast, and allows us to pro
essimages and even movies in real time.The se
ond 
hapter is devoted to data assimilation. We developed a new algorithm: theBa
k and Forth Nudging (BFN). The standard nudging te
hnique 
onsists in adding to theequations of the model a relaxation term that is supposed to for
e the observations to themodel. The BFN algorithm 
onsists in repeatedly performing forward and ba
kward inte-grations of the model with relaxation (or nudging) terms, using opposite signs in the dire
tand inverse integrations, so as to make the ba
kward evolution numeri
ally stable. Extensivenumeri
al experiments have been performed on several simpli�ed geophysi
al models, show-ing the e�
ien
y of this easy-to-implement and fast approa
h. Moreover, several theoreti
alresults of 
onvergen
e have been obtained in simple situations.Finally, we also worked at the interfa
e of these two topi
s and 
onsidered image dataassimilation. The idea is to extra
t velo
ity �elds from a sequen
e of o
eanographi
 or me-teorologi
al images. A variational approa
h has been proposed, in whi
h the minimizationof a nonlinear 
ost fun
tion provides a displa
ement (or velo
ity) �eld between two images.A multi-grid approa
h and an appropriate minimization pro
ess, allow us to extra
t the in-formation very qui
kly. These �pseudo�-observations 
an then be dire
tly assimilated as thevelo
ity is usually a model variable.
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