Ton destructive testing using non linear vibroacoustic

Rousselet,
N.S.A. Laboratoire J.A. Dieudonné
M.R. C.N.R.S. 6621, Parc Valrose, F 06108 Nice, Cédex 2, email : br@math.unice.fr

Vanderborck
ales Underwater Systems, Département acoustique
303 Sophia-Antipolis CEDEX
d Laboratoire J.A. Dieudonné
M.R. C.N.R.S. 6621
pyright (C) february 2005 B. Rousselet, G. Vanderborck
batim copying and distribution is permitted in any medium, provided this notice is served.

Introduction

eral recent experimental studies show that it is possible to detect defects in a ucture by considering its vibro- acoustic response to an external actuation.

Some previous papers

this topic there is a vast literature in applied physics. We recall some papers related the use of the frequency response for non destructive testing; in particular generation higher harmonics, cross-modulation of a high frequency by a low frequency:

In Ekimov-Didenkulov-Kasakov (1999), [2], the authors report experiments with torsional waves in a rod with a crack: they use HF torsional wave (20 kHz) and a LF flexural wave (12 Hz).

In Zaitsev-Sas (1999), [9], the authors report experiments with plate vibration submitted to LF $(20-60 \mathrm{~Hz})$ vibration by a shaker and HF $(15-30 \mathrm{kHz})$ oscillations by a piezo-actuator. They notice that weak modulation side-lobes are observed for the undamaged sample but drastic increase in nonlinear vibro-acoustic of the damaged sample. Some theoretical explanations are provided.

Other results may be found in Sedunov-Tsionsky-Donskoy(2002) [3],Sutin-Donskoy (1998), [1], Moussatov-Castagnede-Gusev(2002), [5] ...

GDR 2501 (Etude de la propagation ultrasonore en milieux inhomognes en vue du controle non destructif)

In Vanderborck-Lagier-Groby (2003) [8], "a vibro-acoustic method, based on frequency modulation, is developed in order to detect defects on aluminum and concrete beams. Flexural waves are generated at two very separated frequencies by the way of two piezoelectric transducers. The low one corresponds to the first resonance f_{m}, the second one to a high non modal frequency f_{p}. The nonlinear response, due to the defects inside the structure, is detected by non-zero flexural waves at $f_{p} \pm n f_{m}$ frequencies.
see Vanderborck-Lagier $(2004) \longmapsto$ beam experimentation

ery recent experiments

have been performed on a real bridge by G. Vanderborck with four prestressed cables: two undamaged cables, a damaged cable and a safe one but damaged at the anchor;
these experiments have been performed in the frame of the European program "Promoting competitive and sustainable growth" of 15/12/99.

The cables are roughly 100 m long, 4 tones weight, 15 cm in diameters.
The experiments have proved the presence of the damaged cable but also the safe one damaged at the anchor.

Routine experimental checking with the lower eigenfrequencies had only proved only the presence of the very damaged cable by comparison with data collected 15 years ago.

See Vanderborck-Lagier(2004) [10] for a presentation of the results of the experiment with a new post processing graphic presentation of experimental results.

fficulties of the experiments:

non linearities of the shakers (including piezoelectric actuators)
Natural non linearities: supports, links of complex multi structures as air planes, bridges etc

cientation

intend to present simple spring mass models, simple bar and beam models with mage and use asymptotic expansions and numerical methods to try to get ults which show some similarity with the experiments of [8]. Asymptotic expansions ve been used for at least a century and for example has been used recently for merical approximation of bifurcation of structures in PotierFerry-Cochelin and vorkers (1993) [4].
ne key idea is to look at the solution in the frequency domain for the experiments
consequently for the numerics.
a paper to be submitted (Lagier-Vandeborck) [7] several types of nonlinearities of defects considered: contact elasticity, threshold contact model, nonlinear filling material. This last e will be considered for bar models: it may happen in case of corrosion: the voided crack is d by a new dusty material: then the elastic crack response is related to the elastic perties of the filler. In this case it seems reasonable to consider a nonlinear elastic relation the filler.

Background of Fourier transform

Basic formulas

. 1 Fourier serie

- a detailed presentation, see for example Gasquet-Witomski [11] and for an fineering view point Lathy [6]; for a function f of period T, its expansion in fourier ie is:

$$
\begin{equation*}
f(t)=\sum_{n=-\infty}^{+\infty} c_{n} e^{\frac{2 \pi i n t}{T}} \text { with } c_{n}=\frac{1}{T} \int_{0}^{T} f(t) e^{\frac{-2 \pi i n t}{T}} d t \tag{2.1}
\end{equation*}
$$

iscrete Fourier transform: D.F.T. which may be computed quickly by the orihm of F.F.T. To a sequence $\left(y_{k}\right), k=0, \ldots, N-1$, is associated an other sequence), $n=0, \ldots, N-1$ with the formulas:

$$
\begin{equation*}
Y_{n}=\frac{\mathrm{T}}{\mathrm{NT}} \sum_{k=0}^{N-1} y_{k} e^{\frac{-2 \pi i n k T}{T N}} y_{k}=\sum_{n=0}^{N-1} Y_{n} e^{\frac{2 \pi i n k}{N}} \tag{2.2}
\end{equation*}
$$

approximation of Fourier coefficients (caution to indixes) may be obtained with :

$$
\begin{align*}
c_{n}^{N} & =\frac{\mathrm{T}}{\mathrm{NT}} \sum_{k=0}^{N-1} f\left(\frac{k T}{N}\right) e^{\frac{2 \pi i n k T}{T N}} \quad \text { or with the DFT using } \tag{2.3}\\
y_{k} & =f\left(\frac{k T}{N}\right) \quad c_{n} \simeq c_{n}^{N}=\left\{\begin{array}{c}
Y_{n} \text { for } 0 \leq n<\frac{N}{2} \\
Y_{n+N} \text { for }-\frac{N}{2} \leq n<0
\end{array}\right. \tag{2.4}
\end{align*}
$$

h the error approximation:

$$
\begin{equation*}
c_{n}^{N}=\sum_{q \neq 0} c_{n+q N} \tag{2.5}
\end{equation*}
$$

ware to Scilab FFT which provides: $X_{n}=\sum_{k=0}^{N-1} y_{k} e^{\frac{2 \pi i n k}{N}}$ ie the Fourier coefficients computed from: $Y_{n}=\frac{1}{N} X_{n}$.

