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Spectral curves and the generalised theta divisor

By Arnaud Beauville at Paris, M. S. Narasimhan') and S. Ramanan at Bombay

§ 1. Statement of results

Let X be a smooth, irreducible, projective curve over an algebraically closed field
of characteristic 0 and let g=g, =2 be its genus. We show in this paper that a generic
vector bundle on X of rank n and any fixed degree can be obtained as the direct image
of a line bundle on an n-sheeted (ramified) covering of X. From this we deduce results
concerning linear systems on the moduli space of vector bundles of rank n and degree 0.

Let %yx(n, d), or simply % (n,d) (resp. S % (n,{)) denote the moduli space of
semistable vector bundles of rank n and degree d (resp. with determinant isomorphic to
a fixed line bundle {) on X. When ( is the trivial line bundle, we simply write ¥ (n) for
FUn, (). When we deal with S % (n, {), but the particular { that we fix is not of
importance, we denote it by S %(n, d). Let Y be any smooth curve and n: Y— X a
finite morphism. We can then associate to any line bundle £ on Y a vector bundle,
namely the direct image =, (£), on X. This yields a morphism of the open set 3 of J}
into % (n, d), where a) J{ is the space of line bundles of degree 6 on Y, b) J3 is the set of
those ¢ for which 7, (&) is semistable, and c) d and ¢ are connected by the relation
d =0 +deg(m, (Oy)).

Theorem 1. For any pair of integers n and d, there exists an n-sheeted covering
n: Y— X with Y smooth and irreducible, such that the morphism n,: Iy — Ux(n, d) is
dominant with 6 =d —degn, (Oy).

Before stating the next result, we need to introduce the notion of the generalised
theta divisor. It is easy to define a divisor @ in % (n, d) with d =n(g —1) supported on
the set of bundles E with I'(E)# 0. This defines an invertible sheaf [2] on % (n, n(g —1)),
which we may denote by O(®). In the case n=1, this divisor is the wellknown Riemann
theta divisor on the variety J¢ 1.

Theorem 2. We have dim I'(%(n, n(g — 1)), 0(0)) = 1.

This theorem is proved by considering the dominant morphism =,: 7y — % (n, d)
whose existence is asserted in Theorem 1, with d=n(g—1). One can determine the
pullback of ® by the morphism =,. In fact this turns out to be the Riemann theta
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divisor. Now one shows that the complement of 3’ in J{ is of codimension at least 2 so
that we get an injection of I'(%(n,d), ®) into I'(7y, @)=TI(Jy, @), proving our
assertion.

There is a close relationship [9] between the moduli space &% (n) and the linear
system of the invertible sheaf @(n®) on J?~ ! Indeed, associate to a general vector
bundle E, the divisor Dg given by {¢ € J?™!: I'(E ® &)=+ 0}. This gives a rational map of
% (n) into the linear system of n® on J?~ 1. On the other hand, let ¢ be an element of
J*7L and let Ad,={Ee S U(n): T'(E® &¢)+0}. One can show [2] that A, defines a
Cartier divisor and the corresponding line bundle h generates Pic(¥ % (n)).

Theorem 3. The (rational) map, which associates to a general point e of & U (n) the
divisor Dg in J°~, where E is a semistable bundle in the class of e, induces an isomorphism
of I'(J*™Y, 0O(n®)) with I'(¥ U (n), h)*, and the rational map is defined by this linear
system. In particular, I' (¥ % (n), h) has dimension n®.

The proof of this theorem is similar to that of Theorem 2, except that the
Jacobian of Y is in this case replaced by the Prym variety associated to the covering.

In the case of vector bundles of rank 2, these results have been proved by A.
Beauville [1]. In the rank n case, vector bundles arising from line bundles on an étale
covering have been studied by Narasimhan and Ramanan [8]. Ideas of Hitchin [4], and
the existence of ‘very stable’ vector bundles proved by Drinfeld and Laumon [5] have
been useful to us.

§ 2. Preliminaries

2.1. Twisted endomorphisms. Let E be a vector bundle of rank n, L a line
bundle on X and ¢: E — L ® E a homomorphism. Then one can define its trace as an
element of I'(L) by interpreting it to be a map E ® E* — L and taking the image of the
identity section of E ® E*. More generally, its characteristic coefficients g; € I'(X, L), for
0<i<n, may be defined by setting a;=(—1)'TrA'¢p. The Cayley-Hamilton theorem
then asserts that ¢ satisfies its characteristic equation. This means that Y a;¢""’,
interpreted as a homomorphism E — L' ® E, is zero. In particular, if all a; are zero for
1=<i<n, then ¢" =0, and we may say that ¢ is nilpotent.

