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Chapter 1IntrodutionIn this work, several problems have been studied with the ommon goal of pro-viding robust, partiularly easy to implement, fast and powerful algorithms. Thee�ieny of the algorithms is required by the operational ontext of the methods,and by a need to proess more and more data in an inreasingly short time. Theother onstraint that we partiularly took into aount is the ease of use and imple-mentation of the methods we have developed.In hapter 2, we will takle various problems in image proessing by an originalapproah in the �eld: topologial asymptoti analysis, or more simply the topologialgradient.There has reently been a renewed interest in image proessing thanks to newappliations in teleommuniations and mediine: on one hand, new tehnologiesin teleommuniations and di�usion of information, whih now involve sending andreeiving massive �ows of numerial data (e.g. images), and on the other hand themedial world, in whih huge progress has been made, in partiular for the earlydetetion of tumors, thanks to more powerful imaging tehniques.Our study is motivated by several observations. First, the topologial gradientis generally used for strutural mehanis, design, and shape optimization problems.Also, it has been suessfully applied in eletromagnetism for the detetion of raksor hidden objets. However, many image proessing problems rely on the good iden-ti�ation of a subset of the image, for instane edges or harateristi objets. Thisommon feature seemed interesting to us, and allowed us to adapt the topologial gra-dient method, initially used for rak detetion, to several image proessing problems(restoration, lassi�ation, segmentation, inpainting).The seond interesting aspet is the speed of the method. In various �elds, topo-logial asymptoti analysis has made it possible to obtain good results very quikly.However, medial imaging and audiovisual di�usion (e.g. satellite television or inter-net broadasting) both require the proessing time to be negligible. If the proessingtime is too large, it will delay the medial diagnosis, or the �ow of data. It is thusimportant to build extremely fast shemes for solving these various problems, in real7



8 CHAPTER 1. INTRODUCTION
time for movies and a negligible time (e.g. smaller than one seond) for images.As we will see hereafter, the topologial gradient method atually adapts perfetlyto image proessing problems, allowing us to obtain very interesting results for a par-tiularly small omputation ost.In hapter 3, we will study data assimilation for environmental and geophysialproblems, and more partiularly within the framework of atmospheri and oeaniobservations. For several years, one of the major onerns has been to appreiablyimprove our knowledge of these turbulent systems, one of the major goals being theability to predit their evolution with a high reliability.Several di�erent hallenges appear in data assimilation: short-range (e.g. a fewdays) weather foreasting, the study of global warming and limate hange, detetionof extreme limati phenomena several weeks in advane, . . . For all these problems,the goals are almost similar. They onsist of estimating quikly and with a veryhigh degree of auray the state of a turbulent system, from the ombined knowl-edge of models and data: on one hand mathematial equations modeling the oupledatmosphere-oean system, and on the other hand observations of di�erent nature (e.g.in situ, or satellite observations), orresponding to various physial quantities.Beyond the extreme size of the problem to be solved (several billions of values tobe identi�ed from hundreds of millions of observations) and the omputational timeneeded to solve it, another fator appears: the ost of development and use of a dataassimilation method. Presently, it is extremely di�ult to implement suh a method,even on a relatively simple problem. This motivated us to study the possibility ofimproving one of the simplest methods of data assimilation, nudging (also known asNewtonian relaxation), in order to obtain muh better results without ompliatingthe method.By applying the nudging method to the bakward (in time) problem, we notedthat it is possible to stabilize the bakward system, whih is unstable beause of theirreversibility of the physial problem. Thus, as detailed in hapter 3, we an gobak in time, and obtain a more reliable estimate of the system at a previous time,from whih foreasts may be dedued. By applying alternatively and repeatedly thestandard nudging method to the forward and bakward models, we obtain an itera-tive algorithm that is very easy to implement and provides de�nitely better resultsthan the standard nudging. Indeed, the results are of similar quality, and are oftenobtained muh more quikly than by using the standard variational data assimilationmethod.Chapter 4 presents a study at the interfae of these two �elds: the assimilation ofimages. Presently, a huge quantity of observations oming from satellite images is es-sentially not used to improve the knowledge of the system state. However, sequenesof images obtained by satellites de�nitely show various harateristi strutures (hur-rianes, swirls, urrents of hot water, pollution, . . . ) moving and evolving in time.Several approahes an be onsidered to solve this kind of problem, and we madethe hoie to try to identify and extrat veloity �elds from the sequenes of images.
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That appeared to us to be the most adapted hoie for rapidly extrating onventionaldata (i.e. diretly related to the model variables), and then being able to use themin a standard assimilation system.The idea that we develop in hapter 4 is based on the onstant brightness assump-tion, whih onsists of looking for a displaement �eld that transports an image toanother one. The originality of our approah lies in the nonlinearization of the ostfuntion to be minimized, ombined with a fast method to assemble the Jaobian ma-trix. Finally, a multi-grid approah makes it possible to guarantee the quality of theminimum. Thanks to all these tehniques, we are able to extrat omplete veloity�elds in a very short time, and it is also possible to provide a quality estimate of theidenti�ed �elds, whih an be viewed as error statistis of these pseudo-observationswithin the framework of data assimilation.Finally some general onlusions and researh perspetives are given in hapter5.
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Chapter 2Image proessing by topologialasymptoti analysisThis hapter summarizes the work presented in [9, 10, 12, 13, 16, 22, 26℄.2.1 IntrodutionThe idea of topologial asymptoti analysis is to measure the impat of a pertur-bation of the domain on a ost funtion. We only onsider here the approah that hasbeen introdued for topologial optimization purpose, in whih the goal is to identifyan optimal shape and its omplementary in a given domain [133, 98, 104℄.Topologial shape optimization seems partiularly well adapted to solve imageproessing problems (like lassi�ation, segmentation, enhanement, inpainting, . . . ),as they mainly onsist of identifying a partiular subdomain of the image: its edges.At �rst sight, the main issue of topologial shape analysis is the non-di�erentiabilityof the problem. To �nd the optimal domain is indeed equivalent to identify itsharateristi funtion. Several lassial approahes have been developed to makethis problem di�erentiable. We an ite here the relaxation tehnique, whih al-lows the harateristi funtion to take all possible values in the interval [0; 1], andthe level set approah where the harateristi funtion is replaed by a regularlevel set funtion whih is positive inside the optimal domain and negative outside[133, 34, 33, 36, 51, 157℄.The idea of topologial asymptoti analysis is to swith the harateristi funtionfrom one to zero (or from zero to one) in a (in�nitely) small area. Thus, the variationof the ost funtion is small when we swith a very small part from the subdomainto its omplementary. The topologial asymptoti expansion provides this variation,and allows one to derive a topologial gradient of the ost funtion [133, 98, 158, 157℄.In this hapter, we �rst present the basi tools of topologial asymptoti analysis,and we then study several appliations to image proessing problems: inpainting(where the goal is to �ll a hidden part of an image), restoration and enhanement,lassi�ation, and segmentation. Then, we present a very e�ient way to speed up11



12 CHAPTER 2. IMAGE PROCESSING
all the algorithms introdued in this hapter, based on disrete osine transforms andan appropriate preonditioning. Finally, we present a oupled approah ombiningthe topologial gradient and the minimal path tehnique in order to improve the edgedetetion, and to avoid non-onnex ontours.2.2 Topologial asymptoti analysis2.2.1 Presentation of the methodLet Ω be a regular open bounded domain of R

2 (or R
3). Let us onsider a PartialDi�erential Equation (PDE) problem de�ned in Ω, written in its variational formu-lation: �nd u ∈ V suh that a(u,w) = l(w),∀w ∈ V, (2.1)where V is a Hilbert spae on Ω, usually H1(Ω), a is a bilinear ontinuous and oeriveform de�ned on V, and l is a linear ontinuous form on V. We �nally onsider a ostfuntion J(Ω, u) to be minimized, where u is the solution of equation (2.1).We now onsider a small perturbation of the domain, e.g. by the insertion of arak σρ = x0 +ρσ(n), where x0 ∈ Ω represents the point where the rak is inserted,

σ(n) is a straight rak ontaining the origin of the domain, and n is a unit vetornormal to the rak. Finally, ρ > 0 represents the size of the perturbation, assumedto be small. Let Ωρ = Ω\σρ be the perturbed domain. We an onsider the samePDE problem as before, but on the perturbed domain:�nd uρ ∈ Vρ suh that aρ(uρ, w) = lρ(w),∀w ∈ Vρ, (2.2)where Vρ, aρ and lρ represent the restrition of the Hilbert spae V to Ωρ, and theperturbed bilinear and linear forms respetively.We an rewrite the ost funtion J as a funtion of ρ by onsidering the followingmap:
j : ρ 7→ Ωρ 7→ uρ solution of (2.2) 7→ j(ρ) := J(Ωρ, uρ). (2.3)The topologial sensitivity theory provides an asymptoti expansion of j when ρtends to zero. It takes the general form:

j(ρ) − j(0) = f(ρ)G(x0) + o(f(ρ)), (2.4)where f(ρ) is an expliit positive funtion going to zero with ρ, and G(x0) is alledthe topologial gradient at point x0 [133℄.Then to minimize the riterion j, one has to insert small holes (or raks) atpoints where the topologial gradient G is the most negative, in order to make theost funtion j derease quikly (see the asymptoti expansion (2.4)).2.2.2 Main resultIn the following, we will onsider several times this main result [37℄:
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Theorem 2.1 If there exists a linear form Lρ de�ned on Vρ, a funtion f : R

+ → R
+,and four real numbers δJ1, δJ2, δa and δl suh that

• lim
ρ→0

f(ρ) = 0,
• J(Ωρ, uρ) − J(Ωρ, u0) = Lρ(uρ − u0) + f(ρ)δJ1 + o(f(ρ)),

• J(Ωρ, u0) − J(Ω, u0) = f(ρ)δJ2 + o(f(ρ)),

• (aρ − a0)(u0, pρ) = f(ρ)δa+ o(f(ρ)),

• (lρ − l0)(pρ) = f(ρ)δl + o(f(ρ)),where the adjoint state pρ is the solution of the adjoint equation
aρ(w, pρ) = −Lρ(w),∀w ∈ Vρ, (2.5)and uρ is the solution of the diret equation (2.2), then the ost funtion j has theasymptoti expansion (2.4), where the topologial gradient G(x) is given by
G(x) = δJ1 + δJ2 + δa− δl. (2.6)2.3 Inpainting [9, 13℄In this setion, we present an appliation of the topologial asymptoti analysisto the inpainting problem. The goal of inpainting is to �ll a hidden part of an image.In other words, if we denote by Ω the original image and ω the hidden part of theimage, the goal is to reover the hidden part ω from the known part of the image Ω\ω.There are many appliations, for instane removing some spots on a badly preservedmovie or image, or deleting enrusted logos and images on television programs, . . .This problem has been widely studied. Several methods have been onsidered:learning approahes (neural networks, radial basis funtions, support vetor mahine,. . . ), in whih the learning data is taken in Ω\ω, and then the approximate funtionis evaluated in ω [177, 178℄; minimization of an energy ost funtion in ω based ona total variation norm [67, 68℄; morphologial analysis for the reonstrution of bothartoon and texture [87℄; . . .In order to study the inpainting problem, we �rst onsider a rak loalizationmethod. Crak detetion allows us to identify the edges of the hidden part of theimage, and the inpainting problem an then be easily solved. We will onsider thelassial thermal di�usion tehnique [142, 66, 174, 175, 150℄ and improve it by mod-eling the edges by raks. These raks are supposed to be highly insulating and toallow the temperature to jump aross edges. As both the Dirihlet and Neumannonditions are known on the boundary of the hidden subset, we an de�ne a riterionmeasuring the disrepany between the solutions of a Dirihlet and a Neumann prob-lem respetively [118℄. This problem is similar to the inverse ondutivity problem,also known as the Calderón problem [65℄, whih onsists of identifying the oe�ients
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of a partial di�erential equation from the knowledge of the Dirihlet to Neumann oper-ator. Only two measurements are needed to reover several simple raks [30, 31, 48℄.From the numerial point of view, several methods [40, 49, 50, 64, 96, 152, 151℄ havebeen proposed, but the topologial gradient approah seems to be the most e�ientmethod for rak loalization. The minimization of the riterion allows us to identifythe main edges inside the hidden part of the image. The image is �nally �lled betweenthe edges thanks to the Laplae operator.This setion summarizes the work introdued in [9, 13℄. We also refer to thesereferenes for the results of many numerial experiments.2.3.1 Crak loalization problemLet Ω be a bounded open set of R

2. We assume in this setion that Ω ontains aperfetly insulating rak σ∗. We impose a �ux φ ∈ H−1/2(Γ) on the boundary Γ of
Ω, and we want to �nd σ ⊂ Ω suh that the solution u ∈ H1(Ω\σ) of





∆u = 0 in Ω\σ,
∂nu = φ on Γ,
∂nu = 0 on σ,

(2.7)satis�es u|Γ = T , where T ∈ H1/2(Γ) is a given funtion. We also assume someompatibility onditions in order to have a well-posed diret problem.A topologial gradient approah has been introdued in [37℄, and onsists of de�n-ing a Dirihlet and a Neumann problem, as we have an over-determination in theboundary onditions:
uD ∈ H1(Ω\σ) suh that 




∆uD = 0 in Ω\σ,
uD = T on Γ,
∂nuD = 0 on σ,

(2.8)
uN ∈ H1(Ω\σ) suh that 




∆uN = 0 in Ω\σ,
∂nuN = φ on Γ,
∂nuN = 0 on σ.