. 2 Fourier transform

$$
\begin{gather*}
(\mathcal{F} f)(\nu)=\hat{f}(\nu)=\int_{\mathbf{R}} f(t) e^{-2 \pi i \nu t} d t \tag{2.6}\\
\left(\mathcal{F}^{-1} g\right)(t)=(\overline{\mathcal{F}} g)(t)=\int_{\mathbf{R}} g(\nu) e^{+2 \pi i \nu t} d \nu \tag{2.7}\\
\widehat{f^{m}}=(2 \pi i \nu)^{m} \hat{f} \quad \mathcal{F}\left(-(2 \pi i t)^{(m)} f(t)\right)=\hat{f}^{m}(\nu) \tag{2.8}
\end{gather*}
$$

$\widehat{\chi_{[-A, A]}}=\frac{\sin (2 \pi \nu A)}{\pi \nu}=2 A \cdot \operatorname{sinc}(2 \pi \nu A) \quad \widehat{\chi_{[0, A]}}=e^{-i \pi A \nu} \frac{\sin (\pi A \nu)}{\pi \nu}=A \operatorname{sinc}(\pi A \nu)$
with the sampling function ("sinus cardinal") $\operatorname{sinc}(t)=\frac{\sin (t)}{t}$

$$
\begin{gather*}
\mathcal{F}\left(e^{2 \pi i a t}\right)=\delta_{a}, \text { and } \mathcal{F}\left(e^{-2 \pi i a t} T\right)=\tau_{a} \hat{T}=\delta_{a} * \hat{T} \tag{2.12}\\
\left(\mathcal{F}(\cos (2 \pi i a t) T)=\frac{1}{2}\left(\tau_{a} \hat{T}+\tau_{-a} \hat{T}\right)=\frac{1}{2}\left(\delta_{a} * \hat{T}+\delta_{-a} * \hat{T}\right)\right. \tag{2.13}\\
\mathcal{F}\left(\cos (2 \pi i a t) \chi_{[-A, A]}\right)=A\left(\tau_{a} \cdot \operatorname{sinc}(\mathbf{2} \pi \nu \mathbf{A})+\tau_{-a} \cdot \boldsymbol{\operatorname { s i n c }}(\mathbf{2} \pi \nu \mathbf{A})\right) \tag{2.14}\\
\mathcal{F}\left(\sin (2 \pi i a t) \chi_{[-A, A]}\right)=i A\left(-\tau_{a} \operatorname{sinc}(\mathbf{2} \pi \nu \mathbf{A})+\tau_{-a} \operatorname{sinc}(\mathbf{2} \pi \nu \mathbf{A})\right)
\end{gather*}
$$

$\mathcal{F}\left(\cos (2 \pi i a t) \chi_{[0, A]}\right)=\frac{A}{2}\left(\tau_{a} e^{-i \pi A \nu} \boldsymbol{\operatorname { s i n c }}(\pi \nu \mathbf{A})+\tau_{-a} e^{-i \pi A \nu} \operatorname{sinc}(\mathbf{2} \pi \nu \mathbf{A})\right)$

Fourier of ki__\{-10,+10\}

Fourier of ki_\{-10,+10\}*hamming

Sampling

$$
\begin{gather*}
\Delta_{a}=\sum_{n \in \mathbf{Z}} \delta_{n a} \quad \widehat{\Delta_{a}}=\sum_{n \in \mathbf{Z}} e^{-2 \pi i n a \nu}=\frac{1}{a} \Delta_{\frac{1}{a}} \quad \text { le "peigne" } \tag{2.17}\\
\text { also } \Delta_{a}=\frac{1}{a} \sum_{n \in \mathbf{Z}} e^{2 \pi i n \frac{t}{a}} \tag{2.18}
\end{gather*}
$$

ampling of f is: $a f \Delta_{a}=a \sum_{\mathbf{Z}} f(n a) \delta_{n a}$ with a the sampling period.

oisson formula:

$$
\begin{align*}
& \sum_{\mathbf{Z}} f(t-n a)=\frac{1}{a} \sum_{\mathbf{Z}} \hat{f}\left(\frac{n}{a}\right) e^{2 \pi i n \frac{t}{a}}(\mathrm{f} \text { distribution à support compact) } \tag{2.19}\\
& \sum_{\mathbf{Z}} \hat{g}\left(\nu-\frac{n}{a}\right)=a \sum_{\mathbf{Z}} g(n a) e^{-2 \pi i n \nu a}(\hat{g} \text { distribution à support compact) } \tag{2.20}\\
& a\left(\widehat{f \Delta_{a}}\right)(\nu)=\sum_{n \in \mathbf{Z}} \hat{f}\left(\nu-\frac{n}{a}\right)=a \sum_{n \in \mathbf{Z}} f(n a) e^{-2 \pi i \nu n a} \tag{2.21}
\end{align*}
$$

tempered and \hat{f} and \hat{f} with support in $\left.\left[-\nu_{c}, \nu_{c}\right]\right)$

$$
\begin{gather*}
\hat{f} \in L^{2}(\mathbf{R}) \text { et } \operatorname{Supp}(\hat{f}) \subset\left[-\nu_{c}, \nu_{c}\right] \tag{2.22}\\
\forall a \leq \frac{1}{2 \nu_{c}} \quad f(t)=\sum_{\mathbf{Z}} f(n a) \operatorname{sinc}\left(\frac{\pi}{a}(t-n a)\right) \tag{2.23}
\end{gather*}
$$

with the sampling function $\operatorname{sinc}(t)=\frac{\sin (t)}{t}$
e a low-pass filter before sampling.

Numerical computation of Fourier transform

$$
\begin{gather*}
\hat{f}(\nu) \simeq \int_{-T / 2}^{T / 2} f(t) e^{-2 \pi i \nu t} d t=T c_{\nu T} \quad \text { or with } \nu=\frac{n}{T} \tag{2.25}\\
\hat{f}\left(\frac{n}{T}\right) \simeq T c_{n} \quad \text { for } \frac{-N}{2} \leq n \leq \frac{N}{2} \tag{2.26}
\end{gather*}
$$

arier coefficients c_{n} are numerically computed with FFT where $y_{k}=f\left(\frac{k T}{N}\right)$:

$$
\begin{align*}
& \hat{f}(\nu) \simeq \sum_{k} f\left(\frac{k T}{N}\right) \exp \left(-2 \pi i \nu \frac{k T}{N}\right) \text { with } \nu=\frac{n}{T} \tag{2.27}\\
& \quad \simeq \sum_{k} f\left(\frac{k T}{N}\right) \exp \left(-2 \pi i n \frac{k}{N}\right) \text { with } n=\nu T \tag{2.28}
\end{align*}
$$

h sampling period $\frac{T}{N} \leq \frac{1}{2 \nu_{c}}$ (no overlap of the spectrum) but ... a function of npact support in time is not of compact support in frequency...

