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Introduction

reral recent experimental studies show that it is possible to detect defects in a

ucture by considering its vibro- acoustic response to an external actuation.

1 Some previous papers

this topic there is a vast literature in applied physics. We recall some papers related
the use of the frequency response for non destructive testing; in particular generation
higher harmonics, cross-modulation of a high frequency by a low frequency:
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In Ekimov-Didenkulov-Kasakov (1999), [2], the authors report experiments with
torsional waves in a rod with a crack: they use HF torsional wave (20kHz) and a
LF flexural wave (12 Hz).

In Zaitsev-Sas (1999), 9], the authors report experiments with plate vibration
submitted to LF (20-60Hz) vibration by a shaker and HF (15-30 kHz) oscillations
by a piezo-actuator. They notice that weak modulation side-lobes are observed for
the undamaged sample but drastic increase in nonlinear vibro-acoustic of the
damaged sample. Some theoretical explanations are provided.

Other results may be found in Sedunov-Tsionsky-Donskoy(2002) [3],Sutin-Donskoy
(1998), [1], Moussatov-Castagnede-Gusev(2002), [5] ...

GDR 2501 (Etude de la propagation ultrasonore en milieux inhomognes en vue du
controle non destructif)
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In Vanderborck-Lagier-Groby (2003) [8], ”a vibro-acoustic method,
based on frequency modulation, is developed in order to detect
defects on aluminum and concrete beams. Flexural waves are
generated at two very separated frequencies by the way of two
piezoelectric transducers. The low one corresponds to the first
resonance f,,, the second one to a high non modal frequency f,. The
nonlinear response, due to the defects inside the structure, is
detected by non-zero flexural waves at f, £ nf,, frequencies.

see Vanderborck-Lagier(2004) —— beam experimentation
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ry recent experiments

have been performed on a real bridge by G. Vanderborck with four prestressed
cables: two undamaged cables, a damaged cable and a safe one but damaged at the

anchor;

these experiments have been performed in the frame of the European program
“Promoting competitive and sustainable growth ”of 15/12/99.

The cables are roughly 100 m long, 4 tones weight, 15cm in diameters.

The experiments have proved the presence of the damaged cable but also the safe
one damaged at the anchor.

Routine experimental checking with the lower eigenfrequencies had only proved
only the presence of the very damaged cable by comparison with data collected 15

years ago.

See Vanderborck-Lagier(2004) [10] for a presentation of the results of the
experiment with a new post processing graphic presentation of experimental results.




fficulties of the experiments:

non linearities of the shakers (including piezoelectric actuators)

Natural non linearities: supports, links of complex multi structures as air planes,

bridges etc
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rlentation

 intend to present simple spring mass models, simple bar and beam models with
nage and use asymptotic expansions and numerical methods to try to get
ults which show some similarity with the experiments of [8]. Asymptotic expansions
/e been used for at least a century and for example has been used recently for

merical approximation of bifurcation of structures in PotierFerry-Cochelin and
vorkers (1993) [4].

1e key idea is to look at the solution in the frequency domain I
for the experiments

1 consequently for the numerics.

A paper to be submitted (Lagier-Vandeborck) [7] several types of nonlinearities of defects
considered: contact elasticity, threshold contact model, nonlinear filling material. This last
e will be considered for bar models: it may happen in case of corrosion: the voided crack is
d by a new dusty material: then the elastic crack response is related to the elastic

perties of the filler. In this case it seems reasonable to consider a nonlinear elastic relation
the filler.




