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Abstract

In this paper, we prove particle approximations of initial data for systems of conser-
vation laws in two dimensions. This involves approaching the density but also all the
additional quantities that could be verified by the model considered. We prove that ac-

cording to the hypothesis of regularity or support, the speed of convergence is of form
C/N or C/N2.
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1 Introduction

1.1 Context

In the area of systems of conservation laws, the study of approximations by particle models is
important and the mathematical analysis is most of the time not advanced enough. Some results
have appeared recently for scalar conservation laws ([9], [8], [10], [12]) and some conservation
law systems ([6]). All being placed in one dimension of space. The purpose of this paper
is to provide tools for higher dimensional case studies. In paper [6], the first step consists
in approximating the initial data by a system of particles and demonstrating in the sense of
distributions the limit of this approximation towards the initial data which are the density, the
momentum and other quantities considered by the system. An initial data p® € L'(R) being
fixed, the particles are initially placed in the following locations:

Tf/:sup{xER;/ po(x)da:<lN},

—00
T
ffvzsup J:ER;/
zN

i—1

po(az)d:v<lN}, fori=2...,N—1.
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where [y = N / p° () dr. Having no order relation and therefore no upper bound in dimension
R

greater than one, this approach cannot be used for dimension two and greater so we have to
proceed differently. In [6], the system studied is the following:

{ dip + 0z (pv) = 0,
Oi(p(v+p)) + O (pv(v + p)) =0,



and the important first step of the proof is to prove that approximated solutions related to the
particles satisfied for the initial data that
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for all ¢ € C°(R). The proof makes significant use of being in one dimension of space. In this
paper, we will present particle approximation results in two space dimensions. It can then be
extended to higher dimensions, the difficulty being to overcome the additional properties of R

with respect to RY. We will thus define particle approximations and prove the convergence for

the density
// (x,y)o(x,y) dedy — // (x,y)¢ xy)dxdyN—> 0
—+00

and for other addltlonal quantities which are of the form

J] 7w ety dedy — [[ ) @ pete) dedy o
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For example for a multi-dimensional system like the one found in article [3], that is to say

Op + @x(pu) + ay(ﬁv) =0,
Oy(p(u+p)) + Ou(pu(u+p)) + 0y(p(u+ p)v) =0, (1.1)
A (p(v +q)) + 0u(pu(v + q)) + 9y (pv(v +q)) = 0,

the quantity w can represent four different physical quantities: u,v,p and ¢. It is therefore
interesting to be able to bundle the study of those four smlultaneously
We will demonstrate results according to the hypothesis on density, p° € W1>(R?) or

p° € LY(R?*) N L*>(R?), and with compact support or not. Furthermore, instead of showing
convergence to 0, we will present accurate estimates of how this convergence takes place. We
will see in partlcular that according to the hypothesis of regularity or support, the speed of the
convergence is of form C'/N or C /N 2. When the initial data does not have compact support,
we will obtain for any epsilon an increase by taking this parameter into account. Typically,
this reflects the smallness of the density outside of a compact and is sufficient to allow us to
continue this study. We present some independent results of partial differential equations that
could be studied via their approximations in order to be as general as possible. The present
work presents some similarities of approach with different works which do not focus on particle
approximations but seek to approach through other objects: sticky particles [7], [11], sticky
blocks [1], [5], [4]. For these different objects, the first two-dimensional extensions came up in
the recent past years [2], [3].

In this next two subsections, we present the particle approximation and the four general
results we get. In section 2, we establish the part of the results related to the density and in
section 3, we prove the remaining results related to the additionnal quantities.



1.2 Particles approximation

Let p° € L'(R?) such that p® > 0. Let L = (L, L}, Lo, L) € R* be such that
L/1 < Iy and L/2 < Lo (12)

and set Ay = Ly — L, Ay = Ly — L, and Cp, = [L, L] x [L}, Ly]. Let N € N*. We set

Ay A
Ty =1 —|—k’N 7w :L'Q—i—kWQ for any k € [0, N]. (1.3)

Notice that T = L}, TN = Ly, y)Y = L} and §% = L. For i € [0, N — 1] and j € [0, N — 1],

we set
yJ+1
am- A A2/ / (x,y) dydz. (1.4)

We define the piecewise constant density pV by

N-1N-1

Zafv][[z ¥ (@) gy g ((y). (1.5)

=0 j=0

Particles approaching the density p° are located at points (T2, y;V ) and the density pV is a way
to make link between the particle dynamics and the macroscopic quantity.

Let p° € L'(R?) such that p° > 0. Let L = (L, LQ/_, Ly, L) € R* be such that (1.2) and set
Al = Ll — Lll, AQ = L2 — L/Q and OL = [Lll,Ll X [L2,L2]. Let N € N*. We set 13) and for
z(’ € %0, N —1] and j € [0, N — 1], we set (1.4). We define the piecewise constant density p™ by

1.5).
Let w® € L>®(R?). Then w° € L}, (R?) and we set

y]
wh = AA / / " (x,y)dydz, fori,je[0,N —1] (1.6)
2

and we define the piecewise constant quantity p¥ @V by

N-1N-1
N N
(p"a™ a; ;Wi Lz =y

i+1[(x)]l[?§y7@ﬁ1[(y)' (17>
i=0 j=0
From that starting point, in the paper, we will consider two cases of locations for the
particles according to the assumptions on the initial data.