2.4 Exemples

Gate function Commenons par un exemple classique: $f=\chi_{[0, b]}$, sa transformée de Fourier est:

$$
\begin{equation*}
\hat{f}(\nu)=\frac{\sin (\pi b \nu)}{\pi \nu} \exp (-i \pi b \nu) \tag{2.29}
\end{equation*}
$$

Avec $b=1 / 2$ et 1000 points utilisés dans l'intervalle $[0,1]$, on trouve les transformées sur les figures ci jointe. On pourra remarquer que le maximum est correct

Cosinus Pour la fonction $\cos (2 \pi t)$, il est bien connu que la transformée de Fourier est $\delta_{1}+\delta_{-1}$. la transformée discrète est elle mme une approximation numérique de $\int_{0}^{T} \cos (2 \pi t) \exp (-2 \pi i \nu t) d t$ et l'on trouve un pic de hauteur la moitié de l'intervalle d'intégration. On trouve dans les figures 3 et 4 , les transformée de fourier discrète calculée dans $[0,1]$ puis $[0,20]$

Exponentielle-cosinus On constate que la transformée de Fourier de $\exp \left(10^{-3} t\right) * \cos (2 \pi t)$ est sensiblement égale à celle du cosinus tandis que

Figure 1: Norm of the Fourier transform of the gate $\chi_{[0,0.5]}$ in $[0,9]$ herz

Figure 2: Norm of the Fourier transform of the gate $\chi_{[0,0.5]}$ in $[0,1000]$

Figure 3: Norm of the Fourier transform of $\cos (2 \pi t)$ in $[0,1000]$ herz

Figure 4: Norm of the Fourier transform of $\cos (2 \pi t)$ in $[0,1000]$ herz
celle de $\exp \left(10^{-2} t\right) * \cos (2 \pi t)$ est un peu différente, voir les figures 5 et 6 somme de deux sinus
sin_p_sin.sci

Figure 5: Norm of the Fourier transform of $\exp \left(10^{-3} t\right) * \cos (2 \pi t)$ in

Figure 6: Norm of the Fourier transform of $\exp \left(10^{-2} t\right) * \cos (2 \pi t)$ in

Figure 7: Norm of the Fourier ${ }^{\text {trans }}$ fofform of $\sin (2 \pi t)+.2 \sin (20 \pi t)$ in

Simplest mechanical example

in which we can exhibit intermodulations.

consider a 1 d.o.f example of a spring mass system with a non linear spring.

$$
\begin{gather*}
m \ddot{y}=-k y-k_{3} y^{3}+\epsilon F \sin (\alpha t) \quad \text { or } \tag{3.1}\\
\ddot{y}=-\omega_{0}^{2} y-\frac{k_{3}}{m} y^{3}+\epsilon \frac{F}{m} \sin (\alpha t) \quad \text { with } \omega_{0}^{2}=\frac{k}{m} \tag{3.2}\\
\text { with initial conditions } \quad y(0)=\epsilon \eta_{1}, \quad \dot{y}=\epsilon v_{1} \tag{3.3}
\end{gather*}
$$

are going to solve this equation symbolically with an asymptotic expansion with pect to $\epsilon: y=\epsilon y_{1}+\epsilon^{2} y_{2}+\epsilon^{3} y_{3}+\ldots$; then numerically...

The linear case

e first term is solution of:

$$
\begin{gather*}
\ddot{y_{1}}=-\omega_{0}^{2} y_{1}+\frac{F}{m} \sin (\alpha t) \quad \text { with } y(0)=\eta_{1}, \quad \dot{y}=v_{1} \text { which gives: } \tag{3.4}\\
y_{1}=A e^{i \omega_{0} t}+\bar{A} e^{-i \omega_{0} t}+D e^{i \alpha t}+\bar{D} e^{-i \alpha t} \quad \text { with } \tag{3.5}
\end{gather*}
$$

$$
\begin{equation*}
A=\frac{\eta_{1}}{2}-\frac{i F \alpha}{2 m \omega_{0}\left(\alpha^{2}-\omega_{0}^{2}\right)}-\frac{i v_{1}}{2 \omega_{0}} \quad D=-\bar{D}=-\frac{F}{2 i m\left(\alpha^{2}-\omega_{0}^{2}\right)} \quad \text { or } \tag{3.6}
\end{equation*}
$$

with $\phi=\frac{F}{m\left(\alpha^{2}-\omega_{0}^{2}\right)}, y_{1}=\eta_{1} \cos \left(\omega_{0} t\right)+\left(\frac{v_{1}}{\omega_{0}}+\frac{\alpha}{\omega_{0}} \phi\right) \sin \left(\omega_{0} t\right)-\phi \sin (\alpha t)$
marque 1. If we set $\eta_{1}=0, v_{1}=0$, then the term of pulsation ω_{0} has magnitude $\frac{\alpha}{\omega_{0}}$ nes the magnitude of the term of pulsation α; this is not a good choice for the non ear case in which $\frac{\alpha}{\omega_{0}}$ is of order 100; it seems good choice

$$
=0, v_{1}=\omega_{0}\left(-\frac{\alpha}{\omega_{0}}+1\right) \frac{F}{m\left(\alpha^{2}-\omega_{0}^{2}\right)}=\left(-\alpha+\omega_{0}\right) \phi
$$

Other terms

e term y_{2} is zero but the third term satisfies:

$$
\begin{equation*}
\ddot{y_{3}}=-\omega_{0}^{2} y_{3}+\frac{k_{1}}{m} y_{1}^{3} \tag{3.8}
\end{equation*}
$$

simplify, we assume $\eta_{1}=0$ and set $\phi=\frac{F}{m\left(\alpha^{2}-\omega_{0}^{2}\right)}, \psi=\frac{v_{1}}{\omega_{0}}+\frac{\alpha \phi}{\omega_{0}}$ so that:

$$
\begin{gather*}
y_{1}^{3}=\left(\psi \sin \left(\omega_{0} t\right)-\phi \sin (\alpha t)\right)^{3}= \tag{3.9}\\
-1 / 4 \psi^{3} \sin \left(3 \omega_{0} t\right)+3 / 2 \psi\left(1 / 4 \psi^{2}+\phi^{2}\right) \sin \left(\omega_{0} t\right) \tag{3.10}\\
-3 / 4 \psi \phi^{2} \sin \left(\left(\omega_{0}+2 \alpha\right) t\right)-3 / 4 \psi \phi^{2} \sin \left(\left(\omega_{0}-2 \alpha\right) t\right) \tag{3.11}\\
+3 / 4 \psi^{2} \phi \sin \left(\left(\alpha+2 \omega_{0}\right) t\right)+3 / 4 \psi^{2} \phi \sin \left(\left(\alpha-2 \omega_{0}\right) t\right)+ \tag{3.12}\\
-3 / 2\left(\psi^{2} \phi+1 / 2 \phi^{3}\right) \sin (\alpha t)+1 / 4 \phi^{3} \sin (3 \alpha t) \tag{3.13}
\end{gather*}
$$

ve $g o$ on in the expansion, we get terms of pulsation $\alpha+4 \omega_{0}, \alpha+6 \omega_{0}$ etc

. 1 Numerical issues

$$
\begin{gather*}
\text { For } \alpha=40 \pi, \omega_{0}=2 \pi, F=100, \phi=.6348445087 e-2, \alpha \phi=.7977691380, \tag{3.15}\\
v_{1}=-.7578806812, \psi=-5.366518580,3 / 4 \psi^{2} \phi=-.1371241364 \tag{3.16}\\
\phi^{3} \ll \psi^{3} \tag{3.17}
\end{gather*}
$$

neral tendency:

The pick of $3 \omega_{0}$ is much larger than the pick in $\alpha \pm 2 \omega_{0}$ which are the most natural picks in the experiments;
it is delicate to find datas such that the secondary picks at $\alpha \pm 2 \omega_{0}$
actually appear when the differential equation is solved numerically.
Question: algorithm and software for detecting the secondary picks?
then find (by optimization) datas such that the secondary picks are important: criteria for damage.