Background of Fourier transform \

1 Basic formulas

.1 Fourier serie

- a detailed presentation, see for example Gasquet-Witomski [11] and for an
rineering view point Lathy [6]; for a function f of period T, its expansion in fourier
ie 1s:

+00

2mint ]. T —2mint
f(t) = Z cne T with cnzf/o f(t)em T dt (2.1)

n=—oo

iscrete Fourier transform: D.F.T. which may be computed quickly by the
orihm of F.F.T. To a sequence (yx),k =0,..., N — 1, is associated an other sequence
),n=0,..., N —1 with the formulas:

N—-1 N-—-1

T —2'rrzn kT 2mink
Y, = ﬁ £ Y€ Yk — 7;) Ype W (22)
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“approximation of Fourier coefficients (caution to indixes) may be obtained with :

T = , kT
2win kKT
N = NT ];) f(W)e TN or with the DFT using (2.3)
kT Y, for0<n< &
Yk = f(W) Cn N = { 2 (2.4)

h the error approximation:

Cp = Z Cn+qN (2.5)
q70

2win k .

ware to Scilab FFT which provides: X, Z e 0 yxe N ie the Fourier coeflicients

- computed from: Y,, = %Xn.




.2 Fourier transform

FNW) = fw) = | foe=ar

(Flg)(t) = (Fo)(t) /R g(v)e 2Tty

—

fm=@riv)™f F(=2rit)"™ f(1) = " (v)

(2.6)

(2.7)
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— n(2nvA . . n(mA
X[—A,A] = Sm(ﬂzz/ ) = 2A.sinc(27vA)  Xjo,4] = eI AV sin(r Av) = Asinc(mAv)
ey
(2.10)
with the sampling function (“sinus cardinal”) sinc(t) = ; (2.11)
F(e*™t) = §,, and Fe ™) = 7,7 =, « T (2.12)
1, - A 1 . A

(F(cos(2miat)T) = i(TaT +7_,T) = 5(5(1 xT +6_qxT) (2.13)
F(cos(2miat)x(—a,4)) = A(Ta-sinc(2nvA) 4 7_,.sinc(27vA)) (2.14)
F(sin(2miat)x[—a,4)) = 1A(—T48inc(2mvA) + 7_,8inc(27vA)) (2.15)

A : :
F(cos(2miat)x[o,4]) = E(Tae_”A”sinc(ﬁyA) + 7_ge ™ Wsinc(2mvA)) (2.16)




Fourier of ki_ {—10,+10}
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Fourier of ki_{—10,+10}*hamming




2 Sampling

—~ . . 1 .
= g Ona Dg = g e 2N = “ A1 le “peigne”
a a
nez neZ
1 2min L
also A, = — g e a
a

neZ

ampling of f is: afA, =a)_, f(na)d,, with a the sampling period.

pisson formula:
Z e2ming (f distribution a support compact)

th—na
Z

E g(v — ﬁ) =a E g(na)e 2™ (§ distribution & support compact)
a
Z Z

= > fw—=)=ay_ fnaje >

neZ nez

QIPA

“tempered and f and f with support n [—VC, VC] )

v Axrrrlanrns AfF +bhAa crvAactrrira Lo o o 1

(2.17)

(2.18)

(2.19)
(2.20)

(2.21)




anon For
f e L?*R) et Supp(f) C [~ve, ve] (2.22)
1VC £(6) = 3" fnaysine(" (¢ — na) (2.23)

sin(t)
t

Va <

2

with the sampling function sinc(t) = (2.24)

> a low-pass filter before sampling.




3  Numerical computation of Fourier transform

T/2

f(v) ~ / f(t)e *™tdt = Tec,r or with v = n (2.25)
1/ T
. —N N
f(%) ~ Tc, for E <n< D) (2.26)
wrier coefficients ¢,, are numerically computed with FFT where y, = f (%)
A kT kT
f(v) =~ ?f(ﬁ)em)(—%mvﬁ) with v = % (2.27)
kT k
~ ; f(W)e$p(—2m'nN) with n = vT (2.28)
h sampling period % < 211/6 (no overlap of the spectrum) but ... a function of

npact support in time is not of compact support in frequency...