1. Case 1 of initial data. In the case where p° € L'(R?) has a compact support included
in some Cp, we choose this L for the location area of particles.



2. Case 2 of initial data. In the case where p° € L'(R?) doesn’t not a compact support,
We will fix the location area of the particles by removing a mass smaller than an epsilon
from this area. Indeed, since p° € L'(R?) and such that p° > 0, the function L

p°(z,y) dzdy is decreasing and tends to 0, then for any ¢ > 0, there exists L > 0

R2\[—L,L]2
such that

// P°(x,y) dedy < e. (1.8)

R2\[-L,L]?

Then we set Ly = Ly = L, L} = L = —L which gives C, = [—L, L]?>. Notice that in this
case pV depends on € via L thus we note p™ instead to keep it in mind.

1.3 Results

We prove the following approximation results according to the regularity of p°, namely W1 (R?)
or p® € LY(R?) N L*=(R?), and according to its support, compact or not.

Theorem 1.1 (Result for p° € W>*(R?) with a compact support) Let p° € L'(R?) such
that p° > 0 with a compact support included in a Cp, where L = (Ly, L}, Lo, L) € R* be such
that (1.2). We assume furthermore that 9,p°,0,p° € L>(R?). For any N € N*, we consider p"
defined by (1.5) with (1.3)-(1.4). Then for any function p € C°(R?), we have

// PN (x, y)p(z,y) dﬂfdy—// P’ (z,y)p(x,y) dedy| < Clj’f,(f)’ (1.9)
R? R?
with

Ci2(0) = max(Ar, Do) ([|0:0°] oo + 10y [lo0) (1020l + [0yl o0)- (1.10)
Let w° € L>®(R?) such that 9,w°, 0,w’ € L>®(R?). Let pNN defined by (1.7) with (1.6). Then
for any function ¢ € C>(R?), we have

. R K C WOl oo
//pN(x,y)wN(x,y)sO(fv,y) dxdy—//po(x,y)wo(x,y)sa(x,y)d:vdy < 1’]2\7<¢)+ 1’2(?\)[! lee
R2 R2

(1.11)
with
K1 5(p) = max (A, 29)([]0:0° loo + 10y0° [[oo) 0[]0 10”11 (1.12)

Theorem 1.2 (Result for p° € WH>2(R?)) Let p° € LY(R?) and such that p° > 0. Let e > 0.
Consider L > 0 such that (1.8). We assume furthermore that 0,p°,9,p" € L>*(R?). For any
N € N*, we consider p™° defined by (1.5) with (1.3)-(1.4). Then for any function ¢ € C°(R?),
we have

J[ 7w etepasty - [[ Feetepasiy) <o+ 52




with

Ce(p) = 6L ([|0:0°]loc + 10y [lo) (1020l + [10y2llo0)- (1.14)
Let w® € L>®°(R?) such that 0,u°, 0,u° € L®(R?). Let pNeo™N< defined by (1.7) with (1.6). Then
for any function p € C°(R?), we have

/ / P (e, y) o™ (2, y)p (2, y) dedy — / / Pz, y) (2, y) o (x, y) dady

CE @ WP ) Ks @
<ellellollw’lloo + ( ])\|[|2 I ]\(f >, (1.15)

with . . .
Ke(p) = 2L([|0:w" | oo + [10yw” |so) 1@ lloo 2”1 (1.16)

Theorem 1.3 (Result for o € L'(R?) N L>(R?) with a compact support) Let p® € L'(R?*)N
L>(R?) such that p° > 0 with a compact support included in a Cr, where L = (Ly, L}, Ly, L}) €

R* be such that (1.2). For any N € N*, we consider p~ defined by (1.5) with (1.3)-(1.4). Then
for any function ¢ € C>°(R?), we have

. D
//pN(l’,y)w(x,y) dxdy—//po(x,y)w(x,y) drdy| < 1’]2\,(90)- (1.17)
R2 R2
with
Di2(p) = max(Ar, 22)(|0:0]l00 + 10,2 ]loc) ([1°]11 + 7%l A1A). (1.18)

Let w° € L*®(R?) such that 9,w°, 0,w°’ € L>®(R?). Let pNoN defined by (1.7) with (1.6). Then
for any function ¢ € C>(R?), we have

// PN (@, )™ (z, y)e(z, y) dxdy—// P (z, y)w’ (2, y)p (2, y) dedy| < Kialp) +l?\1,’2(80)”w0“°°,

(1.19)

Theorem 1.4 (Result for p° € L'(R?) N L>(R?)) Let p° € L'(R*) N L>®°(R?) and such that
p° > 0. Let e > 0. Consider L > 0 such that (1.8). For any N € N*, we consider p~< defined
by (1.5) with (1.8)-(1.4). Then for any function ¢ € C°(R?), we have

J[ ¥ wete sty - [[ Feotenas) <lele+ Z2E a2

with
D.(¢) = 2L([|0:¢ o0 + 1852 llo0) (10711 + 4L?[10°[|s0)- (1.21)



Let w® € L>(R?) such that 9,w°, 9w’ € L*(R?). Let pN*w™N* defined by (1.7) with (1.6). Then
for any function ¢ € C>(R?), we have

J] @ )e ety dudy ~ [[ 9w @)t ) dady

K. (¢) + D.(¢) HWOHOO
N .

Remark 1.1 We have stated the result with ¢ € C°(R?) but in fact p € C°(R?*) N L>®(R?) such
that 9,¢,0,¢ € L™ (R?) is enough as we will see in the proofs.