(2.9)It is lear that for the atual rak σ∗, the two solution uD and uN are equal. Theidea is then to onsider and minimize the following ost funtion
J(σ) =

1

2
‖uD − uN‖2

L2(Ω). (2.10)The topologial asymptoti expansion of this ost funtion is detailed in [37℄.2.3.2 Dirihlet and Neumann formulations for the inpainting prob-lemIn our approah, we now denote by Ω the image and Γ its boundary, ω ⊂ Ω themissing part of the image and γ its boundary. Let v be the image that we want torestore. We assume that v is known in Ω\ω, and unknown in ω.
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The idea is to adapt the rak loalization method to inpainting: rak detetion�rst allows us to identify the raks (or edges) σ of the hidden part ω of the image, andthen we will impose that the Laplaian of the restored image is equal to zero in ω\σ.For a given rak σ ⊂ ω, as v (Dirihlet ondition) and ∂nv (Neumann ondition) areknown on the boundary γ of ω, we an solve two di�erent problems inside ω.For a given rak σ, we denote by uD ∈ H1(Ω\σ) the solution of the followingDirihlet problem: 




∆uD = 0 in ω\σ,
uD = v on γ,

∂nuD = 0 on σ,

uD = v in Ω\ω.
(2.11)Outside ω, the solution is equal to the original image, and inside ω, we use equation(2.8).In the same way, if we assume v to be enough regular, we an onsider the solution

uN ∈ H1(Ω\σ) of the following Neumann problem:




∆uN = 0 in ω\σ,
∂nuN = ∂nv on γ,

∂nuN = 0 on σ,

uN = v in Ω\ω.
(2.12)Note that from the numerial point of view, it is muh more easy to solve an approx-imated Neumann problem:





∆uN = 0 in ω\σ,
∂nuN = ∂nv on γ,

∂nuN = 0 on σ,

−α∆uN + uN = v in Ω\ω,
(2.13)where α is a small positive number.2.3.3 Asymptoti expansionThe ost funtion remains unhanged, and is still de�ned by (2.10), as the ideais to �nd some raks σ ⊂ ω that minimize the di�erene between the two solutions

uN and uD. We assume that the rak σ is equal to x + ρσ, where x is the point ofinsertion of the rak, ρ is the size of the inserted rak (assumed to be small), and σis a referene rak, of unit normal vetor n. Then, we an rewrite the ost funtion
J de�ned by equation (2.10) as a funtion j(ρ) of ρ. The asymptoti expansion isthen the following:

j(ρ) − j(0) = f(ρ)g(x, n) + o(f(ρ)), (2.14)where the topologial gradient g is de�ned by
g(x, n) = − [(∇uD(x).n)(∇pD(x).n) + (∇uN (x).n)(∇pN (x).n)] , (2.15)
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where uD and uN are the solutions of (2.11) and (2.12) respetively, but withoutany inserted rak (σ = ∅). Also, pD and pN are the orresponding adjoint states,respetively solutions in H1(Ω) of the following equations:





pD = 0 in Ω\ω,
pD = 0 on γ,

−∆pD = −(uD − uN ) in ω,

(2.16)




pN = 0 in Ω\ω,
∂npN = 0 on γ,

−∆pN = +(uD − uN ) in ω.

(2.17)The topologial gradient de�ned by equation (2.15) an be rewritten in the fol-lowing way:
g(x, n) = nTM(x)n, (2.18)where M(x) is the 2× 2 (resp. 3× 3 in the ase of 3D images, or movies) symmetrimatrix de�ned by

M(x) = −sym(∇uD(x) ⊗∇pD(x) + ∇uN (x) ⊗∇pN (x)). (2.19)From this equation, we an dedue that the minimum of g(x, n) is reahed when
n is the eigenvetor assoiated to the lowest eigenvalue λmin(M(x)) of M(x).2.3.4 AlgorithmThe inpainting algorithm is then the following:

• Calulation of uD and uN , solutions of the diret problems (2.11) and (2.12)respetively, without any inserted rak (unperturbed problem: σ = ∅).
• Calulation of pD and pN the two orresponding adjoint states, respetivelysolutions of equations (2.16) and (2.17).
• Computation of the matrix M(x) de�ned by equation (2.19).
• Loalization of the raks: de�ne

σ = {x ∈ ω;λmin(M(x)) < δ < 0}, (2.20)where δ is a negative threshold.
• Calulation of the solution of the Neumann problem (2.12) perturbed by theinsertion of σ.This image is then equal to the original image in Ω\ω, and it has been reonstrutedin ω.
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2.3.5 RemarksFrom the numerial point of view, raks are modeled by a very small ondu-tivity instead of onsidering real holes in the domain. The previous algorithm has aomplexity of O(n. log(n)), where n is the size of the image, i.e. the number of pixels,as explained in setion 2.7.The main advantage of this algorithm is that the reonstrution is done in onlyone iteration of the topologial gradient algorithm, whih onsists of 5 resolutions ofa PDE (the two diret and two adjoint unperturbed problems, and then one diretperturbed problem) in the domain Ω representing the image. Several numerial resultsare presented in [9℄ and show the quality and e�ieny of the reonstrution.The only ontrol parameter of this method is the negative threshold: below a givenvalue, the pixels are onsidered as being part of the edge set, whereas it is not the asebeyond the threshold. The reonstruted image is provided by the resolution of thediret perturbed problem (2.12), and the quality of the image relies on the onnexityof the identi�ed edges. If a given identi�ed edge is not onnex, the Laplaian indeedprodues a blurred zone. Then, the threshold is usually set suh that the mainidenti�ed edges are onnex. Of ourse, it may lead to the wrong identi�ation ofedges. But the various numerial experiments have shown that the threshold anbe �xed to an a priori value, as the optimal threshold is almost independent of theimages.Another solution to this problem is presented in setion 2.8.2.4 Restoration [16, 22℄In this setion, we onsider the restoration problem, with the aim of restoringnoisy images. The main idea is to use the topologial gradient for deteting the edgesof the noisy image in order to preserve them during the restoration proess.This method is based on thermal di�usion, like many other variational methods.In order to avoid blurring e�ets, several nonlinear isotropi and anisotropi methodshave been introdued, some of them relying on the minimization of the total variation[142, 66, 124, 174, 175, 43℄. We should mention that some non variational approahesalso exist, mainly statistial methods [86℄.This setion summarizes the work presented in [16, 22℄. We also refer to thesereferenes for the results of numerial experiments.2.4.1 Variational formulationLet Ω ⊂ R

2 be an open bounded domain, and v ∈ L2(Ω) be the noisy image. Theenhanement of v is based on the resolution of the following problem:�nd u ∈ H1(Ω) suh that {
−div(c∇u) + u = v in Ω,
∂nu = 0 on ∂Ω,

(2.21)where n is the outward unit normal to ∂Ω, and c is the ondutivity, to be de-�ned in the following. Several hoies an be made for the ondutivity, mainly c
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equal to a onstant value (linear di�usion method: it is fast, but it blurs importantstrutures), or c de�ned by a nonlinear funtion of ∇u (nonlinear di�usion method,edge-preserving [175, 43℄). In the topologial gradient approah, c takes only twovalues: a onstant value c0 (lose to 1) in the smooth part of the image, and a verysmall values ε (lose to 0) on the edges or raks in order to preserve them.Setting c = 0 on a part of the image is equivalent to perturbing the domain bythe insertion of raks. For a given point x0 ∈ Ω and for a given small parameter
ρ > 0, we onsider Ωρ = Ω\σρ the perturbed domain by the insertion of a rak
σρ = x0 + ρσ(n), where σ(n) is a straight rak and n is a unit vetor normal to therak. The variational formulation of the perturbed problem is the following:�nd uρ ∈ H1(Ωρ) suh that aρ(uρ, w) = lρ(w), ∀w ∈ H1(Ωρ), (2.22)where aρ (resp. lρ) is the following bilinear (resp. linear) form de�ned on H1(Ωρ)(resp. L2(Ωρ)) by

aρ(u,w) =

∫

Ωρ

(c∇u∇w + uw) dx, lρ(w) =

∫

Ωρ

vw dx. (2.23)Edge detetion if equivalent to looking for a subdomain of Ω where the energy issmall. So our goal is to minimize the energy norm outside edges:
j(ρ) = J(Ωρ, uρ) =

∫

Ωρ

‖∇uρ‖2. (2.24)2.4.2 Topologial gradientFrom theorem 2.1, we an derive the following asymptoti expansion of the ostfuntion (2.24):
j(ρ) − j(0) = ρ2G(x0, n) + o(ρ2), (2.25)where

G(x0, n) = −πc(∇u0(x0).n)(∇p0(x0).n) − π|∇u0(x0).n|2, (2.26)where p0 is the solution of the unperturbed adjoint problem:
{

−div(c∇p0) + p0 = −∂uJ(Ω, u0) in Ω,
∂np0 = 0 on ∂Ω.

(2.27)As previously seen, the topologial gradient an be rewritten: G(x, n) = 〈M(x)n, n〉,where M(x) is the following 2 × 2 symmetri matrix:
M(x) = −πc∇u0(x)∇p0(x)

T + ∇p0(x)∇u0(x)
T

2
− π∇u0(x)∇u0(x)

T . (2.28)
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2.4.3 AlgorithmOur algorithm onsists of inserting small heterogeneities (or raks) in regionswhere the topologial gradient is smaller than a given threshold. There regions arethe edges of the image. The algorithm is as follows:

• Initialization: c = c0 (onstant value everywhere).
• Calulation of u0 and p0, respetively solutions of the diret (2.21) and adjoint(2.27) unperturbed problems.
• Computation of the 2 × 2 matrix M(x) de�ned by (2.28), and of its lowesteigenvalue λmin(M(x)) at eah point of the domain.
• Set the new ondutivity:

c1 =

{
ε if x ∈ Ω is suh that λmin(M(x)) < α < 0,
c0 elsewhere, (2.29)where ε > 0 is assumed to be small, and α is a negative threshold.

• Calulation of u1, the solution of the perturbed diret problem (2.21) using
c = c1.The image u1 is the restored image.2.4.4 RemarksFrom the numerial point of view, it is more onvenient to simulate the raks by asmall value of c instead of onsidering topologial perturbations of Ω. The resolutionof problem (2.21) with c = c1 is an approximation of the resolution of the perturbedproblem (2.22), beoming more preise as ε goes to 0.As in the previous setion (inpainting problems), our algorithm is extremely ef-�ient as it requires only 3 resolutions of a partial di�erential equation in Ω: thediret and adjoint original problems, and then the diret perturbed problem. Andthe omplexity of this algorithm is still O(n. log(n)) (see setion 2.7).As shown in [16℄, the quality of the numerial results is very good. One again,the algorithm relies on a thresholding of the topologial gradient in order to de�ne theedge set. Contrary to inpainting problems, the onnexity of the edges is not ruialsine it does not hange signi�antly the quality of the restored image. However,setion 2.8 presents a way to identify onnex edges, with fewer badly identi�ed edges.2.4.5 Extension to olor imagesIn this setion, we adapt the topologial gradient approah to olor images. Colorimages an be represented or modeled in various ways, for instane the RGB (Red-Green-Blue) spae in whih images are viewed as funtions from Ω to R

3 instead of
R. A �rst approah onsists of deoupling the three hannels, and in solving diret
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and adjoint problems for eah hannel. But it is also possible to onsider diretly thevetorial minimization problem, involving the resolution of vetorial problems. Thetopologial asymptoti expansion is still given by equations (2.25-2.26) and (2.28),where all funtions are vetorial, i.e. the topologial gradient is the sum on all hannelsof the orresponding expressions for eah hannel [22℄.Another approah has also been studied in [22℄, in whih we use a di�erent normfor oupling the di�erent hannels. In order to identify the loal variations of theolor image, Di Zenzo de�nes a multi-spetral tensor assoiated to the image vetor�eld [83℄:

T =

(
t11 t12
t21 t22

)
, tij =

3∑

k=1

∂uk

∂xi

∂uk

∂xj
, 1 ≤ i, j ≤ 2, (2.30)in the ase of bidimensional images. This tensor desribes the �rst order di�erentialstruture of the image, and the Di Zenzo gradient is given by the square root of thelargest eigenvalue of the struture tensor:

‖∇u‖DZ =
1√
2

[
t11 + t22 +

√
(t11 − t22)2 + 4t212

] 1

2

. (2.31)It is possible to rewrite this gradient in a di�erent way with the following funtion:
H(∇u) =

1 +
√

1 − 4f(∇u)
2

, (2.32)where
f(∇u) =

det2(∇u1,∇u2) + det2(∇u1,∇u3) + det2(∇u2,∇u3)

(|∇u1|2 + |∇u2|2 + |∇u3|2)2
, (2.33)

det2(∇us,∇ut) =

(
∂us

∂x1

∂ut

∂x2
− ∂ut

∂x1

∂us

∂x2

)2

. (2.34)Then, we an derive the asymptoti expansion of the ost funtion de�ned by equation(2.24) in whih the norm is the Di Zenzo norm (2.31):
G(x0, n) =

3∑

k=1

[
−πc(∇uk

0(x0).n)(∇vk
0 (x0).n) − πH(∇u0(x0))|∇uk

0(x0).n|2
] (2.35)with our standard notations.In [22℄, we show that this approah has the same omputational ost as the ve-torial approah (in whih the di�erent hannels are deoupled), while it improves theedge detetion, and hene it produes a better restored image, more preise on theedges of the image.
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2.5 Classi�ation [10, 16℄In this setion, we now fous on the regularized and unsupervised image lassi�-ation problem.Inspired by the work presented in [150, 43℄, in whih the authors propose a lassi-�ation model oupled with a restoration proess, we adapt here our approah basedon the topologial asymptoti analysis.This setion summarizes the work presented in [16, 10℄. We refer to these referenesfor the numerial results.2.5.1 Introdution to the lassi�ation problemLet v be the original image de�ned on an open set Ω of R

2, and let Ci, 1 ≤ i ≤ n, be
n lasses (i.e. grey or olor levels). We �rst assume that thesse lasses are prede�ned.The goal of image lassi�ation is to �nd a partition of Ω in subsets {Ωi}i=1...n, suhthat v is lose to Ci in Ωi.A variational approah an be de�ned: it onsists of a ost funtion measuringthe di�erene between the original image and the lassi�ed image:

J((Ωi)i=1...n) =
n∑

i=1

∫

Ωi

(v(x) − Ci)
2 dx+ α

∑

i6=j

|Γij |, (2.36)where Γij represents the interfae Ωi ∩ Ωj between two subsets.The main di�ulty of this approah is that the unknowns are sets, and not vari-ables. This is why the topologial asymptoti analysis seems to be appropriate forsolving this problem. The topologial gradient and the orresponding numerial re-sults are presented in [10℄.2.5.2 Restoration and lassi�ation ouplingAnother solution onsists of oupling lassi�ation with restoration, and to adaptthe approah introdued in setion 2.4. The idea is to �rst onsider an iteration of thetopologial asymptoti analysis for the image restoration problem in order to smooththe image, and then to lassify this smooth image without any regularization. If weremove the regularization term from equation (2.36), whih leads to the unregularizedlassi�ation problem, then the optimal subset Ωi is the set of pixels that are loserto Ci than to any other Cj . In other words, eah pixel is assigned to the subsetorresponding to its losest lass.In the perturbed problem (2.29), instead of setting c = 0 (or c = ε from thenumerial point of view) on the edge set and c = c0 elsewhere, we set
c1 =