2.4 Exemples

Gate function Commenons par un exemple classique: f = X[0,3], &
transformée de Fourier est:

" ) b

) = STY) i) (2.29)

UN%

Avec b = 1/2 et 1000 points utilisés dans l'intervalle [0, 1], on trouve
les transformées sur les figures ci jointe. On pourra remarquer que le
maximum est correct

Cosinus Pour la fonction cos(27t), il est bien connu que la transformée
de Fourier est 01 +0_1. la transformée discrete est elle mme une approxi-

mation numérique de fOT cos(2mt)exp(—2mivt)dt et 'on trouve un pic de
hauteur la moitié de l'intervalle d’intégration. On trouve dans les figures
3 et 4, les transformée de fourier discrete calculée dans [0, 1] puis [0, 20]

Exponentielle-cosinus On constate que la transformée de Fourier de
exp(1073t) x cos(27t) est sensiblement égale & celle du cosinus tandis que

16-1
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Figure 1: Norm of the Fourier tral?%f_%rm of the gate x(o,0.5) in [0, 9] herz



Norm of the Fourier transform of the gate chi_[0,0.5]
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Figure 2: Norm of the Fourier trafég%rm of the gate x[0,0.5) in [0, 1000]
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Figure 3: Norm of the Fourier trf%{sliform of cos(2mt) in [0, 1000] herz




01 CuS{ZpIy 1N [U,Y]

frequency in herz
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Figure 4: Norm of the Fourier trf%{%form of cos(2mt) in [0, 1000] herz




celle de exp(10™2t) * cos(27t) est un peu différente, voir les figures 5 et 6

somme de deux sinus

sin_p_sin.sci

16-0



01 CuS{ZpIy 1N [U,Y]

frequency in herz
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Figure 5: Norm of the Fourier tyansform of exp(1073t) x cos(2mt) in



01 CuS{ZpIy 1N [U,Y]
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Figure 6: Norm of the Fourier tyansform of exp(1072t) x cos(2mt) in
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Figure 7: Norm of the Fourier trgngform of sin(2mt) + .2sin(207t) in



Simplest mechanical example

in which we can exhibit intermodulations.

 consider a 1 d.o.f example of a spring mass system with a non linear spring.

mij = —ky — kay® + eFsin(at) or (3.1)

= Wiy — 3 ~ sin(at) with Wi = — 3.2
jj = —woy — —y’ +e—sin(at)  with wg = — (3.2)
with initial conditions y(0) =en, y = evy (3.3)

 are going to solve this equation symbolically with an asymptotic expansion with
pect to €: y = eyy + €?yy + €3y3 + . ..; then numerically...
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1 The linear case

e first term is solution of:

F
1 = —wiyr + —sin(at) with y(0) =11, ¢ = vy which gives: (3.4)
m
y1 = Ae™0t 4 Aem ol 4 D' 4 De ' with (3.5)
M 1Fa 101 — F
2 2mwo(a? —wi) 2wy 2im(a? — wi) o (3.6)
tho=—— (wot) + (- + S g)sin(wot) — gsin(at) (3.7
wi = = n1cos(w — 4+ —¢)sin(wot) — psin(a :
m(a? _w(g)), Y1 =1m 0 o wo 0

marque 1. If we set n1 =0, vy = 0, then the term of pulsation wy has magnitude w%
1es the magnitude of the term of pulsation «; this is not a good choice for the non

sar case in which w% is of order 100; it seems good choice
=0, v1 =wo(—5- +1) 2 = (—a+wo)¢

m(a?—wy)




2 Other terms

e term yo is zero but the third term satisfies:

1

s = —woys + —y
™m

simplify, we assume 11 = 0 and set ¢ = m(af_wg) LY = Z_E -+ ?Tf so that:

y? = (Ysin(wot) — ¢sin(at))” =
—1 /4 sin(3wot) + 3/24(1/4p* + ¢?)sin(wot)
—3/4pp?sin((wo + 2a)t) — 3/4pd?sin((wy — 20)t)
+3/49° psin((a + 2wo)t) + 3 /4% psin((o — 2w )t)+
—3/2(¢%¢ + 1/2¢%)sin(at) + 1/4¢>sin(3at)

ve go on in the expansion, we get terms of pulsation a + 4wy, a + 6wq etc
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.1 Numerical issues

For o = 407, wo = 2m, F = 100, ¢ = .6348445087¢ — 2, a¢p = 7977691380,  (3.15)
v; = —.7578806812, ¢ = —5.366518580, 3/41%p = —.1371241364 (3.16)
¢ < ? (3.17)

neral tendency:

The pick of 3wy is much larger than the pick in o £ 2wy which are the most natural
picks in the experiments;

it is delicate to find datas such that the secondary picks at a £ 2wy I

actually appear when the differential equation is solved numerically.