Figure 8: Linear response y, $\quad \nu_{\omega_{0}}=1$

Figure 9: Fourier of linear response, $\quad \nu_{\omega_{0}}=1$

```
y1.ps etc
(2*%pi)^2; m=1; nua=10; alfa=2*%pi*nua; F=1450; lam=.2;
[0 1;-k/m 0]; dt=.01; tmax=6*%pi;
=950; sk1=" ,k1="+string(k1);
1ction [xdot]=f3(t,x)
t=A*x+[0;1]*( ( -k1*([1,0]*x) ^3 )+
ksin(alfa*t) - lam*[0,1]*x)
Afunction
1ction [Jf3]=jacf3(t,y)
3=A+ [0,0; ( -3*k1*([1,0]*y)^2 ) , - lam ]
function
```


Figure 10: zoom of non linear response y, $\quad \nu_{\omega_{0}}=1$
alpha $=62.831853$, nualpha $=10, \quad \mathrm{~F}=1450$, $\mathrm{dt}=0.01, \mathrm{y} 0=0, \mathrm{v} 0=-27.972687, \mathrm{k} 1=950$, lambda=0.2 displac

Figure 11: non linear response $y, \quad \nu_{\omega_{0}}=1$

Figure 12: Fourier of non linear response y, $\quad \nu_{\omega_{0}}=1$

Figure 13: Fourier of non linear response y $\quad \nu_{\omega_{0}}=1$

Two masses on stretched cables

Transverse vibrations: vibrating masses on streched cables in large displacement

rk performed with Theissen (doctoral student of U. Muenster); Erasmus students N. ris and I. Altrogge worked on this topic during their stay in UNSA (2004-2005). We asider n masses attached to horizontal springs (or cables) which are in tension T_{0}, at
t ; the tension is positive when the cable is in traction which is assumed; at rest the ss m_{i} is submited to the force T the masses are moving (vertically) transversely to springs; we denote by uper case letters quantities in the rest position and lower case the current configuration.

Masses in vertical displacement

re we assume that the masses can move only vertically.
L_{i} lenth at rest; l_{i} lenth at time t; as the masses are moving vertically:
$l_{i}^{2}=L_{i}^{2}+\left(y_{i}-y_{i-1}\right)^{2}$
and the change of tension of the linear elastic spring due to the change of of lenth
along the axis of the spring.
Denote by θ_{i}, the angle of the spring with the horizontal axis, we have

$$
y_{1}=L_{1} \tan \left(\theta_{1}\right), \quad y_{i}-y_{i-1}=L_{i} \tan \left(\theta_{i}\right) \quad y_{n}-y_{n-1}=L_{n} \tan \left(\theta_{n}\right)
$$

enforce $y_{n}=0$. See the picture with two masses and 3 cables.
e equation of the dynamics:

$$
\begin{equation*}
m_{i} y_{i} "=-T_{i} \sin \left(\theta_{i}\right)+T_{i+1} \sin \left(\theta_{i+1}\right)+u_{i} \quad i=1 \ldots n \tag{4.1}
\end{equation*}
$$

ere $-T_{i} \sin \left(\theta_{i}\right)+T_{i+1} \sin \left(\theta_{i+1}\right)$ is the vertical component of the force acting on mass ve assume that there is no horizontal movement so the horizontal component of the ce does not work. The applied load on mass i is denoted by u_{i}; it is the control to be ermined.

$$
\begin{align*}
& \zeta_{i}=\frac{\left(y_{i}-y_{i-1}\right)}{L_{i}}, \quad \text { and note that } \sin \left(\arctan \left(\zeta_{i}\right)\right)=\frac{\zeta_{i}}{\sqrt{1+\zeta_{i}^{2}}} \text { so that } \tag{4.2}\\
& T_{i} \sin \left(\theta_{i}\right)=\left(T_{0}+k_{i}\left(L_{i} \sqrt{1+\zeta_{i}^{2}}-L_{i}\right)\right) \frac{\zeta_{i}}{\sqrt{1+\zeta_{i}^{2}}}= \tag{4.3}\\
&\left(T_{0}-k_{i} L_{i}\right) \frac{\zeta_{i}}{\sqrt{1+\zeta_{i}^{2}}}+k_{i} L_{i} \zeta_{i} \tag{4.4}
\end{align*}
$$

ssible approximations:

$$
\begin{gather*}
T_{i} \sin \left(\theta_{i}\right)=\left(T_{0}-k_{i} L_{i}\right)\left(\zeta_{i}-\frac{1}{2} \zeta_{i}^{3}+\frac{3}{8} \zeta_{i}^{5}+O\left(\zeta_{i}^{7}\right)\right)+k_{i} L_{i} \zeta_{i}= \tag{4.5}\\
T_{0} \zeta_{i}+\left(T_{0}-k_{i} L_{i}\right)\left(-\frac{1}{2} \zeta_{i}^{3}+\frac{3}{8} \zeta_{i}^{5}+O\left(\zeta_{i}^{7}\right)\right) \tag{4.6}
\end{gather*}
$$

me expansion for $T_{i+1} \sin \left(\theta_{i+1}\right)$ with $\zeta_{i+1}=\frac{\left(y_{i+1}-y_{i}\right)}{L_{i+1}}$

. 1 Linearized equation

$$
m_{i} y_{i}^{\prime \prime}=-T_{0}\left(\frac{\left(y_{i}-y_{i-1}\right)}{L_{i}}+\frac{\left(y_{i+1}-y_{i}\right)}{L_{i+1}}\right)+u_{i}
$$

rector equations may be obtained; details for 1 d.o.f below.

