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Chapter 1

Introduction

In this work, several problems have been studied with the common goal of pro-
viding robust, particularly easy to implement, fast and powerful algorithms. The
efficiency of the algorithms is required by the operational context of the methods,
and by a need to process more and more data in an increasingly short time. The
other constraint that we particularly took into account is the ease of use and imple-
mentation of the methods we have developed.

In chapter 2, we will tackle various problems in image processing by an original
approach in the field: topological asymptotic analysis, or more simply the topological
gradient.

There has recently been a renewed interest in image processing thanks to new
applications in telecommunications and medicine: on one hand, new technologies
in telecommunications and diffusion of information, which now involve sending and
receiving massive flows of numerical data (e.g. images), and on the other hand the
medical world, in which huge progress has been made, in particular for the early
detection of tumors, thanks to more powerful imaging techniques.

Our study is motivated by several observations. First, the topological gradient
is generally used for structural mechanics, design, and shape optimization problems.
Also, it has been successfully applied in electromagnetism for the detection of cracks
or hidden objects. However, many image processing problems rely on the good iden-
tification of a subset of the image, for instance edges or characteristic objects. This
common feature seemed interesting to us, and allowed us to adapt the topological gra-
dient method, initially used for crack detection, to several image processing problems
(restoration, classification, segmentation, inpainting).

The second interesting aspect is the speed of the method. In various fields, topo-
logical asymptotic analysis has made it possible to obtain good results very quickly.
However, medical imaging and audiovisual diffusion (e.g. satellite television or inter-
net broadcasting) both require the processing time to be negligible. If the processing
time is too large, it will delay the medical diagnosis, or the flow of data. It is thus
important to build extremely fast schemes for solving these various problems, in real
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time for movies and a negligible time (e.g. smaller than one second) for images.

As we will see hereafter, the topological gradient method actually adapts perfectly
to image processing problems, allowing us to obtain very interesting results for a par-
ticularly small computation cost.

In chapter 3, we will study data assimilation for environmental and geophysical
problems, and more particularly within the framework of atmospheric and oceanic
observations. For several years, one of the major concerns has been to appreciably
improve our knowledge of these turbulent systems, one of the major goals being the
ability to predict their evolution with a high reliability.

Several different challenges appear in data assimilation: short-range (e.g. a few
days) weather forecasting, the study of global warming and climate change, detection
of extreme climatic phenomena several weeks in advance, ...For all these problems,
the goals are almost similar. They consist of estimating quickly and with a very
high degree of accuracy the state of a turbulent system, from the combined knowl-
edge of models and data: on one hand mathematical equations modeling the coupled
atmosphere-ocean system, and on the other hand observations of different nature (e.g.
in situ, or satellite observations), corresponding to various physical quantities.

Beyond the extreme size of the problem to be solved (several billions of values to
be identified from hundreds of millions of observations) and the computational time
needed to solve it, another factor appears: the cost of development and use of a data
assimilation method. Presently, it is extremely difficult to implement such a method,
even on a relatively simple problem. This motivated us to study the possibility of
improving one of the simplest methods of data assimilation, nudging (also known as
Newtonian relaxation), in order to obtain much better results without complicating
the method.

By applying the nudging method to the backward (in time) problem, we noted
that it is possible to stabilize the backward system, which is unstable because of the
irreversibility of the physical problem. Thus, as detailed in chapter 3, we can go
back in time, and obtain a more reliable estimate of the system at a previous time,
from which forecasts may be deduced. By applying alternatively and repeatedly the
standard nudging method to the forward and backward models, we obtain an itera-
tive algorithm that is very easy to implement and provides definitely better results
than the standard nudging. Indeed, the results are of similar quality, and are often
obtained much more quickly than by using the standard variational data assimilation
method.

Chapter 4 presents a study at the interface of these two fields: the assimilation of
images. Presently, a huge quantity of observations coming from satellite images is es-
sentially not used to improve the knowledge of the system state. However, sequences
of images obtained by satellites definitely show various characteristic structures (hur-
ricanes, swirls, currents of hot water, pollution, ...) moving and evolving in time.

Several approaches can be considered to solve this kind of problem, and we made
the choice to try to identify and extract velocity fields from the sequences of images.



That appeared to us to be the most adapted choice for rapidly extracting conventional
data (i.e. directly related to the model variables), and then being able to use them
in a standard assimilation system.

The idea that we develop in chapter 4 is based on the constant brightness assump-
tion, which consists of looking for a displacement field that transports an image to
another one. The originality of our approach lies in the nonlinearization of the cost
function to be minimized, combined with a fast method to assemble the Jacobian ma-
trix. Finally, a multi-grid approach makes it possible to guarantee the quality of the
minimum. Thanks to all these techniques, we are able to extract complete velocity
fields in a very short time, and it is also possible to provide a quality estimate of the
identified fields, which can be viewed as error statistics of these pseudo-observations
within the framework of data assimilation.

Finally some general conclusions and research perspectives are given in chapter
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Chapter 2

Image processing by topological
asymptotic analysis

This chapter summarizes the work presented in [9, 10, 12, 13, 16, 22, 26].

2.1 Introduction

The idea of topological asymptotic analysis is to measure the impact of a pertur-
bation of the domain on a cost function. We only consider here the approach that has
been introduced for topological optimization purpose, in which the goal is to identify
an optimal shape and its complementary in a given domain [133, 98, 104].

Topological shape optimization seems particularly well adapted to solve image
processing problems (like classification, segmentation, enhancement, inpainting, ... ),
as they mainly consist of identifying a particular subdomain of the image: its edges.

At first sight, the main issue of topological shape analysis is the non-differentiability
of the problem. To find the optimal domain is indeed equivalent to identify its
characteristic function. Several classical approaches have been developed to make
this problem differentiable. We can cite here the relaxation technique, which al-
lows the characteristic function to take all possible values in the interval [0;1], and
the level set approach where the characteristic function is replaced by a regular
level set function which is positive inside the optimal domain and negative outside
[133, 34, 33, 36, 51, 157].

The idea of topological asymptotic analysis is to switch the characteristic function
from one to zero (or from zero to one) in a (infinitely) small area. Thus, the variation
of the cost function is small when we switch a very small part from the subdomain
to its complementary. The topological asymptotic expansion provides this variation,
and allows one to derive a topological gradient of the cost function [133, 98, 158, 157|.

In this chapter, we first present the basic tools of topological asymptotic analysis,
and we then study several applications to image processing problems: inpainting
(where the goal is to fill a hidden part of an image), restoration and enhancement,
classification, and segmentation. Then, we present a very efficient way to speed up

11
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all the algorithms introduced in this chapter, based on discrete cosine transforms and
an appropriate preconditioning. Finally, we present a coupled approach combining
the topological gradient and the minimal path technique in order to improve the edge
detection, and to avoid non-connex contours.

2.2 Topological asymptotic analysis

2.2.1 Presentation of the method

Let Q be a regular open bounded domain of R? (or R3). Let us consider a Partial
Differential Equation (PDE) problem defined in 2, written in its variational formu-
lation:

find w € V such that a(u,w) = l(w),Yw € V, (2.1)

where V is a Hilbert space on €2, usually H'(Q), a is a bilinear continuous and coercive
form defined on V, and [ is a linear continuous form on V. We finally consider a cost
function J(2,u) to be minimized, where w is the solution of equation (2.1).

We now consider a small perturbation of the domain, e.g. by the insertion of a
crack o, = xg+ po(n), where zg € Q represents the point where the crack is inserted,
o(n) is a straight crack containing the origin of the domain, and n is a unit vector
normal to the crack. Finally, p > 0 represents the size of the perturbation, assumed
to be small. Let €, = Q\o, be the perturbed domain. We can consider the same
PDE problem as before, but on the perturbed domain:

find u, € V, such that a,(u,,w) = l,(w),Vw € V,, (2.2)

where V,, a, and [, represent the restriction of the Hilbert space V to 2,, and the
perturbed bilinear and linear forms respectively.
We can rewrite the cost function J as a function of p by considering the following
map:
J:pr—Q,— u, solution of (2.2) — j(p) := J(),u,). (2.3)

The topological sensitivity theory provides an asymptotic expansion of j when p
tends to zero. It takes the general form:

J(p) = 3(0) = f(p)G(xo) + o(f(p)), (2.4)

where f(p) is an explicit positive function going to zero with p, and G(xg) is called
the topological gradient at point xg [133].

Then to minimize the criterion j, one has to insert small holes (or cracks) at
points where the topological gradient G is the most negative, in order to make the
cost function j decrease quickly (see the asymptotic expansion (2.4)).

2.2.2 Main result

In the following, we will consider several times this main result [37]:
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Theorem 2.1 If there exists a linear form L, defined on'V,, a function f : Rt — R,
and four real numbers 6J1, §J2, da and 4l such that

o lim f(p) =
o J(Qp,up) = J(Qp,uo) = Lp(up —uo) + f(p)dJ1 + o(f(p)),
o J(Qp,uo) — J(Q,u0) = f(p)dJ2 + o(f(p)),

(ap — ao)(uo,pp) = f(p)da+o(f(p)),
(lp = lo)(pp) = f(p)Sl + o(f(p)),

where the adjoint state p, is the solution of the adjoint equation

ap(w,pp) = —Ly(w),Yw € V,, (2.5)

and u, is the solution of the direct equation (2.2), then the cost function j has the
asymptotic expansion (2.4), where the topological gradient G(x) is given by

G(x) =0J1 +dJ2 + da —6l. (2.6)

2.3 Inpainting [9, 13]

In this section, we present an application of the topological asymptotic analysis
to the inpainting problem. The goal of inpainting is to fill a hidden part of an image.
In other words, if we denote by €2 the original image and w the hidden part of the
image, the goal is to recover the hidden part w from the known part of the image Q\w.
There are many applications, for instance removing some spots on a badly preserved
movie or image, or deleting encrusted logos and images on television programs, ...

This problem has been widely studied. Several methods have been considered:
learning approaches (neural networks, radial basis functions, support vector machine,

..), in which the learning data is taken in Q\w, and then the approximate function
is evaluated in w [177, 178]; minimization of an energy cost function in w based on
a total variation norm [67, 68|; morphological analysis for the reconstruction of both
cartoon and texture [87]; ...

In order to study the inpainting problem, we first consider a crack localization
method. Crack detection allows us to identify the edges of the hidden part of the
image, and the inpainting problem can then be easily solved. We will consider the
classical thermal diffusion technique [142, 66, 174, 175, 150| and improve it by mod-
eling the edges by cracks. These cracks are supposed to be highly insulating and to
allow the temperature to jump across edges. As both the Dirichlet and Neumann
conditions are known on the boundary of the hidden subset, we can define a criterion
measuring the discrepancy between the solutions of a Dirichlet and a Neumann prob-
lem respectively [118]. This problem is similar to the inverse conductivity problem,
also known as the Calderon problem [65], which consists of identifying the coefficients
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of a partial differential equation from the knowledge of the Dirichlet to Neumann oper-
ator. Only two measurements are needed to recover several simple cracks [30, 31, 48].
From the numerical point of view, several methods [40, 49, 50, 64, 96, 152, 151] have
been proposed, but the topological gradient approach seems to be the most efficient
method for crack localization. The minimization of the criterion allows us to identify
the main edges inside the hidden part of the image. The image is finally filled between
the edges thanks to the Laplace operator.

This section summarizes the work introduced in [9, 13]. We also refer to these
references for the results of many numerical experiments.

2.3.1 Crack localization problem

Let © be a bounded open set of R?2. We assume in this section that {2 contains a
perfectly insulating crack o*. We impose a flux ¢ € H~'/?(T") on the boundary T of
Q, and we want to find o C  such that the solution u € H!(Q\c) of

Au=0 1in Q\o,
Opu=¢ onl, (2.7)
Ohu=0 on o,

satisfies u|p = T, where T € H'Y2(I') is a given function. We also assume some
compatibility conditions in order to have a well-posed direct problem.

A topological gradient approach has been introduced in [37], and consists of defin-
ing a Dirichlet and a Neumann problem, as we have an over-determination in the
boundary conditions:

Aup =0 in Q\o,
up € H'(Q\o) such that up=T onT, (2.8)
Opup =0 on o,

Auy =0 in Q\o,
uy € H'(Q\o) such that Opuny =¢ onT, (2.9)
Opuny =0 on o.

It is clear that for the actual crack o*, the two solution up and uy are equal. The
idea is then to consider and minimize the following cost function

1
J(0) = Sllup = un|iz(0)- (2.10)

The topological asymptotic expansion of this cost function is detailed in [37].

2.3.2 Dirichlet and Neumann formulations for the inpainting prob-
lem

In our approach, we now denote by €2 the image and I" its boundary, w C €2 the
missing part of the image and -y its boundary. Let v be the image that we want to
restore. We assume that v is known in Q\w, and unknown in w.
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The idea is to adapt the crack localization method to inpainting: crack detection
first allows us to identify the cracks (or edges) o of the hidden part w of the image, and
then we will impose that the Laplacian of the restored image is equal to zero in w\o.
For a given crack o C w, as v (Dirichlet condition) and d,v (Neumann condition) are
known on the boundary v of w, we can solve two different problems inside w.

For a given crack o, we denote by up € H'(2\o) the solution of the following
Dirichlet problem:

Aup =0 in w\o,
up =v on -7,
Opup =0 on o,
up =v in Q\w.