< ellellooll o + (1.22)

2 Approximation of the density of particles

2.1 General estimates

We start by presenting properties valid whatever are the regularity and support of density p°.

Lemma 2.1 Let p° € L'(R?) such that p° > 0. Let L = (Ly, L}, Ly, L}) € R* be such that (1.2)
and set Ay = Ly — L}, Ay = Ly — L} and Cp, = [L}, Ly] x [L}, Ly]. Let N € N* and pV defined
by (1.5) with (1.8)-(1.4). Then for any function ¢ € C(R?*) N L>®(R?), we have

// (z,y)p(z,y) drdy — // (z,y)p(x,y) dedy
== J] Pietes dmd%ZZ / / v.9)(p(x,y) — o, 7)) dydr.

Proof. Since ¢ € L°°(R?) and p° € L'(R?), then // p°(z,y)o(z,y) drvdy exists. Notice that

with the definition of p, we have p"¥ = 0 on R? \ C, thus we have in one hand

// (2, y)p(z,y) dedy = Z/ Nz, y)e(x, y) dedy
2

— — —N
1IN 1/%“/

Z =N =N 7
i j=0 V% Yj
1/

N
aysp(x,y) dydz
(7

N—-1N-1 EN gN
1+ Jj+1 N
=) / alo@Y,yY) dydx
=N N
i=0 j=0 “%i Yj
N—1N-1 Eg—l y;\:_l
s e [ ele) - o ) dyds,
i—0 j—=0 zV  Jyy



On the other hand, we have

// (x,y)e mydxdy—// (x,y)p a:ydxdy—l—// (x,y)e(x,y) dedy

R2\Cp,
1N-1 7
// (x,y)p xydxdy—i—ZZ/ / U2, y)p(z,y) dydz,
R2\C}, =0 5=0
as a consequence we write
1N-1 7
// (x,y)¢ xydxdy—// (x,y)p xydxdy—l—ZZ/ / Pz, y)e Z,@j-v)dydx
=0 j=0

i1 gé'v+1
[ P neley) - o 5)) dyds.
7]
We notice that

1N-1 y]+1 N—-1N-1 N . Ez]‘\il gé,\fH
S e =S ataran [ [

=0 j=0 =0 j=0 J
N-1N-1
JAVPAY
S S et a2
=0 j=0
N-IN-L N N T (Ui 0
=3 S e [ P(e,y) dyda
=0 j=0 Efv g;'v
N—-1N-1 TN, gﬁl N
= / / p(z,y)p(T; Y, ) dydx
=N =N
i=0 j=0 Y% Yj
Then putting all this together we get
// (x,y)p(x,y) dedy — // (x,y)e(x,y) dedy
1N-1 yﬁl .
— [ Pty d:cdy+22/ / v ) (e ) — @@ 7)) dyde. O
=0 5=0

R2\Cp,

Notice now the following estimate for test functions.



Lemma 2.2 Let N € N* and (T} )iejon-1), (T} )jefo,n-1) defined by (1.3). For any function
p € C(R?) N L>(R?) such that Dy, dyp € L™(R?), we have

SN [ A A, max(Ag. A
Z / / |<,0(93,y) - QO(EZJ.V’@;V” dydz < (|0:0]loo + 104 ]lo0) 149 N( 1 2)'
i=0 j=0 7T gy

Proof. Since

lo(z,y) — 0@, 7)| <oz, y) — oz, 7)) + |e(z, 7)) — @), 7))
<|10y¢lloc(y — T) + 10,0l sc(z — )

for any i,7 € [0, N — 1] and any = € [Z)Y, 7], y € [7),7}1], we have

ya+1
/ / — @Y ,y] | dydzx

zz‘+1 @j N—1N-1 ]+l fil
< N |
< /N /y;v 10yelloo(y — T dy) de+> > B /N 10, 0|0 (@ — TN) dz | dy

i=0 j=0 =0 7=0

N—-1N 1

Thus we obtain

N—-1N-1 xﬁl yj\g_l
/ / lo(z,y) — @Y, 7})| dydzx
=N =N
i=0 j=0 v % Yj
N-1N—-1 N 7 ~1N-1 zN
Tt [1 _ Yj+1 Tit1
<119, MR oYY [ NECEEN
i=0 j=0 T; ?;-V i=0 5=0 y] Efv
N-1N-1 A A N-1N-1
<o,elle 3 30 SN 0ol D0 S22
=0 j=0 =0 j5=0
A AQ max(Al,Ag)

<(10xpllco + 110y llo0) N

2.2 Case where p? € W1 (r?)

We now move on to the estimate for the density approximation in the case of regularity p° €

W'>°(R?). In this case, we can first estimate the difference between a; and p°(z,y) for (z,y) €
EAREARI RN