$$
\begin{gather*}
l_{i}(y)-L_{i}=\frac{\left(y_{i}-y_{i-1}\right)^{2}}{2 L_{i}}-\frac{\left(y_{i}-y_{i-1}\right)^{4}}{8 L_{i}^{3}}+O\left(\left(y_{i}-y_{i-1}\right)^{6}\right) \tag{4.7}\\
\sin \left(\theta_{i}\right)=\sin \left(\operatorname{atan}\left(\frac{y_{i}-y_{i-1}}{L_{i}}\right)=\right. \tag{4.8}\\
\frac{y_{i}-y_{i-1}}{L_{i}}-\frac{\left(y_{i}-y_{i-1}\right)^{3}}{2 L_{i}}+\frac{3\left(y_{i}-y_{i-1}\right)^{5}}{8 L_{i}}+O\left(\left(\frac{y_{i}-y_{i-1}}{L_{i}}\right)\right)^{7} \tag{4.9}
\end{gather*}
$$

Case with 1 d.o.f

. 1 Model with 1 d.o.f

this case, with $y_{0}=0, y_{2}=0$ we have

$$
\begin{equation*}
m_{1} y_{1} "=-T_{1} \sin \left(\theta_{1}\right)+T_{2} \sin \left(\theta_{2}\right)+u_{1} \tag{4.10}
\end{equation*}
$$

$\operatorname{h} \theta_{1}=\operatorname{atan}\left(y_{1} / L_{1}\right), \quad \theta_{2}=-\operatorname{atan}\left(y_{1} / L_{2}\right)$

$$
\begin{equation*}
m_{1} y_{1} "=-T_{1} \sin \left(\operatorname{atan}\left(\frac{y_{1}}{L_{1}}\right)\right)-T_{2} \sin \left(\operatorname{atan}\left(\frac{y_{1}}{L_{2}}\right)\right)+u_{1} \tag{4.11}
\end{equation*}
$$

earized equation

$$
\begin{equation*}
m_{1} y_{1} "=-T_{0}\left(\frac{1}{L_{1}}+\frac{1}{L_{2}}\right) y_{1}+u_{1} \tag{4.14}
\end{equation*}
$$

e numerical solution of this model may be performed without stiff hypothesis with ilab routine ode; $(\sin (\tan)$ is Lipshitz) but
is not obvious to prescribe the right mechanical constants

2.2 Approximation

re set $\zeta_{1}=\frac{y_{1}}{L_{1}}, \zeta_{2}=-\frac{y_{1}}{L_{2}}$. Start from previous approximation

$$
\begin{equation*}
-T_{1} \sin \left(\theta_{1}\right)+T_{2} \sin \left(\theta_{2}\right)= \tag{4.13}
\end{equation*}
$$

$$
\begin{gather*}
\text { expand } y_{1}=\epsilon \eta_{1}+\epsilon^{2} \eta_{2}+\epsilon^{3} \eta_{3}+O\left(\epsilon^{4}\right) \text { to get } \tag{4.15}\\
-T_{1} \sin \left(\theta_{1}\right)+T_{2} \sin \left(\theta_{2}\right)= \tag{4.16}\\
-\epsilon T_{0}\left(\frac{1}{L_{1}}+\frac{1}{L_{2}}\right) \eta_{1}-\epsilon^{2} T_{0}\left(\frac{1}{L_{1}}+\frac{1}{L_{2}}\right) \eta_{2}-\epsilon^{3} T_{0}\left(\frac{1}{L_{1}}+\frac{1}{L_{2}}\right) \eta_{3}+ \tag{4.17}\\
\frac{\epsilon^{3}}{2}\left(\frac{T_{0}-k_{1} L_{1}}{L_{1}^{3}}+\frac{T_{0}-k_{2} L_{2}}{L_{2}^{3}}\right) \eta_{1}^{3}+O\left(\epsilon^{4}\right) \tag{4.18}
\end{gather*}
$$

$$
\begin{equation*}
T_{0}\left(\zeta_{2}-\zeta_{1}\right)-\left(T_{0}-k_{1} L_{1}\right)\left(-\frac{\zeta_{1}^{3}}{2}+\frac{3 \zeta_{1}^{5}}{8}\right)+\left(T_{0}-k_{2} L_{2}\right)\left(-\frac{\zeta_{2}^{3}}{2}+\frac{3 \zeta_{2}^{5}}{8}\right)+O\left(\zeta_{1}^{7}+\zeta_{2}^{7}\right) \tag{4.14}
\end{equation*}
$$

The term in ϵ provides the linearised equation,
the second equation provides $\eta_{2}=0$
and the term in ϵ^{3},

$$
\begin{equation*}
m \eta_{3}^{\prime \prime}=T_{0}\left(\frac{1}{L_{1}}+\frac{1}{L_{2}}\right) \eta_{3}+\frac{1}{2}\left(\frac{T_{0}-k_{1} L_{1}}{L_{1}^{3}}+\frac{T_{0}-k_{2} L_{2}}{L_{2}^{3}}\right) \eta_{1}^{3} \tag{4.19}
\end{equation*}
$$

equation similar to what is obtained for the simplest mechanical example!

Two masses on stretched cables

. 3 A possible damage of a cable

oreakage of several fibers, this will cause decrease of rigidity k_{1} say for cable 1.
Let us start with undamaged cables of same rigidity k. If we note L_{0}, the common length of the unstressed cables, and L their common stressed lenth, their tension is $T_{0}=k\left(L-L_{0}\right)$;
now, after damage, $k_{1}<k=k_{2}$, cable 1 becomes longer and cable 2 shorter, $L_{1}>L_{2}$, the tension goes down to $T_{00}=k_{1}\left(L_{1}-L_{0}\right)=k_{2}\left(L_{2}-L_{0}\right)$;
note the limit case of cable 1 broken is $k_{1}=0$ so that the cable 2 gets lenth L_{0} but the system is no longer working properly!

Before such a breakdown, if the change of tension is substantial, this causes a substantial change of the fundamental frequency; indeed, this is the routine monitoring of cable bridges!

The nonlinear vibroacoustic testing aims at monitoring the cables before such a substantial change.

2. 4 Datas

L_{0} unstressed length,
L half of the lenth of the span, or lenth of each of the stressed undamaged cables.
k undamaged srping constant,
from which "undamaged" tension $T_{0}=k\left(L-L_{0}\right)$,
L_{1} (with $L_{0}<L_{1}<L$) increased lenth of the damaged cable,
from which, $L_{2}=2 L-L_{1}$ decreased lenth of the undamged cable,
from which "damaged" tension $T_{0 d}=k\left(L_{2}-L_{0}\right)$,
from which spring constant of the damaged cable $k_{1}=\frac{T_{o d}}{L_{1}-L_{0}}$

Figure 14: ynl,f10,z,F12050
absolute value of Fourier transform of non lin displacement with
alpha=125.66371 $\underset{\mathrm{F}}{ } \mathrm{beta}=12.566371$, nualpha=20, $\mathrm{F}=16050$, dt=0.001, y1_0=-1.2255991, v1_0=-128.36366, $\mathrm{k} 1=950$, lambda=0.02

freq in Hz

Figure 15: ynl,f20,z,F16050

A non linear string model

model of non linear string has been introduced first by Kirchoff in 1877 and rederived Carrier in 1945.

$$
\begin{equation*}
y_{t t}-T\left(\int_{0}^{l} y_{x}^{2}\right) y_{x x}=f \tag{5.1}
\end{equation*}
$$

: the classical linear string model, T is the tension of the string, assumed to be nstant; in a next step, a natural asumption is:

$$
T=T_{0}+k \int_{0}^{l} y_{x}^{2}
$$

nvolves the linearized change of lenth as the length of the deformed string is:

$$
l(y)=\int_{0}^{l} \sqrt{1+y_{x}^{2}}
$$

Several mathematical studies of this type of equations have been performed recently (Medeiros(1994), Clark- Lima (1997).