(2.11)

Outside w, the solution is equal to the original image, and inside w, we use equation
(2.8).

In the same way, if we assume v to be enough regular, we can consider the solution
uy € H'(Q2\0) of the following Neumann problem:

Auy =0 in w\o,
Opun = Opv on 7,
Opuny =0 on o,
uy =v in Q\w.

(2.12)

Note that from the numerical point of view, it is much more easy to solve an approx-
imated Neumann problem:

Auy =0 in w\o,

Opun = Opv on 7,

Opuy =0 on o,

—aAuy +uy =v in Q\w,

(2.13)

where « is a small positive number.

2.3.3 Asymptotic expansion

The cost function remains unchanged, and is still defined by (2.10), as the idea
is to find some cracks ¢ C w that minimize the difference between the two solutions
uy and up. We assume that the crack o is equal to = + po, where x is the point of
insertion of the crack, p is the size of the inserted crack (assumed to be small), and &
is a reference crack, of unit normal vector n. Then, we can rewrite the cost function
J defined by equation (2.10) as a function j(p) of p. The asymptotic expansion is
then the following:

3(p) = j(0) = f(p)g(z,n) + o(f(p)), (2.14)
where the topological gradient ¢ is defined by

g(x,n) = —[(Vup(xz).n)(Vpp(x).n) + (Vun(x).n)(Vpy(z).n)], (2.15)
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where up and wuy are the solutions of (2.11) and (2.12) respectively, but without
any inserted crack (o = (). Also, pp and py are the corresponding adjoint states,
respectively solutions in H'(Q) of the following equations:

pp =0 in Q\w,
pp =0 on7, (2.16)
—App = —(up —uy) in w,

py =0 in Q\w,
Onpny =0 on v, (2.17)
—Apy = +(up —un) in w.

The topological gradient defined by equation (2.15) can be rewritten in the fol-
lowing way:

g(xz,n) =nT M(z)n, (2.18)

where M (x) is the 2 x 2 (resp. 3 x 3 in the case of 3D images, or movies) symmetric
matrix defined by

M(z) = —sym(Vup(z) ® Vpp(z) + Vuy(x) @ Vpy(x)). (2.19)

From this equation, we can deduce that the minimum of g(x,n) is reached when
n is the eigenvector associated to the lowest eigenvalue Apin (M (x)) of M (x).

2.3.4 Algorithm

The inpainting algorithm is then the following;:

e Calculation of up and wuy, solutions of the direct problems (2.11) and (2.12)
respectively, without any inserted crack (unperturbed problem: o = ().

e (Calculation of pp and py the two corresponding adjoint states, respectively
solutions of equations (2.16) and (2.17).

e Computation of the matrix M (x) defined by equation (2.19).
e Localization of the cracks: define
o ={x € w; Anin(M(x)) <6 <0}, (2.20)
where 0 is a negative threshold.

e Calculation of the solution of the Neumann problem (2.12) perturbed by the
insertion of o.

This image is then equal to the original image in Q\w, and it has been reconstructed
in w.
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2.3.5 Remarks

From the numerical point of view, cracks are modeled by a very small conduc-
tivity instead of considering real holes in the domain. The previous algorithm has a
complexity of O(n.log(n)), where n is the size of the image, i.e. the number of pixels,
as explained in section 2.7.

The main advantage of this algorithm is that the reconstruction is done in only
one iteration of the topological gradient algorithm, which consists of 5 resolutions of
a PDE (the two direct and two adjoint unperturbed problems, and then one direct
perturbed problem) in the domain 2 representing the image. Several numerical results
are presented in [9] and show the quality and efficiency of the reconstruction.

The only control parameter of this method is the negative threshold: below a given
value, the pixels are considered as being part of the edge set, whereas it is not the case
beyond the threshold. The reconstructed image is provided by the resolution of the
direct perturbed problem (2.12), and the quality of the image relies on the connexity
of the identified edges. If a given identified edge is not connex, the Laplacian indeed
produces a blurred zone. Then, the threshold is usually set such that the main
identified edges are connex. Of course, it may lead to the wrong identification of
edges. But the various numerical experiments have shown that the threshold can
be fixed to an a priori value, as the optimal threshold is almost independent of the
images.

Another solution to this problem is presented in section 2.8.

2.4 Restoration [16, 22]

In this section, we consider the restoration problem, with the aim of restoring
noisy images. The main idea is to use the topological gradient for detecting the edges
of the noisy image in order to preserve them during the restoration process.

This method is based on thermal diffusion, like many other variational methods.
In order to avoid blurring effects, several nonlinear isotropic and anisotropic methods
have been introduced, some of them relying on the minimization of the total variation
[142, 66, 124, 174, 175, 43]. We should mention that some non variational approaches
also exist, mainly statistical methods [86].

This section summarizes the work presented in [16, 22]. We also refer to these
references for the results of numerical experiments.

2.4.1 Variational formulation
Let ©Q C R? be an open bounded domain, and v € L?(2) be the noisy image. The
enhancement of v is based on the resolution of the following problem:
—div(cVu) +u=v in £,
Onu =0 on 0f),

where n is the outward unit normal to 0f2, and c is the conductivity, to be de-
fined in the following. Several choices can be made for the conductivity, mainly ¢

find w € H*(Q) such that { (2.21)
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equal to a constant value (linear diffusion method: it is fast, but it blurs important
structures), or ¢ defined by a nonlinear function of Vu (nonlinear diffusion method,
edge-preserving [175, 43]). In the topological gradient approach, ¢ takes only two
values: a constant value ¢y (close to 1) in the smooth part of the image, and a very
small values ¢ (close to 0) on the edges or cracks in order to preserve them.

Setting ¢ = 0 on a part of the image is equivalent to perturbing the domain by
the insertion of cracks. For a given point xy € €2 and for a given small parameter
p > 0, we consider €, = Q\o, the perturbed domain by the insertion of a crack
o, = xg + po(n), where o(n) is a straight crack and n is a unit vector normal to the
crack. The variational formulation of the perturbed problem is the following:

find u, € H'(Q,) such that a,(up, w) = l,(w), Yw € H(Q,), (2.22)

where a, (resp. l,) is the following bilinear (resp. linear) form defined on H({2))
(resp. L*(Q,)) by

ap(u,w) = /Q (cVuVw + uw) dz, l(w) = /Q vw dx. (2.23)

P

Edge detection if equivalent to looking for a subdomain of €2 where the energy is
small. So our goal is to minimize the energy norm outside edges:

J(0) = J (U, 1) = /Q Va2 (2.24)

p

2.4.2 Topological gradient

From theorem 2.1, we can derive the following asymptotic expansion of the cost
function (2.24):
J(p) = §(0) = p*G(xo, ) + 0(p?), (2.25)
where

G(xo,n) = —mc(Vug(20).n)(Vpo(zo).n) — 7|Vug(z0).n|?, (2.26)

where pg is the solution of the unperturbed adjoint problem:

{ —div(cVpo) + po = =0, J(Q,ug) in £, (2.27)

Onpo =0 on 0.

As previously seen, the topological gradient can be rewritten: G(z,n) = (M (x)n,n),
where M (x) is the following 2 X 2 symmetric matrix:

. Vuo () Vpo(x)T + Vpo(z)Vug(x)T

M(z) = — 5

— 7V (x) Vug(z) T (2.28)
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2.4.3 Algorithm

Our algorithm consists of inserting small heterogeneities (or cracks) in regions
where the topological gradient is smaller than a given threshold. There regions are
the edges of the image. The algorithm is as follows:

e Initialization: ¢ = ¢p (constant value everywhere).

e Calculation of ug and pg, respectively solutions of the direct (2.21) and adjoint
(2.27) unperturbed problems.

e Computation of the 2 x 2 matrix M (x) defined by (2.28), and of its lowest
eigenvalue \yin (M (x)) at each point of the domain.

e Set the new conductivity:

o = { ¢ if x € Q is such that \p,in(M(2)) < a <0, (2.29)

co elsewhere,
where € > 0 is assumed to be small, and « is a negative threshold.

e Calculation of uy, the solution of the perturbed direct problem (2.21) using
c=c.

The image u; is the restored image.

2.4.4 Remarks

From the numerical point of view, it is more convenient to simulate the cracks by a
small value of ¢ instead of considering topological perturbations of €2. The resolution
of problem (2.21) with ¢ = ¢; is an approximation of the resolution of the perturbed
problem (2.22), becoming more precise as € goes to 0.

As in the previous section (inpainting problems), our algorithm is extremely ef-
ficient as it requires only 3 resolutions of a partial differential equation in €: the
direct and adjoint original problems, and then the direct perturbed problem. And
the complexity of this algorithm is still O(n.log(n)) (see section 2.7).

As shown in [16], the quality of the numerical results is very good. Once again,
the algorithm relies on a thresholding of the topological gradient in order to define the
edge set. Contrary to inpainting problems, the connexity of the edges is not crucial
since it does not change significantly the quality of the restored image. However,
section 2.8 presents a way to identify connex edges, with fewer badly identified edges.

2.4.5 Extension to color images

In this section, we adapt the topological gradient approach to color images. Color
images can be represented or modeled in various ways, for instance the RGB (Red-
Green-Blue) space in which images are viewed as functions from € to R? instead of
R. A first approach consists of decoupling the three channels, and in solving direct
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and adjoint problems for each channel. But it is also possible to consider directly the
vectorial minimization problem, involving the resolution of vectorial problems. The
topological asymptotic expansion is still given by equations (2.25-2.26) and (2.28),
where all functions are vectorial, i.e. the topological gradient is the sum on all channels
of the corresponding expressions for each channel [22].

Another approach has also been studied in [22], in which we use a different norm
for coupling the different channels. In order to identify the local variations of the
color image, Di Zenzo defines a multi-spectral tensor associated to the image vector
field [83]:

3 k 9,k
tir ti2 ou”™ Ou .
T = L b= o1 <i i<, 2.30

( lo1 t22 > K P O0x; Oz o (2:30)

in the case of bidimensional images. This tensor describes the first order differential
structure of the image, and the Di Zenzo gradient is given by the square root of the
largest eigenvalue of the structure tensor:

1
2
IVullpz = [tn +to + \/(tn — t92)? + 413, | . (2.31)

1
V2
It is possible to rewrite this gradient in a different way with the following function:

1+ /T—4f(Vu)

H(Vu) = 5 , (2.32)
where
£(Vu) = det?(Vul, Vu?) + det?(Vul, Vu3) + det?(Vu?, Vu3) (2.33)
(|IVul]? + |Vu2|? + |Vud|?)? ’ '
ous ut  Out ut\ >
det?(Vu®, Vul) = — . 2.34
© (VU ,V’LL ) <83§‘1 61’2 61‘1 81172) ( 3 )

Then, we can derive the asymptotic expansion of the cost function defined by equation
(2.24) in which the norm is the Di Zenzo norm (2.31):

3
G(zo,n) = Z [—ﬂc(Vulg(xo).n)(Vvlg(xo).n) — TH (Vug(20))|Vul (z0).n?|  (2.35)
k=1

with our standard notations.

In [22], we show that this approach has the same computational cost as the vec-
torial approach (in which the different channels are decoupled), while it improves the
edge detection, and hence it produces a better restored image, more precise on the
edges of the image.
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2.5 Classification [10, 16]

In this section, we now focus on the regularized and unsupervised image classifi-
cation problem.

Inspired by the work presented in [150, 43], in which the authors propose a classi-
fication model coupled with a restoration process, we adapt here our approach based
on the topological asymptotic analysis.

This section summarizes the work presented in [16, 10]. We refer to these references
for the numerical results.

2.5.1 Introduction to the classification problem

Let v be the original image defined on an open set 2 of R?, and let C;,1 < i < n, be
n classes (i.e. grey or color levels). We first assume that thesse classes are predefined.
The goal of image classification is to find a partition of Q in subsets {;}i—1..n, such
that v is close to C; in ;.

A variational approach can be defined: it consists of a cost function measuring
the difference between the original image and the classified image:

n
J( i) =S / (v() — Co)2dz+a ¥ [Ty, (2.36)
=1/ i#j
where I';; represents the interface {}; N €); between two subsets.

The main difficulty of this approach is that the unknowns are sets, and not vari-
ables. This is why the topological asymptotic analysis seems to be appropriate for
solving this problem. The topological gradient and the corresponding numerical re-
sults are presented in [10].

2.5.2 Restoration and classification coupling

Another solution consists of coupling classification with restoration, and to adapt
the approach introduced in section 2.4. The idea is to first consider an iteration of the
topological asymptotic analysis for the image restoration problem in order to smooth
the image, and then to classify this smooth image without any regularization. If we
remove the regularization term from equation (2.36), which leads to the unregularized
classification problem, then the optimal subset €2; is the set of pixels that are closer
to C; than to any other Cj. In other words, each pixel is assigned to the subset
corresponding to its closest class.

In the perturbed problem (2.29), instead of setting ¢ = 0 (or ¢ = ¢ from the
numerical point of view) on the edge set and ¢ = ¢ elsewhere, we set

€ on the edge set,
] = (2.37)

co
— elsewhere.
€

The algorithm is then the following:
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e Application of the restoration algorithm defined in section 2.4, with ¢; defined
by (2.37) instead of (2.29).

e Unregularized classification of the image w1, using for example the closest class
algorithm (in which each pixel is assigned to the subset corresponding to its
closest class).