{
ε on the edge set,
c0

ε
elsewhere. (2.37)The algorithm is then the following:
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• Appliation of the restoration algorithm de�ned in setion 2.4, with c1 de�nedby (2.37) instead of (2.29).
• Unregularized lassi�ation of the image u1, using for example the losest lassalgorithm (in whih eah pixel is assigned to the subset orresponding to itslosest lass).As previously seen, the omplexity of this algorithm is O(n. log(n)), and the vari-ous numerial results presented in [10℄ show the relative e�ieny of these approahes.Moreover, it is possible to regularize more or less the image by hoosing di�erent val-ues of c1, and it allows us to also obtain good results on noisy images.2.5.3 Extension to unsupervised lassi�ationIf the number n of lasses is given, but not their values Ci, it is possible todetermine them in an optimal way. This lassi�ation problem an be de�ned as

min
(Ωi),(Ci)

j((Ωi), (Ci)) =
n∑

i=1

∫

Ωi

|v(x) − Ci|2 dx+ α
∑

i6=j

|Γij |. (2.38)The idea is to minimize the ost funtion j((Ωi), (Ci)) alternatively with respet to
Ωi and with respet to Ci. The minimization with respet to Ωi onsists of lassifyingthe image, while the minimization with respet to Ci is obtained straightforward bythe mean of the image in eah lass:

Ci =
1

|Ωi|

∫

Ωi

v(x) dx. (2.39)The unsupervised lassi�ation algorithm is then as follows:
• Initialization: de�ne an initial guess C1, . . . , Cn (e.g. equi-distributed lasses).
• Repeat until onvergene:� Calulate the lassi�ed image using the lasses C1, . . . , Cn (see previousalgorithm).� Update the values of the lasses using (2.39).If the number n of lasses is not given, we an add a penalization term �+βn�in the ost funtion (2.38), measuring the number of lasses. The minimization withrespet to n provides the optimal number of lasses. The number of lasses is learlyrelated to the hoie of the weighting oe�ient β.
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2.6 Segmentation [12, 13℄This setion is onerned with image segmentation, whih aim is to �nd a partitionof an image into its onstituent parts. The idea is still to apply our topologial gradientbased algorithm for the detetion of edges in the image.Several approahes have been studied in the literature. One an ite variationalmethods, for example based on the minimization of the Mumford-Shah funtional[136℄, the ative ontours and snake methods [55, 156℄, stohasti approahes [54, 61℄,wavelets, . . . [43, 45, 42, 140, 149, 150, 176℄.This setion summarizes the main results presented in [12, 13℄. Several numer-ial experiments are also detailed in these referenes and show the e�ieny of ourapproah.2.6.1 From restoration to segmentationWe still onsider the restoration algorithm, in whih the following ondutivity isused for the perturbed problem:

c(ε) =

{
ε in ω,
1

ε
outside ω, (2.40)where ω ⊂ Ω represents the edge set. We �rst assume that ω is thikened (i.e. ofodimension 0 in Ω). From equation (2.40), the algorithm now onsists of solving thefollowing problem:

(Pε)





−div(ε∇uε) + uε = v in ω,

−div
(

1

ε
∇uε

)
+ uε = v in Ω\ω,

∂nuε = 0 on ∂Ω,

(2.41)where uε ∈ H1(Ω), i.e. with the impliit boundary ondition that c(ε)∂nuε has thesame value on both sides of ∂ω.Then we have the following asymptoti result [12℄:Theorem 2.2 If we denote by uε the unique solution of problem (Pε) in H1(Ω), then
lim
ε→0

(‖∇uε −∇u0‖L2(Ω\ω) + ‖uε − u0‖L2(ω)) = 0, (2.42)where u0 ∈ H1(Ω\ω) ∩ L2(Ω) is the solution to the following problem
(P0)





u0 = v in ω,

−div (∇u0) = 0 in Ω\ω,
∂nu0 = 0 on ∂ω,

∂nu0 = 0 on ∂Ω.

(2.43)



24 CHAPTER 2. IMAGE PROCESSING
This result proves that the segmented image u0 an be approximated by uε if εis small. We now assume that the edge set ω is of odimension 1 in Ω. From thepoint of view of appliations, it is ompletely natural to assume that the edges are�at in the image. In order to have oherent notations, we will further denote by σ theedge set. We assume that σ is known, e.g. provided by the rak detetion algorithmpreviously seen.We an rewrite the approximated segmentation problem (Pε) as follows:

(P̃ε)





−div
(

1

ε
∇uε

)
+ uε = v in Ω\σ,

∂nuε = 0 on σ,

∂nuε = 0 on ∂Ω,

(2.44)where uε ∈ H1(Ω\σ). If v ∈ L2(Ω), then problem (P̃ε) has a unique solution in
H1(Ω\σ). As a orollary of the previous result, we have the following one [12℄:Theorem 2.3 If we denote by uε the unique solution of problem (P̃ε) in H1(Ω\σ),then

‖uε‖L2(Ω) ≤ ‖v‖L2(Ω), ‖∇uε‖L2(Ω\σ) ≤
√
ε‖v‖L2(Ω), (2.45)and

lim
ε→0

‖∇uε −∇u0‖L2(Ω\σ) = 0, (2.46)where u0 ∈ H1(Ω\σ) is the unique solution to the following problem:
(P̃0)





−div (∇u0) = 0 in Ω\σ,∫

Ωi

u0 =

∫

Ωi

v ∀Ωi onnex omponent of Ω\σ,
∂nu0 = 0 on σ,

∂nu0 = 0 on ∂Ω.

(2.47)For numerial reasons, it an be very di�ult to solve diretly problem (P̃0), andeven problem (P̃ε) for too small values of ε > 0. Indeed the onditioning of the systemto be solved goes to in�nity when ε → 0. In order to overome this issue, we willexpand the solution uε of problem (P̃ε) into a power series of ε.2.6.2 Power series expansionFrom the knowledge of the power series expansion of uε and the omputation ofseveral solutions uε for not too small oe�ients ε > 0, it is possible to approximatethe asymptoti solution u0 [12℄:Theorem 2.4 There exist a onstant εR > 0 and a family of funtions (un)n∈N of
H1(Ω\σ) suh that for all 0 ≤ ε ≤ εR,

uε =
∞∑

n=0

unε
n. (2.48)
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Moreover, u0 is the unique solution in H1(Ω\σ) of problem (P̃0), and the other fun-tions (un) are the unique solutions in H1(Ω\σ) of the following problems:

(P̃1)





−div (∇u1) = −u0 + v in Ω\σ,∫

Ωi

u1 = 0 ∀Ωi onnex omponent of Ω\σ,
∂nu1 = 0 on σ,

∂nu1 = 0 on ∂Ω,

(2.49)
n ≥ 2, (P̃n)





−div (∇un) = −un−1 in Ω\σ,∫

Ωi

un = 0 ∀Ωi onnex omponent of Ω\σ,
∂nun = 0 on σ,

∂nun = 0 on ∂Ω.

(2.50)We an de�ne a funtion of ε ∈ R
+ as follows

f(ε) := uε ∈ H1(Ω\σ). (2.51)From the previous theorem, we know that f has a power series expansion at theorigin given by (2.48). We onsider a family of N points (εi) in [εc, εR], where εc isthe smallest value of ε for whih it is easy to numerially ompute f(ε), and εR issmaller than the onvergene radius of the power series. We an then ompute aninterpolation polynomial gN of degree N − 1 de�ned by:
gN (ε) =

N∑

i=1




N∏

j=1,j 6=i

ε− εj

εi − εj


uεi

, (2.52)where N is the number of points εi.The analyity of f allows us to estimate the approximation error:
‖u0 − gN (0)‖H1(Ω\σ) = O(εNc ). (2.53)2.6.3 AlgorithmWe an then de�ne a segmentation algorithm, based on the restoration algorithmpreviously de�ned in setion 2.4:

• Solve the diret (2.21) and adjoint (2.27) unperturbed problems with c = c0everywhere.
• Compute the 2 × 2 matrix M(x) de�ned by equation (2.28) and its lowesteigenvalue λmin(M(x)) at eah point of the domain Ω.
• De�ne σ = {x ∈ Ω; λmin < α < 0} the edge set, where α is a small negativethreshold.
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• Set εc > 0 the minimal value of ε for whih it is easy to ompute numeriallythe solution uε of problem (P̃ε).
• Choose N ∈ N

∗ in order to have an approximation error in O(εNc ), and hoose
N di�erent values (εi).

• Compute the solutions (uεi
) in H1(Ω\σ) of problems (P̃εi

).
• Compute the interpolation polynomial gN of degree N − 1, de�ned by equation(2.52), for ε = 0.This algorithm has a omplexity in O(N.n. log(n)), where n is the number of pixelsin the image, and N is the degree of the interpolation approximation. In numerialexperiments, N is typially of the order of 2 to 5.Several numerial tests are detailed in [12℄.2.7 Complexity and speeding up [13, 16℄In this setion, we present the tehniques that we have used for solving the PDEproblems previously seen, and that lead to a theoretial omplexity in O(n. log(n))[13℄. Several numerial experiments have on�rmed this omplexity [16, 13℄.2.7.1 Disrete osine transformIn all the algorithms we presented in the previous setions, we only have to solvethe following PDE {

−div(c∇u) + u = v in Ω,
∂nu = 0 on ∂Ω,

(2.54)for various oe�ients c. The �rst resolutions are done with a onstant value of c. Itis then possible to largely speed up the omputation time by using the disrete osinetransform (DCT) method. Problem (2.54) is then equivalent to
∑

m,n

(
1 + c(mπ)2 + c(nπ)2

)
um,nφm,n =

∑

m,n

vm,nφm,n, (2.55)where we denote by φm,n = δm,n cos(mπx) cos(nπy) a osine basis of R
2, and where

(vm,n) represent the DCT oe�ients of the original image v. It is then straightforwardto identify (um,n), the DCT oe�ients of u in equation (2.55):
um,n =

vm,n

1 + c(mπ)2 + c(nπ)2
. (2.56)The omplexity of suh a resolution is O(n. log(n)), where n is the number of pixels ofthe image. The resolution of all unperturbed problems is then done in the followingway:

• Computation of vm,n, the DCT oe�ients of the original image v.
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• Computation of um,n, the DCT oe�ients of u from equation (2.56).
• Computation of u using an inverse DCT.2.7.2 Preonditioned onjugate gradientThen, the solution of all previously detailed problems omes from the resolution ofa perturbed problem. For the last resolution of a diret problem with a non onstantoe�ient c, we an rewrite the problem in the following way:

A(c)u = B, (2.57)where u is the unknown image. If c is onstant, equation (2.57) is easy to solve.The idea is to preondition equation (2.57) with the DCT solver used in the �rstresolution. Problem (2.57) is equivalent to
[
A(c0)

−1A(c)
]
u =

[
A(c0)

−1B
]
. (2.58)As c is lose to c0 (c is indeed equal to c0, exept in a negligible part of the domain),the system matrix [A(c0)

−1A(c)] is lose to the identity operator, and the resolutionof (2.58) is then easy: we use a preonditioned onjugate gradient (PCG) method tosolve this problem. As the oe�ient c is lose to c0, we an expet a O(n. log(n))omplexity for the resolution of the perturbed problem. The numerial experimentslearly on�rm this omplexity, both for small and large problems.The main advantage is that it allows us to proess images in a very short time(e.g. 1600 × 1200 images in less than one seond) and movies in real time (providedthe movie is split into short sequenes of a few seonds) with a ++ ode.2.8 Coupling between the topologial gradient and theminimal path tehnique [26℄As previously seen, e.g. in setion 2.3, it is ruial to identify onneted (orontinuous) ontours. Up to now, we had to threshold the topologial gradient witha not too small value, in order to identify onneted ontours, but this leads to thikidenti�ed edges, and also to onsider more noisy points as potential edges.We notied that the edges orrespond to valley lines of the topologial gradient.It is of ourse possible to identify them by adapting the threshold oe�ient, but wepropose here to use the minimal path and fast marhing tehniques for identifyingthe valley lines of the topologial gradient [71, 73, 82, 84, 179, 145, 164℄.In the following, we onsider any of the previous image proessing problems. Weonly assume that the topologial gradient g has been de�ned and omputed every-where. The goal is to identify the valley lines orresponding to the most negativeparts of the topologial gradient.This setion summarizes the study presented in [26℄, in whih several numerialexperiments are shown in the ase of segmentation and inpainting.
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2.8.1 Minimal pathsLet g be the topologial gradient. The idea of the minimal path tehnique is tode�ne a potential funtion, measuring in some sense for any point of Ω the ost for apath to ontain this point. As we want to identify paths in the most negative part ofthe topologial gradient, and onsidering that the potential funtion must be positive,we de�ne the following funtion:

P (x) = g(x) − min
y∈Ω

{g(y)} . (2.59)We simply shift the topologial gradient from its minimal value, in order to obtain apositive funtion. We an see that the points where the topologial gradient g reahesits minimal value are ostless. This is a way to onsider that these points must be onthe minimal paths.We denote by C(s) a path (or urve) in the image, where s represents the urvilignoordinate. We an now de�ne a ost funtion, measuring the ost of suh a path:
J(C) =

∫

C
(P (C(s)) + α) ds, (2.60)where α > 0 is a positive regularization oe�ient, measuring the length of this path.The goal is to minimize J , in order to �nd the shortest and least ostly pathbetween two points. For this purpose, we de�ne the following distane funtion:

D(x;x0) = inf
C∈A(x,x0)

J(C), (2.61)where A(x, x0) is the set of all paths going from x0 to x in the image.2.8.2 Fast marhingThe fastest way to ompute the distane funtion de�ned by equation (2.61) is tosolve a front propagation equation:
∂C(s, t)

∂t
=

1

P (C(s, t)) + α
nC(s, t), (2.62)where nC(s, t) is the outer normal unit vetor to the front C. We initialize thepropagation with C(s, 0) equal to a in�nitely small irle entered at x0.This path evolves with a propagation speed inversely proportional to the potentialfuntion. If for example a point in the outer part of the front has a large potential(i.e. a large ost), then the propagation speed will be nearly equal to 0 and the frontwill not expand at this point. From the theory of Eikonal equations, the distane

D(x;x0) is simply the instant t at whih the front, initialized at point x0, reahespoint x [179, 84℄.
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2.8.3 Coupled algorithmWe an ertainly onsider that the global minimum of the topologial gradient ispart of the edge set. So we an hoose the referene point x0 as being this minimum.It is then possible to ompute the distane between x0 and any other point x. Agradient desent algorithm an then be used to minimize the distane funtion, inorder to �nd the minimal path between x0 and the initial point of the optimizationsheme. If these two points are part of the same edge, as the potential funtion hasbeen de�ned suh that it is relatively ostless to remain on the edge (thanks to thetopologial gradient), the minimal path will be a very good approximation of thisedge. The main advantage is now that we are sure that this path orresponds to aontinuous ontour.For a small additional omputation ost, it is possible to onsider more than onereferene point. The distane funtion orresponds then to the distane to the set ofthese points. The orresponding Voronoï diagram an be seen as a dual mesh, andthe minimum of the distane funtion on eah edge of this mesh is a saddle-point:minimal distane along the edges of the mesh, maximal distane to the referenepoints.The hybrid algorithm we propose is the following:

• Compute the topologial gradient of the image (see previous setions).
• Choose N key-points; the main one will be for example the global minimum ofthe topologial gradient.
• Fast marhing: omputation of the distane funtion to all these key-points,and of the orresponding Voronoï diagram.
• Saddle-points: on eah edge of the Voronoï diagram, determine the point ofminimal distane.
• Sort all these saddle-points, from smaller to larger distane.
• For eah of these points, from smaller to larger distane, hek if it will not beused for onneting two key-points, one of whih is already onneted to twoother key-points.
• If this is not the ase, use this point as an initialization for a desent typealgorithm in order to onnet the two orresponding key-points.This algorithm learly onverges, and all the key-points are onneted to at mosttwo other key-points at onvergene. This provides a ontinuous ontour, onnetingthe key-points. It is then an approximation of one of the main ontours of the imageas it orresponds to a valley line of the topologial gradient.As seen in [26℄, it allows us to appreiably improve our inpainting algorithm. It alsoimproves the quality of the segmentation. For all other image proessing problems,there were no notieable improvements.
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2.9 Conlusions and perspetivesWe presented in this hapter many appliations in image proessing of the rakdetetion tehnique, based on the topologial gradient. It provides an exellent framefor solving all these image proessing problems. It has been suessfully applied toimage inpainting, restoration, lassi�ation and segmentation. In all these ases, weobtain exellent results and the omputing time is very small.We have also seen that this tehnique an be applied to olor images as well asgrey-level images, but also three-dimensional images, or movies, without any trouble.The theoretial omplexity, on�rmed by numerial experiments, allows us to proessmovies in nearly real time (on a dual-proessor laptop, with a ++ ode).Another interesting point is that all these algorithms rely on the same kernel, aswe always solve the same kind of PDE problems. This makes the implementationmuh more easy.Several perspetives are urrently under study. We an ite here the possibilityof taking into aount higher order di�erential operators, with the aim of a betterreonstrution of the gradient of the image. For instane, in the ase of inpaintingproblems, the inpainted image is pieewise a�ne. With the same kind of approah,we should be able to reonstrut more preisely the gradient of the image, and thenthe image itself.



Chapter 3Data assimilation: the Bak andForth Nudging (BFN) algorithmThis hapter summarizes the work presented in [8, 11, 14, 18, 21, 24, 25℄.3.1 IntrodutionThe aim of data assimilation is to ombine the observations and models, in orderto retrieve a oherent and preise state of the system from a set of disrete spaetimedata, and then to provide reliable foreasts of its evolution. Data assimilation oversall the mathematial and numerial tehniques in whih the observed informationis aumulated into the model state by taking advantage of onsisteny onstraintswith laws of time evolution and physial properties, and whih allow us to blend asoptimally as possible all the soures of information oming from theory, models andother types of data [116, 53, 163℄.Nudging is a data assimilation method that uses dynamial relaxation to adjust amodel towards observations. The standard nudging algorithm onsists of adding to thestate equations of a dynamial system a feedbak term proportional to the di�erenebetween the observation and the equivalent quantity omputed by integration of thestate equations. The model then appears as a weak onstraint, and the nudging termfores the state variables to �t as well as possible to the observations. This foringterm in the model dynamis has a tunable oe�ient that represents the relaxationtime sale. This oe�ient is hosen by numerial experimentation so as to keep thenudging terms small in omparison to the state equations, and large enough to forethe model to the observations. The nudging term an also be seen as a penalty term,whih penalizes the system if the model is too far from the observations. Note thatin the linear ase, the standard nudging method is nothing else than the Luenbergerobserver, also alled asymptoti observer [129℄.The nudging method is a �exible assimilation tehnique, and omputationallymuh more eonomial than variational data assimilation methods [123℄. First usedin meteorology [106℄, the nudging method has been suessfully introdued in oeanog-31
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raphy in a quasi-geostrophi model [168, 170, 57℄ and has been applied to a mesosalemodel of the atmosphere with synopti-sale data [160℄. The nudging oe�ientsan be optimized by a variational method [159, 180℄, where a parameter estimationapproah is proposed to obtain optimal nudging oe�ients, in the sense that thedi�erene between the model solution and the observations is as small as possible. Aomparison between optimal nudging and Kalman �ltering an be found in [172℄. Adrawbak of this optimal nudging tehnique is that it requires the omputation of theadjoint state of the model equations, whih is not neessary in the standard nudgingmethod.The bakward nudging algorithm onsists of solving bakwards in time the stateequations of the model, starting from the observation of the system state at the �naltime of the assimilation period. A nudging term, with the opposite sign ompared tothe standard nudging algorithm, is added to the state equations, and the �nal stateomputed in the bakward integration is in fat an approximation of the initial stateof the system [1℄.The Bak and Forth Nudging (BFN) algorithm, introdued in [18℄, onsists ofsolving �rst the forward nudging equation, and then the model equation bakwardsin time with a relaxation term (with the opposite sign in omparison with the relax-ation term introdued in the forward equation). The initial ondition of this bakwardintegration is the �nal state obtained by the standard nudging method. After inte-gration of this bakward equation, one obtains an estimate of the initial state of thesystem. We then repeat these forward and bakward integrations (with the relaxationterms) until onvergene of the algorithm.Suh a forward-bakward assimilation tehnique had already been introdued in[162, 161℄. In that algorithm, at eah observation time, the values predited by themodel for the observed parameters were just replaed by the observed values. Thisorresponds to the partiular ase of our BFN algorithm where the nudging oe�ientsgo to in�nity.The BFN algorithm an be ompared to the four-dimensional variational algo-rithm (4D-VAR, see e.g. [123℄), whih also onsists of a sequene of forward andbakward integrations. In our algorithm it is useless to linearize the system, evenfor nonlinear problems, and the bakward system is not the adjoint equation but themodel equations, with an extra feedbak term that stabilizes the numerial integrationof this ill-posed bakward problem.Let us �nally mention another bak and forth data assimilation method, alled thequasi-inverse method [116℄. In that method, there are no nudging terms, and in thebakward integration, the sign of the dissipation terms is hanged for stability reasons.The idea of introduing relaxation (or nudging) terms in our algorithm enables us tokeep the dissipation terms with the orret sign in the bakward integration, as thenudging terms have a stabilizing role.In this hapter, we �rst present the standard nudging algorithm in a general ase(nonlinear model), then the nudging algorithm applied to the orresponding bak-ward model, and �nally we introdue the Bak and Forth Nudging algorithm. Wethen present some theoretial onvergene results in simpli�ed ases (full observa-
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tions) on various types of models: linear models, transport equations (both linearand nonlinear, with or without visosity). Then, we present the numerial applia-tion of this algorithm to various physial models. Finally, nudging an be seen asa partiular type of observer, and we de�ne a spei� nudging-based observer for ashallow-water model, allowing us to preserve the natural symmetries of the model, toredue the sensitivity to the observation noise, and also to orret the non-observedvariables with the observed ones. Several onlusions and perspetives are given atthe end of this hapter.3.2 �Bak and Forth Nudging� (BFN) algorithm [8, 11,18℄3.2.1 Forward nudgingIn order to simplify the notations, we assume that the model equations have beendisretized in spae by a �nite di�erene, �nite element, or spetral disretizationmethod. The time ontinuous model satis�es dynamial equations of the form:

dX

dt
= F (X), 0 < t < T, (3.1)with an initial ondition X(0) = x0. In this equation, F represents all the linear ornonlinear operators of the model equation, inluding the spatial di�erential operators.We will denote by C the observation operator, allowing us to ompare the ob-servations Xobs(t) with the orresponding C(X(t)), dedued from the state vetor

X(t). The observation operator usually involves interpolation/extrapolation, andsome hange of variables. The various measurements are not extrated at the sameloation as the model gridpoints, leading to some neessary interpolation and extrap-olation operators. Also, satellites do not observe the physial variables of the model(e.g. temperature, veloity, . . . ) but some other physial parameters, that an berelated to the model state: for instane, many satellites measure radianes, that anbe related to the sea surfae height or temperature. We do not partiularly assumethat C is a linear operator.If we apply nudging to the model (3.1), we obtain
dX

dt
= F (X) +K(Xobs − C(X)), 0 < t < T, (3.2)with the same initial ondition, and where K is the nudging (or gain) matrix. Notethat it may also be a nudging salar oe�ient in some simple ases. The modelthen appears as a weak onstraint, and the nudging term fores the state variablesto �t as well as possible to the observations. In the linear ase (where F is a matrix,and C is a linear operator), the forward nudging method is nothing else than theLuenberger observer [129℄, also alled asymptoti observer, where the matrix K anbe hosen so that the error goes to zero when time goes to in�nity. Unfortunately, inmost geophysial appliations, the assimilation period is not long enough to have thenudging method give good results.
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3.2.2 Bakward nudgingWe now assume that we have a �nal ondition in equation (3.1) instead of aninitial ondition. This leads to the following bakward equation:

dX̃

dt
= F (X̃), T > t > 0, (3.3)with a �nal ondition X̃(T ) = x̃T . The bakward nudging algorithm onsists of solv-ing bakwards in time the state equations of the model, starting from the observationof the system state at the �nal time [1℄. If we apply nudging to this bakward modelwith a feedbak term of the opposite sign (in order to have a well posed problem), weobtain

dX̃

dt
= F (X̃) −K ′(Xobs − C(X̃)), T > t > 0, (3.4)where K ′ is the bakward nudging matrix.The bakward integration of this equation provides a state vetor at time t = 0,whih an be seen as an identi�ed initial ondition for our data assimilation period.3.2.3 BFN algorithmThe bak and forth nudging algorithm, introdued in [18℄, onsists of �rst solvingthe forward nudging equation and then the bakward nudging equation. The initialondition of the bakward integration is the �nal state obtained after integration ofthe forward nudging equation. At the end of this proess, one obtains an estimate ofthe initial state of the system. We repeat these forward and bakward integrations(with the feedbak terms) until onvergene of the algorithm:

k ≥ 1





dXk

dt
= F (Xk) +K(Xobs − C(Xk)),

Xk(0) = X̃k−1(0),

k ≥ 1





dX̃k

dt
= F (X̃k) −K ′(Xobs − C(X̃k)),

X̃k(T ) = Xk(T ),

(3.5)
with the notation X̃0(0) = x0.If K = K ′ and if the forward and bakward trajetories Xk(t) and X̃k(t) onvergetowards the same limit trajetory X∞(t), then it is lear by adding the two equa-tions of (3.5) that X∞(t) also sati�es the model equation (3.1), and that K(Xobs −
C(X∞)) = 0.When the observations are disrete in time, i.e. the observation vetor Xobs isonly available at some times (ti)i=1...N , then the nudging term is only added at thesetime steps:

dX

dt
= F (X) +

N∑

i=1

K(Xobs − C(X))δ(t− ti), 0 < t < T. (3.6)
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3.2.4 Choie of the nudging matries and interpretationVariational interpretation of the nudgingThe standard nudging method has been widely studied in the past deades [106,168, 160, 159℄. Thus, there are several ways to hoose the nudging matrix K in theforward part of the algorithm. One an for example onsider the optimal nudgingmatrix Kopt, as disussed in [180, 172℄. In suh an approah, a variational dataassimilation sheme is used in a parameter estimation mode to determine the optimalnudging oe�ients. This hoie theoretially provides the best results for the forwardpart of the BFN sheme, but the omputation of the optimal gain matrix is ostly.When K = 0, the forward nudging problem (3.2) simply beomes the diret model(3.1). On the other hand, setting K = +∞ fores the state variables to be equal tothe observations at disrete times, as is done in [162, 161℄. These two hoies have theommon drawbak of onsidering only one of the two soures of information (modeland data).Let us assume that we know the statistis of errors on observations, and denote by
R the ovariane matrix of observation errors. This matrix is involved in all standarddata assimilation, either variational (3D-VAR, 4D-VAR, 4D-PSAS, . . . ) or sequential(Kalman �lters) [78, 90, 144, 99, 100℄. Usually, it is impossible to know the exatstatistis of errors, and thus only an approximation of R is available, assumed to besymmetri positive de�nite.We assume here the diret model to be linear (or linearized). We onsider atemporal disretization of the forward nudging problem (3.2), using for example animpliit sheme. If we denote by Xn the solution at time tn and Xn+1 the solutionat time tn+1, and ∆t = tn+1 − tn, then equation (3.2) beomes

Xn+1 −Xn

∆t
= FXn+1 +K(Xobs − CXn+1). (3.7)We now set the nudging matrix to be
K = CTR−1. (3.8)Then, it is straightforward to see that problem (3.7) is equivalent to the followingoptimization problem:

Xn+1 = argmin
X

[
1

2
〈X −Xn, X −Xn〉 − ∆t

2
〈FX,X〉 (3.9)

+
∆t

2
〈R−1(Xobs − CX), Xobs − CX〉

]
.The �rst two terms orrespond exatly to the energy of the disretized diret model,and the last term is the observation part of the variational ost funtion. This vari-ational priniple shows that at eah time step, the nudging state is a ompromisebetween minimizing the energy of the system and the distane to the observations.
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As a onsequene, there is no need to onsider an additional term ensuring aninitial ondition lose to the bakground state like in variational algorithms, neitherfor stabilizing or regularizing the problem, nor from a physial point of view. One ansimply initialize the BFN sheme with the bakground state, without any informationon its statistis of errors.The nudging method naturally provides a orretion to the model equations fromthe observations. The model equations are hene weak onstraints in the BFN sheme.In some nonlinear ases, the 〈FX,X〉 term in equation (3.9) an be replaed by

