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Abstract

We study the BGK approximation to first-order scalar conservation
laws with a flux which is discontinuous in the space variable. We show
that the Cauchy Problem for the BGK approximation is well-posed and
that, as the relaxation parameter tends to 0, it converges to the (entropy)
solution of the limit problem.
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1 Introduction

In this paper we consider the equation

o + k@@ ;) = XL ts0per e, )

with the initial condition
ffli=0 = fo, in Ry x Re. (2)

Here k is given by
k=krl_s,0) + kr1(0,+00)>

where Ip is the characteristic function of a set B, £ — a(£) is a continuous
function on R such that

u 1
e [0,1], /0 a(€)de > 0, /0 a(€)de = 0, 3)

and, in (1), xu=, the so-called equilibrium function associated to f¢ is defined
by

U’E(tvx) = /Rf6<t7xa€)d€7 Xa(g) = I]O,a[(f) - I]a,O[(f)a
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fort >0,z e R, €R,a € R.

Eq. (1) is the so-called BGK approximation to the scalar conservation law

Ou+ Oy (k(x)A(u)) =0, A(u) = /Ou a(&)de. (4)

The flux (z,u) — k(x)A(u) is discontinuous with respect to x € R, actually (4)
is a prototype of scalar (first-order) conservation law with discontinuous flux
function. In the last ten years, scalar conservation laws with discontinuous flux
function have been extensively studied. We refer to the paper [BKO0S8] for a
comprehensive introduction to the subject and a complete list of references. Let
us simply mention that the discontinuous character of the flux function gives
rise to a multiplicity of weak solutions, even if traditional entropy conditions
are imposed in the spatial domain apart from the discontinuity. An additional
criterion has therefore to be given in order to select solutions in a unique way.
Several criteria are possible, that may depend specifically on the flux A in (4).
Here we consider the criterion first given in [Tow01] as an entropy formulation.
An equivalent kinetic formulation (in the spirit of [LPT94]) has been given in
[BV06]. In particular, solutions given by this criterion are limits (a.e. and in
L) of the solutions obtained by monotone regularization of the coefficient k in
(4), e.g.

kr — kg, kr+ kL
T+
2e e

kg(x) = kLIw<_g(J?) + ( ) I—sgwga =+ kRIE<w7 e>0.
The kinetic formulation of scalar conservation laws is well adapted to the analy-
sis of the (Perthame-Tadmor) BGK approximation of scalar conservation laws.
Developed in [PT91], this equation is a continuous version of the Transport-
Collapse method of Brenier [Bre81, Bre83]. BGK models have also been used
for gas dynamics and the construction of numerical schemes. See for example
the book of Perthame [Per02] for a survey of this field.

Our purpose here is to apply the kinetic formulation of [BV06] to show the
convergence of the BGK approximation. To this aim, we first study the BGK
equation in itself in Section 2. In Section 3, we introduce the kinetic formula-
tion for the limit problem. We also introduce a notion of generalized (kinetic)
solution, Definition 6. We show that any generalized solution reduces to a mere
solution (Theorem 7). Then in Section 4, we show that the BGK model con-
verges to a generalized solution of (4) and, using Theorem 7, deduce the strong
convergence of the BGK model to a solution of (4), Theorem 11.

A key step of the whole proof of convergence is the result of reduction of The-
orem 7. Its proof, given in Section 3.2, is close to the proof of uniqueness of
solutions given in [BV06]. A minor difference is that we deal here with gene-
ralized solutions instead of “kinetic process solutions”. There is also a minor
error in the proof given in [BV06] (specifically, the remainder terms R, s and
Q8,0 in Eq. (31) and (32) of the present paper are missing in [BV06]). We
have therefore given a complete proof of Theorem 7.

Notation For p,q € [1,+00], we denote by LEL{ the space L?(R;; LI(R¢)) and
by L{LL the space LI(R¢; LP(Ry)).
We also set sgn, (s) = Is503, sgn_(s) = —Ig,<0y, sgn =sgn, +sgn_, s € R.



2 The BGK equation

2.1 The balance equation

By the change of variables f<(t,z,&) = e* f(t,x,€), Eq. (1) rewrites as the
balance equation

O f* + 0y (k(2)a(€) f7) = —xXu

€

t
€ee

with (unknown dependent) source term “=x,:. Hence, we first consider the
following Cauchy Problem for the balance equation:

O f + 0u(k(z)a(§)f) =9, t>0,zeREER, (5)
f‘t:O :fo in R$ X Rf (6)

Proposition 1 Suppose that kg - kr, > 0. Then Problem (5)-(6) is well posed
in LgLé, 1 <p<+oo: forall fo € L%Lﬁ, T >0 and g € L*(]0,T; LéLg), there
exists a unique f € C([0,T]; LgLY) solving (5) in D'(]0, T[xRy x Re) such that
f(0) = fo. Besides, we have

15 @lszae <30 (Lollsgaz + [ lo(o)lagzzas). 7

_ kr kr
where M, —111;1@((,“__{7 kL>'

Proof: Since (5) is linear, it is sufficient to solve the case g = 0. The general
case will follow from Duhamel’s Formula. Assume without loss of generality
kr,kr > 0. Let A, := {€ € R;a(§) > 0}. Then, for fixed £ € A, and although
k is a discontinuous function, the O.D.E.