Lemma 2.3 Let p° € LY(R?) such that p° > 0. We assume furthermore that 9,p°,0,0° €
L>(R?). Let L = (Ly, L, Ly, L}) € R* be such that (1.2) and set Ay = Ly — L}, Ay = Ly — L},



and Cp, = [L}, L] %

(LY, Lo]. Let N € N* and p» defined by (1.5) with (1.3)-(1.4). Then we

have
max (A, A
s ()| < PR o o 3,00,
for (z,y) € [, 7] % [}, 73%4]-
Proof. We have
Vit
—(z,y) = AA2/ / p° (&, 9) dijdz — p°(z,y)
N? ARV o o
o [T e - e dy
AQ Ei\] ?;-V
Then we get, for any = € [Z,7,Z;},] and any y € [7V, 75 ,],
|ai; = (2, y)| = / /yj“ 7) djds — p°(z,y)
& ’ AL A, . ’
yj“ dijdi
—AA2/ / (P°(%,9) = p°(x,y)) dgdz
yy+1 ~ 0 ~ 0 s
= / / (P°(%,9) = p°(2,9) + p°(x,9) — p°(x,y)) djdz
AL A,
yy+1 ~ 0 ~ 0 ~ 0 s
< A2/ / — @) + @) — P, y)| dids
e
<ia / 00l 19— ) i
N A1A2H8 OH /y;\ﬁrl d~—|- N AIAQHa O” /xi\-f!—l .
>~ A1A2 N2 zP |0 yé_\/ Y A1A2 N2 zP || oo fi\f T
max(Aq, Ay)

v U100 +110yp°ll0). O

This estimate allows to apply the general Lemmas of section 2.1 and to get the following result.

Proposition 2.4
L>(R?). Let L =

and Cp, = [L}, Ly] x

Let p° € L'(R?) such that p° > 0. We assume furthermore that 0,p°, 9,p" €
Ly, L', Ly, L) € R* be such that (1.2) and set Ay = Ly — L', Ay = Ly — L

1 2 1 2
L, Ly). Let N € N* and pN defined by (1.5) with (1.3)-(1.4). Then for
(L3, L] p y 4

10



any function @ € C(R*) N L>®(R?) such that 0., dyp € L>(R?), we have

// PN (z, ) (. y) d:rdy—// P (z, ) (x,y) drdy

max(Aq, A
// (o, ), ) dady| + ZEEL B i o 10,00 ) (1l + [yl

IN

N2

R2\Cp,

Proof. Thanks to Lemma 2.1, we have

// PV, y) o, y) dody — // (x,y)e(x,y) dedy

—1N-1

ya+1
— ] Pevetas oy + Y3 / / (.9)) (2, ) — (@ ) dudr.
R2\C; =0 7=0
By using Lemma 2.3, we have
maX(Al,Ag)
|ap; = Pz, )] < — v 10:"lloe + 110,°lo0),
then
N—-1N-1 N gN
LN o N N
SN [ - P et - o) dyds
i—0 j=0 /= /T
N-IN=1 N = N,
<SS [ = P wllete.y) - o )] duds
i=0 j=0 /7 vy
N-1N-1
max(Aq, Ag) yﬂ“ _N —
<22 (15, 0+ 10,) 3 S / / — (@ 7] dyd
i=0 j=0

<maX(A1, Ay)
- N

max(Ay, Ay)3

(192010 + 10,2"llo) (1102 2ll o + [10y¢2loc) N

by using Lemma 2.2. Finally we get the result. [
We now split the study according to the hypothesis on the support, compact from non com-
pact. In the case 1, that is to say when p® € L'(R?) has a compact support included in some C7,

where we chose this L for the location area of particles. Then we have / / P’ (x,y)o(z,y) dedy =

R2\C,
0 and the Proposition 2.4 leads to the following result.

11



Proposition 2.5 Let p° € LY(R?) such that p° > 0 with a compact support included in a Cf,
where L = (Ly, LY, Lo, L) € R* be such that (1.2). We assume furthermore that 9,p°, 0,p° €
L>(R?). For any N € N*, we consider p~ defined by (1.5) with (1.3)-(1.4). Then for any
function ¢ € C(R?*) N L>(R?) such that Oy, Dy € L>(R?),

[ @t asay — [[ 2@ votepaa) < 922 o)
R2 R2
with
Cra) = max(Ar, A (100l + 10,71 [0l + 10, 00). (220

This is the first part of Theorem 1.1.

In the case 2 of the initial data, that is to say where p° € L'(R?) doesn’t not a compact
support, we fix the location area of the particles by removing a mass smaller than an epsilon
from this area. For any € > 0, there exists L > 0 such that (1.8). Then we set L; = Ly = L,

L} = L, = —L which gives Cf, = [—L, L]*>. Remember also that in this case p" depends on &
via L thus we note p™° instead. We have then the following result.

Proposition 2.6 Let p° € L'(R?) and such that p° > 0. Let ¢ > 0. Consider L > 0 such
that (1.8). We assume furthermore that 0.p°, 9,p" € L>®(R?). For any N € N*, we consider
pNe defined by (1.5) with (1.3)-(1.4). Then for any function o € C(R?) N L>°(R?) such that
Dpp, Oy € L™®(R?), we have

J[ 7w etepasty - [[ Feotenaiy) <ol + G2 25)
R2 R2
with
Culp) = 1614102 o+ 104 )10l + 1) (2.26)

Proof. Thanks to Proposition 2.4, we have

[ ooty ~ [[ P gyotey) dedy

max (A, A
J[ #ete, o] + 2B 0,00 10,01 102 + 1610
R2\Cp,

IN

Now

// P, y)ele, y) dady| < elle // (2, y) dedy < ||o]lwe.

R2 \CL RQ\CL

and Ay = Ay = 2L, thus we get the result. Notice that C.(¢) depends on ¢ since L depends
one. [J
This is the first part of Theorem 1.2.