2.2. Generalised theta divisor. Let #(n, n(g—1)) be the moduli space of vector
bundles of rank n and degree n(g —1). Then by the Riemann-Roch theorem, we see that
x(E)=0 for all E in % (n, n(g—1)). Let {E,},.r be a family of vector bundles, given by a
vector bundle E on T x X, with E,=E|,,x semistable for all teT. Let p: TxX —> T
denote the first projection. The first direct image R'p, E is wellbehaved under base
change and is supported on the set {t € T:I'(E,)+0}. Then (detR'p, E) ® (detp, E)™!
is defined to be the invertible sheaf ¢(@;). It can be shown [2] that there exists an
invertible sheaf ((®) on % (n,d) such that O(©;) is the pullback of O(®) by the
canonical classifying morphism T— % (n, d).

2.3. Remarks on principally polarised Abelian varieties. Suppose (4, @) is a
principally polarised Abelian variety and N an Abelian subvariety of A. Consider the
subgroup P of A consisting of all ae A such that T)*@(@) and O(O) restrict to
isomorphic line bundles on N. We call P the orthogonal of N. It is an Abelian
subvariety of 4 such that the maps P — A/N and N — A/P are isogenies. Let (@)
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and O(®p) be the restrictions of O(®) to N and P respectively. One can then define a

rational map y of P into |@y| by setting y(p) = T,*(®)|N. On the other hand, we also
have a rational map ¢@: P — |@,|*, defined by the linear system |@5|.

2.4. Proposition. There is a canonical isomorphism 1:|@p|* — |@y| such that
to@=1y. '

Proof. Consider the isogeny n: N x P — A sending (n, p) to n+ p. The pullback
n*(@(0O) is isomorphic to p¥O(Oy) ® pf0(Op), by the theorem of the square. The
canonical section of (@) pulls back to an element of I'(N, 0(Oy)) ® I'(P, O(Op)). One
can now check that the induced map 1: I'(P, O(@p))* — I'(N, O(®y)) is an isomorphism.
This follows from the fact that the theta group of n* ¢(®) is the natural pushout of the
direct product of the theta groups of O(6y) and 0(Op) with respect to the imbedding of
the multiplicative group G,, by A+ (4, A™!) and that the irreducible theta action is
given by that on I'(N, 0(Oy)) ® I'(P, 0(Op)). It is easy to identify the unique 1-dimen-
sional subspace fixed by the maximal level subgroup Ker(n), and see that it gives a
nondegenerate element as claimed. The rational map ¢ of the variety P into |@p|* is
characterised by its equivariance under the action of the theta group. Now one can
check that ™! o y does have this property, thus proving the equality 1o ¢ = .

2.5. Polarisation on the Prym variety of a covering. Let n: Y — X be a finite
morphism of smooth, irreducible curves. Let us denote by b the line bundle
det (n,(Oy))"*. The relative duality theorem gives an isomorphism of

7, (Oy)* with 7, (Ky ® n* Kx'1).

The ramification divisor 4 is given by a section of n*K;'® Ky so that we have
d=det n,(0(4)). For any line bundle L on Y, we may associate the sheaf 7, (L) on X. It
is actually a vector bundle of rank n if = is n-sheeted. Then one can show easily that
detn,(L)=Nm(L) ® ™%, where Nm is the norm map associated to the covering . In
particular, det n, (0(4))=Nm(O(4)) ® ™! and hence Nm O (4) =b>.