X(t,s,x,8) = k(X(t,s,x,8))al), teR, (8)

with datum X(s,s,z,§) = = has an obvious solution for = # 0, given by
X(t,s,z,8) =x+ (t —s)kra(§), t > s, when = > 0, and by

Koo = THEa® i <st gy
y Sy Ty = i
kot (t—s)kral§) i ¢>s+ g,

when x < 0. Denoting by sT = max(s,0), s~ = sT — s the positive and negative
parts of s € R, and introducing

kr
O‘k‘(aj) = I{a:>0} =+ EI{I<O}7

this can be summed up as
X(t,s,2,8) = {ag(x)r + (t — 8)kra(§)}T —{z + (t — 8)kra(§)}~, t>s. (9)
Similarly, we have, for the resolution of (8) backward in time,

X(t,s,2,6) = {x+ (t —s)kga(&)} " —{Br(x)x + (t — s)kra(€)}~, t<s, (10)



where "
L
Br(z) = %I{mo} + Tz<oy-

A similar computation in the case a(¢) < 0 gives the solution to (8) by (9) for
(t — s)a(§) > 0, (10) for (t — s)a(§) < 0. For the transport equation (9; +
k(x)a(€)d,)e* = 0, interpreted as

d

%@*(t7X(t, S,Z',f),f) = Oa

this yields the solution
(p*(t7 ',1:7 5) = ’L/J(X(T7 t? x7 6)7 5)7

which satisfies the terminal condition ¢*(7") = 1. We suppose here that v is
independent on &, compactly supported and Lipschitz continuous. A simple
change of variable shows that, for every t € [0,T], for a.e. £ € R,

. ki k
1o (1, ) le < Milll e, MFmMQ;£>J@K+w (1)

If f e C([0,T7; L%L’m’) solves (5)-(6), then, by duality (note that ¢* is Lipschitz
continuous in z if v is) we have, for t € [0, 7], for a.e. £ € R,

/f@m@wawm:/ﬁmowuaom- (12)
R R

In particular, the estimate (11) where ¢ = conjugate exponent of p gives, for
a.e. £ €R,
Hf(Tv 7§)HLZ; < Mk”f@(’g)HL;v

and then by Duhamel’s principle, for g # 0,

T
(T, &)ln < My, (llfo(',f)llyg +/0 ||9(t,-,€)||Lgdt> : (13)

The estimate (7) and uniqueness of the solution to (5)-(6) readily follows. Exis-
tence follows from (9)-(10)-(12), from which one derives the explicit formula

f(t,2,8) = J(t,2,8) fo(X(0,t,2,8),8),
the coefficient J(¢,x,&) being given by

kr
J(t,2,€) = Lpcoyufasthpa(e)} + gl{(]<:r:<tkna(§)}

if a(§) > 0 and

k
J(t,2,8) = Vpctrpa(e)}ufa>0) + ﬁl{tkw(g)«mo}

if a(§) < 0.



2.2 The BGK equation
Denote by T (t) fo the solution to (5)-(6) with g = 0, i.c.
T(t) fo(z,8) = J(t,2,8) fo(X(0,1,2,8), ),
X given by (9)-(10).
Definition 2 Let fy € L\ (R, x R¢), T > 0. A function f* € C([0,T]; L'(R,
Re)) is said to be a solution to (1)-(2) if
FO=t O+ [ T i = [ o 1)

for allt €10,T7.

Theorem 3 Assume kg - kr, > 0. Let fo € L*(R, x Re), T > 0. There exists
a unique solution f¢ € C([0,T]; L' (R, x Re)) to (1)-(2). Denoting by Sc(t)fo
this solution, we have:

L[St fo — Se() ) T lrr o xre) < Mill(f§ — £8)* |12 Ry xie)
2. 0 <sgn(é)fo(x,&) <1 ae. = 0<sgn(§)S(t)fo(x,&) <1 a.e.
3. if fo = Xue» w0 € L¥(R), 0 < up <1 ace. then 0 < S.(t)fo < x1-

Proof: the change of variable (¥, ") = e(t, z) reduces (1) to the same equation
with € = 1. We then have to solve f = F(f) for