12



2.3 Case where p’ € LY(r?) N L>(r?)

We move now to the estimate of the density approximation in the case of regularity p° €
L'(R?) N L>(R?). In this case, we cannot use the smallest of the term a;; — p°(x,y) and we
have to study more precisely. Instead of having an estimate on C'/N?, we will have only a form
as C'/N. We start with two preliminary estimates.

Lemma 2.7 Let p° € L'(R?) such that p° > 0. Let L = (Ly, L}, Ly, L) € R* be such that
(1.2) and set Ay = Ly — Ly, Ay = Ly — L}y and Cp = [L}, L1] x [L}, Ly]. Let N € N* and
(ffv)ie[[ow_l]], (ij)je[[ovN_l]] and (agj)ie[[o,N—l]],je[[o,N—l]] defined by (1.8) and (1.4). Then for any
function ¢ € C(R?) N L*®(R?) such that d,¢, 0y € L™(R?), we have

NoIN-L T [T

> > af-,vj/ / (olz,y) — o, 7)) dyda
i N Sy

i=0 j=0 x Yj

max(Aq, A
<10l + 10,0ll) HZEEE [ 900,y iy
R2

Proof. We have

?

thus

N mh (T N —N
& [ ) - ot ) e
z Y

N
J

T Vit N
/ / (p(z,y) — w(z,7;')) dy | dx
& vy

v i _N _N —N
| /N / (Sp(xﬂyj ) — »(T; Y ))dx | dy
y.

TN
N T Ui N
<Xl [ ([ 10ty -7y ) do
i J

=N =N
Yit1 Tit1 N
( / 10,¢lloe(z — 7. >dw> dy.
=N =N
i=0 ;=0 7; T

k3

13



Now

@;V 1 _y;\r_‘_l ].A%

05 [ 10uelaly =70y < N0yl |50 -7 < Il
v 1gy
and N
=N -

i 1 it 1 A2

< —zM)dx < —(z —TN)? < et

0< [ Ionelnte = a) e < gl e =] < Borelg

then we obtain

N—-1N-1

=0 j=0

L (T

s [ ] et - olal ) dyds
A
-1

N—-1N —-1N-1

A A
SH@/W”OOZ | N ]\;Ng +||am90||0022| o ]\;NQ

=0 j= ’LO]O
—1N-1

max( A ,A U4
<0l + 10,7l 0) 22212 22) Z > / / (2,9) dyda
Jj=

max(Aq, A
<ol + uaysouoo)% // P(a,y) ddy. O

Lemma 2.8 Let p° € L'(R?) N L>=(R?) such that p° > 0. Let L = (Ly, L}, Lo, L) € R* be such
that (1.2) and set Ay = Ly — L', Ay = Ly — L}, and Cp, = [L),, Ly] x [L,, Ly]. Let N € N* and
(Tgv)ieuo,z\f—l]]; (yjy)je[[O,N_l]] defined by (1.3). Then for any function ¢ € C(R?*) N L>®(R?) such
that 9., 0y € L (R?), we have

N—-1N-1 zN yf_\’

R AR _N —N
S5 [ ety - el 5 duds
i—0 j—0 /T 7y

AlAQ maX(Al, AQ)
N .

<[12° oo (10z¢2lloc + 1952l )

Proof. We have

it1 Y541
[ P wletay) - o) dyds
Y

=N N
i=0 j=0 "% j
. N—-1N-1 Ezl'\-jﬁ-l yJ_H
<[00 | le@y) =@ 7)) dyda
i=0 j=0 Y% Yj

AlAQ maX(Al, AQ)

<[12° oo (l10z¢2lloc + 1952l ) N
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by using Lemma 2.2. [J

We will now consider the two cases of locations for the particles according to the assumptions
on the initial data. In the case 1, that is to say when p € L'(R?) has a compact support included
in some C, where we choose this L for the location area of particles, we have the following
result.

Proposition 2.9 Let p° € L'(R*) N L>®(R?) such that p° > 0 with a compact support included
in a C, where L = (Ly, LY, Ly, L) € R* be such that (1.2). For any N € N*, we consider

pN defined by (1.5) with (1.3)-(1.4). Then for any function ¢ € C(R?) N L*(R?) such that
Drp, Oyp € L>®(R?), we have

/ / PN (z,y)p(x, y) dedy — / / P (z, y)p(x,y) dedy| < lev(@) : (2.27)

Dia(¢p) = max(Ar, A2) (100l + 10,2 ]l00) (1" 11 + 110l oc A1 A2). (2.28)

with

Proof. Thanks to Lemma 2.1, we have

// (x,y)p(z,y) dedy — // (z,y)p(z,y) dedy

N—-1N-1

=~ [ F ety 33 / / r.9))(p(x.y) — o 7)) dydr.

R2\C;, =0 7=0

Since p" have a compact support in O, we get // P’ (z,y)o(z,y) drdy = 0. With Lemma

R2\C,
2.7, we have

and with Lemma 2.8, we have

—1N-1 7Y AjAsmax(Aq, A
Z Z/ / Pz, y)(o(z,y) — @(ffv»yj‘v))dydw < ||;00||oo(||ax80||oo+||ay90”°0) — N( 1 2)'
=0 j=0

15



Thus we get

// PN (z,y)e(x, y) dwdy—//po(%y)w(%y) dzdy

AlAQ maX(Al, AQ)

max(Aq, A
<(10uplo + 10y01o0) R ] 000, g) dady + 10l + [l e) 22

and the expected estimate. []

This is the first part of Theorem 1.3.