As previously seen, the complexity of this algorithm is O(n.log(n)), and the vari-
ous numerical results presented in [10] show the relative efficiency of these approaches.
Moreover, it is possible to regularize more or less the image by choosing different val-
ues of ¢q, and it allows us to also obtain good results on noisy images.

2.5.3 Extension to unsupervised classification

If the number n of classes is given, but not their values Cj, it is possible to
determine them in an optimal way. This classification problem can be defined as

min (), (C;)) = Z/ (@) — G dz +a " [Ty, (2.38)

The idea is to minimize the cost function j((€2;), (C;)) alternatively with respect to
; and with respect to C;. The minimization with respect to €2; consists of classifying
the image, while the minimization with respect to C; is obtained straightforward by
the mean of the image in each class:

1
C; = o /sz(:z:) dx. (2.39)

The unsupervised classification algorithm is then as follows:
e Initialization: define an initial guess C1,...,C, (e.g. equi-distributed classes).
e Repeat until convergence:

— Calculate the classified image using the classes C1,...,C), (see previous
algorithm).

— Update the values of the classes using (2.39).

If the number n of classes is not given, we can add a penalization term “+3n”
in the cost function (2.38), measuring the number of classes. The minimization with
respect to n provides the optimal number of classes. The number of classes is clearly
related to the choice of the weighting coefficient j3.
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2.6 Segmentation [12, 13]

This section is concerned with image segmentation, which aim is to find a partition
of an image into its constituent parts. The idea is still to apply our topological gradient
based algorithm for the detection of edges in the image.

Several approaches have been studied in the literature. One can cite variational
methods, for example based on the minimization of the Mumford-Shah functional
[136], the active contours and snake methods [55, 156], stochastic approaches [54, 61],
wavelets, ...[43, 45, 42, 140, 149, 150, 176].

This section summarizes the main results presented in [12, 13|. Several numer-
ical experiments are also detailed in these references and show the efficiency of our
approach.

2.6.1 From restoration to segmentation

We still consider the restoration algorithm, in which the following conductivity is
used for the perturbed problem:

c(e) = { 81in “ (2.40)

— outside w,

€
where w C ) represents the edge set. We first assume that w is thickened (i.e. of
codimension 0 in 2). From equation (2.40), the algorithm now consists of solving the
following problem:

—div(eVue) +us = v in w,
1
(P:) —div <€Vu5> +u.=v in Q\w, (2.41)
Onue =0 on 0f),

where u. € H'(Q), i.e. with the implicit boundary condition that c(¢)d,u. has the
same value on both sides of dw.
Then we have the following asymptotic result [12]:

Theorem 2.2 If we denote by u. the unique solution of problem (P.) in H'(Q), then
lim (|| Ve — Vo[ 2wy + [lue = uol| 22()) = 0, (2.42)

where ug € H' (Q\w) N L2(2) is the solution to the following problem

ug = v mo w,
—div (Vupg) =0 in Q\w,
(P} 4 5.0 =0 on O, (2.43)

Opug =0 on 0.
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This result proves that the segmented image ug can be approximated by u. if €
is small. We now assume that the edge set w is of codimension 1 in 2. From the
point of view of applications, it is completely natural to assume that the edges are
flat in the image. In order to have coherent notations, we will further denote by o the
edge set. We assume that o is known, e.g. provided by the crack detection algorithm
previously seen.

We can rewrite the approximated segmentation problem (P.) as follows:

1
—div (EV%) +u.=v in Q\o,

Onue =0 on o,
Opte =0 on 0f),

(P.) (2.44)

where u. € H'(Q\o). If v € L*(Q), then problem (P.) has a unique solution in
H(Q\o). As a corollary of the previous result, we have the following one [12]:

Theorem 2.3 If we denote by u. the unique solution of problem (755) in HY(Q\o),
then

luellr2@) < vz, VUl 20y < Vellvllnz), (2.45)
and
lim ||V’U,5 - VUOHL2(Q\J) - 0, (246)
e—0

where ug € H' (Q\o) is the unique solution to the following problem.:

—div (Vug) =0 in  Q\o,

- uy = / v VQ; connex component of Q\o,

(Po) /Q o \ (2.47)
Opug =0 on o,
Opug =0 on 0.

For numerical reasons, it can be very difficult to solve directly problem (Pp), and
even problem (P:) for too small values of ¢ > 0. Indeed the conditioning of the system
to be solved goes to infinity when ¢ — 0. In order to overcome this issue, we will

expand the solution u. of problem (755) into a power series of ¢.

2.6.2 Power series expansion

From the knowledge of the power series expansion of u. and the computation of
several solutions wu. for not too small coefficients € > 0, it is possible to approximate
the asymptotic solution ug [12]:

Theorem 2.4 There exist a constant eg > 0 and a family of functions (up)nen of
HY(Q\o) such that for all 0 < ¢ < eg,

e}

Ue = e (2.48)

n=0
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Moreover, ug is the unique solution in H'(Q\o) of problem (Py), and the other func-
tions (uy) are the unique solutions in H*(Q\o) of the following problems:

—div(Vu) = —ugp+v in  Q\o,

~ Uy = Vv Q; connexr component of Q\o,
(P1) /Q ' p A (2.49)
Opu1 =0 on o,
Opuyr =0 on 0f),
—div (Vuy) = —up—1 in  Q\o,
0>, (75”) /QZ Uy =0 YV, connex component of Q\o, (2.50)
Optt, =0 on o,
Optty, =0 on O0f.
We can define a function of € € RT as follows
f(e) :==u. € H'(Q\o). (2.51)

From the previous theorem, we know that f has a power series expansion at the
origin given by (2.48). We consider a family of N points (¢;) in [e., er], where ¢, is
the smallest value of ¢ for which it is easy to numerically compute f(e), and ep is
smaller than the convergence radius of the power series. We can then compute an
interpolation polynomial gy of degree N — 1 defined by:

N N

aw@ =3 I —2) ., (2.52)

P
i=1 \j=lj#i ' 7/

where N is the number of points ¢;.
The analycity of f allows us to estimate the approximation error:

luo — gn (0111 (20 = O(e2). (2.53)

2.6.3 Algorithm

We can then define a segmentation algorithm, based on the restoration algorithm
previously defined in section 2.4:

e Solve the direct (2.21) and adjoint (2.27) unperturbed problems with ¢ = ¢
everywhere.

e Compute the 2 x 2 matrix M(z) defined by equation (2.28) and its lowest
eigenvalue A (M (x)) at each point of the domain €.

e Define 0 = {x € Q; \pin < a < 0} the edge set, where « is a small negative
threshold.
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Set . > 0 the minimal value of ¢ for which it is easy to compute numerically
the solution wu. of problem (P;).

Choose N € N* in order to have an approximation error in O(gX), and choose
N different values (g;).

Compute the solutions (ue,) in H'(Q\c) of problems (P..).

Compute the interpolation polynomial gy of degree N — 1, defined by equation
(2.52), for e = 0.

This algorithm has a complexity in O(N.n.log(n)), where n is the number of pixels
in the image, and N is the degree of the interpolation approximation. In numerical
experiments, N is typically of the order of 2 to 5.

Several numerical tests are detailed in [12].

2.7 Complexity and speeding up [13, 16]

In this section, we present the techniques that we have used for solving the PDE
problems previously seen, and that lead to a theoretical complexity in O(n.log(n))
[13]. Several numerical experiments have confirmed this complexity [16, 13].

2.7.1 Discrete cosine transform

In all the algorithms we presented in the previous sections, we only have to solve
the following PDE

Opu =10 on 05, (2.54)

for various coefficients c. The first resolutions are done with a constant value of c. It
is then possible to largely speed up the computation time by using the discrete cosine
transform (DCT) method. Problem (2.54) is then equivalent to

Z (1 + c(mﬂ)2 + c(mr)Q) U nPmn = Z Um.n®Pmn, (2.55)

m,n m,n

{ —div(cVu) +u=v in €,

where we denote by ¢ n = Gpm.n cos(mmz) cos(nmy) a cosine basis of R?, and where
(Um,n) represent the DCT coefficients of the original image v. It is then straightforward
to identify (uy, ), the DCT coefficients of u in equation (2.55):

vm n
= ’ . 2.56
Hman =77 c(mm)? + ¢(nm)? (2.56)

The complexity of such a resolution is O(n.log(n)), where n is the number of pixels of
the image. The resolution of all unperturbed problems is then done in the following
way:

e Computation of vy, ,, the DCT coefficients of the original image v.
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e Computation of ty, ,, the DCT coefficients of u from equation (2.56).

e Computation of u using an inverse DCT.

2.7.2 Preconditioned conjugate gradient

Then, the solution of all previously detailed problems comes from the resolution of
a perturbed problem. For the last resolution of a direct problem with a non constant
coefficient ¢, we can rewrite the problem in the following way:

Alc)u = B, (2.57)

where w is the unknown image. If ¢ is constant, equation (2.57) is easy to solve.
The idea is to precondition equation (2.57) with the DCT solver used in the first
resolution. Problem (2.57) is equivalent to

[A(co)flA(c)] u= [A(co)le} . (2.58)

As ¢ is close to ¢y (c is indeed equal to cg, except in a negligible part of the domain),
the system matrix [A(co) 1 A(c)] is close to the identity operator, and the resolution
of (2.58) is then easy: we use a preconditioned conjugate gradient (PCG) method to
solve this problem. As the coefficient ¢ is close to ¢y, we can expect a O(n.log(n))
complexity for the resolution of the perturbed problem. The numerical experiments
clearly confirm this complexity, both for small and large problems.

The main advantage is that it allows us to process images in a very short time
(e.g. 1600 x 1200 images in less than one second) and movies in real time (provided
the movie is split into short sequences of a few seconds) with a c++ code.

2.8 Coupling between the topological gradient and the
minimal path technique [26]

As previously seen, e.g. in section 2.3, it is crucial to identify connected (or
continuous) contours. Up to now, we had to threshold the topological gradient with
a not too small value, in order to identify connected contours, but this leads to thick
identified edges, and also to consider more noisy points as potential edges.

We noticed that the edges correspond to valley lines of the topological gradient.
It is of course possible to identify them by adapting the threshold coefficient, but we
propose here to use the minimal path and fast marching techniques for identifying
the valley lines of the topological gradient |71, 73, 82, 84, 179, 145, 164].

In the following, we consider any of the previous image processing problems. We
only assume that the topological gradient g has been defined and computed every-
where. The goal is to identify the valley lines corresponding to the most negative
parts of the topological gradient.

This section summarizes the study presented in [26], in which several numerical
experiments are shown in the case of segmentation and inpainting.
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2.8.1 Minimal paths

Let g be the topological gradient. The idea of the minimal path technique is to
define a potential function, measuring in some sense for any point of €2 the cost for a
path to contain this point. As we want to identify paths in the most negative part of
the topological gradient, and considering that the potential function must be positive,
we define the following function:

P(z) = g(x) —min{g(y)} . (2.59)
yeN
We simply shift the topological gradient from its minimal value, in order to obtain a
positive function. We can see that the points where the topological gradient g reaches
its minimal value are costless. This is a way to consider that these points must be on
the minimal paths.
We denote by C(s) a path (or curve) in the image, where s represents the curvilign
coordinate. We can now define a cost function, measuring the cost of such a path:

J(C) = /C (P(C(s)) + a) ds, (2.60)

where o« > 0 is a positive regularization coefficient, measuring the length of this path.
The goal is to minimize J, in order to find the shortest and least costly path
between two points. For this purpose, we define the following distance function:

D(z;x0) = Ce,iﬁtr(laf: o) J(C), (2.61)

where A(x,z0) is the set of all paths going from x( to z in the image.

2.8.2 Fast marching

The fastest way to compute the distance function defined by equation (2.61) is to
solve a front propagation equation:

9C (s, t) 1

ot P(C(s,t)) +« no(

$,1), (2.62)

where ng(s,t) is the outer normal unit vector to the front C. We initialize the
propagation with C(s,0) equal to a infinitely small circle centered at .

This path evolves with a propagation speed inversely proportional to the potential
function. If for example a point in the outer part of the front has a large potential
(i.e. a large cost), then the propagation speed will be nearly equal to 0 and the front
will not expand at this point. From the theory of Eikonal equations, the distance
D(x;xp) is simply the instant ¢ at which the front, initialized at point z, reaches
point x [179, 84].
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2.8.3 Coupled algorithm

We can certainly consider that the global minimum of the topological gradient is
part of the edge set. So we can choose the reference point xg as being this minimum.
It is then possible to compute the distance between xg and any other point x. A
gradient descent algorithm can then be used to minimize the distance function, in
order to find the minimal path between xy and the initial point of the optimization
scheme. If these two points are part of the same edge, as the potential function has
been defined such that it is relatively costless to remain on the edge (thanks to the
topological gradient), the minimal path will be a very good approximation of this
edge. The main advantage is now that we are sure that this path corresponds to a
continuous contour.

For a small additional computation cost, it is possible to consider more than one
reference point. The distance function corresponds then to the distance to the set of
these points. The corresponding Voronoi diagram can be seen as a dual mesh, and
the minimum of the distance function on each edge of this mesh is a saddle-point:
minimal distance along the edges of the mesh, maximal distance to the reference
points.