FUO = TOR + | T s, u= [ fleas
By (7) and the identity
[ b= xl©de =lu=sl, woer
we have F': C([O,T];Lglo)g) — C([O,T];L;’g) and F is a (1 — e~ T) contraction

for the norm
Ifll = Sup Hf()”Ll(szRg)-

Indeed, we compute,

t
IF(E) ) = F)Y O, < | e 1T () (Xuze—s) = Xurt—s)) 21 ds
€ 0 ,€
t
:/(; eis”th(t—s) _Xu"(tfs)”L‘lr)sds
t
:/ e *|luf(t —s) — u’(t — s)| 1 ds
0
t
g/ NS~ ) — Pt 9l ds
o ,

t
< / dsl f — £
0



By the Banach fixed point theorem, we obtain existence and uniqueness of the
solution to (1)-(2). Since 0 < sgn(§)x.(§) <1 a.e. we have

0 <segn(§)F(f)(t,z,€) <1 ae.

if 0 < sgn(§)fo(z,€) <1 a.e. This proves the point 2. of the Theorem. The
point 1. follows from the inequality

/R sen. (f — 0)(QU) -~ Q)E <0, foge IMRe), Q) =X jue — /

that is easy to check, and from the identity

F6) =T(t) fo+ / T(5)QU)(t — )ds

for the solution to (1)-(2). If fo = Xuy, 0 <ug <1 a.e. then 0= xo < fo < x1-
Hence the item 3. follows from I. and the fact that any constant equilibrium
function xa, a € R is solution to (1). m

3 The limit problem

Assume fo = Xy, With ug € L*(R), 0 < up < 1 a.e. Set

Alu) = / " ()T (€) e, (15)

Note that by (3), we have A > 0 and A vanishes outside the interval [0, 1]. We
expect the solution f¢ to (1)-(2) to converge to the solution w of the first-order
scalar conservation law

Opu+ 0, (k()A(u)) =0, t>0,z €R, (16)

with initial datum

u(0,x) =uo(z), zeR. (17)
For a fixed T > 0, set Q =]0, T[xR,.
Definition 4 (Solution) Let ugp € L*(R), 0 < ug < 1 a.e. A function u €

L>(Q) is said to be a (kinetic) solution to (16)-(17) if there exists non-negative
measures my on [0,T] x R x R such that

e m is supported in [0,T] x Rx] — 00, 1], m_ is supported in [0,T] x R x
[0, +oc],

o for allp € CX([0,T[xR x R),
| [ @+ ka0t
QJr
T
h 0,z,8)dédx — (kr, — kg)™ ,0,6)déd
+/R/R 0.21(0,, €)deda — (ks R>/O/Ra<f>w<t €)dedt

= [ [oevimstre) (3)
QJr
where hy(t,x,€) = sgny (u(t,z) — &), hox(z,§) = sgny (up(z) —§).



Proposition 5 (Bound in L™) Let ug € L*(R), 0 < uy < 1 ae. Ifu €
L>(Q) is a kinetic solution to (16)-(17), then 0 <u <1 a.e.

Proof: Consider the kinetic formulation (18) for h; with a test function

Y(t,x,8) = p(t, z)u(§).

If u is supported in ]1, +00[, two terms cancel:

/ / o (0, @, €)déda = / / Lo un(yoe0(0, 2)Tes1a(€)déde = 0
RJR RJR

and

/Q /Raﬁwdmﬂfa 2,6)=0

by the hypothesis on the support of m,. Hence we have
|, [0+ K@@ o dedras

T
(ke — k) / / a(€)p (1, 0)u(€)dédt = 0.

A step of approximation and regularization shows that we can take p(€) = I¢sq
in this equation. Since

/+°o a(€)dg = A(+00) — A(1) = 0= 0 =0,

and

+oo +oo
/ h+ (ta x, §)d§ = / I§<u(t,a:)d£ = (U(t, JJ) - 1)+a
1 1

[ htta g = [ tecumaton
— e (ut.a) - 1) | " (e = s Gt 7) — (At ) — AL,
we obtain
/Q(u — 1) + E(x)sgn, (u — 1)(Au) — A(1))dppdtds = 0.

It is then classical to deduce that (u — 1)t = 0 a.e. (see the end of the proof of
Proposition 10, after (38)), i.e. uw <1 a.e. Similarly, we show v > 0 a.e. B

Our aim is to prove the uniqueness of the solution to (16)-(17). Actually, more
than mere uniqueness of the solution to (16)-(17), we will show a result of
reduction/uniqueness (see Theorem 7) of generalized kinetic solution. To this
purpose, let us recall that a Young measure (J — R is a measurable mapping
(t,x) — vy, from @ into the space of probability (Borel) measures on R. The
mapping is measurable in the sense that for each Borel subset A of R, (¢, z) —



vt (A) is measurable Q — R. Let us also introduce the following notation: if
feLYQ xR), we set

fe(y:8) = f(y,€) —sgng(§), yeQ,E€R.