Following the lines of the discrete model, we intend to investigate a string made of two materials (safe and dameged).

For a damaged string, k will be small on a small portion of the string:

$$
T=T_{0}+k \int_{0}^{d-\epsilon} y_{x}^{2}+k_{d} \int_{d-\epsilon}^{d+\epsilon} y_{x}^{2}+k \int_{d+\epsilon}^{l} y_{x}^{2}
$$

Two masses on stretched cables moving freely

Two masses on stretched cables (cable 2 damaged) moving freely

Masses free to move in a plane

re, we assume that the masses can move freely; we denote:

$$
\begin{equation*}
\binom{X_{i}}{Y_{i}} \text { the position at rest, }\binom{x_{i}}{y_{i}} \text { the curent position } \tag{6.1}
\end{equation*}
$$

L_{i} lenth at rest; l_{i} lenth at time t; as the masses are moving freely:

$$
l_{i}(x, y)^{2}=L_{i}^{2}+\left(\left(x_{i}-x_{i-1}\right)+\left(y_{i}-y_{i-1}\right)\right)^{2}
$$

and the change of tension of the linear elastic spring due to the change of of lenth $T_{i}=T_{0, i}+k_{i}\left[l_{i}(x, y)-L_{i}\right]=$. this tension is directed along the axis of the spring:

$$
\vec{T}_{i}=T_{i} \vec{\tau}_{i}
$$

Denote by θ_{i}, the angle of the spring with the horizontal axis, we have,

$$
\vec{\tau}_{i}=\binom{\cos \theta_{i}}{\sin \theta_{i}}
$$

$y_{1}=x_{1} \tan \left(\theta_{1}\right), \quad y_{i}-y_{i-1}=\left(x_{i}-x_{i-1}\right) \tan \left(\theta_{i}\right) \quad y_{n}-y_{n-1}=x_{n} \tan \left(\theta_{n}\right) ;$ but here, it is more convenient to use:

$$
y_{i}-y_{i-1}=l_{i}(x, y) \sin \theta_{i}, \quad x_{i}-x_{i-1}=l_{i}(x, y) \cos \theta_{i}
$$

uation of the dynamics

$$
\begin{array}{ll}
m_{i} x_{i} "=-T_{i} \cos \left(\theta_{i}\right)+T_{i+1} \cos \left(\theta_{i+1}\right)+f_{i} & i=1 \ldots n \\
m_{i} y_{i}^{\prime \prime}=-T_{i} \sin \left(\theta_{i}\right)+T_{i+1} \sin \left(\theta_{i+1}\right)+g_{i} & i=1 \ldots n \tag{6.3}
\end{array}
$$

can express θ_{i} with respect to x_{i}, y_{i}, to obtain:

$$
\begin{align*}
& m_{i} x_{i} "=-T_{i} \frac{x_{i}-x_{i-1}}{l_{i}(x, y)}+T_{i+1} \frac{x_{i+1}-x_{i}}{l_{i+1}(x, y)}+f_{i} \quad i=1 \ldots n \tag{6.4}\\
& m_{i} y_{i} "=-T_{i} \frac{y_{i}-y_{i-1}}{l_{i}(x, y)}+T_{i+1} \frac{y_{i+1}-y_{i}}{l_{i+1}(x, y)}+g_{i} \quad i=1 \ldots n \tag{6.5}
\end{align*}
$$

Actively controled system, non destructive testing

The case of an actively controled system is prospective; real experiments are not yet performed.

Idea: to detect damage in real time taking adavantage of the data processed by the real time actuators used for the optimal control; real time control, research group: "Echtzeit Optimierung grosser Systeme"in Germany.

Example of the vibrating masses: the forces u_{i} are now the control we consider the simple case of a quadratic functional:

$$
F(u)=\int_{0}^{t_{f}}\left(\sum_{i} u_{i}^{2}(t)\right) d t
$$

with final time conditions:

$$
y_{i}\left(t_{f}\right)=0, y_{i}^{\prime}\left(t_{f}\right)=0
$$

The initial conditions may be seen as a perturbation of the system, the active control brings to rest the system;
this process is supposed to be performed regularly during the lifetime of the system; in practice y_{i} is measured by sensors and the control u_{i} is a force performed by actuators; both devices transform electric energy in mechanical energy.
the communication between both devices goes trough some computer
If we are able to distinguish the response of a damaged system from an undamaged one, this opens the path of monitoring controled systems in real time as a dayly routine during their life.

Numerical approach: to solve damaged and undamaged system and compare
Perturbation approach, introduce a small parameter ϵ and expand the solution with respect to it; theoretical basis: the controled system should satisfy second order sufficient conditions (Malanowski, Maurer ...)
tas for an example of controlled 2 masses worked out by by K. Theissen (U . tenster)

$T_{0,1}=T_{0,2}=T_{0,3}=$	1
$k_{1}=k_{2}=k_{3}=$	5
$m_{1}=m_{2}=$	1
$L_{1}=L_{2}=L_{3}=$	1
t_{f}	100

Figure 16: Frequences of u_{1}

Figure 17: Frequences of u_{2}

53-1

Bar models with defects

r models with longitudinal waves (dynamical traction and compression) are asidered.