The hybrid algorithm we propose is the following;:

e Compute the topological gradient of the image (see previous sections).

e Choose N key-points; the main one will be for example the global minimum of
the topological gradient.

e Fast marching: computation of the distance function to all these key-points,
and of the corresponding Voronoi diagram.

e Saddle-points: on each edge of the Voronoi diagram, determine the point of
minimal distance.

e Sort all these saddle-points, from smaller to larger distance.

e For each of these points, from smaller to larger distance, check if it will not be
used for connecting two key-points, one of which is already connected to two
other key-points.

e If this is not the case, use this point as an initialization for a descent type
algorithm in order to connect the two corresponding key-points.

This algorithm clearly converges, and all the key-points are connected to at most
two other key-points at convergence. This provides a continuous contour, connecting
the key-points. It is then an approximation of one of the main contours of the image
as it corresponds to a valley line of the topological gradient.

As seen in |26], it allows us to appreciably improve our inpainting algorithm. It also
improves the quality of the segmentation. For all other image processing problems,
there were no noticeable improvements.
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2.9 Conclusions and perspectives

We presented in this chapter many applications in image processing of the crack
detection technique, based on the topological gradient. It provides an excellent frame
for solving all these image processing problems. It has been successfully applied to
image inpainting, restoration, classification and segmentation. In all these cases, we
obtain excellent results and the computing time is very small.

We have also seen that this technique can be applied to color images as well as
grey-level images, but also three-dimensional images, or movies, without any trouble.
The theoretical complexity, confirmed by numerical experiments, allows us to process
movies in nearly real time (on a dual-processor laptop, with a c++ code).

Another interesting point is that all these algorithms rely on the same kernel, as
we always solve the same kind of PDE problems. This makes the implementation
much more easy.

Several perspectives are currently under study. We can cite here the possibility
of taking into account higher order differential operators, with the aim of a better
reconstruction of the gradient of the image. For instance, in the case of inpainting
problems, the inpainted image is piecewise affine. With the same kind of approach,
we should be able to reconstruct more precisely the gradient of the image, and then
the image itself.



Chapter 3

Data assimilation: the Back and
Forth Nudging (BFN) algorithm

This chapter summarizes the work presented in [8, 11, 14, 18, 21, 24, 25].

3.1 Introduction

The aim of data assimilation is to combine the observations and models, in order
to retrieve a coherent and precise state of the system from a set of discrete spacetime
data, and then to provide reliable forecasts of its evolution. Data assimilation covers
all the mathematical and numerical techniques in which the observed information
is accumulated into the model state by taking advantage of consistency constraints
with laws of time evolution and physical properties, and which allow us to blend as
optimally as possible all the sources of information coming from theory, models and
other types of data [116, 53, 163|.

Nudging is a data assimilation method that uses dynamical relaxation to adjust a
model towards observations. The standard nudging algorithm consists of adding to the
state equations of a dynamical system a feedback term proportional to the difference
between the observation and the equivalent quantity computed by integration of the
state equations. The model then appears as a weak constraint, and the nudging term
forces the state variables to fit as well as possible to the observations. This forcing
term in the model dynamics has a tunable coefficient that represents the relaxation
time scale. This coefficient is chosen by numerical experimentation so as to keep the
nudging terms small in comparison to the state equations, and large enough to force
the model to the observations. The nudging term can also be seen as a penalty term,
which penalizes the system if the model is too far from the observations. Note that
in the linear case, the standard nudging method is nothing else than the Luenberger
observer, also called asymptotic observer [129].

The nudging method is a flexible assimilation technique, and computationally
much more economical than variational data assimilation methods [123]. First used
in meteorology [106], the nudging method has been successfully introduced in oceanog-

31
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raphy in a quasi-geostrophic model [168, 170, 57| and has been applied to a mesoscale
model of the atmosphere with synoptic-scale data [160]. The nudging coefficients
can be optimized by a variational method [159, 180|, where a parameter estimation
approach is proposed to obtain optimal nudging coefficients, in the sense that the
difference between the model solution and the observations is as small as possible. A
comparison between optimal nudging and Kalman filtering can be found in [172]. A
drawback of this optimal nudging technique is that it requires the computation of the
adjoint state of the model equations, which is not necessary in the standard nudging
method.

The backward nudging algorithm consists of solving backwards in time the state
equations of the model, starting from the observation of the system state at the final
time of the assimilation period. A nudging term, with the opposite sign compared to
the standard nudging algorithm, is added to the state equations, and the final state
computed in the backward integration is in fact an approximation of the initial state
of the system [1].

The Back and Forth Nudging (BFN) algorithm, introduced in [18], consists of
solving first the forward nudging equation, and then the model equation backwards
in time with a relaxation term (with the opposite sign in comparison with the relax-
ation term introduced in the forward equation). The initial condition of this backward
integration is the final state obtained by the standard nudging method. After inte-
gration of this backward equation, one obtains an estimate of the initial state of the
system. We then repeat these forward and backward integrations (with the relaxation
terms) until convergence of the algorithm.

Such a forward-backward assimilation technique had already been introduced in
[162, 161]. In that algorithm, at each observation time, the values predicted by the
model for the observed parameters were just replaced by the observed values. This
corresponds to the particular case of our BFN algorithm where the nudging coefficients
go to infinity.

The BFN algorithm can be compared to the four-dimensional variational algo-
rithm (4D-VAR, see e.g. [123]), which also consists of a sequence of forward and
backward integrations. In our algorithm it is useless to linearize the system, even
for nonlinear problems, and the backward system is not the adjoint equation but the
model equations, with an extra feedback term that stabilizes the numerical integration
of this ill-posed backward problem.

Let us finally mention another back and forth data assimilation method, called the
quasi-inverse method [116]|. In that method, there are no nudging terms, and in the
backward integration, the sign of the dissipation terms is changed for stability reasons.
The idea of introducing relaxation (or nudging) terms in our algorithm enables us to
keep the dissipation terms with the correct sign in the backward integration, as the
nudging terms have a stabilizing role.

In this chapter, we first present the standard nudging algorithm in a general case
(nonlinear model), then the nudging algorithm applied to the corresponding back-
ward model, and finally we introduce the Back and Forth Nudging algorithm. We
then present some theoretical convergence results in simplified cases (full observa-
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tions) on various types of models: linear models, transport equations (both linear
and nonlinear, with or without viscosity). Then, we present the numerical applica-
tion of this algorithm to various physical models. Finally, nudging can be seen as
a particular type of observer, and we define a specific nudging-based observer for a
shallow-water model, allowing us to preserve the natural symmetries of the model, to
reduce the sensitivity to the observation noise, and also to correct the non-observed
variables with the observed ones. Several conclusions and perspectives are given at
the end of this chapter.

3.2 “Back and Forth Nudging” (BFN) algorithm [8, 11,
18]

3.2.1 Forward nudging

In order to simplify the notations, we assume that the model equations have been
discretized in space by a finite difference, finite element, or spectral discretization
method. The time continuous model satisfies dynamical equations of the form:

dX

with an initial condition X (0) = x¢. In this equation, F represents all the linear or
nonlinear operators of the model equation, including the spatial differential operators.

We will denote by C' the observation operator, allowing us to compare the ob-
servations X,ps(t) with the corresponding C'(X(t)), deduced from the state vector
X (t). The observation operator usually involves interpolation/extrapolation, and
some change of variables. The various measurements are not extracted at the same
location as the model gridpoints, leading to some necessary interpolation and extrap-
olation operators. Also, satellites do not observe the physical variables of the model
(e.g. temperature, velocity, ...) but some other physical parameters, that can be
related to the model state: for instance, many satellites measure radiances, that can
be related to the sea surface height or temperature. We do not particularly assume
that C is a linear operator.

If we apply nudging to the model (3.1), we obtain

%{ =F(X)+ KXus —C(X)), 0<t<T, (3.2)

with the same initial condition, and where K is the nudging (or gain) matrix. Note
that it may also be a nudging scalar coefficient in some simple cases. The model
then appears as a weak constraint, and the nudging term forces the state variables
to fit as well as possible to the observations. In the linear case (where F is a matrix,
and C is a linear operator), the forward nudging method is nothing else than the
Luenberger observer [129], also called asymptotic observer, where the matrix K can
be chosen so that the error goes to zero when time goes to infinity. Unfortunately, in
most geophysical applications, the assimilation period is not long enough to have the
nudging method give good results.
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3.2.2 Backward nudging

We now assume that we have a final condition in equation (3.1) instead of an
initial condition. This leads to the following backward equation:
ax _ F(X), T>t>0, (3.3)
dt
with a final condition X (T') = Zp. The backward nudging algorithm consists of solv-
ing backwards in time the state equations of the model, starting from the observation
of the system state at the final time [1]. If we apply nudging to this backward model
with a feedback term of the opposite sign (in order to have a well posed problem), we
obtain ~
dX - , -
E:F(X)—K(XObS—C(X)), T>t>0, (3.4)
where K’ is the backward nudging matrix.
The backward integration of this equation provides a state vector at time t = 0,
which can be seen as an identified initial condition for our data assimilation period.

3.2.3 BFN algorithm

The back and forth nudging algorithm, introduced in [18], consists of first solving
the forward nudging equation and then the backward nudging equation. The initial
condition of the backward integration is the final state obtained after integration of
the forward nudging equation. At the end of this process, one obtains an estimate of
the initial state of the system. We repeat these forward and backward integrations
(with the feedback terms) until convergence of the algorithm:

k>1 % :FSX]“)_‘_K(XobS_C(Xk))a
X1(0) = X;1(0), .
k>1 (fd)ik_F(X ) — K'(Xops — C(X)),

with the notation Xo(0) = 0.

If K = K’ and if the forward and backward trajectories X (t) and X} (t) converge
towards the same limit trajectory Xoo(t), then it is clear by adding the two equa-
tions of (3.5) that X (¢) also satifies the model equation (3.1), and that K (Xps —
C(Xx)) = 0.

When the observations are discrete in time, i.e. the observation vector X, is
only available at some times (¢;);—=1..n, then the nudging term is only added at these
time steps:

dX al
=P+ > K (Xgps — C(X))5(t—t;), 0<t<T. (3.6)
i=1
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3.2.4 Choice of the nudging matrices and interpretation
Variational interpretation of the nudging

The standard nudging method has been widely studied in the past decades [106,
168, 160, 159]. Thus, there are several ways to choose the nudging matrix K in the
forward part of the algorithm. One can for example consider the optimal nudging
matrix Kop, as discussed in [180, 172]. In such an approach, a variational data
assimilation scheme is used in a parameter estimation mode to determine the optimal
nudging coefficients. This choice theoretically provides the best results for the forward
part of the BFN scheme, but the computation of the optimal gain matrix is costly.

When K = 0, the forward nudging problem (3.2) simply becomes the direct model
(3.1). On the other hand, setting K = +oo forces the state variables to be equal to
the observations at discrete times, as is done in [162, 161]. These two choices have the
common drawback of considering only one of the two sources of information (model
and data).

Let us assume that we know the statistics of errors on observations, and denote by
R the covariance matrix of observation errors. This matrix is involved in all standard
data assimilation, either variational (3D-VAR, 4D-VAR, 4D-PSAS, ...) or sequential
(Kalman filters) [78, 90, 144, 99, 100]. Usually, it is impossible to know the exact
statistics of errors, and thus only an approximation of R is available, assumed to be
symmetric positive definite.

We assume here the direct model to be linear (or linearized). We consider a
temporal discretization of the forward nudging problem (3.2), using for example an
implicit scheme. If we denote by X™ the solution at time ¢, and X" the solution
at time t,41, and At = t, 11 — t,, then equation (3.2) becomes

XnJrl _ X"

A = FX"™ 4 K(Xpps — CX™T). (3.7)

We now set the nudging matrix to be
K=CTR™L (3.8)

Then, it is straightforward to see that problem (3.7) is equivalent to the following
optimization problem:

1 At
X" — arg min 5(X — X" X - X" — ?<FX, X) (3.9)
At

9 <R_1(X0b5 - CX)7X0b5 - CX) .

The first two terms correspond exactly to the energy of the discretized direct model,
and the last term is the observation part of the variational cost function. This vari-
ational principle shows that at each time step, the nudging state is a compromise
between minimizing the energy of the system and the distance to the observations.
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As a consequence, there is no need to consider an additional term ensuring an
initial condition close to the background state like in variational algorithms, neither
for stabilizing or regularizing the problem, nor from a physical point of view. One can
simply initialize the BFN scheme with the background state, without any information
on its statistics of errors.

The nudging method naturally provides a correction to the model equations from
the observations. The model equations are hence weak constraints in the BEN scheme.
In some nonlinear cases, the (FX,X) term in equation (3.9) can be replaced by
—G(X), where G is the energy of the system at equilibrium.

Sequential interpretation

It is also possible to give a sequential interpretation of the standard nudging
algorithm by seeing it as a Kalman filter. Indeed, when no observations are available,
the nudging method simply consists of solving the model equations, like Kalman
filters. On the other hand, when some observations are available, in both nudging
and Kalman filters, the model solution is corrected with the innovation vector, i.e.
the difference between the observations and the corresponding model state [8].