Suppose that the induced homomorphism #n* of Jy into Jy is injective. Then we
may set N=n*J, and 4=J, and apply the considerations of 2. 3 and 2. 4. The norm
homomorphism Nm: J, — Jy can be identified with the transpose of n* and conse-
quently has connected kernel [7]. This is the Prym variety of the map n and we would
like to take for P this kernel. However, in order to avoid making too many choices, we
will consider the varieties N'=n*J§ ! A'=J}"! and P'=Nm™*(d), where g=gy,
h=gy, and Nm is the norm map JZ¢® — J3¢® Then we have a natural addition map
N’'x P’ — A’ (namely tensor product). Up to translation, this is the same as the map
defined in 2. 3. Hence the pullback of the line bundle O(@y) by this map is the tensor
product of a line bundle on N’ and one on P’. In fact, under our assumption, N’ is
isomorphic to J§~! on which is defined Riemann’s theta divisor @4. Now it is easy to
deduce that the restriction of 0(@y) to N’ x {«} is isomorphic to ¢(n®) for any « € P".
Hence there is a natural line bundle 7 on P’ such that the pullback mentioned above is
pF0(nOy) ® p¥t. Now the pullback of the natural section of ©(Oy) gives rise, in view of
our remarks above, to a nondegenerate element of I'(P’, 1) ® I'(J§~*, 0(n®)), that is to
say there is a natural isomorphism of I'(P’, 7)* with I'(J§~*, O(n®)). Thus we have

2.6. Proposition. Let n: Y— X be a finite morphism of projective nonsingular
curves such that the induced morphism n*:Jy — Jy is injective. Then with the notation
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above, there is a natural isomorphism of I'(J§~!, O(n®)) with I'(P’, t)* such that the
following diagram is commutative.

P ——  PI(P,0)*

~

Pr(Jg~Y, 0n®))

Here the rational map P’ — PI'(P’, t)* is given by the linear system of 7, while
the rational map P’ — PI'(J{™', O(n®)) is given by p > T*Oy nn*J§~ 1.

2.7. Remark. One can show in fact that under the assumption that n*: Jy — Jy
is injective, the polarisation on P (and on P’ as well) is of type (1, 1,..., n, n,...) where
the n’s are repeated g times. In particular its Pfaffian is n? which is of course the
dimension of I'(J*~!, O(n®)). 1t is easy to show that 7 is a primitive element in the
group of algebraic equivalence classes.

§ 3. Spectral curves

Spectral curves have been treated in recent years by several authors, in connection
with some special kinds of nonlinear differential equations. In our context it was used
by Hitchin [4]. Let L be a line bundle on X and s=(s;) be sections of I* for
k=1,2,...,n Then we will construct a scheme X, and a finite morphism n: X; — X.
Let p: P=P(0 @® L¥)—> X be the natural projection and (1) the relatively ample
bundle, or what may be called “the hyperplane bundle along the fibres”. Then p,(0(1))
is naturally isomorphic to ¢ @ L* which has a canonical section, namely, the constant
section 1 of @. This gives a section of ¢(1) over P which we denote by y. On the other
hand, p, (p* L ® 0(1)) is isomorphic, by the projection formula, to LQ (0 @ L*)=L @ 0.
Hence it also has a canonical section and we denote the corresponding section of
p*L® 0(1) by x. Note that the two sections x and y have as their zero schemes the
natural subvarieties P(¢) and P(L*) of P. Now consider the section

X"+ (p*sy) Yy X" T4 o (p*s,)c y"

of p* " ® O(n). Its zero scheme is the scheme X, we have in mind. It is clear that the
restriction 7 of p to X, is finite and that at any point v of X the fibre of 7 is the
subscheme of P! given by

X"+a, yx"" 1+ +a,y"=0,

where (x, y) is a homogeneous coordinate system, and a; is the value of s; at v on
identifying the fibre of L at P with the residue field at v.

3.1. Remark. It is easily seen that the set of all (s)e '(L)® I'(L*)@---® I'(L")
for which the scheme X; is integral (i.e., reduced and irreducible), is open. Also, it is easy
to see that it is nonempty, whenever L* admits a section whose divisor is not of the form
mD for some integer m dividing n. For, in that case we can take all s; for i<n—1 to be
0 and s, to be a section as postulated.
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Hereafter we will assume that (s) has been so chosen that X is integral. Since the
zeros of x and y are disjoint in P, it follows that the restriction of y to X is everywhere
nonzero and hence the restriction of @(1) to X is trivial. The restriction of x to X, can
therefore be considered as a section of #*(L). An alternative description of X; is given as
follows. The direct image =, (¢) is naturally isomorphic to O L' @ - @ L "1, Its
algebra structure is better understood by interpreting this to be Sym (L™!)/.# where £ is
the ideal sheaf generated by the image of the homomorphism u: L™" — Sym (L™!) given
as the sum of the imbeddings L™ — L™ ®~9 defined by s;. In terms of this sheaf of
algebras, X is simply Spec(Sym (L™Y/#).