In the case 2 of the initial data, that is to say where p° € L'(R?) doesn’t not a compact
support. we fix the location area of the particles by removing a mass smaller than an epsilon
from this area. For any € > 0, there exists L > 0 such that (1.8). Then we set Ly = Ly = L,

L} = Ly = —L which gives C, = [~L, L]?>. Remember also that in this case p" depends on &
via L thus we note p™V¢ instead. We have the following result.

Proposition 2.10 Let p° € L'(R*) N L>®(R?) and such that p° > 0. Let e > 0. Consider L > 0
such that (1.8). For any N € N*, we consider p™° defined by (1.5) with (1.3)-(1.4). Then for
any function @ € C(R*) N L>®(R?) such that 0., dyp € L>(R?), we have

J[ ¥ wetepasty - [[ Fepoten s <o+ 2L 229

D.(p) = 2L(|0a¢llo0 + 10y llo0) 10"l + 4L 6”l| ). (2.30)

with

Proof. Thanks to Lemma 2.1, we have

First we have

|| Pewe oty <lell [[ o0 dody < e

R2\Cp, R2\Cp,

16



With Lemma 2.7, we have

=2
2

-1

=N =N
N [T [P _N -N
ai,j/ / (p(z,y) —»(T;",7;")) dydx

=N =N
z; 3

Il
=)
Il
=)

%

J

A
<ol + 106ll) 5y [ oGa) dody
R2

where A = 2L, and with Lemma 2.8, we have

~1N-1 7 . ; A3
Yy / / P, 0) (0, 9) — @ 7)) dyde| < 010l + 1,0l0) S
=0 75=0
Thus we get

//ﬁN’g(Ly)w(w,y) dxdy—//po(rc,y)so(x,y) dzdy

A A
<ll#lloce + (102 lloo + H@ywl\oo)ﬁ//po(%y) dady + 117’ lloo (102 lloo + 1942 llo0) =7

and finally the wanted inequality since A = 2L. Notice that D.(¢) depends on & since L
depends on . []
This is the first part of Theorem 1.4.

3 Approximation of other quantities

3.1 General estimates

We turn now to the estimate of additionnal quantities of shape // P (z, ) (z,y)p(z, y) dedy.

We start by presenting properties valid in every cases of regularity and support on density p°.

Lemma 3.1 Let p° € L'(R?) such that p° > 0 and let w° € L>®(R?). Let L = (Ly, L}, Ly, L}) €
R* be such that (1.2) and set Ay = Ly — L}, Ny = Ly — Ly and C, = [L}, L1] x [L}, Ly]. Let
N € N* and pN, pNoN defined by (1.5) and (1.7) with (1.3)-(1.4) and (1.6). Then for any

17



function ¢ € C(R?) N L>=(R?), we have

// 5 (2,10 (2, 9) (e, y) didy — // @, )6 (@, ), ) dady

1N-1 7y
// (2, )’ (2, y)p(z,y dwdy+22/ / Oz, ) (W =z, )z, 7)) dyde
R2\Cy, =0 5=0
N—-1N-1 yg+1
Y S, / / £,9) (e, y) — @, 7)) dydz.
i=0 j=0

Proof. Since p,w? € L>®(R?) and p° € L'(R?), then // P (z, y)w(x, )z, y) dedy exists.

R2
Notice that with the definition of %, we have p™ = 0 on R? \ C. Doing similarly to the proof
of Lemma 2.1, we obtain

1N-1

// (2, y)& xy)xydxdy—ZZ/ /ym o(@ 7) dydx

=0 j5=0
—1N-1 N Ny yj+1 NN
+ Z Za"tj 1, /N /N (QO(QT,y) - 90(1’1 >yj )) dyd$a
z, 7;

1=0 35=0

and

// (z, )’ (2, y)p(x, y) drdy

1N-1 7
// (z, y)w(z, y)p :vydxdy+ZZ/ / P(x, )’ (2, )@, 7)) dyde
J=

R2\Cp,
N-IN-1 N = N, .
Yy / / (2, 9)(2, ) (2 ) — (@ 7)) dyd
i=0 3j=0
and also
N-1N-1 7 N-1N-1 T (Ui
ZZ/ et ave =35 w [ [ e o) dus
=0 j=0 i=0 ;=0 z; Y

18



Thus we get

// (z, )™ (x, y)p(z,y) dedy — // (z,y)w’(z,y)p(x, y) drdy

i+1 yj+1
// (z, )’ (z, y) o (x, y) dfvdy+zz /N /N Pz, y) (T, 7)) dyda
R2\Cp i=0 j=0 i Yj
N—-1N-1 yj+1
+zzanN/ [ ete = ot ) v
=0
N—1N

U3
Z / / P (z, )’ (z, y) (T, 7)) dyda

NZI / /ym (z, )’ (z,9)(p(2,y) — 9@, 7)) dydzx

=

Q

and the result. [

Lemma 3.2 Let p° € L'(R?) such that p° > 0 and let w° € L®(R?). Let L = (Ly, L}, Ly, L}) €
R* be such that (1.2) and set Ay = Ly — L, Ay = Ly — LYy and Cp, = [L}, Ly] x [L}, Ly]. We
assume furthermore that O,w°, d,w® € L= (R?). Let N € N* and (@N)Z-GHO’N,”], (?ﬁ‘v)je[[o,Nfll] and
(a)})icto.n—11jefo,n—1] defined by (1.3) and (1.4). Then for any function ¢ € C(R*) N L>(R?)
such that 0,p, 0, € L=(R?), we have