If at any time, the nudging matrices are set in an optimal way, then the standard
nudging method is equivalent to the standard Kalman filter. In the other cases, it
can be seen as a suboptimal Kalman filter. However, the iterative and alternative
resolutions of forward and backward models appreciably improves the efficiency of
the standard nudging method.

Pole assignment method and backward nudging matrix

The goal of the backward nudging term is both to have a backward data as-
similation system and to stabilize the integration of the backward system (3.4), as
this system is usually ill posed. The choice of the backward nudging matrix is then
imposed by this stability condition.

If we consider a linearized situation, in which the system and observation operators
(F and C, respectively) are linear, and if we make the change of time variable ¢’ =
T —t, then the backward equation can be rewritten as

—— = FX — K'(Xps — CX). (3.10)

Then, the matrix to be stabilized is —F — K'C, i.e. the eigenvalues of this matrix
should have negative real parts.
We now recall the pole assignment result (see e.g. [80, 41, 60, 167]):

Theorem 3.1 If (F,C) is an observable system, where F is a n X n matriz and C
is a m x n matriz (here n is the size of the control vector X and m is the size of the
observation vector Xops), then there exists at least one matriz K' such that —F — K'C
18 a Hurwitz matriz, 1.e. oll its eigenvalues are in the negative half-plane.
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We should also recall that (F,C) is an observable system if and only if the rank
of [C,CF,...,CF" ! is equal to n. Hence, we can assume that there exists at least
one matrix K’ such that the backward nudging system (3.4) is stable. However, such
a matrix K’ may be hard to compute, as it usually requires the resolution of a Riccati
equation.

3.3 Numerical experiments [11, 14, 21]

3.3.1 Numerical choice of the nudging matrices

All numerical experiments have been performed with an easy-to-implement nudg-
ing matrix:

K =CT(kI) = kCT, (3.11)

where k is a positive scalar gain, and [ is the identity matrix of the observation
space. This choice is motivated by the following remarks. First, the covariance
matrix of observation errors is usually not well known (but if it is available, then one
should consider equation (3.8) for the definition of K). Secondly, this choice does
not require a costly numerical integration of a parameter estimation problem for the
determination of the optimal coefficients. Choosing K = CT L, where L is a square
matrix in the observation space, has another interesting property: if the observations
are not located at a model grid point, or are a function of the model state vector, i.e.
if the observation operator C' involves interpolation/extrapolation or some change of
variables, then the nudging matrix K will contain the adjoint operations, i.e. some
interpolation /extrapolation back to the model grid points, or the inverse change of
variable.

As in the forward part of the algorithm, for simplicity reasons we make the fol-
lowing choice for the backward nudging matrix K’:

K =CcT(K'1) =kCcT. (3.12)

The only parameters of the BFN algorithm are then the coefficients k& and &'
In the forward mode, k£ > 0 is usually chosen such that the nudging term remains
small in comparison with the other terms in the model equation. The coefficient &’
is usually chosen to be the smallest coefficient that makes the numerical backward
integration stable.

3.3.2 Experimental approach

The same approach has been used for all the numerical experiments. This ap-
proach consists of performing twin experiments with simulated data. First, a refer-
ence experiment is run and the corresponding data are extracted. From now on this
reference trajectory will be called the exact solution. Experimental data are supposed
to be obtained every n, gridpoints of the model, and every n; time steps. The sim-
ulated data are then optionally noised with a Gaussian white noise distribution, and
provided as observations to the assimilation scheme.
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The first guess of the assimilation experiments is chosen to be either a constant
field or the reference model state some time before the beginning of the assimilation
period. Finally, the results of the assimilation process are compared with the exact
solution.

3.3.3 Physical models

In this section, we briefly describe the various models on which the BFN algorithm
has been implemented and compared with other data assimilation methods. For each
experiment, we refer to some references for the details and results of the corresponding
numerical experiments.

Lorenz equations

The BFN algorithm has been tested on Lorenz’ chaotic system [127]:

dz

=T 10(y —

o = 100y —2),

d

dii =28z —y — wz, (3.13)
dz_ 8

i T 2

The Lorenz attractor is a nonlinear three-dimensional structure corresponding to
the long-term behaviour of a chaotic flow, noted for its butterfly shape. Several numer-
ical experiments, convergence results, and comparisons with the standard variational
data assimilation method are presented in [11].

1-D viscous Burgers’ equation

We have then considered a very simple nonlinear geophysical model. The evolution
model is the viscous Burgers’ equation over a one-dimensional cyclic domain:

0X 10(X?) 9*°X
E + 5 88 — UV 882 = O, (314)

where X is the state variable, s represents the distance in meters around the 45°N
constant-latitude circle, and ¢ is the time. The sampling of the observations provide
a spatial and temporal density similar to the longitudinal distribution of the mid-
latitude radiosonde network. The period of the domain, the diffusion coefficient, and
the length of the assimilation period also make the situation as realistic as possible.
Note that this system is nonlinear and the viscosity makes it irreversible. How-
ever, it is possible to stabilize the backward resolution with the nudging term. The
numerical and convergence results, as well as the comparison with the variational
scheme, are detailed in [11]. Some other numerical experiments and comparisons are
detailed in [21] in a slightly different situation (i.e. different physical parameters).
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Shallow water model

The shallow water model (or Saint-Venant’s equations) is a basic model, repre-
senting quite well the temporal evolution of geophysical flows. This model is usually
considered for simple numerical experiments in oceanography, meteorology or hydrol-
ogy. The shallow water equations are a set of three equations, describing the evolution
of a two-dimensional horizontal flow. These equations are derived from a vertical in-
tegration of the three-dimensional fields, assuming the hydrostatic approximation,
i.e. neglecting the vertical acceleration. There are several ways to write the shallow
water equations, considering either the geopotential or height or pressure variables.
We consider here the following configuration:

8tu7(f+C)v+8xB:Lfru+uAu,
poh

ov+ (f+Qu+0,B = Lh —rv+vAuv, (3.15)
Po

b+ Dy (hu) + 8, (hv) = 0,

1
where ( = 0,v — Oyu is the relative vorticity, B = g"h + §(u2 + v?) is the Bernoulli

potential, ¢g* is the reduced gravity, f is the Coriolis parameter (in the [-plane ap-
proximation), pg is the water density, r is the friction coefficient, and v is the viscosity
(or dissipation) coefficient. The unknowns are u and v the horizontal components of
the velocity, and h the geopotential height. Finally, 7 is the forcing term of the model
(e.g. the wind stress) |56].

Many numerical experiments and comparisons with the variational scheme are
presented in [14]|. This article also reports the results of an hybridization between the
BFN and variational schemes.

Layered quasi-geostrophic ocean model

We have finally considered a layered quasi-geostrophic ocean model [107, 169, 57].
This model arises from the primitive equations (conservation laws of mass, momen-
tum, temperature and salinity), assuming first that the rotational effect (Coriolis
force) is much stronger than the inertial effects. The Rossby number, ratio between
the characteristic time of the Earth’s rotation and the inertial time, must then be
small compared to 1. Second, the thermodynamic effects are completely neglected
in this model. Quasigeostrophy assumes that the horizontal dimension of the ocean
is small compared to the size of the Earth, with a ratio of the order of the Rossby
number. We finally assume that the depth of the basin is small compared to its width.
In the case of the Atlantic Ocean, not all these assumptions are valid, notably the
horizontal extension of the ocean. But it has been shown that the quasi-geostrophic
approximation is fairly robust in practice, and that this approximate model repro-
duces quite well the ocean circulations at mid-latitudes, such as the jet stream (e.g.
Gulf Stream in the case of the North Atlantic Ocean) and ocean boundary currents.
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The model system is then composed of n coupled equations resulting from the
conservation law of the potential vorticity. The equations can be written as:

Dy (6:(%) + f)
Dt
at the surface layer (k = 1);

+ A4VOO = Fy in Qx]0,T7, (3.16)

Dy, (0k(Y) + f)
Dt
at the intermediate layers (k =2,...,n —1);

+ AyVOT, =0 in Qx]0,T], (3.17)

Dy (6n(Y) + f)
Dt
in 2x]0, T, at the bottom layer (k = n).

+ AIAY, + AV, =0, (3.18)

Q) is the circulation basin, 1y is the stream function at layer &, 6 is the sum of the
dynamical and thermal vorticities at layer k, f is the Coriolis force, and the dissipative
terms correspond to the lateral friction and the bottom friction dissipation. Finally,
F is the forcing term of the model, the wind stress applied to the ocean surface. We
refer to [107, 169, 57| for more details about this model and its equations.

We refer to [11] for the reports of numerical simulations on this model: conver-
gence, comparison with the 4D-VAR algorithm, sensitivity studies, ...

3.3.4 Conclusions emerging from the numerical experiments

The BFN algorithm appears to be a very promising data assimilation method. It is
extremely easy to implement: no linearization of the model equations, no computation
of the adjoint state, no optimization algorithm. The only necessary work is to add a
relaxation term to the model equations. The key point in the backward integration is
that the nudging term (with the opposite sign to the forward integration one) makes
it numerically stable. Hence the nudging (or relaxation) term has a double role: it
forces the model to the observations and it stabilizes the numerical integration. It is
simultaneously a penalization and regularization term.

The BFN algorithm has been compared with the variational method on several
types of non-linear systems: Lorenz (chaotic 1D ODE), Burgers (1D PDE), shallow
water model (2D) and quasi-geostrophic model (3D). The conclusion of these various
experiments is that the BFN algorithm is better than the variational method for the
same number of iterations (and hence for the same computing time). It converges in a
small number of iterations. Of course the initial condition is usually poorly identified
by the BEN scheme, but on the other hand, the final state of the assimilation period
is much better identified by the BFN algorithm than by the variational assimilation
algorithm, which is a key point for the prediction phase that starts at the end of the
assimilation period. Hence the prediction phase is usually better when it comes after
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an assimilation period treated by the BFN algorithm, rather than by a variational
assimilation method.

The two algorithms can be combined: we have introduced a new hybrid scheme,
in which a very small number of BFN iterations are performed (2 or 3 for instance),
before providing the identified initial condition to the standard 4D-VAR algorithm.
By doing this, the convergence of the 4D-VAR is reached more quickly, as it sometimes
divides by two the number of iterations required. Also, for a fixed given number of
iterations (or for a given computation time), the quality of the identified solution
is significantly improved by this preprocessing (note that the number of 4D-VAR
iterations is decreased by the number of BFN iterations in this scheme, in order
to consider the same number of iterations in the standard 4D-VAR and the hybrid
scheme).

Finally the BFN algorithm enables one to consider the problem of imperfect mod-
els at no additional cost, as the model equations are not strong constraints in this
nudging method (while they are usually strong constraints in a variational method)
and the relaxation term can be seen as a model error term.

3.4 Theoretical convergence results [18, 24]

3.4.1 Linear case

We consider here a linear situation, although simple, that describes quite well how
the BFN algorithm works. We assume that the observation operator C' is equal to
the identity, and that the model F'is linear. We also assume that F' and K commute.
Note that this assumption is valid in our experiments as K is set proportional to the
identity matrix. In this pretty simple situation, we can explicit the BFN trajectories.
For the sake of concision and clarity, we assume that K’ = K, but the following
results remain valid if K’ # K. We finally assume that the length of the assimilation
period is T" > 0.

Then, for all n > 1,

T
Xa(0) = (I _ e—QKT)*l (I _ e—anT)/ (e—(K+F)s + 6—2KT6(K—F)5> K X ops(5)ds

0
+e 2T 5y (3.19)
and for all ¢ € [0,T],
t
X (t) = e (K- / B KX o(s)ds + e~ KX (0). (3.20)
0

The following result proves the existence of a limit trajectory [18]:

Theorem 3.2 If n — +oo, then X,,(0) converges and

T
lirf X,(0) = Xo(0) = (I — e_QKT)l/ (e_(K+F)5 + e_QKTe(K_F)S> KX ps(s)ds.
n—-+0oo 0
(3.21)
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Moreover, if T > 0, for any t € [0,T],

n—-+o0o

t
lim X, (t) = Xoo(t) = e~ E-E)1 / eI X o (s)ds + e~ E=PEX(0). (3.22)
0

Under the same hypothesis, we have a similar result for backward trajectories, i.e.
there exists a function X, (t) such that lirf Xn(t) = Xoo(t), for all ¢ € [0,T7]. This
n—-,+0oo

proves the convergence of the BFN algorithm in such a situation.

Note that the limit function Xo (resp. Xoo) is totally independent of the initial
condition zg of the algorithm.

Moreover, if the observations are perfect, i.e. X, satisfies the direct model
equation (3.1), then for all ¢ € [0, 7],

Xobs(t) = 6Fthbs(0)- (323)
It is then straightforward to see in equations (3.21) and (3.22) that

lim X, (t) = Xeps(t), Vte[0,T]. (3.24)
n—oo
The BFN algorithm also has a similar behaviour on linear parabolic operators in
infinite dimension (e.g. the heat operator). A Fourier decomposition of the trajecto-
ries allows us to study only first order ordinary differential equations, and gives then
the convergence of the algorithm.

3.4.2 Transport equations

In this section, we only consider one iteration of the back and forth nudging
algorithm, i.e. one forward and one backward resolution with nudging terms. The
idea consists of studying the decrease of the error (between the BFN trajectory and
the true solution) during one iteration. All the results can then be extended very easily
to an arbitrary number of BFN iterations. For instance, if the error decreases by a
constant factor of less than 1 during one iteration, then the algorithm is contractive
and the error decreases exponentially to 0 with the iterations.