3.2. Remark. The genus g’ of X; may be computed from the above inter-
pretation. In fact, 1—g’ is given by

X(Xs, 0)= X(X’ 7'5*(@))=Z X(X9 Ll)
=(degL)- (0—1—--- —(n—1))+n(1—g)
=—(degL) - n(n—1)/2+n(1—g)

and hence g'=(degL) - n(n—1)/2+n(g—1)+1.

3.3. Remark. Assume that X| is integral. Then consider the resultant of the
polynomial

X" 5y px" T 45, y2x" T2 4 s 5, )",
and its derivative

nx" 4+ (m—1)s, yx" 24 +5,_,y" L

This can be interpreted to be a section of (p* L® 0(1)"® Y2, One easily verifies that
the map =n: X, — X is étale at a point if and only if this resultant does not vanish at
that point. In other words, the resultant gives the ramification divisor of the map =.

3.4. Example. Let L be a line bundle with L' isomorphic to 0. We could then
take s; to be 0 for i<n—1, and s, to be any nonzero section of L". In this case one can
conclude from 3.3 that the map = is actually étale. However, the scheme X, is
connected (and therefore irreducible) if and only if the section s, is not a power of a
section of L for some r which divides n. This would happen if and only if L” is trivial. In
other words, X is irreducible if and only if L is of order n in the Jacobian of X.

3.5 Remark. Let us assume that X, is integral. Then using the Jacobian
criterion it is not difficult to prove that X, is smooth if and only if at every point which
is a multiple zero of the section s,, the section s,_, is nonzero. In particular, the set of
sections (s) such that the scheme X, is smooth, is open on the one hand, and is
nonempty if " admits a section without multiple zeros, on the other.

3.6. Proposition. Let X be a curve and L any line bundle on it. Let s=(s;) be a
set of sections of L for 1Si<n. Assume that the corresponding scheme Xj is integral.
Then there is a bijective correspondence between isomorphism classes of torsion free
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sheaves of rank 1 on X, and isomorphism classes of pairs (E, ¢) where E is a vector
bundle of rank n and ¢: E— L® E a homomorphism with characteristic coefficients s;.
The correspondence is given by associating to any line bundle M on X, the sheaf n, (M) on
X and the natural isomorphism

T, (M) > LQn,(M)=n, (n*L QM)
given by the section x of n*(L).

Proof. 1If M is a torsion free sheaf of rank 1 on X, then the sheaf n, M is a
vector bundle of rank n on X, endowed with a =, (0x,)-module structure. Conversely,
since 7 is affine, a vector bundle E of rank n with a n,0-module structure defines a
sheaf M with n, (M) isomorphic to E. Now M is torsion free of rank 1 because X; is
integral.

The Oy-Algebra =, 0y is isomorphic to Sym(L™')/.#, so that the data of a
n, (0, )-module structure on E is equivalent to an algebra homomorphism

Sym(L™Y)/.# — &nd (E),

that is to say an @Ox-homomorphism ¢: E — L ® E such that P,(¢)=0, where P, is the
polynomial determined by (s). Since X, is integral, P, is irreducible over the function
field of X, and is hence the characteristic polynomial of ¢. Conversely, if E is a vector
bundle of rank n on X, and ¢: E— L ® E a linear homomorphism with characteristic
coefficients s;, then P,(¢)=0 by the Cayley-Hamilton theorem. This proves the
proposition.

3.7. Remark. The sequence

0— M(—4) »n*E 2225, p¢(LQE)—— n*LOM —— 0

is exact. In fact one could actually define the line bundle M corresponding to (E, ¢) by
this exact sequence. This is essentially the point of view in Hitchin [4].

3.8. Remark. When X, is nonsingular, then ‘torsion free sheaves of rank 1’ may
be replaced by ‘line bundles’ in Proposition 3. 6.

3.9. Example. Let us get back to Example 3. 5. If L is a line bundle of order n
in the Jacobian of X, then according to Proposition 3. 6, there is a natural bijection
between line bundles on X, and pairs (E, ¢). Now there exists a map ¢: E — L ® E with
the given characteristic polynomial if and only if L ® E is isomorphic to E. In this
particular case this map was studied and indeed many of the computations in this paper
were carried out in [8].