Question: algorithm and software for detecting the secondary picks?

then find (by optimization) datas such that the secondary picks are important:

criteria for damage.
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absolute value of Fourier transform of displacement with
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y yl.ps etc

(2%%pi) "2; m=1; nua=10; alfa=2%)pi*nua; F=1450; lam=.2;
[0 1;-k/m O]; dt=.01; tmax=6%Jpi;

=950; ski1=" ,ki1="+string(kl);

1iction [xdot]l=f3(t,x)

t=A*x+ [0;1 1*x( ( -k1*x([1,0]*x)"3 )+

ksin(alfaxt) - lam*[0,1]*x)

1function

1iction [Jf3]=jacf3(t,y)

3=A+ [0,0; ( -3xk1x([1,0]*y)"2 ) , - lam ]

1function




non lin displacement with

alpha=62.831853, nualpha=10,
displac
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Figure 10: zoom of non linear response y,
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absolute value of Fourier transform of non lin displacement with
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Figure 12: Fourier of non linear response y, v,




absolute value of Fourier transform of non lin displacement with
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Figure 13: Fourier of non linear response y v,
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Two masses on stretched cables



Transverse vibrations: vibrating masses on \

streched cables in large displacement

rk performed with Theissen (doctoral student of U. Muenster); Erasmus students N.
ris and I. Altrogge worked on this topic during their stay in UNSA (2004-2005). We
1sider n masses attached to horizontal springs (or cables) which are in tension Ty, at
t ; the tension is positive when the cable is in traction which is assumed; at rest the
ss m; is submited to the force T' the masses are moving (vertically) transversely to
 springs; we denote by uper case letters quantities in the rest position and lower case
the current configuration.

1 Masses in vertical displacement

re we assume that the masses can move only vertically.

L; lenth at rest; [; lenth at time ¢; as the masses are moving vertically:
17 =L + (yi — yi—1)”

and the change of tension of the linear elastic spring due to the change of of lenth

—ry —ry . T r+4 \ - 7 —ry . T / [+~ O N / \ ) - \




along the axis of the spring.
Denote by 6;, the angle of the spring with the horizontal axis, we have
y1 = Litan(01), vi —yi—1 = Litan(0;)  Yn — Yn—1 = Lptan(6y).

 enforce y, = 0. See the picture with two masses and 3 cables.




e equation of the dynamics:
m;y; = —TZSZH(QZ) + Ti+1sin(9i+1) +u; 1=1...n (41)

ere —T;sin(6;) + T;115tn(0;41) is the vertical component of the force acting on mass
ve assume that there is no horizontal movement so the horizontal component of the
ce does not work. The applied load on mass 7 is denoted by w;; it is the control to be

ermined.




o (yz — Yi-1) , W ¢
Gi = I , and note that sin(arctan((;)) = o so that
- / Gi
Tisin(0;) = (To + ki (Lin /14 (F — Li)> e =
kLS e
(TO ksz) /—1 T CZQ + kszCz

ssible approximations:
. 1 3
Tisin(0;) = (To — kiLi)(Ci — 5@'3 + ng + 0 (G") + kiLiGi =
1 3
ToGi + (To — kiLi)(_§Ci3 + gCﬁ +0(¢"))

ne expansion for T; 1 sin(0;11) with (;11 = (yiz.l;yi)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)




.1 Linearized equation

mayl! = —Ty ((yz _Lyi—l) 4 (%’—21 _1yz)> T ou
0 i+

'rector equations may be obtained; details for 1 d.o.f below.