We refer to [24] for the proofs of all the following results.

Linear viscous transport

We first consider a linear viscous transport equation.

Ot — VO0zpu + a(x)0pu = —K(u — Ugps),
(F) Ulg=0 = tulz=1 = 0,
uli=0 = o,

(3.25)
Ot — vyt + a(x)0,u = K'(U— upps),

(B) H’17=0 = a’m:l
ul=r = u(T),

where the following notations hold for all further cases:

Il
o
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e the time period considered here is t € [0,77;

e the first equation (F) is called the forward equation, the second one (B) is called
the backward one;

e K and K’ are positive functions, and may depend on ¢ and z, but for simplicity
reasons, we will always assume that there exists a constant x € R’ such that
K'(t,z) = kK(t,x);

e a(x) € WH>(Q), Q being the considered space domain, either the interval [0, 1]
or the torus [0, 1];

e the viscosity coefficient v > 0 is constant;

e the observation function wups is a solution of the forward equation (without any
nudging term) with initial condition u2, :

Ottiobs — VOrpzlUohs + a(x)aa:uobs = 0,
’u,‘z:o = u]le = 0, (326)
u|t=0 = ugbs'

Then, the following result holds true for linear viscous transport equations [24]:

Theorem 3.3 We consider one step of the BFN algorithm (3.25) with observations
Ueps Satisfying equation (3.26). We denote

F i M @27
the forward and backward errors.
1. If K(t,z) = K, then for all t € [0,T]:
w(t) = K ET=04,(1). (3.28)

2. If K(t,x) = K(zx), with Support (K) C [a,b] where a < b and a # 0 or b # 1,
then equation (3.25) is ill-posed: there does not exist a solution (u,w) in general.

S If K(t,x) = Ky, 4,(t) with 0 <ty <ty <T, then we have
@(0) = K=K 2=ty (). (3.29)

This result shows that, when applied to linear viscous transport equations, the
BFN algorithm converges if the feedback acts on the entire domain. For instance, in
the first point of theorem 3.3, equation (3.28) shows that the error has been decreased
by a factor of e(~K—K T during one iteration. Thus, the error decreases by a factor
of e NEHEDT quring N iterations. As K > 0 (or K’ > 0) and T > 0, this clearly
proves the convergence of the BFN algorithm in this case. On the contrary, if a
part of the space domain is not observed (i.e. the support of K does not cover the
entire domain), then the algorithm does not converge as the diffusion term cannot be
controlled and the backward resolution is ill-posed.
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Viscous Burgers

We now consider the viscous Burgers’ equation, a standard nonlinear transport
equation. We also consider only one iteration of the BFN algorithm:

Ou — VOrpu + udyu = —K(u — upps),
(F) u|a::0 = u‘le = 07
u|t=0 = Uuo,
- IR _ (3.30)
Ot — VOppu+udu = K'(U— ugps),
(B) mx:O = mx:l = 07

Ul=r = w(),

with the same notations as before. The observations wu.s also satisfy the forward
Burgers’ equation:

atuobs - Vax:vuobs + uobsaa:uobs = 07
oo = o1 = O, (3.31)
_ 0
Ul—g = Ugp,-

Then, the following result holds true [24]:

Theorem 3.4 If K(t,xz) # 0, then the BFN iteration (3.30) for viscous Burgers’
equation, with observations satisfying (3.31), is ill-posed, even when K(t,x) is con-
stant: there does not exist, in general, a solution (u, ).

In the particular case where K = K’ = 0, the backward problem is ill-posed in the
sense of Hadamard (the solution does not depend continuously on the data), but it
has a unique solution if the final condition |7 is set to a final solution of the direct
equation. Moreover, in this particular case, the backward solution is exactly equal to
the forward one: u(t) = u(t) for all ¢t € [0,7]. The main result is the following [24]:

Proposition 3.1 If K = K’ = 0, then problem (3.30) is well-posed in the sense of
Hadamard, and there exists a unique solution (u,u). Moreover, u = .

The BFN algorithm is then ill-posed (except if K = K’ = 0) when applied to a
viscous Burgers’ equation, as there does not exist a solution to the backward problem.
However, from the numerical point of view, the BFN algorithm has been successfully
applied to this model [11]. This phenomenon is probably due to the fact that we
numerically solve a discrete problem and not the exact continuous one.
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Inviscid linear transport

We now consider the inviscid case for a linear transport equation. The BFN
equations are:

([ Qu+ a(x)0u = —K(u— upps),
’U;‘x:(] - u’l’:la
(F) 8xu‘x20 = 890“’1::17
uli—o = o,
) ! B (3.32)
Ou+ a(x)d,u = K'(U— ups),
(B) 8:56‘1':() = 8:vﬂ’$:17
L a|1‘/=T = U(T))

where a(z) can be constant or not. The following result holds true [24]:

Theorem 3.5 We consider the non viscous one-step BFN (3.32), with observations
Ueps Satisfying (3.32-F) with K = 0. We denote

w(t) = u(t) — ues(t),
G() = t) — uops(t): (3.33)
We denote by
(s,9(s, @) (3.34)

the characteristic curve of equation (3.32-F) with K = 0, with foot x in time s = 0,
1.€. such that

(5a¢(5»33))|s=0 = (0355) (335)
We assume that the final time T is such that the characteristics are well defined and
do not intersect over [0, T]. Then:

1. If K(t,z) = K, then we have, for allt € [0,T],
(t) = w(t)e " K-KNT=H, (3.36)
2. If K(t,r) = K1y, 4,)(t) with 0 <t <ty <T, then we have
@(0) = w(0)e KK t2=t) (3.37)

3. If K(t,z) = K(x), then we have, for all t € [0,T],
T
w(t,P(t,z)) = w(t,¥(t,x)) exp <—/t K((s,x)) + K/(¢(s,$))d5> . (3.38)

From this result, we deduce that the BFN algorithm applied to inviscid linear
transport equation does converge if all the domain is observed (first two cases of
theorem 3.5). Moreover, if the support of K does not cover all the domain (third case
of theorem 3.5, e.g. when the system is not fully observed), the algorithm converges as
soon as all the characteristics intersect the support of K. This constraint is satisfied
as soon as the system is observable (see remarks below proposition 3.2).
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Inviscid Burgers

We finally consider non viscous Burgers’ equation, with periodic boundary condi-
tions, and for a time 7" such that there is no shock in the interval [0, T:

Ou+udyu = —K(u — Upps),
U’m:() = u’m:la
F
( ) 8xu|x=0 = 8xu|x:1a
uli=0 = o,
e ) (3.39)
Oy + ud,u = K/(U - uobs)7
ﬂ|z:o = a|x:l;
B - ~
( ) 83;U’m:() = azu|m:17

=y = u(T).
Then, the following result holds true [24]:
Theorem 3.6 We consider one step of the BFN algorithm applied to the non viscous

Burgers’ equation (3.39), with observations ugps satisfying (3.39-F) with K = 0. We
denote

CUISE ) =
We assume that uyps € WH([0,T] x ), i.e. there erists M > 0 such that
|Optiops (t, )| < M, ¥t e [0,T],Vx € Q. (3.41)
Then:
1. If K(t,z) = K, then we have, for allt € [0,T],
[(0)] < KKy ). (3.42)
2. If K(t,x) = K1y, 4,)(t) with 0 <t <ty <T, then we have
[F(O)] < =K (3.43)

Proposition 3.2 We consider one forward (resp. backward) BFN step of the non
viscous Burgers’ equation (3.39-F) (resp. (3.39-B)). With the notations of theorem
3.6, if K(t,z) = K(x), then we have

(T () = w00y (~ [ Koo~ [ ot vl )
(3.44)
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Remark: For the special case K(t,z) = K(z) = K1, (), where K is a constant
and [a, b] is a sub-interval of [0, 1], we have

T
(T (T, x)) = w(0, ) exp (—Kx(m)— / azuobsw,w(a,x))do), (3.45)

where -
x(z) = /0 L) (40, 2))do (3.46)

is the time during which the characteristic curve (o, z) with foot = of equation
(3.39-F) with K = 0 lies in the support of K.

The system is then observable if and only if the function x has a non-zero lower
bound, i.e. m := mgn x(x) > 0, the observability being defined by (see e.g. [147]):

T
30, Wu solution of (3.39-F) with K =0, [u(T, )| < c/ 1K (us, )| ds.
0

(3.47)
In this case, proposition 3.2 proves the global exponential decrease of the error, pro-

MT
vided K is larger than ——, where M is defined by equation (3.41).
m

From this remark, we can easily deduce that if for each iteration, both in the
forward and backward integrations, the observability condition is satisfied, then the
algorithm converges and the error decreases exponentially to 0. Note that this is not
a necessary condition, as even if y(z) = 0, the last exponential of equation (3.45) is
bounded.

Remarks on the theoretical results

In real geophysical applications (either meteorology or oceanography), there is
usually no viscosity. In this case, assuming the observability condition, the BFN
algorithm is well posed, and theorem 3.6 and proposition 3.2 show that the solution
tends to the observation trajectory everywhere, and not only on the support of K
[24].

From a numerical point of view, we can observe that even with discrete and
sparse observations in space, the numerical solution is corrected everywhere. We also
observed that, with a not too large viscosity coefficient, the behaviour of the algorithm
remains unchanged [11].

3.5 Nudging and observers [25]

In this section, we consider nudging as a particular type of observers, e.g. Lu-
enberger observer, or Kalman filters [129, 114|. In most Kalman-type filters and
observers, the gain matrices do not take into account the symmetries of the model.
They are mainly designed to provide for each time step the optimal estimate of the
system state. However, it seems interesting to preserve the model symmetries while
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adding a nudging term in the equations. Inspired by the recent works in observer de-
sign, we define symmetry-preserving nudging (or feedback) terms for a shallow-water
model. This section summarizes the work presented in [25].

3.5.1 Observers for a shallow water model

We consider here a shallow water model, similar to the model introduced in section
3.3.3. However, the equations are rewritten in order to clearly see the symmetries.
We refer to [113] for more details about these equations. In the following, h is the
fluid height, and v is the bi-dimensional velocity field. The equations write:

8(8htv) + (V.(hw) + (). V)v = —g'hVh — k x f(hv) + (AV? — R)(hv) + ;z (3.48)

for the vectorial velocity, and

oh
o = V() (3.49)

for the scalar height. In these equations, ¢’ represents the reduced gravity, p is the
fluid density, f is the Coriolis parameter, i is the longitudinal unit vector (pointing
towards East) and k is the upward unit vector. Finally, R, A and 7 represent friction,
lateral viscosity, and the forcing term (zonal wind stress) respectively.

We assume that the physical system is observed by several satellites that provide
measurements of the sea surface height (SSH) h only.

An observer (h, ) for the system (3.48-3.49) writes:

8(;:) + (v.(iw) + (iw).v) b= —g’izvfz—kxf(A17)+(AV2—R)(}}@)+%Z'+FU(;L’ o, h)
(3.50)

and A
g]; = —V.(hd) + Fy(h, 9, h). (3.51)

The only difference between the observer and model equations comes from the inno-
vation terms F,(h, 0, h) and Fj,(h, 9, h). The correction terms must vanish when the
estimated height h is equal to the observed height h. The goal is to define functions
Fj, and F), such that the observer tends to the true solution. Moreover, these feedback
terms also have to preserve the symmetries of the model.

3.5.2 Invariant correction terms

The shallow-water equations do not depend neither on the orientation nor on
the origin of the frame in which the coordinates are expressed: they are invariant
under the action of SE(2), the Special Euclidean group of isometries of the plane
R2. Consequently, functions F}, and F,, must be invariant under the action of SE(2).
Symmetries have been very recently introduced for observer design in [28, 59| for
engineering problems. The aim of this work is to consider correction terms that
respect the underlying physics of the system.
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To find the scalar term Fj,, we use the standard result (see e.g. [155]), which states
that any scalar differential operator invariant by rotation and translation writes Q(A),
where () is a polynomial and A is the Laplacian. By considering the invariance by
rotation for the vectorial velocity [139], we get the following family of scalar terms:

= Qu(A |0 b= h) + V (Qa(A, b o = 1)) o+ fu, (3.52)
where ()1 and @)y are scalar polynomials in A, and fj is an integral term defined
below. More precisely,

N
Qi(A [0 b — ) = 3" a(h, 0] h — h)AF (bZ (h,|8]2, b — h)) (3.53)
k=0

where a}% and b;C are smooth scalar functions such that
a(h, |9]?,0) = bj,(h, |0]?,0) = 0. (3.54)
For the vectorial correction term F,,, we use the vectorial counterpart:
Fy = Pi(A by [02,h — R)o + <P2(A, h, |62, h — h)) + o (3.55)

where P; and P» are polynomials in A, like Q1 and Qs.

Let us now find the integral terms f, and fj that are invariant by rotation and
translation. They can be expressed as a convolution between the previous invariant
differential terms and a two-dimensional kernel ¢(&,(). The previous terms being
invariant by rotation, the value of the kernel should not depend on a particular di-
rection, and so 1 must be a function of the invariant £2 + (2. The integral correction
terms write:

2 2 2 2
(2,1, 1) // V(AR o2 = 1)+ V (Ro(A, b [0~ h))}(x_&y_cyt) So(E24¢?) dedC.,
(3.56)
fupt) = [ [Se@BIP R~ 1)+ 9 (SR ) 0] ol ded
(3.57)

where R; and S; are defined like @); and P;.