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial n}{\partial x}=f(x, t) \tag{8.1}
\end{equation*}
$$

th a non linear stress-strain law:

$$
\begin{equation*}
n=E\left(A \frac{\partial u}{\partial x}+\epsilon \chi_{[a, b]}\left(\frac{\partial u}{\partial x}\right)^{3}\right) \tag{8.2}
\end{equation*}
$$

so a linear law is considered with a modified equation::

$$
\begin{equation*}
n=E A \frac{\partial u}{\partial x} \tag{8.3}
\end{equation*}
$$

nay correspond to the action of a non linear spring acting on part of the bar :

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial n}{\partial x}+\epsilon \chi_{[a, b]} u^{3}=f(x, t) \tag{8.4}
\end{equation*}
$$

could as well assume that the applied load is of order epsilon without any umption on the nonlinearity. Assuming ϵ to be small an approximate solution is rched for with the following "ansatz":

$$
\begin{gather*}
u=u_{0}+\epsilon u_{1}+\ldots \quad \text { d'où } \tag{8.5}\\
u^{3}=u_{0}^{3}+3 \epsilon u_{0}^{2} u_{1}+\ldots \tag{8.6}\\
{\frac{\partial u^{3}}{\partial x}}^{3}={\frac{\partial u_{0}}{\partial x}}^{3}+3 \epsilon{\frac{\partial u_{0}}{\partial x}}^{2} \frac{\partial u_{1}}{\partial x}+\ldots \tag{8.7}
\end{gather*}
$$

m which we get for the non linear law:

$$
\begin{equation*}
n=E\left(A \frac{\partial u_{0}}{\partial x}+\epsilon\left(A \frac{\partial u_{1}}{\partial x}+\chi_{[a, b]}\left(\frac{\partial u_{0}}{\partial x}\right)^{3}\right)+\ldots\right. \tag{8.9}
\end{equation*}
$$

for the linear law:

$$
\begin{equation*}
n=E A\left(\frac{\partial u_{0}}{\partial x}+\epsilon \frac{\partial u_{1}}{\partial x}\right)+\ldots \tag{8.10}
\end{equation*}
$$

ing these expansions, with the non linear law, the following system is obtained:

$$
\begin{gather*}
\rho \frac{\partial^{2} u_{0}}{\partial t^{2}}-E A \frac{\partial^{2} u_{0}}{\partial x^{2}}=f(x, t) \tag{8.11}\\
\rho \frac{\partial^{2} u_{1}}{\partial t^{2}}-E A \frac{\partial^{2} u_{1}}{\partial x^{2}}=-E \frac{\partial}{\partial x}\left(\frac{\partial u_{0}}{\partial x}\right)^{3} \chi_{a, b} \tag{8.12}
\end{gather*}
$$

: the modified equation the same equation for u_{0} is found but for u_{1} :

$$
\begin{equation*}
\rho \frac{\partial^{2} u_{1}}{\partial t^{2}}-E A \frac{\partial^{2} u_{1}}{\partial x^{2}}=-\left(u_{0}\right)^{3} \chi_{[a, b]} \tag{8.13}
\end{equation*}
$$

eoretical justification of the expansions:
n liner law The situation is complex in full generality: non linear hyperbolic equations exhibit a singularity after a finite time! But: the experiments are performed during a short time interval and the Fourier transforms are computed on these time intervals! Following a suggestion of Guy Metivier we are addressing the problem during a small initial time interval in which the solution is smooth: plan to use an approximation of the equation with a fixed point method proposed in Majda. In any case we should smooth the characteristic function (the material is changing smoothly)!
odified equation The situation is simpler; we can use a priori inequalities for this type of equation.

Explicit Solution

efficients are assumed to be constant and we consider:
lamped at both ends: $u(x, 0)=0=u(x, l)$; Eigenfunctions are introduced :

$$
\begin{gather*}
E A \frac{\partial^{2} \phi}{\partial x^{2}}=-\lambda \rho \phi \tag{8.14}\\
\phi(0)=0=\phi(l) \tag{8.15}
\end{gather*}
$$

find $\lambda_{k}=\frac{k^{2} \pi^{2}}{l^{2}} \frac{E A}{\rho}$, on pose $\omega_{k}=\sqrt{\lambda_{k}}$ and the normalised eigenfunction:
$=\sqrt{\frac{2}{l}} \sin \left(\frac{k \pi}{l} x\right)$.

.1 Computation of u_{0}

us consider a force of f́requency $\frac{\alpha}{2 \pi}$

$$
\begin{equation*}
f(x, t)=F \cos (\alpha t) \sin \left(\frac{k \pi}{l} x\right) \tag{8.16}
\end{equation*}
$$

h initial velocity: $\frac{\partial u}{\partial t}(x, 0)=0$ The solution

$$
\begin{equation*}
u_{0}=\frac{F \cos (\alpha t)}{\rho\left(-\alpha^{2}+\lambda_{k}\right)} \sin \left(\frac{k \pi}{l} x\right) \tag{8.17}
\end{equation*}
$$

responding to an initial condition

$$
\begin{equation*}
u_{0}(x, 0)=\frac{F}{\rho\left(-\alpha^{2}+\lambda_{k}\right)} \sin \left(\frac{k \pi}{l} x\right) \frac{\partial u_{0}}{\partial t}(x, 0) \tag{8.18}
\end{equation*}
$$

the initial condition:

$$
\begin{equation*}
u_{0}(x, 0)=a_{0} \sin \left(\frac{k \pi}{l} x\right) \tag{8.19}
\end{equation*}
$$

solution is:

$$
\begin{equation*}
u_{0}(x, 0)=\left[\frac{F}{\rho\left(-\alpha^{2}+\lambda_{k}\right)}\left(\cos (\alpha t)-\cos \left(\omega_{k} t\right)\right)+a_{0} \cos \left(\omega_{k} t\right)\right] \sin \left(\frac{k \pi}{l} x\right) \tag{8.20}
\end{equation*}
$$

.2 Computation of u_{1}

nsidering the first solution with a global non linearity, we get:

$$
\begin{gather*}
u_{0}^{3}=\frac{\cos (\alpha t)^{3}}{\rho^{3}\left(-\alpha^{2}+\lambda_{k}\right)^{3}} \sin ^{3}\left(\frac{k \pi}{l} x\right)= \tag{8.21}\\
\frac{\cos (\alpha t)^{3}}{\rho\left(-\alpha^{2}+\lambda_{k}\right)^{3}}\left[\cos (3 \alpha t) \sin \left(3 \frac{k \pi x}{l}\right)-3 \cos (3 \alpha t) \sin \left(\frac{k \pi x}{l}\right)\right. \tag{8.22}\\
\left.+3 \cos (\alpha t) \sin \left(\frac{3 k \pi x}{l}\right)-9 \cos (\alpha t) \sin \left(\frac{k \pi x}{l}\right)\right] \tag{8.23}\\
\frac{\partial u_{0}}{\partial x}=\frac{k^{3} \pi^{3}}{l^{3}} u_{0}^{3} ; \quad \frac{\partial}{\partial x} \frac{\partial u_{0}^{3}}{\partial x}=\frac{k^{3} \pi^{3}}{l^{3}} \frac{\partial u_{0}^{3}}{\partial x}= \tag{8.24}
\end{gather*}
$$

olution u_{1} with frf́requency $\frac{3 \alpha}{2 \pi}$ or
for a quadratic non linearity.