~1N-1 .,
Z Z/ / (2, 1) (WY = (2, )@Y, 5Y) dydz
=0 5=0
max(Aq, A
S%(Hamoum 10l [ o)ty
RQ

Proof. Similarly to Lemma 2.3, we have

A, A
W (o) < 20 R 10,00 40,0,
Then we get

N-1N-1 7

SX [ penn - S ) v

=0 j=0 Y;

max (A ,A NoiNol T y]+1

< 22) 19,00 + 10,6 )l 30 D / / (. y) ddy
=0 j=0

and the result. J
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3.2 Case where p’ € W1 (r?)

We now move on to the estimate of the density approximation in the case of regularity p° €
W'>(R?). In this case, the estimate of the difference between a)Y; and p°(z,y) for (z,y) €
@, TN ] x [7),75] allows to get a precise estimate. We first have the result.

Proposition 3.3 Let p° € L'(R?) such that p° > 0 and let w° € L>(R?). We assume further-
more that 9,0°, ,p°, 0,w°, ,w° € L®(R?). Let L = (L, L}, Ly, Ly) € R* be such that (1.2) and
set Ay = L1 — Ly, Ay = Lo— L}, and Cp, = [L, Ly] x [L}, Ly]. Let N € N* and p~, pN ¥ defined
by (1.5) and (1.7) with (1.3)-(1.4) and (1.6). Then for any function ¢ € C(R?) N L>®(R?) such
that Oy, 0y € L*°(R?), we have

J] 9@ wpete ) dudy — [[ 9w @ )etw,) dady

max(Aq, A
[ P vyote ) dody| + ZELED 0,000+ 10,0l // (2.0) drdy

R2\Cp,

IN

maX(Al, Ag)

+ (1926 lloo + 110, llo0) (102 llo0 + 10y llo0) ——775

Proof. Thanks to Lemma 3.1, we have

/ [ 5 @) @yt ) dody - / [ # @@ gyotey) dudy

N—-1N-1

z+1 y7+1
// (z, )’ (2, 9)p xyda:dy—l—ZZ/ / O(z,y) (W = w°(z,9)e@N 7)) dyda
R2\Cy, =0 j=0
N-1N-1 yﬁl
P YW / = Pt - ol 7)) dos
i=0 j=0

On one side, using Lemma 2.3, we have

maX(Al, Ag)
N

N

|aiy = P°(@,y)| < (1020°[loe + 19y0°10),

and on the other side, using Lemma 2.2 we have

iy AlAQ maX(Al,Ag)

N

y]“ N _N
/ L e = el )] duds < (1059l + 10,0l
T 7l

=0 j5=0 i J
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Then putting this together we get

N—-1N-1 y]+1
i=0 j=0
. N—1N-1 1+1 y]+1
<[l / / o — (e, )l y) -
i=0 j=0

max(Aq, A
g%mwum 10,60 3 D

< max(Al, AQ)
- N

N—-1N-1

=0 j=0

(192010 + 10,2"llo0) (102 2ll 0 + [10y¢2loc)

Now using Lemma 3.2, we have

N—-1N-1

=0 j=0

< maX(Al, Az)

- N

and we get the result. [J

p(T;).7;)) dydz

o, 7} )| dydx

maX(Al, A2)3

>y [ / P OV — ) 5 dyds

(1956 lo + 118, loe) oo // P, y) dady
RQ

y;+1
/ / oz, y) — @), 7)) dyda
Y;

We will now consider both options of locations for the particles according to the assumptions
on the initial data. In the case 1, that is to say where p° € L'(R?) has a compact support
included in some Cp, Proposition 3.3 gives the following result.

Proposition 3.4 Let p° € LY(R?) such that p® > 0 with a compact support included in a Cy

where L = (Ly, LY, Lo, L)

€ R* be such that (1.2) and let W° € L>®(R?). We assume furthermore

that 0,p°, 0,p°, 0,u°, O,w° € L®(R?). Let N € N* and pV, pNw™ defined by (1.5) and (1.7) with
(1.3)-(1.4) and (1.6). Then for any function ¢ € C(R*)NL>(R?) such that O,p, Dy € L=(R?),

we have

// P, y)o™ (2, y)p(z,y) dwdy—// P (z, y)w’ (2, y)p(x, y) dedy| <

with
Ki2()
and Cy2(p) defined by (2.24).

= max(Aq, A)([|0:0" [0 + 10,0° o) [l 16”11

Kia(p) | Cra(9)[|w’]lo
N + N2

(3.31)

(3.32)

This proves the remaining part of Theorem 1.1. In the case 2 of the initial data, that is to say

where p° € L'(R?) doesn’t not a compact support, We have the following result.
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Proposition 3.5 Let p° € L'(R?) such that p° > 0 and let W° € L>°(R?). Let € > 0. Consider
L > 0 such that (1.8). We assume furthermore that 9,p°,9,p°, 0,w°, 9,w° € L>(R?). Let
N € N* and pNe, pNeNe defined by (1.5) and (1.7) with (1.3)-(1.4) and (1.6). Then for any
function ¢ € C(R?*) N L>(R?) such that Oy, dyp € L>(R?), we have

J] 9@ n)e ety dady — [[ 9w . )eto,) dady

Ce(@)[w’lloo | Ke(w)
R (3.33)

< eflelloollw’lloo +

with . . .
K.(p) = 2L(]|0:w"]|oc + 10,° ls) | @llss [l 2°[I1, (3.34)

and C.(yp) defined by (2.26).