The support of ¢, (resp. ¢p) is a subset of R. Its characteristic size defines a
zone in which it is significant to correct the estimation with the measurements. The
integral formulation is actually quite general: if ¢, and ¢p are set equal to Dirac
functions, one obtains the differential terms.

3.5.3 Convergence study on a linearized simplified system

In order to avoid the amplification of the measurement noise by a differentiation
process, only the integral correction terms are kept: one sets Q1 = Q2 = P = P, =0,
R1:SQZOandS2:R1:h—h.
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For the sake of clarity, we now simplify the model equations, by assuming that
there is no Coriolis force, no friction, no dissipation, and no wind stress. An observer
for this simplified system satisfies then:

oh

O~ () + n % (), (3.59)
Zﬁ = 0V — gVh+ b+ V(h — ). (3.59)

Note that in the degenerate case where ¢ = Kpdg and ¢, = K,dg, Kp, and K,
being positive scalars, we find the standard nudging terms, or Luenberger observer.

As it seems difficult to first study the convergence on the nonlinear system, we
now linearize the equations around an equilibrium position A = h and v = ¥. We only
consider small velocities 6v = v — o < \/gh and heights §h = h—h < h, where h and
v = 0 represent the equilibrium height and speed respectively. We denote by h (resp.
0) the estimation errors, differences between the observer and true solution, for the
height (resp. velocity). These errors are solution of the following linear equations:

oh

5 = —hV — ¢p * h, (3.60)
0 ~ ~
— = —gVh—9, h. 3.61
= —gVh— 6,5V (3.61)
A reasonable choice for the kernels ¢ and ¢, is the following:
on(e,y) = Brexp(—an(a® +y?), (3.62)
Solz,y) = Buexp(—an(a® +y?)), (3.63)

as one usually assumes that the observation error is a white Gaussian noise. However,
the following convergence results can be extended to more general kernel functions
defined by

on(z,y) = (f(z)* f(2) (f(y) * f(y)), (3.64)
du(z,y) = (9(z) * g(x)) (9(y) * 9(y)), (3.65)
(3.66)

where f and g are smooth even functions, all their Fourier coefficients being strictly
positive.

Eliminating the velocity © in equations (3.60-3.61) leads to a modified damped
wave equation with external viscous damping:

o
ot?

Equation (3.67) can be rewritten in the following way:

= ghAh + hdy % Ah — ¢y, * g?. (3.67)

oh
ot’

92h

@Z%*Aﬁ—%*

(3.68)
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if ¢, is now the following function

$u(,y) = ghdo + h By exp(—ay(2® + y?)), (3.69)

where g is the Dirac measure at the origin.
Then, we have the following result [25]:

Theorem 3.7 ,
oh

lim IVA|? + 5

= 0. (3.70)

This result proves the strong and asymptotic convergence of the error h towards 0,
and then it also gives the same convergence for v. We deduce that the observer tends
to the true state when time goes to infinity. Note that even if only the height is
observed, all variables are corrected.
A dimensional analysis also provides the following gain tuning (see equations (3.62)
and (3.69)):
ﬁh = 250&)0, Bﬂv e L(Q)wg — gﬁ, (3.71)

where wg and Lo are characteristic pulsation and length of the flow respectively, and
&o is the damping coefficient of the system equation. Moreover, a;Q = o, 2 is the size
of the region of influence. This region can be related to the level of observation noise,
and to the spatial density of the observations.

3.5.4 Numerical experiments

The results of many numerical simulations on both the linearized and nonlinear
shallow water models are reported in [25]. The following feedback terms have been
considered: ¢y * (h — ﬁ) for the fluid height, and ¢, * V(h — ﬁ) for the velocity, where
¢ and ¢, are defined by equations (3.62) and (3.63). Several values of the parameters
ap, A, Bn and [, are considered, as well as several levels of observation noise. A
comparison between the standard nudging (or Luenberger observer) and this observer
is also given in [25].

All these simulations show the interest of such a choice of invariant gains. They
provide better results than the standard nudging, even on the nonlinear system, be-
cause the error converges faster, the residual error is smaller, and noise is better
filtered. Indeed the observer is nearly insensible to gaussian white noise. The numer-
ical experiments also confirm that, as predicted by the theory, it is possible to correct
the non-observed variables with the observed ones, thanks to model coupling.

Note that the computational cost of such an observer is not much larger than for
the standard nudging, as we have considered a truncated convolution integral instead
of the complete convolution over the whole domain. The truncation radius can be set
equal to at most 10 pixels in similar experiments.

Several other gain functions should now be studied to see if it is possible to filter
other types of observation noise. Some experiments will also be carried out in the
case of sparse observations, both in time and space.
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3.6 Conclusion

The BFN algorithm appears to be a very promising data assimilation method. It is
extremely easy to implement: no linearization of the model equations, no computation
of the adjoint state, no optimization algorithm. The only necessary work is to add a
relaxation term to the model equations. The key point in the backward integration is
that the nudging term (with the opposite sign to the forward integration one) makes
it numerically stable. Hence the nudging (or relaxation) term has a double role: it
forces the model to the observations and it stabilizes the numerical integration. It is
simultaneously a penalization and regularization term.

The BFN algorithm has been compared with the variational method on several
types of non-linear and turbulent systems. The conclusion of the various experiments
is that the BFN algorithm is better than the variational method for the same number
of iterations (and hence for the same computing time). It converges in a small number
of iterations. Of course the initial condition is usually poorly identified by the BFN
scheme, but on the other hand, the final state of the assimilation period is much better
identified by the BFN algorithm than by the variational assimilation algorithm, which
is a key point for the prediction phase that starts at the end of the assimilation period.
Hence the prediction phase is usually better when it comes after an assimilation period
treated by the BFN algorithm, rather than by a variational assimilation method.

The two algorithms can be combined, in the sense that one can perform several
BFN iterations before switching to the variational method and this will considerably
accelerate the convergence of the variational method. Finally the BFN algorithm
enables one to consider the problem of imperfect models at no additional cost, as
the model equations are not strong constraints in this nudging method (while they
usually are in a variational method) and the relaxation term can be seen as a model
error term.

Finally, several theoretical results explain and justify the efficiency of this algo-
rithm in simple situations.

The main perspective is the following: the determination of the nudging coeffi-
cients (or matrices) should be improved, particularly by a numerical stability study
of the backward integration. This will give the optimal nudging coefficients that
make the backward integration stable, while preserving the extreme simplicity of the
algorithm.



Chapter 4

Image data assimilation

This chapter summarizes the work presented in [23].

4.1 Introduction

This chapter presents a study at the interface of image processing and data as-
similation: the assimilation of images. The numerical forecast of geophysical fluids
is extremely difficult, mainly because they are governed by the general nonlinear
equations of fluid dynamics. Over the past 20 years, observations of ocean and at-
mosphere circulation have become much more readily available, as a result of new
satellite techniques. However, the huge amount of information provided by satellite
images must therefore be exploited, as more and more space-borne observations of
increasing quality are available.

Several ideas have been very recently developed to assimilate image data. A first
idea consists of identifying some characteristic structures of the image and then in
tracking them in time. This is currently developed in meteorology, using an adaptive
thresholding technique for radiance temperatures in order to identify and track several
cells [135]. Another idea is to consider a dual problem and to create some model
images, coming from the numerical model itself, and to compare the satellite images
with these model images, using for example a curvlet approach [132].

We propose here to define a fast and efficient way to identify, or extract, velocity
fields from several images (or a complete sequence of images). Assuming this point,
we would then be able to obtain billions of pseudo-observations, corresponding to
the extracted velocity fields, that could be considered in the usual data assimilation
processes. The main advantage of such an approach is to provide a lot of information
on the velocity, which is a state variable of all geophysical models, as it is much more
easy to assimilate data that are directly related to the state variables. We should
mention that a satellite image can have a resolution of 5000 x 5000 pixels, and that
some satellites transmit such images every 15 to 60 minutes [103]. We propose in this
paper a way to identify one velocity vector for each pixel of the image. Of course,
we will see that all the identified velocity fields are not reliable, mainly when there is

23
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no visible characteristic phenomenon, but we should be able to provide an amount of
information that is comparable to the currently assimilated observations.

The hypothesis that is underlying this work is that the grey level of the points are
preserved during the motion, this is known as the constant brightness hypothesis. The
constant brightness hypothesis was introduced in [109], and the linearized equation
derived from this hypothesis is the cornerstone of optical flow methods [128, 39, 47].
This hypothesis is sometimes replaced by an integrated continuity equation in order
to take into account the spreading of intensity sources |93, 94, 76, 122|.

This hypothesis is justified here in the framework of oceanography, as the objet
of interest, allowing us to track the fluid and identify its velocity, is usually a passive
tracer, at least on relative short time periods: chlorophyll, sea surface temperature,
chemical pollutants (e.g. hydrocarbons), ... All these tracers do not interact with the
water on a short time period, and they are passively transported by the fluid.

We propose here to use an integrated version of the constant brightness hypothe-
sis. Instead of linearizing the constant brightness hypothesis like in standard optical
flow techniques, we define a nonlinear cost function that takes into account the fact
that time sampling occurs at a finite rate. The cost function obtained from the inte-
grated constant brightness assumption is minimized in nested subspaces of admissible
displacement vector fields. Several regularization norms are considered.

We refer to |23] for the results of many numerical experiments, on both simulated
and real data. These results show that our method provides very quickly full velocity
fields, with an estimator of the quality of the results, while the PIV (Particle Imaging
Velocimetry) method, currently considered as a reference method in fluid mechanics
and oceanography, is unable to provide more than one pertinent velocity vector every
10 x 10 pixels.

4.2 Description of the algorithm [23]

This section is devoted to the description of the algorithm that we propose.

4.2.1 Constant brightness assumption

Let ©Q C R? be the rectangular domain where the images are defined. The motion
between the instants tg and ¢; where the images are Iy and I is then the vector field
(u,v) such that for every point (z,y) € €,

Il(l‘+u($ay)ay+v(l‘ay)) :Io(x,y). (41)

A vector field satisfying equation (4.1) is not unique, this is known as the aperture
problem in optical flow. Moreover, measurement errors make the equality (4.1) un-
likely to be strictly satisfied.
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4.2.2 Cost function

We propose then a leat square optimization to replace the exact equality (4.1):

J(u,v) = ;/Q [F(Io, It; u,v)(z, ) dedy + %aR(u,v), (4.2)

where R(u,v) is a spatial regularization term, and a > 0 is the regularization factor.
Finally, F' is the following function:

F(‘[()a-[l;uvv)(xay) = Il(‘r =+ u(xay)vy + v(:c,y)) - IO(:c,y). (43)

4.2.3 Regularization

The following regularization terms were used in our numerical experiments:

Ro(u,v) = |ul* + [Jo]f?,
Ri(u,v) = [[Vull® + [ Vol* = 0ull* + 9yull? + |0z0]* + |90l
Rap(u,v) = |ldiv(u,v)||* = ||0su + dyo]f?,
Reurt(u,v) = |leurl(u, v)|* = 9yu — 0],
Ranjeurt(u,v) = |ldiv(u, 0)|* + [leurl(u, v)||* = [[0zu + Oyvl]* + [|0yu — 8zv]|?,
Rydiv(u, v) IVdiv(u,v)||* = [[07,u + 02, 0l* + | 02,u + gy vl?,
R div/veurt (U, v) IVdiv(u, )| + [Veurl(u, v)||?

In all the cases, we can write R(u,v) = ||S(u, v)||?, where S is a linear operator. Some
scalar coefficients have also been considered in order to weight the different terms of
a given regularization.

4.2.4 Muti-grid approach and optimization

The minimization of the cost function J is performed in nested subspaces:
C16 CCg CC4 CC2 Ccl, (4.11)

where C, is the set of admissible displacement fields at the scale ¢, containing piecewise
affine vector fields with respect to each space variable, on squares of size q X ¢ pixels.
The difference with hierarchical techniques issued from the optical flow family (see
g. [134, 146]) is that we do not linearize the cost function. This should help to find
large displacements, where the domain of linearity of the luminance function is not
valid.
The space Cy¢ is typically of small dimension, hence the minimization of J on
Ci6 is fast and robust when a zero vector field is used as initial guess. The optimal
vector field obtained at a given scale in the space C, is used as initial guess to find

= ||agmu + a:%va2 + Ha:%yu + 853;””2 + ”8§yu - 83$UH2 + Haggyu - 8:%1;7)“2'
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the minimum at the finer scale in the space C;/5. This process is iteratively repeated,
until an optimal solution is identified on the finest grid.

All the optimizations of the nonlinear cost function are performed by a Gauss-
Newton method. When an initial guess (u®,v") is given (a constant null field, in our
experiments), the k-th iteration read

(u®, o) = (WP 0P (du, dob), (4.12)
where (du®, dv*) solves
(DFTDF + aSTS)(du,dv) = —DFTF — aSTS(u,v), (4.13)

where F' = F(Io, I1;uF~1,v%=1) is the error, DF' = DF(Iy, I;; u*~1, v¥~1) is the Jaco-
bian matrix of the error, and S'is the linear operator associated to the regularization
term.