This is consistent with the notations used in Def. 4 in the case f = x,.

Definition 6 (Generalized solution) Let ug € L*(R), 0 < up <1 a.e. 4
function f € L' (QxRe) is said to be a generalized (kinetic) solution to (16)-(17)

if
0< f<x1 ae, —0cfr is a Young measure Q@ — R,
and if there exists non-negative measures my on [0,T] x R X R such that

e m is supported in [0,T] x Rx] — 00, 1], m_ is supported in [0,T] x R x
[0, +oc],

o for all € C([0,T[xR x R),

/ / [ (0 + k(x)a(£)0p1h)dédtda

//fOinxﬁ)dfdw— kL—kRi/OT/Ra (0, 6)dedt

/ 8qu)(hnzl: (ta (E,f) (19)

R

Q

where fo 1 (z,€) = sgny (uo(z) —§).

Theorem 7 (Reduction, Uniqueness) Let ug € L®(R), 0 < ug < 1 a.e.
Problem (16)-(17) admits at most one solution. Besides, any generalized so-
lution is actually a solution: if f € L'(Q x R¢) is a generalized solution to
(16)-(17), then there exists u € L*>(Q) such that f = xy.

To prepare the proof of Theorem 7, we first have to analyze the formulation
(19) and the behavior of f at t =0 and = 0.

3.1 Weak traces

Introduce the cut-off function

[s]
we(s) = /0 pe(rydr, p.(s)=c"'p(ets), seR, (20)

where p € C°(R) is a non-negative function with total mass 1 compactly sup-
ported in ]0,1[. We have the following proposition.

Proposition 8 (Weak traces) Let f € L®(Q x R¢) be a generalized solution
to (16)-(17). There exists fI° € L*>(R x R), Fy. € L?(]0, T[xR) and a sequence



(1) | O such that, for all o € L2(R xR), for all & € L(]0, T[xR) (the subscript
¢ denotes compact support),

/Q/Rfi(t,:c,g)w;n() (z,€) dfdtdme//f oz, €)dedz,

(21)
T
[ [ retta@ate, ot dededz — [ [ Futeeodcar (22)
QJR 0o JR
as n — +o0o. Besides, there exists non-negative measures m%°, my on R? and

[0,T] x R respectively such that:

o mY° (resp. my ) is supported in Rx] — oo, 1] (resp. [0,T]x] —00,1]), m™
(resp. m_ ) is supported in R x [0, +o0[ (resp. [0,T] x [0,+00[),

e for all p € C(R?), 0 € C=([0, T[xR),

/ P pdeds = / Jospdeds — / epdm (2,€6),  (23)
R2 R2 R2

/OT/RFinﬁdt:—(kL_kR)i/OT/Ra(f)edgdt
/()T/Ragedmi(t,g)_ (24)

Proof: The first part of the proposition does not use the fact that f is solution.

Indeed, since |f4| < 2, we have
T T
< 2/ |wy ()] dt = 2/ py(t)dt <2,
0 0

T
/0 fi(t, €0 (D)dt

for all (z,&) G R2. This gives in particular a bound in L?(K), K compact of R?

on fOT f=(t,-)wy, (t)dt, hence existence of a subsequence that converges weakly in
L*(K). ertmg R? as an increasing countable union of compact sets and using
a diagonal process, we obtain (21). The proof of (22) is similar. To obtain (23),
apply the formulation (19) to ¥(t,z,¢&) = ¢(z,£)(1 — wy, (t)). We obtain (23)
by using (21) and setting

[ e o =t / [ #(.61 —n, (O)dms (t..6

for all non-negative ¢ € C.(R?): the limit is well defined since the argument is
monotone in n and it defines a non-negative functional on C..(R?) which is repre-
sented by a non-negative Radon measure. Similarly, applying the formulation
(19) to Y(t,z,&) = 0(t,§)(1 — wy, (z)), we obtain (24) with

A [ oamstve = im [ / 0(t,€)(1 = wy, (@) dme (¢, 2,€)

for all non-negative 6 € C.([0,T] x R).