$$
\begin{gather*}
\frac{\cos (\alpha t)^{3}}{\rho^{3}\left(-\alpha^{2}+\lambda_{k}\right)^{3}} \frac{k^{4} \pi^{4}}{l^{4}}\left[3 \cos (3 \alpha t) \cos \left(3 \frac{k \pi x}{l}\right)+3 \cos (3 \alpha t) \cos \left(\frac{k \pi x}{l}\right)\right. \\
\left.+9 \cos (\alpha t) \cos \left(\frac{3 k \pi x}{l}\right)-9 \cos (\alpha t) \cos \left(\frac{k \pi x}{l}\right)\right] \tag{8.27}
\end{gather*}
$$

cond case

the second pair of boundary conditions, we set:

$$
\begin{equation*}
c=\frac{F}{\rho\left(-\alpha^{2}+\lambda_{k}\right)} \quad d=\left(-\frac{F}{\rho\left(-\alpha^{2}+\lambda_{k}\right)}+a_{0}\right) \tag{8.28}
\end{equation*}
$$

w we have:

$$
\begin{gather*}
u_{0}=\left(c \cos (\alpha t)+d \cos \left(\omega_{k} t\right)\right) \sin \left(\frac{k \pi x}{l}\right) \tag{8.29}\\
\left(u_{0}\right)^{3}=\left[\frac{c^{3}}{4} \cos (3 \alpha t)+\frac{3 c}{2}\left(\frac{c^{2}}{2}+d^{2}\right) \cos (\alpha t)+\right. \\
\frac{3 c^{2} d}{4}\left(\cos \left(\left(\omega_{k}+2 \alpha\right) t\right)+\cos \left(\left(\omega_{k}-2 \alpha\right) t\right)\right)+ \\
\frac{3 c d^{2}}{4}\left(\cos \left(\left(2 \omega_{k}+\alpha\right) t\right)+\cos \left(\left(2 \omega_{k}-\alpha\right) t\right)+\right) \\
\left.+\frac{3 d}{2}\left(\frac{d^{2}}{2}+c^{2}\right) \cos \left(\omega_{k} t\right) \frac{d^{3}}{4} \cos \left(3 \omega_{k} t\right)\right] \\
\frac{1}{4}\left(3 \sin \left(\frac{k \pi x}{l}\right)-\sin \left(\frac{3 k \pi x}{l}\right)\right) \tag{8.30}
\end{gather*}
$$

$$
\begin{gather*}
\frac{\partial}{\partial x}\left(\frac{\partial u_{0}}{\partial x}\right)^{3}=\frac{k^{3} \pi^{3}}{l^{3}} \frac{\partial u_{0}^{3}}{\partial x}= \tag{8.32}\\
\frac{3 k^{4} \pi^{4}}{4 l^{4}}\left[\frac{c^{3}}{4} \cos (3 \alpha t)+\frac{3 c}{2}\left(\frac{c^{2}}{2}+d^{2}\right) \cos (\alpha t)+\right. \\
\frac{3 c^{2} d}{4}\left(\cos \left(\left(\omega_{k}+2 \alpha\right) t\right)+\cos \left(\left(\omega_{k}-2 \alpha\right) t\right)\right)+ \\
\frac{3 c d^{2}}{4}\left(\cos \left(\left(2 \omega_{k}+\alpha\right) t\right)+\cos \left(\left(2 \omega_{k}-\alpha\right) t\right)+\right) \\
\left.+\frac{3 d}{2}\left(\frac{d^{2}}{2}+c^{2}\right) \cos \left(\omega_{k} t\right) \frac{d^{3}}{4} \cos \left(3 \omega_{k} t\right)\right] \\
\left(\cos \left(\frac{k \pi x}{l}\right)-\cos \left(\frac{3 k \pi x}{l}\right)\right) \tag{8.33}
\end{gather*}
$$

notice clearly terms of frequency $\frac{\alpha}{2 \pi}$ and $\frac{3 \alpha}{2 \pi}$ but also cross-modulations: $\frac{\omega_{k}+2 \alpha}{2 \pi}$ et $\frac{+\alpha}{\pi}$ and frequencies $\frac{3 \omega_{k}}{2 \pi} \frac{\omega_{k}}{2 \pi}$. This last term provides secular terms for the corrector m u_{1}; they ought to be eliminated for example by using some renormalization hnique:

$$
\begin{equation*}
t=s\left(1+\epsilon \omega_{1}+\ldots\right) \tag{8.34}
\end{equation*}
$$

notice that the perturbation is larger if α is close to ω_{k}. this fact is used in practice: applied load uses two frequencies with the low one at the first resonance in [8]. re the low frequency is excited by the initial conditions.

Conclusion

Some simple models governed by ODE pr PDE show intermodulations; But what is the relative level of secondary peaks for a given set of datas deserves investigations: indeed it is also the difficulty of the real experiments

Need to include other behaviors: shocks, friction
Need of more precise models: non linear beams including tractional, flexural, torsional effects

Mixture of local models for the defect and global models for the undamaged structure to obtain precise results at low computational cost.

eferences

D. Donskoy A. Sutin. Nonlinear vibro-acoustic nondestructive testing technique. In Nondestructive characterisation of material, 7 Ed R.E. green. Plenum press, New York, 1998, ?
V.V.Kasakov A.E.Ekimov, I.N.Didenkulov. Modulation of torsional waves in a rod with a crack. J.Acoust. Soc. AM., 3(106):1289-1291, 1999.
N. Sedunov Tsionskiy D. Donskoy, A. Ekimov. Nonlinear seismo-acoustic land mine detection and discrimination. . Acoust. Soc. Am, 111:2705-2714, 2002.
N. Damil M. Potier-Ferry E.H. Boutyour, B. Cochelin. Calculs non linéaires par des méthodes asymptotiques-numériques: applications aux structures élastiques. In Colloque national en calcul de structures, 11-14 mai 1993. Hermes, 1993.
A. Moussatov-B. Castagnede-V. Gusev. Frequency up-conversion and frequency down-conversion of acoustic waves in damaged materials. Physics letter A, 301:281-290, 2002.
B.P. Lathy. Signals, systems and communications. J. Wiley and sons, 1965.
solids. $J A S A$, to be submited.
M. Lagier P. Tèmin G. Vanderborck P. Dufourcq, JP. Groby. Détection vibro-acoustique non linéaire d' endomagements dans une structure poutre. Communication au Congrès français de mécanique, septembre 2003.
P. Sas V. Zaitsev. Nonlinear vibro-acoustic response of a metal sample with a discontinuity like defect as related to damage detection problems. In Proceedings of DECT 99, Las Vegas, Nevada, 1999.

Lagier Michel Vanderborck Gerard. Application of non-linear ultrasonic spectroscopy to health monitoring and damage detection in structures,. 38p. In 75th Shock and Vibration Symposium, Virginia Beach (VA) USA, du 18/10/2004 au 21/10/2004.
C. Gasquet-P. Witomski. Analyse de Fourier et applications. Masson, 1990.