Another innovation of the present work is the efficient computation of the product
DFTDF of the Jacobian of the first term of the cost function (4.2) by its transpose.
This efficient computation comes from the observation that this matrix is sparse and
can be assembled like a finite-element matrix using one loop over the data.

Let V' € C; be a vector field. Let (e;) be the canonical orthonormal basis of Cy,
containing vector fields that are equal to 0 at every but one control point, where the
vector field is directed along the horizontal or vertical axis. The (k, 1) coefficient of
the matrix DFTDF is

(DF"DF); = (DF" DFeyle;) = (DFey|DFe;) 2 (q). (4.14)

Since the elementary displacements ej are non zero at only one control point, the
matrix DFTDF has a sparse structure. If we consider the following formulation of
the jacobian matrix:

DF(u,v).d(z,y) = VIi(z + u(z,y),y + v(z,y)).d(z, y), (4.15)
then the matrix DFT DF can be assembled like a finite-element matrix:

DF'DF = Y (DF'DF); e;®e
k,l

_ ; /Q (VI (') | ex(@)) (VI (') | ex(x)) e & € da

- Z Z /R(Vh(x’) lek(z)) (VI (2') |e(z)) e ® € da

k|l RER,

= > Z/R(Wl(fﬂ')!ek(w))(vh(ﬂc’)ez(x))ek®el dx, (4.16)

RER, kil

where we write 2/ = x + V(z), and where R, represents the set of all squares of the
q % q grid. There are 8 quantities of the form (VI;(z+ V(z))|ex(z)) to be computed
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for each element of R,, and the matrix DF TDF can be assembled by reading once
the data. The vector field DFTF can be assembled rapidly in a similar way, and the
term STS is easy to compute.

Finally, equation (4.13) is solved using a conjugate gradient method wihtout pre-
conditioning.

4.2.5 Quality estimate

An estimation of the quality of our results is highly motivated by the application
that we presented in the introduction, namely data assimilation. A well known issue
and a crucial point in data assimilation is the knowledge of the statistics of observation
errors. Hence, we propose here an estimation of the quality of the pseudo-observations
identified by our algorithm.

We propose a normalized quality estimate, where the quality of the motion de-
pends on the ratio between the grey-level differences before and after registration:

(L1 (z 4 u(z, y);y +v(z,y) — To(, y)|
‘Il(xa y) - Io(.%,y)’

if the denominator is non-zero, otherwise we define e(ly, I1;u,v) = 0.

We can clearly see that if the two images were quite different on a pixel (z,y)
before the process, and much less different after, then the estimate e is nearly equal
to 1. We will further see that in some regions of the images, there is almost no signal,
and then the two images are equal, both before and after the identification process.
This leads to an estimate e equal to 0, not because the identified velocity is wrong,
but because we cannot quantify whether it is good or not. This estimator is provided
by our algorithm, so that it can be used along with the identified velocity fields in
data assimilation experiments.

e(lo, Ii;u,v)(z,y) =1 - (4.17)

4.3 Numerical experiments [23]

In this section, we briefly present the numerical experiments that have been car-
ried out on both simulated and real data. We refer to [23] for the results of these
experiments.

4.3.1 Simulated data

We first try our algorithm on simulated data. We consider a basic model, the shal-
low water model (or Saint-Venant’s equations), representing quite well the temporal
evolution of geophysical flows. This model is detailed in section 3.3.3 (with different
parameters), or in [23].

This model is then coupled with an advection-diffusion equation, modeling the
fact that the concentration of a passive tracer is transported by the fluid velocity:

O 4 u0yc + voyc = 0, (4.18)
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where ¢ is the concentration of the passive tracer (e.g. chlorophyll in oceans). We
also add to this equation an initial condition ¢(¢ = 0). We consider then a trajectory
of this shallow water model coupled with a concentration equation, from which a
concentration image is extracted every 100 time steps (in order to reproduce the time
sampling of the satellite images).

Two consecutive images are extracted from these simulated data, and we apply
our algorithm to these two images, with the aim of identifying the entire velocity field.
As shown in [23], our algorithm quickly extracts very accurate velocity fields. This
is mainly due to the combination of a multi-grid approach and an efficient optimiza-
tion scheme (no a priori information and no linearization). The registration between
two images is almost perfect after a few iterations, and the identified velocity field
reproduces very well the global structure of the true velocity (a rotating vortex in a
translation field in our experiments).

Concerning the regularization, we can note that the best results correspond to
the Ry norm (see equation (4.5)). The most physical regularization is probably Rg;,
(see equation (4.6)), as we expect a null divergence velocity field in geophysical flows.
But the decrease of the cost function is not as good as for some other regularizations.
Considering that the images are acquired every 100 time steps only, the velocity we
want to identify between these two images is a time Lagrangian integration of many
instantaneous velocities, and it cannot have a divergence equal to zero.

We also present an interesting application of the identification process. Assume
that we have a particular object in the first image, e.g. a characteristic structure,
that has been manually selected. In our case, we can identify one specific vortex. We
can then limit the identification process to a region around this object. This region
is propagated from one pair of images to the next one by the mean of the identified
velocity. This allows us to track this object in time, in a fully automatic way.

4.3.2 Experimental data

We have then considered data extracted from several experiments on the Coriolis
rotating platform [75]. A large rotating turntable (diameter: 13 meters) allows us to
reproduce the oceanic or atmospheric flows. Depending on the experiments, either
some colorant or particles are inserted in the water as the platform rotates, and among
the various measurement devices, a camera takes pictures of the experiment [95].

Several test cases have been studied, corresponding to either small or large ac-
quisition times between two consecutive images. In all these different situations, the
global structure of the displacement field matches perfectly with the real displace-
ment of the fluid. The multi-grid approach has been compared with the standard
approach, in which the minimization is directly performed on the fine grid. Both the
computation time and the quality of the results are degraded.

These results have been compared with those produced by the PIV (Particle Imag-
ing Velocimetry) method. PIV is the reference method for the extraction of velocity
fields in geophysics and fluid mechancics. The results are qualitatively equivalent,
in the sense that the identified fields look alike. However, our algorithm represents
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two main improvements: the computation time, allowing us to extract velocity fields
from several hundreds of images in a relatively short time; and the preciseness of the
results, as we extract one velocity vector for each pixel of the image, while the PIV
method usually gives only one vector every nearly 10 x 10 pixels. This allows us to
track the evolution of very small structures.

4.4 Conclusions

We presented in this section an algorithm to estimate the motion between two
images. This algorithm is based on the constant brightness assumption. A multiscale
approach allows us to perform a minimization of the cost function in nested subspaces,
the Jacobian matrix of the cost function being rapidly assembled at each scale using a
finite element method. The coarse estimation allows one to avoid local minima, while
the fine scales give more precise details. Several regularization terms are discussed,
and it appears that the L? norm of the gradient gives reliable results.

The results of this algorithm on both simulated data and real fluid flows are
presented, and they are encouraging, both from their computational efficiency and
from the quality of the estimated motion. Our algorithm has also been tested on full
high-resolution movies provided by the Coriolis platform, confirming the efficiency of
the proposed method.

As previously explained, the extracted velocity fields can be viewed as pseudo-
observations of the fluid velocity, and the next step will be to consider the assimilation
of these data. However, because of the time sampling of the images, these fields
correpond to Lagrangian velocities, and a Lagrangian data assimilation method is
then required. Note that if the time between the acquisition of two images is small,
then the identified (or apparent) velocity can be directly assimilated as a standard
Eulerian velocity.
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Chapter 5

(General conclusions and
perspectives

We presented in this work several algorithms for solving image processing and
data assimilation problems. All these algorithms are robust, easy to implement,
fast and powerful. This work has been essentially motivated by the applications of
such problems. In the case of image processing, one of these constraints could be
to be able to process movies in real time or large images in a negligible time. For
data assimilation problems, the goal is to assimilate a huge amount of data in a
given time, bounded by some operational contraints (e.g. of providing some short or
medium-range weather forecasts in a given time).

It seemed crucial to us to develop some algorithms that are quite far from the
state of the art in both image processing and data assimilation. For instance, the
topological gradient has been introduced in the image processing field, providing a
more global information than the standard gradient of the image. Also, the data
assimilation community is currently split into two parts: variational and sequential
methods. The first ones (e.g. the 4D-VAR algorithm) require a huge human cost for
the implementation of the adjoint code, and the second ones (e.g. Kalman filters)
rely on the very precise knowledge of the error statistics. Thus, we made the choice of
introducing an algorithm at the interface of these two categories, in order to combine
the advantages without the main drawbacks.

There are still many perspectives in these research fields, because some problems
have not been studied yet, and also because our algorithms can still be improved.
For instance, all the algorithms introduced for image processing problems are based
on the edge detection by topological gradient. It seems interesting to define more
than two conductivity values, in order to identify more than one edge set, as the
edges do not correspond to the same level of discontinuities. In data assimilation, the
back and forth nudging algorithm can also be improved, for instance by automatically
decreasing or increasing the gain coefficients with the iterations, in order to keep a
relative equilibrium between the physical model and the feedback to the observations.

61



62 CHAPTER 5. GENERAL CONCLUSIONS AND PERSPECTIVES

As long term perspectives in image processing, we can cite for instance the com-
pression and deblurring problems, for which it should also be possible to define an
approach by topological asymptotic analysis. Also, an interesting challenge in data
assimilation is to test the back and forth nudging algorithm on a primitive equa-
tion model with real data, in order to study the behaviour of this algorithm in real
conditions.
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Résumé:

Dans une premiére partie, nous avons étudié¢ des problémes de traitement d’images. Nous
avons utilisé ’analyse asymptotique topologique pour la détection des contours d’une image.
Cela permet de considérer alors plusieurs applications: restauration/débruitage, classifica-
tion. L’inpainting est traité d’une facon un peu différente, et la double donnée Dirichlet et
Neumann sur le bord du domaine caché permet de reconstruire les contours dans la partie
cachée de l'image. Enfin la segmentation peut étre traitée comme limite de la classification,
en s’appuyant sur des résultats d’analycité de la solution quand on fait tendre un paramétre
vers 0. La rapidité de cette méthode permet de traiter ces différents cas en temps réel, y
compris pour des films.

Dans une seconde partie, nous avons abordé l’assimilation de données, le but étant
d’identifier la condition initiale d’un systéme & partir d’observations partielles. Nous avons
défini un nouvel algorithme, basé sur le “nudging” (méthode de relaxation consistant a rajouter
un terme de rappel vers les observations directement dans 1’équation afin de tirer la solution
vers les observations). En considérant itérativement et alternativement des résolutions du sys-
téme direct et rétrograde en temps, avec a chaque fois un terme de rappel vers les observations,
on peut améliorer ’estimation de la condition initiale. La encore, la méthode est performante
et extrémement rapide, comme de nombreux tests numériques 'ont démontré. En paralléle,
plusieurs résultats théoriques de convergence ont été obtenus dans des cas simplifiés.

Enfin, une étude a été réalisée a 'interface de ces deux thématiques: ’extraction de données,
et plus précisement de champs de vitesses, a partir de séquences d’images météorologiques
ou océanographiques. L’idée consiste a chercher un champ de vitesse (ou déplacement) qui
transporte une image sur la suivante. L’approche considérée est variationnelle, et basée sur la
minimisation d’une fonctionnelle non linéaire dépendant du champ de vitesse. Une approche
multi-grille permet d’obtenir trés rapidement des champs de vitesse. Ces vitesses peuvent
alors étre assimilées directement dans un systéme d’assimilation.

Summary:

In a first chapter, we consider image processing problems. We applied the topological
asymptotic analysis to the edge detection problem. Once the edges are identified, one can easily
consider the restoration/enhancement and classification problems. The inpainting problem
has also been considered, but from a slightly different point of view given the Dirichlet and
Neumann conditions on the boundary of the unknown part of the image, the topological
gradient allows one to retrieve the missing edges of the hidden zone, and then to reconstruct
an unblurred image. Finally, the segmentation problem has been considered with the same
mathematical tools, using the analycity of the enhanced solution with respect to a small
parameter. All these algorithms are extremely efficient and fast, and allows us to process
images and even movies in real time.

The second chapter is devoted to data assimilation. We developed a new algorithm: the
Back and Forth Nudging (BFN). The standard nudging technique consists in adding to the
equations of the model a relaxation term that is supposed to force the observations to the
model. The BFN algorithm consists in repeatedly performing forward and backward inte-
grations of the model with relaxation (or nudging) terms, using opposite signs in the direct
and inverse integrations, so as to make the backward evolution numerically stable. Extensive
numerical experiments have been performed on several simplified geophysical models, show-
ing the efficiency of this easy-to-implement and fast approach. Moreover, several theoretical
results of convergence have been obtained in simple situations.

Finally, we also worked at the interface of these two topics and considered image data
assimilation. The idea is to extract velocity fields from a sequence of oceanographic or me-
teorological images. A variational approach has been proposed, in which the minimization
of a nonlinear cost function provides a displacement (or velocity) field between two images.
A multi-grid approach and an appropriate minimization process, allow us to extract the in-
formation very quickly. These “pseudo”-observations can then be directly assimilated as the
velocity is usually a model variable.
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