Remark: Since 0 < f < xi, (21) shows that f1°, resp. fI°, is supported
in Rx] — 00,1], resp. R x [0,+o0[. Similarly, Fly, resp. F_, is supported in
[0, T]x] — 00, 1], resp. [0,T] % [0, +00[. We use this remark to show the following



Corollary 9 For all p_ € L*>(R?) supported in [-R, R] x [-R,+oo[ (R > 0)
such that Ogp— < 0 (in the sense of distributions), we have

lim / / Frwl (z,&)dEdtda > / forp_dude. (25)

n—-+oo

For all _ € L*(]0, T[XR) supported in [0,T] x [—R,+oo[ (R > 0) such that
0:0_ <0 (in the sense of distributions), we have

lim //Rf+k(x)a(§)w;7n(x)9,(t,f)dﬁdtdw2 —(kL—kR)+/() /Ra(g)e,dfdt.

n—-+4oo
(26)

Proof: Note first that each term in (25) is well defined by the remark above
and that, by (21),

Jim_ /Q [ 51t2.0044, (- @ 0pdetuds = [ [ oo dea.

By regularization (parameter ) and truncation (parameter M), we have

/ T — for)odade = / (T — for o™ M dudé + e, M),
R2 R2

h li M)=0. M isel t
where EHO,JIV}ILJroo n(e, M) ore precisely, we se

M
©=™ = (p- * ) X X,

where 1. is a (smooth, compactly supported) approximation of the unit on R?
and s is a smooth, non-increasing function such that yp = 1 on | — oo, M],
xar =0 on [M +1,+00]. Apply (23) to =™ to obtain

/ 7 — for)o—dode = - / Dee™ M dm™ (2, €) + (e, M).
R2 R2

For M > R+ 1 and € < 1, we have =™ = ¢_ % 1., hence 8&pr <0. It
follows that

7 = foye-dudg = e, b,

"

for M > R+ 1, e < 1. At the limit M — 400, ¢ — 0, we obtain (25). The
proof of (26) is similar.

3.2 Proof of Theorem 7

Our aim is to show the following

Proposition 10 Let ug,vg € L¥(R), 0 < ug,vg < 1 a.e. and let f, resp
g, be a generalized solution to (16)-(17) with datum ug, resp. vo. Let M =

sup  |k(x)a(§)]. Then we have, for R > 0,
z€R,£€(0,1]

1 T
T/ / /—f+g_d§dxdt S/ (up — vo) tdz. (27)
0 {|lz|<R} JR {lz|<R+MT}

10



Remark: In case f = xu, g = Xv, we have [ —fig_dé = (u—v)*, hence
(27) gives uniqueness of the solution to (16)-(17) (more precisely, it gives the
L'-contraction with averaging in time and the comparison result ug < vy a.e.
=u<wvae.).

Remark: To obtain the second part of Theorem 7, we apply (27) with g = f

to obtain -
/ / / —f+ f-dédzdt < 0. (28)
0 {lz|<R} JR

Since 0 < f < x31, we have f; > 0 a.e. and f_ < 0 a.e. We deduce from
(28) that fif- = 0 a.e. Let v, denote the Young measure —0¢f: we have
O¢f— = Ocf — 0o = O f+ and, by examination of the values at £ = Fo0 of fi,
for a.e. (t,z) € Q,

f+(tvxvf) = Vt,x(gv—’_oo)a f*(tvxvf) = _Vt,m(_oovg)'

But then, the relation fy f_ = 0 implies that v , is a Dirac mass at, say, u(t, x).
By measurability of v, u is measurable and f = x,,.

Proof of Proposition 10: Since f; and g_ satisfy
[ [ 50w+ ka0, dsrds
QJR
T
_ _ +
i [ [ vt st~ o~ k) [ [ at@uie0.acar

_ /Q / Dewdm (t,,€) (29)

and
/ / g— (04 + k(z)a(&)01))dEdtdx
QJR
w [ [ w0t~ o - k) [ [ at@uie0.acar

_ /Q /R detbdp_(t,2,€)  (30)

for all ¢ € C°([0, T[xRxR) (here gg,— = sgn_(vp—&) and p_ is a non-negative
measure on [0,7] x R x R supported in [0,7] x R x [0, 4+oc0[), it is possible to
obtain an estimate for —f, g_ by setting ¢y = —g_¢ in (29) and ¢y = f,¢ in
(30) (¢ being a given test function) and adding the result. This requires first,
however, a step of regularization.

Step 1. Regularization. Let p, s denote the approximation of the unit on
R3 given by

pa,6,5(tax7€) = pa(t)pg(a?)pa(f), (t,x,ﬁ) € RB’

where p, is defined in (20). Let ¢ € C2°(]0, T[xR x R) be compactly supported
in J0,T[xR\ {0} x R. Use ¥ * pyes as a test function in (29) and Fubini’s

11



theorem to obtain

/ / 2@ + k(x)al€) D) dedtdn

T
b [ [ ot s E)dde =y~ k) [ [ a(€0 o s(t.0. et
/ /85wdm‘”5 (£,2,€) + Rocs(1)),

£,0 .

a6§

where f$°° := fi % pa.cs, mPT° i=my * Pacs and

a g, 5 / / er :L’"/} * Po,e,d — (k( ) (f)arql}) * pa,s,é]dgdtdm'

Here we have denoted p(t, z,&) = p(—t, —z, —§). Also observe that, implicitly,
we have extended fi by 0 outside [0, T] since, e.g.