Proof. Thanks to Proposition 3.3, we have

J] ety dady — [[ 900 @ etw,) dady

max(Aq, A
[ P ote. drdy| + PEEEED 0,00+ 0, el [f o) oy
R2

RA\Cp,

IN

maX(Al, A2)4

+ (192" o0 + 195" llo0) (1026l + 10y 6lloc) —— 775

Now

// O, ) (@, 9o, y) dedy| < ol // Pz, y) dedy < [l wllce,

R2\C, R2\Cy,

and Ay = Ay = 2L, thus we get the result. Notice that D.(¢) depends on ¢ since L depends
one. [J
This proves the remaining part of Theorem 1.2.

3.3 Case where p° € L!(r?) N L®(r?)

Let’s now move to the estimate of additionnal quantities in the case of regularity p° € L'(R?)N

L>(R?). In this case, we cannot use the smallest of the terms a;; — p°(z,y) so we have to
analyse deeper. We split the study again according to the support property of density. In the
case 1, that is to say where p° € L'(R?) has a compact support included in some C7, we have

the following result.
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Proposition 3.6 Let p° € L'(R?) N L>=(R?) such that p° > 0 with a compact support included
in a Cp, where L = (Ly, L}, Ly, L) € R* be such that (1.2) and let w° € L>®(R?). We assume
furthermore that 0,u°, 0,w° € L™(R?). Let N € N* and p™, pNoN defined by (1.5) and (1.7)
with (1.3)-(1.4) and (1.6). Then for any function ¢ € C’(RQ) N LOO(RQ) such that Oy, 0yp €
L>(R?), we have

J[ 7w e eta dnty — [[ 2o etey) dny| < D22 DA

(3.35)
where K1 5(p) is defined by (3.32) anf Dy 2(p) is defined by (2.28).
Proof. Thanks to Lemma 3.1, we have
// (z, y)o™ (,y)e(z,y) dedy — // (x,y)w’ (z,y)p(x, y) dedy
N-1N-1 7
// (2, )’ (z, y)p(w, y daﬁdy+ZZ/ / VWS =z, 9))e(@. 7)) dydz
R2\Cy, =0 5=0
N-1N-1 yﬁl
oW / / v.)) () — o(@ 7)) dydz.
i=0 j=0

Since p° have a compact support in C, we have // P’ (z,y)o(z,y) drdy = 0. From Lemma

R2\C,
3.2, we have

ZZ// (e, ) OV (o) 7Y dyd

=0 j=0
<maX(A1, AQ)
- N

(19560 + 118, loc) oo // P, y) dedy.

By an easy adaptation of Lemma 2.7 and Lemma 2.8, we have

VN g, .
Syw [ @ - et - ol g)) duds
i=0 j=0 T Y5

max(Aq, A
< el + 10 2D [ 000 ) oy
R2

AlAQ HlaX(Al, Az)
N

+ 1w lloo 12 lloo (102 2llo + [1Oy2lloc)
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and we get the result. [
This proves the remaining part of Theorem 1.3. In the case 2 of the initial data, that is to
say where p® € L'(R?) doesn’t not a compact support, we have the following result.

Proposition 3.7 Let p° € L'(R*) N L>®(R?) such that p® > 0 and let w° € L>(R?). Let € > 0.
Consider L > 0 such that (1.8). We assume furthermore that 9,u°, 9,w° € L>*(R?). Let N € N*
and pNe, pNEONE defined by (1.5) and (1.7) with (1.3)-(1.4) and (1.6). Then for any function
© € C(R?) N L>(R?) such that Dy, dyp € L>(R?), we have

J] 9@ )e ety dudy — [[ 9w, @)l ) dady

K-(¢) + De(@) [« oo

< sollw? |l 3.3
< elllloollwlloe + N (3.36)
where K (p) is defined by (3.34) and D.(p) is defined by (2.50).
Proof. Thanks to Lemma 3.1, we have
// o™ (a, y)o™Ne (z,y) o, y) dady — // z,y)w’ (2, y)p(z,y) dedy
1N-1 7
// (z, y)’(z, y)p(2,y dwdy+ZZ/ / YW — (2, y)p(T), 77) dyda
R2\C; =0 7=0
N-1N-1 y3+1
LYy / = Pt - o ) dd
i=0 j=0

First we have

J| Pt et dudy) < ol [5G 0) dody < el e

R2\C, R2\Cp,
From Lemma 3.2, we have

N-1N-1

3D / / ) OV — )l ) dyda

A
<10 e + 10, o) // ) drdy.

%
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By an adaptation of Lemma 2.7 and Lemma 2.8 and since Ay = Ay = A = 2L, we have

5 / / (2. )) (el y) — (@Y. 7)) dyda

’LO]O

<o o102l + 101 57 // §(a.y) dady

8L3

+ ||w0||00||:00||00<“ax§0||00 + ||8y90||00)W

and we get the result. [J

This proves the remaining part of Theorem 1.4.
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