3.10. Remark. If M is a nontrivial line bundle on X, and n* M is trivial on X,
then it follows that n,(n*M)=M @ n,(0)=) M ® L™ admits a nontrivial section. In
particular this implies that the degree of L is 0. But since s; € I'(L), we must have for
each i, either s;,=0, or L is trivial. Thus we see that except in this case (which includes
Example 3. 9), the induced map =n*: Jy — Jy, is injective.
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§ 4. Applications to the moduli space of vector bundles

In what follows, we will take for the line bundle L the canonical line bundle K of

a smooth, projective curve X of genus g=2. Denoting by W the direct sum
k=n

(—B (X, K*), we see immediately from the Riemann-Roch theorem that
k=1 .
dimW=n?(g—1)+1,

which is also the dimension of S % (n, d). Let s=(s;) be an element of W such that the
corresponding curve X, is smooth and irreducible. By Remark 3. 2, the genus of X is
n?(g — 1)+ 1. Moreover, for any line bundle ¢ on X, we have

detn, (¢)=Nm(¢) ® detn, (0)=Nm(£) ® K"~ /2

where Nm: Pic(X;) — Pic(X) is the norm map associated to z. In particular, the degree
of m, (&) is deg(&)—n(n—1) (g—1).

Let % be the moduli space of stable vector bundles of rank n and degree
d=deg({)—n(n—1)(g—1). Let 2=Q! denote its cotangent bundle. If E is a stable
bundle of rank n and degree d, then the tangent space to % at the corresponding point
can be canonically identified with H'(X, &x< E). By duality, the cotangent space may
be identified with I'(X, K ® &»« E). Therefore a point of Q can be seen as a pair (E, @),
where E is a vector bundle in % and ¢: E — K ® E is a homomorphism. By associating
to (E, @) the characteristic polynomial of ¢, we define a morphism H: Q — W. We will
call this map the Hitchin map [4].

4.1. Proof of the Theorem 1. Consider the map i: Q — % x W where the first
factor of A is the projection onto % and the second factor is the Hitchin map H. By a
theorem of Drinfeld and Laumon [5], there exists a stable bundle E, of rank n and
degree d such that every nilpotent homomorphism E, — K ® E, is zero. This implies
that the inverse image by A of (E,, 0) in % x W consists of a single point, namely the
zero cotangent vector at E, € %. Now dim(Q)=dim (% x W)=2(n*(g—1)+1). By the
dimension theorem, the morphism A is dominant and moreover its differential is an
isomorphism at the generic point of Q. It follows that the projection H ™ !(s) — % is
dominant for all point s in an open set in W. Moreover we may assume that for s in
this open set the spectral curve X, is smooth and irreducible in view of Remark 3. 5.
Now by Proposition 3. 6, H™!(s) consists of pairs (E, ¢) where E is a stable bundle
obtained as the direct image of a line bundle ¢ on X, and ¢: E— KQ®E is the
homomorphism induced by the canonical section of #n*(K) on X;. This proves
Theorem 1.

§ 5. The basic linear system on &% (n)

We apply the considerations of the previous section to the case when d=n(g—1).
Let us choose an n-sheeted covering Y of X such that most vector bundles of rank n
and degree d are direct images of line bundles of degree & with d=g,—1=n?*(g—1).
We will denote the Riemann theta divisor in J§~* (whose support consists of effective




176 Beauville, Narasimhan and Ramanan, Spectral curves

divisor classes of degree (g—1)) by @y. Let J denote the open subset of the
component of the Jacobian consisting of ¢ such that n, (£) is semistable. Thus there is a
natural morphism n, : 7 — % (n, n(g —1)).

5.1. Proposition. a) For every point ¢ belonging to J{ — @y, the bundle n, (&) is
semi-stable.

(b) There is a point £ on the theta divisor @y such that n,(¢) is semistable.
c) The complement of I3 in J{ is of codimension greater than 1.

d) There is a point £ in Oy such that n, (&) is stable and the map n, has maximal
rank at &.