/f+ b+ po(t)dt = //f+ ()palt — s)dsdt
= [ w6 / F+(Oa(s — t)dtds.

Since 1) is supported in ]0, T[xR \ {0} x R, we have, for «,¢ small enough,

//fo,+¢*ﬂa,5,6(0;$,§)d§d$ =0,
RJR

T
/ / A(EN) * pon (1,0, €)dEdE =0,
0 R

and

Roves(t) / / Fok(@)[a(€)(Dat) # paess — (A(€)Dath) * poe.s)dEdtder.

We deduce

/ / 2500 + k(x)a(€) 0, dEdida

QJr

//8§¢dma€5 (t,2,€) + Racs(®). (31)

A similar work on g_ gives

/ / P (O + k(x)a(€)0p)dedtda

QJr

_ / /85wdp€’”‘”(t,x,§)+Qﬁ,y,a(1/f), (32)
QJR

12



where

Qoo (1) = /Q / 0 K(2)[al€) (0a1) * ppue — (A(€)0) % 0] dEdtd.

a,e,0 ﬁvn

Step 2. Equation for —fJr g~ Let ¢ € C°([0, T[xR) be non-negative
and compactly supported in ]0, T[xR \ {0}. Notice that ¢ does not depend on

€. Set 1 = —pg”"7 in (31), ¢ = —pfe % in (32). Since
fOi(pg) + go(ef) = fg0ip + Oi(wfg),

we obtain by addition of the resulting equations

/Q /R RS (Do 4 k(2)al€)Dap)dedida

_ /Q . /R De FO= S P (1,2, €) + Deg” 7 dm (8, 2, €)
+ Raes(—09>"7) + Qa0 (—pf15°).

Notice that the term

/ /8 FEE0 PP (@, €) + Degl T dmE 0 (8, 2, €)

is well defined since the intersection of the supports of the functions f{ % and
P27 (resp. f27 and m is compact. Actually, this term is non-negative
since p>"7, mee 9 >0 and 85]”_?’6’5, 3598"”0 < 0. We thus have

asﬁ)

/ / Foe égf 7By + k(x)a(€)dyp)dEdtdx
> Raes(—09""7) + Qpuo(—0f350).  (33)
It is easily checked that
Rocs(—i2"7) = 0w ™'0), Qpuo(—ph$™’) =0 o),

hence 5
lim Ra € 5( 90967%0) + Qﬁ,u,o( <pfa = )

6,0—0

At the limit §,0 — 0 in (33), we conclude that

[ [ -rre o s vwa@onedcaras > o (34

Step 3. Traces. Suppose that k;, < kr. We then pass to the limit ¢, — 0 in
(34) to obtain

/Q/R—ergg’V(attp + k(z)a(§)0.p)dédtdx > 0. (35)

Note that in the opposite case k;, > kg, and with our method of proof, we would
first pass to the limit on 3, v. Let us now remove the hypothesis that ¢ vanishes

13



at t = 0: suppose that ¢ € C°([0,T[xR) is non-negative and supported in
[0, T[xR\ {0} and apply (35) to ¢(t,x) = ¥(t, x)wy, (t). We have

/Q [ = Fea i ()0 + K@)l
+ /Q /R —fg? (t, x)w!, (t)dEdtdz > 0. (36)

By (25) applied with ¢_(z,&) = gﬁ’”((),x,{)z/)(o, x), we obtain

Jim /Q /R F1g% (0,2, €)(0, 2)o, (t)dédtda

n—-+o0o

B,v
> /R /R For g™ (0,2, €)(0, x)de da.

Now fy (t,x,€)g>" (t, 2, €)(t, z) has a compact support, say in [0, T] x [—R, R] x
[—R, R], thus ¢_(t,2,€) = ¢ (t,2,€)¢(t,z) is uniformly continuous on this
compact support. Therefore for p > 0, there exists v > 0 such that |¢_ (¢, z,£) —
0 (0,2,8)| < gz for any 0 <t < v and any z,£ € [-R, R], and then for large
n, we have 7, <y and

[ [ #4tt) ( 0. 90000 - 7710, 000.0)) o, (dcata
QJr
< [ L1540 010, () g Ve el s
< u/pnn(t) dt = p.
Thus we obtain, at the limit n — 400 in (36),
| [ ~t107 @b + wpate)o, vt
QJRr