−G(X), where G is the energy of the system at equilibrium.Sequential interpretationIt is also possible to give a sequential interpretation of the standard nudgingalgorithm by seeing it as a Kalman �lter. Indeed, when no observations are available,the nudging method simply onsists of solving the model equations, like Kalman�lters. On the other hand, when some observations are available, in both nudgingand Kalman �lters, the model solution is orreted with the innovation vetor, i.e.the di�erene between the observations and the orresponding model state [8℄.If at any time, the nudging matries are set in an optimal way, then the standardnudging method is equivalent to the standard Kalman �lter. In the other ases, itan be seen as a suboptimal Kalman �lter. However, the iterative and alternativeresolutions of forward and bakward models appreiably improves the e�ieny ofthe standard nudging method.Pole assignment method and bakward nudging matrixThe goal of the bakward nudging term is both to have a bakward data as-similation system and to stabilize the integration of the bakward system (3.4), asthis system is usually ill posed. The hoie of the bakward nudging matrix is thenimposed by this stability ondition.If we onsider a linearized situation, in whih the system and observation operators(F and C, respetively) are linear, and if we make the hange of time variable t′ =
T − t, then the bakward equation an be rewritten as

− dX̃

dt′
= FX̃ −K ′(Xobs − CX̃). (3.10)Then, the matrix to be stabilized is −F − K ′C, i.e. the eigenvalues of this matrixshould have negative real parts.We now reall the pole assignment result (see e.g. [80, 41, 60, 167℄):Theorem 3.1 If (F,C) is an observable system, where F is a n × n matrix and Cis a m× n matrix (here n is the size of the ontrol vetor X and m is the size of theobservation vetor Xobs), then there exists at least one matrix K ′ suh that −F −K ′Cis a Hurwitz matrix, i.e. all its eigenvalues are in the negative half-plane.
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We should also reall that (F,C) is an observable system if and only if the rankof [C,CF, . . . , CFn−1] is equal to n. Hene, we an assume that there exists at leastone matrix K ′ suh that the bakward nudging system (3.4) is stable. However, suha matrix K ′ may be hard to ompute, as it usually requires the resolution of a Riatiequation.3.3 Numerial experiments [11, 14, 21℄3.3.1 Numerial hoie of the nudging matriesAll numerial experiments have been performed with an easy-to-implement nudg-ing matrix:

K = CT (kI) = kCT , (3.11)where k is a positive salar gain, and I is the identity matrix of the observationspae. This hoie is motivated by the following remarks. First, the ovarianematrix of observation errors is usually not well known (but if it is available, then oneshould onsider equation (3.8) for the de�nition of K). Seondly, this hoie doesnot require a ostly numerial integration of a parameter estimation problem for thedetermination of the optimal oe�ients. Choosing K = CTL, where L is a squarematrix in the observation spae, has another interesting property: if the observationsare not loated at a model grid point, or are a funtion of the model state vetor, i.e.if the observation operator C involves interpolation/extrapolation or some hange ofvariables, then the nudging matrix K will ontain the adjoint operations, i.e. someinterpolation/extrapolation bak to the model grid points, or the inverse hange ofvariable.As in the forward part of the algorithm, for simpliity reasons we make the fol-lowing hoie for the bakward nudging matrix K ′:
K ′ = CT (k′I) = k′CT . (3.12)The only parameters of the BFN algorithm are then the oe�ients k and k′.In the forward mode, k > 0 is usually hosen suh that the nudging term remainssmall in omparison with the other terms in the model equation. The oe�ient k′is usually hosen to be the smallest oe�ient that makes the numerial bakwardintegration stable.3.3.2 Experimental approahThe same approah has been used for all the numerial experiments. This ap-proah onsists of performing twin experiments with simulated data. First, a refer-ene experiment is run and the orresponding data are extrated. From now on thisreferene trajetory will be alled the exat solution. Experimental data are supposedto be obtained every nx gridpoints of the model, and every nt time steps. The sim-ulated data are then optionally noised with a Gaussian white noise distribution, andprovided as observations to the assimilation sheme.
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The �rst guess of the assimilation experiments is hosen to be either a onstant�eld or the referene model state some time before the beginning of the assimilationperiod. Finally, the results of the assimilation proess are ompared with the exatsolution.3.3.3 Physial modelsIn this setion, we brie�y desribe the various models on whih the BFN algorithmhas been implemented and ompared with other data assimilation methods. For eahexperiment, we refer to some referenes for the details and results of the orrespondingnumerial experiments.Lorenz equationsThe BFN algorithm has been tested on Lorenz' haoti system [127℄:





dx

dt
= 10(y − x),

dy

dt
= 28x− y − xz,

dz

dt
= −8

3
z + xy.

(3.13)The Lorenz attrator is a nonlinear three-dimensional struture orresponding tothe long-term behaviour of a haoti �ow, noted for its butter�y shape. Several numer-ial experiments, onvergene results, and omparisons with the standard variationaldata assimilation method are presented in [11℄.1-D visous Burgers' equationWe have then onsidered a very simple nonlinear geophysial model. The evolutionmodel is the visous Burgers' equation over a one-dimensional yli domain:
∂X

∂t
+

1

2

∂(X2)

∂s
− ν

∂2X

∂s2
= 0, (3.14)where X is the state variable, s represents the distane in meters around the 45oNonstant-latitude irle, and t is the time. The sampling of the observations providea spatial and temporal density similar to the longitudinal distribution of the mid-latitude radiosonde network. The period of the domain, the di�usion oe�ient, andthe length of the assimilation period also make the situation as realisti as possible.Note that this system is nonlinear and the visosity makes it irreversible. How-ever, it is possible to stabilize the bakward resolution with the nudging term. Thenumerial and onvergene results, as well as the omparison with the variationalsheme, are detailed in [11℄. Some other numerial experiments and omparisons aredetailed in [21℄ in a slightly di�erent situation (i.e. di�erent physial parameters).
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Shallow water modelThe shallow water model (or Saint-Venant's equations) is a basi model, repre-senting quite well the temporal evolution of geophysial �ows. This model is usuallyonsidered for simple numerial experiments in oeanography, meteorology or hydrol-ogy. The shallow water equations are a set of three equations, desribing the evolutionof a two-dimensional horizontal �ow. These equations are derived from a vertial in-tegration of the three-dimensional �elds, assuming the hydrostati approximation,i.e. negleting the vertial aeleration. There are several ways to write the shallowwater equations, onsidering either the geopotential or height or pressure variables.We onsider here the following on�guration:





∂tu− (f + ζ)v + ∂xB =
τ

ρ0h
− ru+ ν∆u,

∂tv + (f + ζ)u+ ∂yB =
τ

ρ0h
− rv + ν∆v,

∂th+ ∂x(hu) + ∂y(hv) = 0,

(3.15)where ζ = ∂xv − ∂yu is the relative vortiity, B = g∗h +
1

2
(u2 + v2) is the Bernoullipotential, g∗ is the redued gravity, f is the Coriolis parameter (in the β-plane ap-proximation), ρ0 is the water density, r is the frition oe�ient, and ν is the visosity(or dissipation) oe�ient. The unknowns are u and v the horizontal omponents ofthe veloity, and h the geopotential height. Finally, τ is the foring term of the model(e.g. the wind stress) [56℄.Many numerial experiments and omparisons with the variational sheme arepresented in [14℄. This artile also reports the results of an hybridization between theBFN and variational shemes.Layered quasi-geostrophi oean modelWe have �nally onsidered a layered quasi-geostrophi oean model [107, 169, 57℄.This model arises from the primitive equations (onservation laws of mass, momen-tum, temperature and salinity), assuming �rst that the rotational e�et (Coriolisfore) is muh stronger than the inertial e�ets. The Rossby number, ratio betweenthe harateristi time of the Earth's rotation and the inertial time, must then besmall ompared to 1. Seond, the thermodynami e�ets are ompletely negletedin this model. Quasigeostrophy assumes that the horizontal dimension of the oeanis small ompared to the size of the Earth, with a ratio of the order of the Rossbynumber. We �nally assume that the depth of the basin is small ompared to its width.In the ase of the Atlanti Oean, not all these assumptions are valid, notably thehorizontal extension of the oean. But it has been shown that the quasi-geostrophiapproximation is fairly robust in pratie, and that this approximate model repro-dues quite well the oean irulations at mid-latitudes, suh as the jet stream (e.g.Gulf Stream in the ase of the North Atlanti Oean) and oean boundary urrents.
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The model system is then omposed of n oupled equations resulting from theonservation law of the potential vortiity. The equations an be written as:

D1 (θ1(Ψ) + f)

Dt
+A4∇6Ψ1 = F1 in Ω×]0, T [, (3.16)at the surfae layer (k = 1);

Dk (θk(Ψ) + f)

Dt
+A4∇6Ψk = 0 in Ω×]0, T [, (3.17)at the intermediate layers (k = 2, . . . , n− 1);

Dn (θn(Ψ) + f)

Dt
+A1∆Ψn +A4∇6Ψn = 0, (3.18)in Ω×]0, T [, at the bottom layer (k = n).

Ω is the irulation basin, ψk is the stream funtion at layer k, θk is the sum of thedynamial and thermal vortiities at layer k, f is the Coriolis fore, and the dissipativeterms orrespond to the lateral frition and the bottom frition dissipation. Finally,
F1 is the foring term of the model, the wind stress applied to the oean surfae. Werefer to [107, 169, 57℄ for more details about this model and its equations.We refer to [11℄ for the reports of numerial simulations on this model: onver-gene, omparison with the 4D-VAR algorithm, sensitivity studies, . . .3.3.4 Conlusions emerging from the numerial experimentsThe BFN algorithm appears to be a very promising data assimilation method. It isextremely easy to implement: no linearization of the model equations, no omputationof the adjoint state, no optimization algorithm. The only neessary work is to add arelaxation term to the model equations. The key point in the bakward integration isthat the nudging term (with the opposite sign to the forward integration one) makesit numerially stable. Hene the nudging (or relaxation) term has a double role: itfores the model to the observations and it stabilizes the numerial integration. It issimultaneously a penalization and regularization term.The BFN algorithm has been ompared with the variational method on severaltypes of non-linear systems: Lorenz (haoti 1D ODE), Burgers (1D PDE), shallowwater model (2D) and quasi-geostrophi model (3D). The onlusion of these variousexperiments is that the BFN algorithm is better than the variational method for thesame number of iterations (and hene for the same omputing time). It onverges in asmall number of iterations. Of ourse the initial ondition is usually poorly identi�edby the BFN sheme, but on the other hand, the �nal state of the assimilation periodis muh better identi�ed by the BFN algorithm than by the variational assimilationalgorithm, whih is a key point for the predition phase that starts at the end of theassimilation period. Hene the predition phase is usually better when it omes after
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an assimilation period treated by the BFN algorithm, rather than by a variationalassimilation method.The two algorithms an be ombined: we have introdued a new hybrid sheme,in whih a very small number of BFN iterations are performed (2 or 3 for instane),before providing the identi�ed initial ondition to the standard 4D-VAR algorithm.By doing this, the onvergene of the 4D-VAR is reahed more quikly, as it sometimesdivides by two the number of iterations required. Also, for a �xed given number ofiterations (or for a given omputation time), the quality of the identi�ed solutionis signi�antly improved by this preproessing (note that the number of 4D-VARiterations is dereased by the number of BFN iterations in this sheme, in orderto onsider the same number of iterations in the standard 4D-VAR and the hybridsheme).Finally the BFN algorithm enables one to onsider the problem of imperfet mod-els at no additional ost, as the model equations are not strong onstraints in thisnudging method (while they are usually strong onstraints in a variational method)and the relaxation term an be seen as a model error term.3.4 Theoretial onvergene results [18, 24℄3.4.1 Linear aseWe onsider here a linear situation, although simple, that desribes quite well howthe BFN algorithm works. We assume that the observation operator C is equal tothe identity, and that the model F is linear. We also assume that F and K ommute.Note that this assumption is valid in our experiments as K is set proportional to theidentity matrix. In this pretty simple situation, we an expliit the BFN trajetories.For the sake of onision and larity, we assume that K ′ = K, but the followingresults remain valid if K ′ 6= K. We �nally assume that the length of the assimilationperiod is T > 0.Then, for all n > 1,
Xn(0) =

(
I − e−2KT

)−1 (
I − e−2nKT

) ∫ T

0

(
e−(K+F )s + e−2KT e(K−F )s

)
KXobs(s)ds

+e−2nKTx0 (3.19)and for all t ∈ [0, T ],
Xn(t) = e−(K−F )t

∫ t

0
e(K−F )sKXobs(s)ds+ e−(K−F )tXn(0). (3.20)The following result proves the existene of a limit trajetory [18℄:Theorem 3.2 If n→ +∞, then Xn(0) onverges and

lim
n→+∞

Xn(0) = X∞(0) =
(
I − e−2KT

)−1
∫ T

0

(
e−(K+F )s + e−2KT e(K−F )s

)
KXobs(s)ds.(3.21)
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Moreover, if T > 0, for any t ∈ [0, T ],

lim
n→+∞

Xn(t) = X∞(t) = e−(K−F )t

∫ t

0
e(K−F )sKXobs(s)ds+ e−(K−F )tX∞(0). (3.22)Under the same hypothesis, we have a similar result for bakward trajetories, i.e.there exists a funtion X̃∞(t) suh that lim
n→+∞

X̃n(t) = X̃∞(t), for all t ∈ [0, T ]. Thisproves the onvergene of the BFN algorithm in suh a situation.Note that the limit funtion X∞ (resp. X̃∞) is totally independent of the initialondition x0 of the algorithm.Moreover, if the observations are perfet, i.e. Xobs satis�es the diret modelequation (3.1), then for all t ∈ [0, T ],
Xobs(t) = eFtXobs(0). (3.23)It is then straightforward to see in equations (3.21) and (3.22) that

lim
n→∞

Xn(t) = Xobs(t), ∀t ∈ [0, T ]. (3.24)The BFN algorithm also has a similar behaviour on linear paraboli operators inin�nite dimension (e.g. the heat operator). A Fourier deomposition of the trajeto-ries allows us to study only �rst order ordinary di�erential equations, and gives thenthe onvergene of the algorithm.3.4.2 Transport equationsIn this setion, we only onsider one iteration of the bak and forth nudgingalgorithm, i.e. one forward and one bakward resolution with nudging terms. Theidea onsists of studying the derease of the error (between the BFN trajetory andthe true solution) during one iteration. All the results an then be extended very easilyto an arbitrary number of BFN iterations. For instane, if the error dereases by aonstant fator of less than 1 during one iteration, then the algorithm is ontrativeand the error dereases exponentially to 0 with the iterations.We refer to [24℄ for the proofs of all the following results.Linear visous transportWe �rst onsider a linear visous transport equation.
(F )





∂tu− ν∂xxu+ a(x)∂xu = −K(u− uobs),
u|x=0 = u|x=1 = 0,

u|t=0 = u0,

(B)





∂tũ− ν∂xxũ+ a(x)∂xũ = K ′(ũ− uobs),
ũ|x=0 = ũ|x=1 = 0,

ũ|t=T = u(T ),

(3.25)where the following notations hold for all further ases:
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• the time period onsidered here is t ∈ [0, T ];
• the �rst equation (F ) is alled the forward equation, the seond one (B) is alledthe bakward one;
• K and K ′ are positive funtions, and may depend on t and x, but for simpliityreasons, we will always assume that there exists a onstant κ ∈ R

∗
+ suh that

K ′(t, x) = κK(t, x);
• a(x) ∈W 1,∞(Ω), Ω being the onsidered spae domain, either the interval [0, 1]or the torus [0, 1];
• the visosity oe�ient ν > 0 is onstant;
• the observation funtion uobs is a solution of the forward equation (without anynudging term) with initial ondition u0

obs:




∂tuobs − ν∂xxuobs + a(x)∂xuobs = 0,
u|x=0 = u|x=1 = 0,

u|t=0 = u0
obs.