Proof. a) By our assumption, I'(Y, £)=0. Hence I'(X, n,¢)=0. If =, (&) were
not semistable, it would admit a subbundle F of degree greater than rk(F)- (g —1). Now
the Riemann-Roch theorem implies that I'(X, F)+ 0, which is a contradiction.

b) If a € Jyx, then the projection formula implies that n*(x) ® £ has semistable
direct image for every ¢ as in a). Since @ is ample and #n*: Jy — Jy is a finite map, it
follows that it intersects the positive dimensional variety n*(Jy)&.

¢) Since the complement of 3 in J¢ is contained properly in the irreducible
divisor @, it follows that it is of codimension at least 2.

d) We have assumed that the map =, is dominant so that there exists some
n € J{ such that =, (r) is stable and =, is of maximal rank at #. Now as in b) above, we
can translate # by n*(«) for an a € Jy so that £ =n ® n*a belongs to @y. It is clear from
the commutativity of the diagram

5y —— U d)

@ n*a Ra
I —— Und)
that =, () is stable and that the map =, is of maximal rank at ¢ also.

5.2. Remark. The complement of the set S of points ¢ of J{ such that n, ¢ is
stable can be shown to have codimension at least 2g — 2, if n > 3. In fact suppose that Z
is the set of points ¢ in J{ such that n, ¢ has a quotient line bundle of degree <d/n. We
will estimate the codimension of Z in J{. By the duality theorem applied to the map =,
the existence of a nonzero homomorphism of n, £ into M, where M is a line bundle on
X, is equivalent to the existence of a nonzero homomorphism of ¢ into n*M ® w,
where w, is the relative dualising sheaf, namely Ky ® n* Kx!. Thus every element of Z
is of the form n* M ® w,(— D) where M is a line bundle on X with deg(M)<d/n, and D
is an effective divisor on Y. We have

deg(D)=n-degM +degw, —0<d—0+2{gy—1—n(gy—1)}.
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It follows that codim(Z)=(n—1)(g—1)=2(g—1) if n=3. If E is a general stable bundle
on X, then by [10], Lemma 2. 1, for every subbundle F of E we have

deg (F)/rk (F) = {deg (E) — (rk (E) — 1k (F)) (g — D)}/rk (E).

Let now L be a general element of J{*?9~% such that n,L =E satisfies the condition
given above. If D is an effective divisor of degree 2g —3 on Y, the bundle n,(L(— D)) is
of rank n and degree d and is a subsheaf of =, L. If F is a subbundle of n,(L(— D)) with
rk (F)<n—2, it follows that deg(F)/rk (F)<d/n.

On the other hand, as D varies, the line bundles L(— D) form a subvariety W, of
J? of dimension (2g — 3). Changing L amounts to applying a translation on W,. Since
the variety Z defined earlier is of codimension at least 2g — 2, we can choose L such
that W, does not intersect Z. For such a choice of L, W, is contained in S. Now W, is
cohomologous to @*/k! with k =codim (W,) in J{. Hence W, intersects every subvariety
of J{ of codimension 2g — 3. This proves our assertion.

5.3. Remark. For n=2, the codimension of (J¢—S) is at least g—1. Coupled
with Remark 5.2, this implies that with the exception of the case g=r=2, this
codimension is at least 2. Consider the Hitchin map H: Q — W. The restriction of the
natural symplectic form o to the fibre H !(a) over a general point ae W is the
boundary of a holomorphic 1-form. On the other hand, H !(a) can be identified with
the complement in J¢ of a subvariety of codimension at least 2 and hence this 1-form
can be extended to the whole of J{. It is therefore closed and so w restricts to 0 on
H™'(a). In other words, the map H defines a completely integrable Hamiltonian system.
Moreover the Hamiltonian vector fields given by components (with respect to a basis of
W) of H also extend to the Jacobian and thus the system is linearised on the variety J.
This gives another proof of the results of Hitchin [4].

5.4. Remark. Themap n,: Iy — U(n, d) is of degree 23973 -3%975...p2n= D",

Proof. Indeed, the required degree is equal to the degree of the map Hy: Qf — W,
namely the restriction of H to the cotangent space to the moduli space at a sufficiently
general point E. Since this is clearly defined by 3g — 3 polynomials of degree two, 5g —5
polynomials of degree three, ... the assertion follows from Bezout’s theorem.