+ [ [ ~fosa? 008000 0)dcd0 > 0

The next step is then to remove the hypothesis that i vanishes at * = 0 by
setting ¥ (t, z) = 6(t, x)w,, (x) where 6 € C°([0, T[xR) is a non-negative test-
function. We have

/Q /R —f12"wn, (2) (040 + k(x)a()0,0)dédtdx
_ B,v k(2)al)w' (2 .
JF/Q/]R f+9270(t, 2)k(z)a(§)w,,, (v)dEdtd

b [ [ 0007 0.0.0000. 000, )l > 0.
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By (26) with 0_(t,&) = g7 (t,0,€)0(t,0),
i [ [ Fek@al€)s), (g (0.0,€0(t. 0)dedds

n—-+o0o QJR

(ks — k) / / Y(1,0,6)0(t, 0)dedt,

and by similar argument, the limit as [n — +oo| of the term
L [ £k @) (o2 0., 00002) — 624(0,0,600,0)) dcv
is zero. We have therefore
/Q /R —£+9%7 (8,0 + k(2)a(€)0,0)dedtds
+ (ks — kn) / / Y (4,0, €)0(, 0)dedt
+ / / —fo.197"(0,2,6)0(0, z)dédx > 0.
RJR
Since (kg — kg)* = 0, we have actually
/Q /R —f+9%7 (840 + k(2)a(€)0,0)dedtd
+ / / — for g™ (0,2,€)0(0, 2)dda > 0.

Take 8 = n, where (1,) is given in Prop. 8. At the limit ¥ — 0 first, then
n — +00, we obtain

/ / —f1+9- (000 + k(x)a(§)0.0)dEdtd
QJR

+1imsup//—f0,+92"(0,x,§)0(0,x)dfdx20. (37)
n—+oo JR JR
Observe that
T
70,2, = [ g (2.0, (0
0
T
— [ o ttn.904), (at.
0

By (25) (transposed to g_ tested against a function @), we have

ngrfm// — fo.1.9™ (0, 2, )0 Owdfdw<// ~ fo.1g0,6(0, 2)dedz.

Since

/ —fo,+90,—d§ = / —sgn, (ug — &)sgn_(vo — £)dé = (up — vo) T,
R R
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we obtain by (37),
/:/—ﬁ%«w+k@m@wwmwmx+/@m—%ﬁmm@mzo.(%)
Q /R R

It is then classical to conclude to (27): let M > 0,R > MT, let n > 0 and let r
be a non-negative, non-increasing function such that » = 1 on [0, R], 7 = 0 on
[R+n,+o0o[. Set 0(t,z) = L=tr(|z| + Mt) in (38) to obtain

1
—/ /—f+g_r(|x\+Mt)d£dtdx§/ (ug — vo) Tdx + J,
TJgJe {lz| <Rt}

where the remainder term is

Tt
J= /Q [~ e T+ 200 + kwa(e)sga(o)) it

By definition of M, J < 0 and since r(|z|+Mt) = 1 for || < R—MT,0<t<T,
we obtain

1 (T
T/ / /—f+g_d§dxdt§/ (o — vo) Tda.
0 J|z|<R—-MT JR {lz|<R+n}

Replacing R by R+ MT, and letting n — 0 gives (27). &

4 Convergence of the BGK approximation

Theorem 11 Let ug € L' N L®(R), 0 <wup < 1 a.e. When e — 0, the solution
f¢ to the (1) with initial datum fy = xu, converges in LP(Q xR¢), 1 < p < 400
to xu, where u is the unique solution to (16)-(17).

Proof: For f € L*(R¢), set

13
my(€) = / (v — HOC, u= / F(€)de.

—00

It is easy to check that my > 0if 0 < sgn(§) f(§) < 1 for a.e. £. In our context,
we have 0 < f¢ < x1, hence m® := %mfs > 0. Viewed as a measure, m® is
supported in [0, 7] x R, x [0, 1]. Integration with respect to & in (1) gives

13 £
me(€) = by ( /0 ff<<>d<> Lo, (k(x) /O a<<>ff<<>d<>

in D'(]0, T[xR,). Summing over (¢,z) € [0,T] x [x1,z2], £ €]0,1], we get the
estimate

T2 1
m®([0,T] x [21, x5] x [0,1]) :/ /0 (1 =T, 2,8) = f°(0,2,))dEdx

/0 /0 (1—£>k<w)a(s>f€<t,x,£)dfdt] ~ (39)

T

+
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Since f¢(t) € L*(R, x R¢), there exists sequences (27) | —oo and (z) T +oo
such that the last term of the right hand-side in (39) tends to 0 when n — +o0.
Since, besides, f¢ > 0 and

AAfe(T,x7§)d5dxS/R/quodgdm: ol 21 ).

we obtain the uniform estimate
me (10, 7] x R x [0,1]) < [Juoll s a)- (40)
We also have
0< /" <x1, —0f5(t,2,8) =v;,(§)+0O(e) (41)

where v () 1= 6y (1,0)(§) and the identity is satisfied in D'(]0, T[xR, x Re).
Indeed, by (1),

[ = xus +(0uf + 02(k(2)a(§) f7)) = Xus + O(e),
hence
—0¢fS = —0cf° +00(§) = —0exus + 00(&§) + O(e) = due (&) + Ofe).