(3.26)Then, the following result holds true for linear visous transport equations [24℄:Theorem 3.3 We onsider one step of the BFN algorithm (3.25) with observations
uobs satisfying equation (3.26). We denote

w(t) = u(t) − uobs(t),
w̃(t) = ũ(t) − uobs(t),

(3.27)the forward and bakward errors.1. If K(t, x) = K, then for all t ∈ [0, T ]:
w̃(t) = e(−K−K′)(T−t)w(t). (3.28)2. If K(t, x) = K(x), with Support (K) ⊂ [a, b] where a < b and a 6= 0 or b 6= 1,then equation (3.25) is ill-posed: there does not exist a solution (u, ũ) in general.3. If K(t, x) = K1[t1,t2](t) with 0 ≤ t1 < t2 ≤ T , then we have
w̃(0) = e(−K−K′)(t2−t1)w(0). (3.29)This result shows that, when applied to linear visous transport equations, theBFN algorithm onverges if the feedbak ats on the entire domain. For instane, inthe �rst point of theorem 3.3, equation (3.28) shows that the error has been dereasedby a fator of e(−K−K′)T during one iteration. Thus, the error dereases by a fatorof e−N(K+K′)T during N iterations. As K > 0 (or K ′ > 0) and T > 0, this learlyproves the onvergene of the BFN algorithm in this ase. On the ontrary, if apart of the spae domain is not observed (i.e. the support of K does not over theentire domain), then the algorithm does not onverge as the di�usion term annot beontrolled and the bakward resolution is ill-posed.
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Visous BurgersWe now onsider the visous Burgers' equation, a standard nonlinear transportequation. We also onsider only one iteration of the BFN algorithm:

(F )





∂tu− ν∂xxu+ u∂xu = −K(u− uobs),
u|x=0 = u|x=1 = 0,

u|t=0 = u0,

(B)





∂tũ− ν∂xxũ+ ũ∂xũ = K ′(ũ− uobs),
ũ|x=0 = ũ|x=1 = 0,

ũ|t=T = u(T ),

(3.30)
with the same notations as before. The observations uobs also satisfy the forwardBurgers' equation:





∂tuobs − ν∂xxuobs + uobs∂xuobs = 0,
u|x=0 = u|x=1 = 0,

u|t=0 = u0
obs.

(3.31)Then, the following result holds true [24℄:Theorem 3.4 If K(t, x) 6≡ 0, then the BFN iteration (3.30) for visous Burgers'equation, with observations satisfying (3.31), is ill-posed, even when K(t, x) is on-stant: there does not exist, in general, a solution (u, ũ).In the partiular ase where K ≡ K ′ ≡ 0, the bakward problem is ill-posed in thesense of Hadamard (the solution does not depend ontinuously on the data), but ithas a unique solution if the �nal ondition ũ|t=T is set to a �nal solution of the diretequation. Moreover, in this partiular ase, the bakward solution is exatly equal tothe forward one: ũ(t) = u(t) for all t ∈ [0, T ]. The main result is the following [24℄:Proposition 3.1 If K ≡ K ′ ≡ 0, then problem (3.30) is well-posed in the sense ofHadamard, and there exists a unique solution (u, ũ). Moreover, u = ũ.The BFN algorithm is then ill-posed (exept if K ≡ K ′ ≡ 0) when applied to avisous Burgers' equation, as there does not exist a solution to the bakward problem.However, from the numerial point of view, the BFN algorithm has been suessfullyapplied to this model [11℄. This phenomenon is probably due to the fat that wenumerially solve a disrete problem and not the exat ontinuous one.
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Invisid linear transportWe now onsider the invisid ase for a linear transport equation. The BFNequations are:

(F )





∂tu+ a(x)∂xu = −K(u− uobs),
u|x=0 = u|x=1,

∂xu|x=0 = ∂xu|x=1,

u|t=0 = u0,

(B)





∂tũ+ a(x)∂xũ = K ′(ũ− uobs),
ũ|x=0 = ũ|x=1,

∂xũ|x=0 = ∂xũ|x=1,

ũ|t=T = u(T ),

(3.32)
where a(x) an be onstant or not. The following result holds true [24℄:Theorem 3.5 We onsider the non visous one-step BFN (3.32), with observations
uobs satisfying (3.32-F) with K = 0. We denote

w(t) = u(t) − uobs(t),
w̃(t) = ũ(t) − uobs(t).

(3.33)We denote by
(s, ψ(s, x)) (3.34)the harateristi urve of equation (3.32-F) with K = 0, with foot x in time s = 0,i.e. suh that

(s, ψ(s, x))|s=0 = (0, x). (3.35)We assume that the �nal time T is suh that the harateristis are well de�ned anddo not interset over [0, T ]. Then:1. If K(t, x) = K, then we have, for all t ∈ [0, T ],
w̃(t) = w(t)e(−K−K′)(T−t). (3.36)2. If K(t, x) = K1[t1,t2](t) with 0 ≤ t1 < t2 ≤ T , then we have
w̃(0) = w(0)e(−K−K′)(t2−t1). (3.37)3. If K(t, x) = K(x), then we have, for all t ∈ [0, T ],

w̃(t, ψ(t, x)) = w(t, ψ(t, x)) exp

(
−

∫ T

t
K(ψ(s, x)) +K ′(ψ(s, x)) ds

)
. (3.38)From this result, we dedue that the BFN algorithm applied to invisid lineartransport equation does onverge if all the domain is observed (�rst two ases oftheorem 3.5). Moreover, if the support of K does not over all the domain (third aseof theorem 3.5, e.g. when the system is not fully observed), the algorithm onverges assoon as all the harateristis interset the support of K. This onstraint is satis�edas soon as the system is observable (see remarks below proposition 3.2).
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Invisid BurgersWe �nally onsider non visous Burgers' equation, with periodi boundary ondi-tions, and for a time T suh that there is no shok in the interval [0, T ]:

(F )





∂tu+ u∂xu = −K(u− uobs),
u|x=0 = u|x=1,

∂xu|x=0 = ∂xu|x=1,

u|t=0 = u0,

(B)





∂tũ+ ũ∂xũ = K ′(ũ− uobs),
ũ|x=0 = ũ|x=1,

∂xũ|x=0 = ∂xũ|x=1,

ũ|t=T = u(T ).

(3.39)
Then, the following result holds true [24℄:Theorem 3.6 We onsider one step of the BFN algorithm applied to the non visousBurgers' equation (3.39), with observations uobs satisfying (3.39-F) with K = 0. Wedenote

w(t) = u(t) − uobs(t),
w̃(t) = ũ(t) − uobs(t).

(3.40)We assume that uobs ∈W 1,∞([0, T ] × Ω), i.e. there exists M > 0 suh that
|∂xuobs(t, x)| ≤M, ∀t ∈ [0, T ],∀x ∈ Ω. (3.41)Then:1. If K(t, x) = K, then we have, for all t ∈ [0, T ],

‖w̃(t)‖ ≤ e(−K−K′+M)(T−t)‖w(t)‖. (3.42)2. If K(t, x) = K1[t1,t2](t) with 0 ≤ t1 < t2 ≤ T , then we have
‖w̃(0)‖ ≤ e(−K−K′)(t2−t1)+MT ‖w(0)‖. (3.43)Proposition 3.2 We onsider one forward (resp. bakward) BFN step of the nonvisous Burgers' equation (3.39-F) (resp. (3.39-B)). With the notations of theorem3.6, if K(t, x) = K(x), then we have

w(T, ψ(T, x)) = w(0, x) exp

(
−

∫ T

0
K(ψ(σ, x))dσ −

∫ T

0
∂xuobs(σ, ψ(σ, x))dσ

)
.(3.44)
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Remark: For the speial ase K(t, x) = K(x) = K1[a,b](x), where K is a onstantand [a, b] is a sub-interval of [0, 1], we have

w(T, ψ(T, x)) = w(0, x) exp

(
−Kχ(x) −

∫ T

0
∂xuobs(σ, ψ(σ, x))dσ

)
, (3.45)where

χ(x) =

∫ T

0
1Supp(K)(ψ(σ, x))dσ (3.46)is the time during whih the harateristi urve ψ(σ, x) with foot x of equation(3.39-F) with K = 0 lies in the support of K.The system is then observable if and only if the funtion χ has a non-zero lowerbound, i.e. m := min

x
χ(x) > 0, the observability being de�ned by (see e.g. [147℄):

∃C,∀u solution of (3.39-F) with K = 0, ‖u(T, .)‖2 ≤ C

∫ T

0
‖K(.)u(s, .)‖2 ds.(3.47)In this ase, proposition 3.2 proves the global exponential derease of the error, pro-vided K is larger than MT

m
, where M is de�ned by equation (3.41).From this remark, we an easily dedue that if for eah iteration, both in theforward and bakward integrations, the observability ondition is satis�ed, then thealgorithm onverges and the error dereases exponentially to 0. Note that this is nota neessary ondition, as even if χ(x) = 0, the last exponential of equation (3.45) isbounded.Remarks on the theoretial resultsIn real geophysial appliations (either meteorology or oeanography), there isusually no visosity. In this ase, assuming the observability ondition, the BFNalgorithm is well posed, and theorem 3.6 and proposition 3.2 show that the solutiontends to the observation trajetory everywhere, and not only on the support of K[24℄.From a numerial point of view, we an observe that even with disrete andsparse observations in spae, the numerial solution is orreted everywhere. We alsoobserved that, with a not too large visosity oe�ient, the behaviour of the algorithmremains unhanged [11℄.3.5 Nudging and observers [25℄In this setion, we onsider nudging as a partiular type of observers, e.g. Lu-enberger observer, or Kalman �lters [129, 114℄. In most Kalman-type �lters andobservers, the gain matries do not take into aount the symmetries of the model.They are mainly designed to provide for eah time step the optimal estimate of thesystem state. However, it seems interesting to preserve the model symmetries while
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adding a nudging term in the equations. Inspired by the reent works in observer de-sign, we de�ne symmetry-preserving nudging (or feedbak) terms for a shallow-watermodel. This setion summarizes the work presented in [25℄.3.5.1 Observers for a shallow water modelWe onsider here a shallow water model, similar to the model introdued in setion3.3.3. However, the equations are rewritten in order to learly see the symmetries.We refer to [113℄ for more details about these equations. In the following, h is the�uid height, and v is the bi-dimensional veloity �eld. The equations write:
∂(hv)

∂t
+ (∇.(hv) + (hv).∇) v = −g′h∇h− k × f(hv) + (A∇2 −R)(hv) +

τ̃

ρ
i (3.48)for the vetorial veloity, and

∂h

∂t
= −∇.(hv) (3.49)for the salar height. In these equations, g′ represents the redued gravity, ρ is the�uid density, f is the Coriolis parameter, i is the longitudinal unit vetor (pointingtowards East) and k is the upward unit vetor. Finally, R, A and τ̃ represent frition,lateral visosity, and the foring term (zonal wind stress) respetively.We assume that the physial system is observed by several satellites that providemeasurements of the sea surfae height (SSH) h only.An observer (ĥ, v̂) for the system (3.48-3.49) writes:

∂(ĥv̂)

∂t
+

(
∇.(ĥv̂) + (ĥv̂).∇

)
v̂ = −g′ĥ∇ĥ−k×f(ĥv̂)+(A∇2−R)(ĥv̂)+

τ̃

ρ
i+Fv(h, v̂, ĥ)(3.50)and

∂ĥ

∂t
= −∇.(ĥv̂) + Fh(h, v̂, ĥ). (3.51)The only di�erene between the observer and model equations omes from the inno-vation terms Fv(h, v̂, ĥ) and Fh(h, v̂, ĥ). The orretion terms must vanish when theestimated height ĥ is equal to the observed height h. The goal is to de�ne funtions

Fh and Fv suh that the observer tends to the true solution. Moreover, these feedbakterms also have to preserve the symmetries of the model.3.5.2 Invariant orretion termsThe shallow-water equations do not depend neither on the orientation nor onthe origin of the frame in whih the oordinates are expressed: they are invariantunder the ation of SE(2), the Speial Eulidean group of isometries of the plane
R

2. Consequently, funtions Fh and Fv must be invariant under the ation of SE(2).Symmetries have been very reently introdued for observer design in [28, 59℄ forengineering problems. The aim of this work is to onsider orretion terms thatrespet the underlying physis of the system.
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To �nd the salar term Fh, we use the standard result (see e.g. [155℄), whih statesthat any salar di�erential operator invariant by rotation and translation writes Q(∆),where Q is a polynomial and ∆ is the Laplaian. By onsidering the invariane byrotation for the vetorial veloity [139℄, we get the following family of salar terms:

Fh = Q1(∆, h, |v̂|2, ĥ− h) + ∇
(
Q2(∆, h, |v̂|2, ĥ− h)

)
.v̂ + fh, (3.52)where Q1 and Q2 are salar polynomials in ∆, and fh is an integral term de�nedbelow. More preisely,

Qi(∆, h, |v̂|2, ĥ− h) =
N∑

k=0

ai
k(h, |v̂|2, ĥ− h)∆k

(
bik(h, |v̂|2, ĥ− h)

)
, (3.53)where ai

k and bik are smooth salar funtions suh that
ai

k(h, |v̂|2, 0) = bik(h, |v̂|2, 0) = 0. (3.54)For the vetorial orretion term Fv, we use the vetorial ounterpart:
Fv = P1(∆, h, |v̂|2, ĥ− h)v̂ + ∇

(
P2(∆, h, |v̂|2, ĥ− h)