2L, 8L§
Yi — Yi—1
) —

sin(0;) = sin(atan(

_ (yz — yz’—l)Q (yz _ %’—1)4 4 0((yz o yi—1)6)

L;

(yi — yi—1)3 3(%‘ — yi—1)5

2L; i 8L;

33-1

HO((F )

(4.7)
(4.8)

(4.9)



2 Case with 1 d.o.f \
.1 Model with 1 d.o.f

this case, with yg = 0, yo = 0 we have
m1y1” = —TlSi?l(Hl) + TQSiﬂ(HQ) + uq (410)

h 0, = atan(y1/L1), 02 = —atan(y1/L2)

myy1” = —Tlsin(atan(ﬂ)) - Tgsin(atcm(ﬂ)) + uq (4.11)
Ly Lo
learized equation
1 1
V= -To(— + — 4.12
m1yi o(L1 + L2)y1 + uy (4.12)

e numerical solution of this model may be performed without stiff hypothesis with
i 1ab routine ode; (sin(tan) is Lipshitz) but

is not obvious to prescribe the right mechanical constants

> obtain clear intermodulation peaks;
| also trouble of the experiments! |
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.2 Approximation

re set (1 = %—11, (o = —%—12. Start from previous approximation
—Tysin(01) + Tasin(fs) = (4.13)
3 3 5% 3 3 5}
T0(G2 ) — (o — kaLn) (= + 250 4 (Ty — baLa)(~ 2 + °2) + 0(¢] + &),
(4.14)
expand y; = ey + €20y + €13 + O(€*) to get (4.15)
—Tysin(01) + Tosin(fs) = (4.16)
1 1 1 1 1 1
—€T — &To(— + —)n2 — T, 4.17
€ o(L1 + L2)771 € O(L1 + L2)772 € o(L1 + L2)773+ (4.17)
63 (TO — ]{71[/1 TO — k2L2> 3 4
— + n; + O(€7) (4.18)
2 L3 L3 !




The term in e provides the linearised equation,

the second equation provides 15 = 0

and the term in €3,

1 1 1 [Ty — k1L To — koL
’mng—To( (0 11+0 22)3

- 4.19

equation similar to what is obtained for the simplest mechanical example!
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.3 A possible damage of a cable

reakage of several fibers, this will cause decrease of rigidity k; say for cable 1.

Let us start with undamaged cables of same rigidity k. If we note Lg, the common

length of the unstressed cables, and L their common stressed lenth, their tension is
T() — ]C(L — Lo),

now, after damage, k1 < k = ko, cable 1 becomes longer and cable 2 shorter,

Ly > Lo, the tension goes down to Tog = k1 (L1 — Lo) = ko(Ls — Lg);

note the limit case of cable 1 broken is k1 = 0 so that the cable 2 gets lenth L but
the system is no longer working properly!

Before such a breakdown, if the change of tension is substantial, this causes a
substantial change of the fundamental frequency; indeed, this is the routine
monitoring of cable bridges!

The nonlinear vibroacoustic testing aims at monitoring the cables before such a
substantial change.




.4 Datas

Lo unstressed length,

L half of the lenth of the span, or lenth of each of the stressed undamaged cables.
k undamaged srping constant,

from which “undamaged” tension Ty = k(L — Lg),

Ly (with Ly < L1 < L) increased lenth of the damaged cable,

from which, Lo = 2L — L decreased lenth of the undamged cable,

from which “damaged”tension Tyg = k(Lo — Lg),

Tod
L1—Log

from which spring constant of the damaged cable k1 =
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A non linear string model

nodel of non linear string has been introduced first by Kirchoff in 1877 and rederived
Carrier in 1945.

l
Ytt — T(/O ya%)yacx — f (5'1>

* the classical linear string model, 7' is the tension of the string, assumed to be

nstant; in a next step, a natural asumption is:

l
T:To+k/ Vs
0

nvolves the linearized change of lenth as the length of the deformed string is:

l
l(y)z/0 V1+y2




Several mathematical studies of this type of equations have been performed
recently (Medeiros(1994), Clark- Lima (1997).