5.5. Proof of Theorem?2. Letd=n(g—1)and é=n?*(g—1). We will compute on
Jy the pullback of the theta divisor on % (n, d). Indeed, the vector bundle on 7’ x X
which induces the map =,: 7y — %(n, d) is easy to describe. Consider a Poincaré
bundle P on Jy xY. Then the required bundle is U =(1 x 7),,(P). In order to compute
the pullback of ¢/(®), we need to compute only (p;), (U) and R'(p,), (U). Since (1 x ) is
an affine morphism these are simply the sheaves (p,), (P) and R'(p,), (P). But the sheaf
(p1)4(P) is 0 and det(R'(p,),(P)) is the Riemann theta divisor on J{. Hence the
pullback of 0(®) by n, is isomorphic to the restriction of (@) to J;. Since the
complement of ;° in J¢ is of codimension =2 it follows that = induces an injective
map I'(%(n, d), 0(0)) — I'(J§, 0(©)). This proves that the dimension of I'(%(n, d), 0(©))
is at most 1. But it is clearly given by an effective divisor so that Theorem 2 is proved.

5.6. Proof of Theorem3. Take d=0 and d=(n>—n)(g—1) and choose a
covering #: Y — X as in Theorem 1. We will use here the notation of 2. 3—2. 6. Firstly
the rational map J{ — % (n, 0) is dominant.
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5.7. Proposition. The direct image map induces a dominant rational map
P’ — % (n). Moreover, the complement of the open set I N P' is of codimension at least
2.

Proof. If mn, () is semistable, so is 7, (n*L @ a) for any line bundle L on X and
we can therefore conclude that there is an induced dominant rational map P’ — S % (n).
The rest of the assertions is also proved in the same way, using Proposition 5. 1.

Now, from the commutative diagram

PxJgt — gt

FUMXITFETY —— s U(n,n(g—1))

we conclude that the pullback of the line bundle O(®) to L% (n)x J§~! is of the form
P¥M ® p% 0(n®) for some line bundle M. This implies that the pullback of M by the
map P’ — &% (n) is 7. But 7 is a primitive element in the group of algebraic equivalence
classes of divisors in P’. Hence the same is true of M. In other words, the line bundle is
the same as the ample generator h of the Picard group, which is isomorphic to Z [2].
From Remark 4.9, Proposition 2. 6 and the codimension computation in Proposi-
tion 5.1, we deduce, as in the proof of Theorem 2, that the map I'(¥# (n), h) — I'(P’, 7)
is injective. Now the group of n division points of the Jacobian of X acts on ¥%(n) as
well as on P(I'(P’, 7)) and it is easy to see that the above map is compatible with these
actions. Now it is easily seen that I'(¥ % (n), h)% 0 so that we conclude that this map is
bijective and in particular that dim I'(#% (n), h) = n?, since the action of the theta group
on I'(P’, 1) is irreducible [6]. Finally, it remains to use the isomorphism of I'(P’, 1)*
with I'(J§™!, 0(n®)), and identify the induced rational map with E > Dg. In fact, this
only amounts to computing the rational map of P’ into PI'(J§™, O(n®)). But, in view
of Proposition 2. 6, this means that we have to verify that for all p belonging to an open
set in P’, the divisor T}®nJ? ! is the same as D, ,. The latter is given by
{¢eJ . T'(¢ ®n,p)+0}. The projection formula implies that this consists of those &
with I'(n* ¢ ® p)=+0. This is then the divisor {£ € J* : T,n*{ € Oy} =TFONJ?7!, as
was to be proved.

5.8. Remark. On the one hand, we have a natural rational map
4:J91 — P (U (n), h) given by mapping any & e J?"! to the pullback of the theta
divisor on % (n, n(g —1)) by the morphism E — E ® & of #%(n) into % (n, n(g—1)). On
the other, the linear system of n© gives a rational map of J*~! into PI'(J? %, O(n@))*.
These maps fit into a commutative diagram

Je! 4 PI (L% ), h)

Pr(Jo 1, 0(n@)*

in which the vertical map is given by the duality in Theorem 3.
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5.9. Remark. The linear system of h in % (n) is base point free for n=2. On the
other hand, there are examples when it does have base points. Indeed, by 5. 8., it is
spanned by the image of J! under 4. Therefore a point E € % (n) is a base point if
and only if all the divisors in the image of A pass through E. This condition means that
for all ¢ in J?7!, one has I'(X, E® &)+0. There are examples of bundles with this
property ([11], § 3).
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