)
+ fv, (3.55)where P1 and P2 are polynomials in ∆, like Q1 and Q2.Let us now �nd the integral terms fv and fh that are invariant by rotation andtranslation. They an be expressed as a onvolution between the previous invariantdi�erential terms and a two-dimensional kernel ψ(ξ, ζ). The previous terms beinginvariant by rotation, the value of the kernel should not depend on a partiular di-retion, and so ψ must be a funtion of the invariant ξ2 + ζ2. The integral orretionterms write:

fv(x, y, t) =

∫∫ [
R1(∆, h, |v̂|2, ĥ− h)v̂ + ∇

(
R2(∆, h, |v̂|2, ĥ− h)

)]

(x−ξ,y−ζ,t)
φv(ξ

2+ζ2) dξdζ,(3.56)
fh(x, y, t) =

∫∫ [
S1(∆, h, |v̂|2, ĥ− h) + ∇

(
S2(∆, h, |v̂|2, ĥ− h)

)
.v̂

]

(x−ξ,y−ζ,t)
φh(ξ2+ζ2) dξdζ,(3.57)where Ri and Si are de�ned like Qi and Pi.The support of φv (resp. φh) is a subset of R. Its harateristi size de�nes azone in whih it is signi�ant to orret the estimation with the measurements. Theintegral formulation is atually quite general: if φv and φh are set equal to Dirafuntions, one obtains the di�erential terms.3.5.3 Convergene study on a linearized simpli�ed systemIn order to avoid the ampli�ation of the measurement noise by a di�erentiationproess, only the integral orretion terms are kept: one sets Q1 = Q2 = P1 = P2 = 0,

R1 = S2 = 0 and S2 = R1 = h− ĥ.
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For the sake of larity, we now simplify the model equations, by assuming thatthere is no Coriolis fore, no frition, no dissipation, and no wind stress. An observerfor this simpli�ed system satis�es then:

∂ĥ

∂t
= −∇(ĥv̂) + φh ∗ (h− ĥ), (3.58)

∂v̂

∂t
= −v̂∇v̂ − g∇ĥ+ φv ∗ ∇(h− ĥ). (3.59)Note that in the degenerate ase where φh = Khδ0 and φv = Kvδ0, Kh and Kvbeing positive salars, we �nd the standard nudging terms, or Luenberger observer.As it seems di�ult to �rst study the onvergene on the nonlinear system, wenow linearize the equations around an equilibrium position h = h̄ and v = v̄. We onlyonsider small veloities δv = v− v̄ ≪

√
gh̄ and heights δh = h− h̄≪ h̄, where h̄ and

v̄ = 0 represent the equilibrium height and speed respetively. We denote by h̃ (resp.
ṽ) the estimation errors, di�erenes between the observer and true solution, for theheight (resp. veloity). These errors are solution of the following linear equations:

∂h̃

∂t
= −h̄∇ṽ − φh ∗ h̃, (3.60)

∂ṽ

∂t
= −g∇h̃− φv ∗ ∇h̃. (3.61)A reasonable hoie for the kernels φh and φv is the following:

φh(x, y) = βh exp(−αh(x2 + y2)), (3.62)
φv(x, y) = βv exp(−αv(x

2 + y2)), (3.63)as one usually assumes that the observation error is a white Gaussian noise. However,the following onvergene results an be extended to more general kernel funtionsde�ned by
φh(x, y) = (f(x) ∗ f(x)) (f(y) ∗ f(y)), (3.64)
φv(x, y) = (g(x) ∗ g(x)) (g(y) ∗ g(y)), (3.65)(3.66)where f and g are smooth even funtions, all their Fourier oe�ients being stritlypositive.Eliminating the veloity ṽ in equations (3.60-3.61) leads to a modi�ed dampedwave equation with external visous damping:
∂2h̃

∂t2
= gh̄∆h̃+ h̄ φv ∗ ∆h̃− φh ∗ ∂h̃

∂t
. (3.67)Equation (3.67) an be rewritten in the following way:

∂2h̃

∂t2
= φv ∗ ∆h̃− φh ∗ ∂h̃

∂t
, (3.68)
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if φv is now the following funtion

φv(x, y) = gh̄δ0 + h̄ βv exp(−αv(x
2 + y2)), (3.69)where δ0 is the Dira measure at the origin.Then, we have the following result [25℄:Theorem 3.7

lim
t→+∞

∫

Ω


‖∇h̃‖2 +

∣∣∣∣∣
∂h̃

∂t

∣∣∣∣∣

2

 = 0. (3.70)This result proves the strong and asymptoti onvergene of the error h̃ towards 0,and then it also gives the same onvergene for ṽ. We dedue that the observer tendsto the true state when time goes to in�nity. Note that even if only the height isobserved, all variables are orreted.A dimensional analysis also provides the following gain tuning (see equations (3.62)and (3.69)):

βh = 2ξ0ω0, h̄βv = L2
0ω

2
0 − gh̄, (3.71)where ω0 and L0 are harateristi pulsation and length of the �ow respetively, and

ξ0 is the damping oe�ient of the system equation. Moreover, α−2
h = α−2

v is the sizeof the region of in�uene. This region an be related to the level of observation noise,and to the spatial density of the observations.3.5.4 Numerial experimentsThe results of many numerial simulations on both the linearized and nonlinearshallow water models are reported in [25℄. The following feedbak terms have beenonsidered: φh ∗ (h− ĥ) for the �uid height, and φv ∗∇(h− ĥ) for the veloity, where
φh and φv are de�ned by equations (3.62) and (3.63). Several values of the parameters
αh, αv, βh and βv are onsidered, as well as several levels of observation noise. Aomparison between the standard nudging (or Luenberger observer) and this observeris also given in [25℄.All these simulations show the interest of suh a hoie of invariant gains. Theyprovide better results than the standard nudging, even on the nonlinear system, be-ause the error onverges faster, the residual error is smaller, and noise is better�ltered. Indeed the observer is nearly insensible to gaussian white noise. The numer-ial experiments also on�rm that, as predited by the theory, it is possible to orretthe non-observed variables with the observed ones, thanks to model oupling.Note that the omputational ost of suh an observer is not muh larger than forthe standard nudging, as we have onsidered a trunated onvolution integral insteadof the omplete onvolution over the whole domain. The trunation radius an be setequal to at most 10 pixels in similar experiments.Several other gain funtions should now be studied to see if it is possible to �lterother types of observation noise. Some experiments will also be arried out in thease of sparse observations, both in time and spae.
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3.6 ConlusionThe BFN algorithm appears to be a very promising data assimilation method. It isextremely easy to implement: no linearization of the model equations, no omputationof the adjoint state, no optimization algorithm. The only neessary work is to add arelaxation term to the model equations. The key point in the bakward integration isthat the nudging term (with the opposite sign to the forward integration one) makesit numerially stable. Hene the nudging (or relaxation) term has a double role: itfores the model to the observations and it stabilizes the numerial integration. It issimultaneously a penalization and regularization term.The BFN algorithm has been ompared with the variational method on severaltypes of non-linear and turbulent systems. The onlusion of the various experimentsis that the BFN algorithm is better than the variational method for the same numberof iterations (and hene for the same omputing time). It onverges in a small numberof iterations. Of ourse the initial ondition is usually poorly identi�ed by the BFNsheme, but on the other hand, the �nal state of the assimilation period is muh betteridenti�ed by the BFN algorithm than by the variational assimilation algorithm, whihis a key point for the predition phase that starts at the end of the assimilation period.Hene the predition phase is usually better when it omes after an assimilation periodtreated by the BFN algorithm, rather than by a variational assimilation method.The two algorithms an be ombined, in the sense that one an perform severalBFN iterations before swithing to the variational method and this will onsiderablyaelerate the onvergene of the variational method. Finally the BFN algorithmenables one to onsider the problem of imperfet models at no additional ost, asthe model equations are not strong onstraints in this nudging method (while theyusually are in a variational method) and the relaxation term an be seen as a modelerror term.Finally, several theoretial results explain and justify the e�ieny of this algo-rithm in simple situations.The main perspetive is the following: the determination of the nudging oe�-ients (or matries) should be improved, partiularly by a numerial stability studyof the bakward integration. This will give the optimal nudging oe�ients thatmake the bakward integration stable, while preserving the extreme simpliity of thealgorithm.



Chapter 4Image data assimilationThis hapter summarizes the work presented in [23℄.4.1 IntrodutionThis hapter presents a study at the interfae of image proessing and data as-similation: the assimilation of images. The numerial foreast of geophysial �uidsis extremely di�ult, mainly beause they are governed by the general nonlinearequations of �uid dynamis. Over the past 20 years, observations of oean and at-mosphere irulation have beome muh more readily available, as a result of newsatellite tehniques. However, the huge amount of information provided by satelliteimages must therefore be exploited, as more and more spae-borne observations ofinreasing quality are available.Several ideas have been very reently developed to assimilate image data. A �rstidea onsists of identifying some harateristi strutures of the image and then intraking them in time. This is urrently developed in meteorology, using an adaptivethresholding tehnique for radiane temperatures in order to identify and trak severalells [135℄. Another idea is to onsider a dual problem and to reate some modelimages, oming from the numerial model itself, and to ompare the satellite imageswith these model images, using for example a urvlet approah [132℄.We propose here to de�ne a fast and e�ient way to identify, or extrat, veloity�elds from several images (or a omplete sequene of images). Assuming this point,we would then be able to obtain billions of pseudo-observations, orresponding tothe extrated veloity �elds, that ould be onsidered in the usual data assimilationproesses. The main advantage of suh an approah is to provide a lot of informationon the veloity, whih is a state variable of all geophysial models, as it is muh moreeasy to assimilate data that are diretly related to the state variables. We shouldmention that a satellite image an have a resolution of 5000 × 5000 pixels, and thatsome satellites transmit suh images every 15 to 60 minutes [103℄. We propose in thispaper a way to identify one veloity vetor for eah pixel of the image. Of ourse,we will see that all the identi�ed veloity �elds are not reliable, mainly when there is53
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no visible harateristi phenomenon, but we should be able to provide an amount ofinformation that is omparable to the urrently assimilated observations.The hypothesis that is underlying this work is that the grey level of the points arepreserved during the motion, this is known as the onstant brightness hypothesis. Theonstant brightness hypothesis was introdued in [109℄, and the linearized equationderived from this hypothesis is the ornerstone of optial �ow methods [128, 39, 47℄.This hypothesis is sometimes replaed by an integrated ontinuity equation in orderto take into aount the spreading of intensity soures [93, 94, 76, 122℄.This hypothesis is justi�ed here in the framework of oeanography, as the objetof interest, allowing us to trak the �uid and identify its veloity, is usually a passivetraer, at least on relative short time periods: hlorophyll, sea surfae temperature,hemial pollutants (e.g. hydroarbons), . . . All these traers do not interat with thewater on a short time period, and they are passively transported by the �uid.We propose here to use an integrated version of the onstant brightness hypothe-sis. Instead of linearizing the onstant brightness hypothesis like in standard optial�ow tehniques, we de�ne a nonlinear ost funtion that takes into aount the fatthat time sampling ours at a �nite rate. The ost funtion obtained from the inte-grated onstant brightness assumption is minimized in nested subspaes of admissibledisplaement vetor �elds. Several regularization norms are onsidered.We refer to [23℄ for the results of many numerial experiments, on both simulatedand real data. These results show that our method provides very quikly full veloity�elds, with an estimator of the quality of the results, while the PIV (Partile ImagingVeloimetry) method, urrently onsidered as a referene method in �uid mehanisand oeanography, is unable to provide more than one pertinent veloity vetor every
10 × 10 pixels.4.2 Desription of the algorithm [23℄This setion is devoted to the desription of the algorithm that we propose.4.2.1 Constant brightness assumptionLet Ω ⊂ R

2 be the retangular domain where the images are de�ned. The motionbetween the instants t0 and t1 where the images are I0 and I1 is then the vetor �eld
(u, v) suh that for every point (x, y) ∈ Ω,

I1(x+ u(x, y), y + v(x, y)) = I0(x, y). (4.1)A vetor �eld satisfying equation (4.1) is not unique, this is known as the apertureproblem in optial �ow. Moreover, measurement errors make the equality (4.1) un-likely to be stritly satis�ed.
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4.2.2 Cost funtionWe propose then a leat square optimization to replae the exat equality (4.1):

J(u, v) =
1

2

∫

Ω
[F (I0, I1;u, v)(x, y)]

2 dxdy +
1

2
αR(u, v), (4.2)where R(u, v) is a spatial regularization term, and α > 0 is the regularization fator.Finally, F is the following funtion:

F (I0, I1;u, v)(x, y) = I1(x+ u(x, y), y + v(x, y)) − I0(x, y). (4.3)4.2.3 RegularizationThe following regularization terms were used in our numerial experiments:
R0(u, v) = ‖u‖2 + ‖v‖2, (4.4)
R1(u, v) = ‖∇u‖2 + ‖∇v‖2 = ‖∂xu‖2 + ‖∂yu‖2 + ‖∂xv‖2 + ‖∂yv‖2, (4.5)

Rdiv(u, v) = ‖div(u, v)‖2 = ‖∂xu+ ∂yv‖2, (4.6)
Rcurl(u, v) = ‖curl(u, v)‖2 = ‖∂yu− ∂xv‖2, (4.7)

Rdiv/curl(u, v) = ‖div(u, v)‖2 + ‖curl(u, v)‖2 = ‖∂xu+ ∂yv‖2 + ‖∂yu− ∂xv‖2, (4.8)
R∇div(u, v) = ‖∇div(u, v)‖2 = ‖∂2

xxu+ ∂2
xyv‖2 + ‖∂2

xyu+ ∂2
yyv‖2, (4.9)

R∇div/∇curl(u, v) = ‖∇div(u, v)‖2 + ‖∇curl(u, v)‖2 (4.10)
= ‖∂2

xxu+ ∂2
xyv‖2 + ‖∂2

xyu+ ∂2
yyv‖2 + ‖∂2

xyu− ∂2
xxv‖2 + ‖∂2

yyu− ∂2
xyv‖2.In all the ases, we an write R(u, v) = ‖S(u, v)‖2, where S is a linear operator. Somesalar oe�ients have also been onsidered in order to weight the di�erent terms ofa given regularization.4.2.4 Muti-grid approah and optimizationThe minimization of the ost funtion J is performed in nested subspaes:

C16 ⊂ C8 ⊂ C4 ⊂ C2 ⊂ C1, (4.11)where Cq is the set of admissible displaement �elds at the sale q, ontaining pieewisea�ne vetor �elds with respet to eah spae variable, on squares of size q× q pixels.The di�erene with hierarhial tehniques issued from the optial �ow family (seee.g. [134, 146℄) is that we do not linearize the ost funtion. This should help to �ndlarge displaements, where the domain of linearity of the luminane funtion is notvalid.The spae C16 is typially of small dimension, hene the minimization of J on
C16 is fast and robust when a zero vetor �eld is used as initial guess. The optimalvetor �eld obtained at a given sale in the spae Cq is used as initial guess to �nd
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the minimum at the �ner sale in the spae Cq/2. This proess is iteratively repeated,until an optimal solution is identi�ed on the �nest grid.All the optimizations of the nonlinear ost funtion are performed by a Gauss-Newton method. When an initial guess (u0, v0) is given (a onstant null �eld, in ourexperiments), the k-th iteration read