Notice that, for a.e. (¢,z), v, is supported in the fixed compact subset [0, 1]
of Re. We deduce from (40)-(41) that, up to a subsequence, there exists a
non-negative measure m on R3 supported in [0,7] x R, x [0,1], a function
f e L0, T[; LY(R, x R¢)) such that 0 < f < x1, —0cfr(t,2,8) = v4,4()
where v is a Young measure () — R¢ and such that m® — m weakly in the sense
of measures (i.e. (m® —m, ) — 0 for every continuous compactly supported ¢
on R?) and f* — fin L™(Q x R¢) weak-star. Besides, since f¢ € C([0,T]; L ;)
satisfies f€(0) = fo and the BGK equation

O f* + 0u(K(x)a(€) f7) = Dem®,
it satisfies the weak formulation: for all ¢ € C°([0, T[xR x R),

/ / F2(000 + K(2)a(€) 0,0 de dtd + / / foth(0, 2, €)déda
QJR RJR

—/Q/R@wdme(tw,&)-

/ / 1200 + b(2)a(€)0uth) dédtda + / / fost(0, 2, €)dédx

//sgn a(§) defdtdaz—ﬁ—/ /851/1dm t,x,§)
=(kr — k1) / /sgn (¢, 0, §)d§dt+/ /agwdm (t,z,¢)

=(kr, — kg) A / W(t,0,€)dedt + / / DepdmS. (¢, x, £), (42)

In particular, we have
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where
<mft7af¢> = <m€aa£¢>
— [ [ (€)1~ h)seng (©) + (= ke Hlue.0. ). (43)

More precisely, we set

+oo
ms, = m — //g a(Q)[(kz — k) Tsgn, (O) — (ke — kr)~sen_(Q)]d¢o(z = 0),

and

¢

mZ =m’ +/ a(Q)[(kz — kr)"sgn, (C) — (kL — kr) sgn_(¢)]d¢d(z = 0).
Notice that in both cases, and since A(§) > 0 for any £, we have added a non-
negative quantity to m®. At the limit ¢ — 0 we thus have m§ — m4 where
my is a non-negative measure. Examination of the support of m% shows that
m4, resp. m_ is supported in [0, 7] x R, x] — 00, 1], resp. [0,T] x R, x [0, +o00].
At the limit € — 0, we thus obtain the kinetic formulation (19). We conclude
that f is a generalized solution to (16)-(17). By Theorem 7, f = x, where
u € L*™(Q) is solution to (16)-(17). By uniqueness, the whole sequence (<)
converges (in L weak-star) to x,. Actually the convergence is strong since

/Q/R|f€ — xul*dédtde = /Q /]R |F12 = 2fxu + Xudédtdx
< /Q /R £ = 2fxu + xudédtdz. (44)

We have used the fact that 0 < f¢ < 1. The right-hand side of (44) tends to 0
when € — 0 since 1, x, € L can be taken as test functions. Hence f¢ — x,
in L2(Q x R). The convergence in LP(Q x R), 1 < p < +oo follows from the
uniform bound on f€ in L' N L>®(Q x R). m

Remark: it is possible to relax the assumption that the initial datum for (1)
is at equilibrium and independent on € in Theorem 11. Indeed, the conclusion
of Theorem 11 remains valid under the hypothesis that the initial datum f§ for
(1) satisfies

0< fe<x1, fi—fo uola):= /R folz, €)de, (45)

where f§ — fo in (45) denotes weak convergence in L'(R, x R¢). Indeed,
the proof of Theorem 11 remains unchanged under the following modification:
passing to the limit in (42), we obtain that f is a generalized solution to (16)
with an initial datum f that is not necessary at equilibrium. However, we have

Jo— Sgﬂzp(f) =sgny (up —§) — 857”9:,

where m9. (resp. mY) is a non-negative measure supported in [0, 7] x R x] — o0, 1]

(resp. [0,T] x R x [0,4+0c0[). Consequently, up to a modification of the kinetic
measure m4, we obtain that f is indeed a generalized solution to (16)-(17). The
rest of the proof is similar.
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