(uk, vk) := (uk−1, vk−1) + (duk, dvk), (4.12)where (duk, dvk) solves
(DF TDF + αSTS)(du, dv) = −DF TF − αSTS(u, v), (4.13)where F = F (I0, I1;u

k−1, vk−1) is the error, DF = DF (I0, I1;u
k−1, vk−1) is the Jao-bian matrix of the error, and S is the linear operator assoiated to the regularizationterm.Another innovation of the present work is the e�ient omputation of the produt

DF TDF of the Jaobian of the �rst term of the ost funtion (4.2) by its transpose.This e�ient omputation omes from the observation that this matrix is sparse andan be assembled like a �nite-element matrix using one loop over the data.Let V ∈ Cq be a vetor �eld. Let (ei) be the anonial orthonormal basis of Cq,ontaining vetor �elds that are equal to 0 at every but one ontrol point, where thevetor �eld is direted along the horizontal or vertial axis. The (k, l)th oe�ient ofthe matrix DF TDF is
(DF TDF )k,l = (DF TDFek|el) = (DFek|DFel)L2(Ω). (4.14)Sine the elementary displaements ek are non zero at only one ontrol point, thematrix DF TDF has a sparse struture. If we onsider the following formulation ofthe jaobian matrix:
DF (u, v).d(x, y) = ∇I1(x+ u(x, y), y + v(x, y)).d(x, y), (4.15)then the matrix DF TDF an be assembled like a �nite-element matrix:

DF TDF =
∑

k,l

(DF TDF )k,l ek ⊗ el

=
∑

k,l

∫

Ω
(∇I1(x′) | ek(x)) (∇I1(x′) | el(x)) ek ⊗ el dx

=
∑

k,l

∑

R∈Rq

∫

R
(∇I1(x′) | ek(x)) (∇I1(x′) | el(x)) ek ⊗ el dx

=
∑

R∈Rq

∑

k,l

∫

R
(∇I1(x′) | ek(x)) (∇I1(x′) | el(x)) ek ⊗ el dx, (4.16)where we write x′ = x+ V (x), and where Rq represents the set of all squares of the

q× q grid. There are 8 quantities of the form (∇I1(x+ V (x))|ek(x)) to be omputed
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for eah element of Rq, and the matrix DF TDF an be assembled by reading onethe data. The vetor �eld DF TF an be assembled rapidly in a similar way, and theterm STS is easy to ompute.Finally, equation (4.13) is solved using a onjugate gradient method wihtout pre-onditioning.4.2.5 Quality estimateAn estimation of the quality of our results is highly motivated by the appliationthat we presented in the introdution, namely data assimilation. A well known issueand a ruial point in data assimilation is the knowledge of the statistis of observationerrors. Hene, we propose here an estimation of the quality of the pseudo-observationsidenti�ed by our algorithm.We propose a normalized quality estimate, where the quality of the motion de-pends on the ratio between the grey-level di�erenes before and after registration:

e(I0, I1;u, v)(x, y) = 1 − |I1(x+ u(x, y); y + v(x, y)) − I0(x, y)|
|I1(x, y) − I0(x, y)|

(4.17)if the denominator is non-zero, otherwise we de�ne e(I0, I1;u, v) = 0.We an learly see that if the two images were quite di�erent on a pixel (x, y)before the proess, and muh less di�erent after, then the estimate e is nearly equalto 1. We will further see that in some regions of the images, there is almost no signal,and then the two images are equal, both before and after the identi�ation proess.This leads to an estimate e equal to 0, not beause the identi�ed veloity is wrong,but beause we annot quantify whether it is good or not. This estimator is providedby our algorithm, so that it an be used along with the identi�ed veloity �elds indata assimilation experiments.4.3 Numerial experiments [23℄In this setion, we brie�y present the numerial experiments that have been ar-ried out on both simulated and real data. We refer to [23℄ for the results of theseexperiments.4.3.1 Simulated dataWe �rst try our algorithm on simulated data. We onsider a basi model, the shal-low water model (or Saint-Venant's equations), representing quite well the temporalevolution of geophysial �ows. This model is detailed in setion 3.3.3 (with di�erentparameters), or in [23℄.This model is then oupled with an advetion-di�usion equation, modeling thefat that the onentration of a passive traer is transported by the �uid veloity:
∂tc+ u∂xc+ v∂yc = 0, (4.18)
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where c is the onentration of the passive traer (e.g. hlorophyll in oeans). Wealso add to this equation an initial ondition c(t = 0). We onsider then a trajetoryof this shallow water model oupled with a onentration equation, from whih aonentration image is extrated every 100 time steps (in order to reprodue the timesampling of the satellite images).Two onseutive images are extrated from these simulated data, and we applyour algorithm to these two images, with the aim of identifying the entire veloity �eld.As shown in [23℄, our algorithm quikly extrats very aurate veloity �elds. Thisis mainly due to the ombination of a multi-grid approah and an e�ient optimiza-tion sheme (no a priori information and no linearization). The registration betweentwo images is almost perfet after a few iterations, and the identi�ed veloity �eldreprodues very well the global struture of the true veloity (a rotating vortex in atranslation �eld in our experiments).Conerning the regularization, we an note that the best results orrespond tothe R1 norm (see equation (4.5)). The most physial regularization is probably Rdiv(see equation (4.6)), as we expet a null divergene veloity �eld in geophysial �ows.But the derease of the ost funtion is not as good as for some other regularizations.Considering that the images are aquired every 100 time steps only, the veloity wewant to identify between these two images is a time Lagrangian integration of manyinstantaneous veloities, and it annot have a divergene equal to zero.We also present an interesting appliation of the identi�ation proess. Assumethat we have a partiular objet in the �rst image, e.g. a harateristi struture,that has been manually seleted. In our ase, we an identify one spei� vortex. Wean then limit the identi�ation proess to a region around this objet. This regionis propagated from one pair of images to the next one by the mean of the identi�edveloity. This allows us to trak this objet in time, in a fully automati way.4.3.2 Experimental dataWe have then onsidered data extrated from several experiments on the Coriolisrotating platform [75℄. A large rotating turntable (diameter: 13 meters) allows us toreprodue the oeani or atmospheri �ows. Depending on the experiments, eithersome olorant or partiles are inserted in the water as the platform rotates, and amongthe various measurement devies, a amera takes pitures of the experiment [95℄.Several test ases have been studied, orresponding to either small or large a-quisition times between two onseutive images. In all these di�erent situations, theglobal struture of the displaement �eld mathes perfetly with the real displae-ment of the �uid. The multi-grid approah has been ompared with the standardapproah, in whih the minimization is diretly performed on the �ne grid. Both theomputation time and the quality of the results are degraded.These results have been ompared with those produed by the PIV (Partile Imag-ing Veloimetry) method. PIV is the referene method for the extration of veloity�elds in geophysis and �uid mehanis. The results are qualitatively equivalent,in the sense that the identi�ed �elds look alike. However, our algorithm represents
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two main improvements: the omputation time, allowing us to extrat veloity �eldsfrom several hundreds of images in a relatively short time; and the preiseness of theresults, as we extrat one veloity vetor for eah pixel of the image, while the PIVmethod usually gives only one vetor every nearly 10 × 10 pixels. This allows us totrak the evolution of very small strutures.4.4 ConlusionsWe presented in this setion an algorithm to estimate the motion between twoimages. This algorithm is based on the onstant brightness assumption. A multisaleapproah allows us to perform a minimization of the ost funtion in nested subspaes,the Jaobian matrix of the ost funtion being rapidly assembled at eah sale using a�nite element method. The oarse estimation allows one to avoid loal minima, whilethe �ne sales give more preise details. Several regularization terms are disussed,and it appears that the L2 norm of the gradient gives reliable results.The results of this algorithm on both simulated data and real �uid �ows arepresented, and they are enouraging, both from their omputational e�ieny andfrom the quality of the estimated motion. Our algorithm has also been tested on fullhigh-resolution movies provided by the Coriolis platform, on�rming the e�ieny ofthe proposed method.As previously explained, the extrated veloity �elds an be viewed as pseudo-observations of the �uid veloity, and the next step will be to onsider the assimilationof these data. However, beause of the time sampling of the images, these �eldsorrepond to Lagrangian veloities, and a Lagrangian data assimilation method isthen required. Note that if the time between the aquisition of two images is small,then the identi�ed (or apparent) veloity an be diretly assimilated as a standardEulerian veloity.
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Chapter 5General onlusions andperspetivesWe presented in this work several algorithms for solving image proessing anddata assimilation problems. All these algorithms are robust, easy to implement,fast and powerful. This work has been essentially motivated by the appliations ofsuh problems. In the ase of image proessing, one of these onstraints ould beto be able to proess movies in real time or large images in a negligible time. Fordata assimilation problems, the goal is to assimilate a huge amount of data in agiven time, bounded by some operational ontraints (e.g. of providing some short ormedium-range weather foreasts in a given time).It seemed ruial to us to develop some algorithms that are quite far from thestate of the art in both image proessing and data assimilation. For instane, thetopologial gradient has been introdued in the image proessing �eld, providing amore global information than the standard gradient of the image. Also, the dataassimilation ommunity is urrently split into two parts: variational and sequentialmethods. The �rst ones (e.g. the 4D-VAR algorithm) require a huge human ost forthe implementation of the adjoint ode, and the seond ones (e.g. Kalman �lters)rely on the very preise knowledge of the error statistis. Thus, we made the hoie ofintroduing an algorithm at the interfae of these two ategories, in order to ombinethe advantages without the main drawbaks.There are still many perspetives in these researh �elds, beause some problemshave not been studied yet, and also beause our algorithms an still be improved.For instane, all the algorithms introdued for image proessing problems are basedon the edge detetion by topologial gradient. It seems interesting to de�ne morethan two ondutivity values, in order to identify more than one edge set, as theedges do not orrespond to the same level of disontinuities. In data assimilation, thebak and forth nudging algorithm an also be improved, for instane by automatiallydereasing or inreasing the gain oe�ients with the iterations, in order to keep arelative equilibrium between the physial model and the feedbak to the observations.61
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As long term perspetives in image proessing, we an ite for instane the om-pression and deblurring problems, for whih it should also be possible to de�ne anapproah by topologial asymptoti analysis. Also, an interesting hallenge in dataassimilation is to test the bak and forth nudging algorithm on a primitive equa-tion model with real data, in order to study the behaviour of this algorithm in realonditions.
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Résumé:Dans une première partie, nous avons étudié des problèmes de traitement d'images. Nousavons utilisé l'analyse asymptotique topologique pour la détetion des ontours d'une image.Cela permet de onsidérer alors plusieurs appliations: restauration/débruitage, lassi�a-tion. L'inpainting est traité d'une façon un peu di�érente, et la double donnée Dirihlet etNeumann sur le bord du domaine ahé permet de reonstruire les ontours dans la partieahée de l'image. En�n la segmentation peut être traitée omme limite de la lassi�ation,en s'appuyant sur des résultats d'analyité de la solution quand on fait tendre un paramètrevers 0. La rapidité de ette méthode permet de traiter es di�érents as en temps réel, yompris pour des �lms.Dans une seonde partie, nous avons abordé l'assimilation de données, le but étantd'identi�er la ondition initiale d'un système à partir d'observations partielles. Nous avonsdé�ni un nouvel algorithme, basé sur le �nudging� (méthode de relaxation onsistant à rajouterun terme de rappel vers les observations diretement dans l'équation a�n de tirer la solutionvers les observations). En onsidérant itérativement et alternativement des résolutions du sys-tème diret et rétrograde en temps, ave à haque fois un terme de rappel vers les observations,on peut améliorer l'estimation de la ondition initiale. Là enore, la méthode est performanteet extrêmement rapide, omme de nombreux tests numériques l'ont démontré. En parallèle,plusieurs résultats théoriques de onvergene ont été obtenus dans des as simpli�és.En�n, une étude a été réalisée à l'interfae de es deux thématiques: l'extration de données,et plus préisement de hamps de vitesses, à partir de séquenes d'images météorologiquesou oéanographiques. L'idée onsiste à herher un hamp de vitesse (ou déplaement) quitransporte une image sur la suivante. L'approhe onsidérée est variationnelle, et basée sur laminimisation d'une fontionnelle non linéaire dépendant du hamp de vitesse. Une approhemulti-grille permet d'obtenir très rapidement des hamps de vitesse. Ces vitesses peuventalors être assimilées diretement dans un système d'assimilation.Summary:In a �rst hapter, we onsider image proessing problems. We applied the topologialasymptoti analysis to the edge detetion problem. One the edges are identi�ed, one an easilyonsider the restoration/enhanement and lassi�ation problems. The inpainting problemhas also been onsidered, but from a slightly di�erent point of view: given the Dirihlet andNeumann onditions on the boundary of the unknown part of the image, the topologialgradient allows one to retrieve the missing edges of the hidden zone, and then to reonstrutan unblurred image. Finally, the segmentation problem has been onsidered with the samemathematial tools, using the analyity of the enhaned solution with respet to a smallparameter. All these algorithms are extremely e�ient and fast, and allows us to proessimages and even movies in real time.The seond hapter is devoted to data assimilation. We developed a new algorithm: theBak and Forth Nudging (BFN). The standard nudging tehnique onsists in adding to theequations of the model a relaxation term that is supposed to fore the observations to themodel. The BFN algorithm onsists in repeatedly performing forward and bakward inte-grations of the model with relaxation (or nudging) terms, using opposite signs in the diretand inverse integrations, so as to make the bakward evolution numerially stable. Extensivenumerial experiments have been performed on several simpli�ed geophysial models, show-ing the e�ieny of this easy-to-implement and fast approah. Moreover, several theoretialresults of onvergene have been obtained in simple situations.Finally, we also worked at the interfae of these two topis and onsidered image dataassimilation. The idea is to extrat veloity �elds from a sequene of oeanographi or me-teorologial images. A variational approah has been proposed, in whih the minimizationof a nonlinear ost funtion provides a displaement (or veloity) �eld between two images.A multi-grid approah and an appropriate minimization proess, allow us to extrat the in-formation very quikly. These �pseudo�-observations an then be diretly assimilated as theveloity is usually a model variable.
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