Following the lines of the discrete model, we intend to investigate a string made

of two materials (safe and dameged).

For a damaged string, £ will be small on a small portion of the string:

d—e d+e l
T:T0+/<:/ y926+7€d/ ngrk/ ys
0 d—e d-+e
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Masses free to move in a plane

re, we assume that the masses can move freely; we denote:

X; T
(YZ) the position at rest, ( 7’) the curent position (6.1)
i Yi

L; lenth at rest; [; lenth at time ¢; as the masses are moving freely:

Li(z,y)? = L2 + ((x; — zi—1) + (g5 — yi_1))”

and the change of tension of the linear elastic spring due to the change of of lenth
T; =To; + ki|li(x,y) — L;] =. this tension is directed along the axis of the spring:

T; =T;T;




Denote by 6;, the angle of the spring with the horizontal axis, we have,

L cosb;
i sinb;

Y1 = xltan(el), Yy —Yi—1 — (ZL'z — ZL’z‘_l)tCLn((gi) Yn — Yn—1 — ZL’ntCLn(en); but here,

1t 1s more convenient to use:

Yi — Yi—1 = li(x,y)sinb;, x; —xi—1 = l;(x,y)cosb;




uation of the dynamics

miZL’i” = —TiCOS(ei) + TZ'_|_1COS((9@'_|_1) + fz 1=1...n (62)
miyq;” = —TZSZH(QZ) -+ T¢+1Sin(9i+1) + g; 1=1...n (63)

 can express 6; with respect to x;, y;, to obtain:

Li — Li—1 Li41 — Ly :
m-a:i” :_Ti +Tz + i 1=1...n 6.4
' lz(may) i li-|-1($7y) f ( )

li (ZE, y) li+1(w7 y)
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Actively controled system, non destructive testing

The case of an actively controled system is prospective; real experiments are not
yet performed.

Idea: to detect damage in real time taking adavantage of the data processed by
the real time actuators used for the optimal control; real time control, research
group: “Echtzeit Optimierung grosser Systeme”in Germany.

Example of the vibrating masses: the forces u; are now the control we consider the
simple case of a quadratic functional:

Fu) = /O f (Z@@)) dt

yi(ty) =0, yi(ty) =0

The initial conditions may be seen as a perturbation of the system, the active

with final time conditions:

control brings to rest the system;



~

this process is supposed to be performed regularly during the lifetime of the system:;
in practice y; is measured by sensors and the control u; is a force performed by
actuators; both devices transform electric energy in mechanical energy.

the communication between both devices goes trough some computer

If we are able to distinguish the response of a damaged system from an undamaged
one, this opens the path of monitoring controled systems in real time as a dayly

routine during their life.
Numerical approach: to solve damaged and undamaged system and compare

Perturbation approach, introduce a small parameter ¢ and expand the solution with
respect to it; theoretical basis: the controled system should satisfy second order
sufficient conditions (Malanowski, Maurer ...)




tas for an example of controlled 2 masses

lenster)

~

worked out by by K. Theissen (U.

Top =102 ="To3=| 1
ki =ko = k3 = 5
mi = Moy = 1

L1 =Ly=Ls= 1
L 100
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Figure 16: Frequences of u4
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Figure 17: Frequences of us
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Bar models with defects

r models with longitudinal waves (dynamical traction and compression) are

1sidered.

0%u  On
— = t 8.1
th a non linear stress-strain law:

ou ou .
n=EAo-+eXan(z)") (8.2)

50 a linear law is considered with a modified equation::

0

n=EAZ> (8.3)

ox
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nay correspond to the action of a non linear spring acting on part of the bar :

O%u  On
patQ T ax —|_ EX[a,b]ug — f(LE?t) (84)

 could as well assume that the applied load is of order epsilon without any
umption on the nonlinearity. Assuming € to be small an approximate solution is

rched for with the following ”ansatz”:

u=1uy+eu; +... dou (8.5)
u? = up + 3eusui + . .. (8.6)

ous  Ouy’ Oug 2 Ouy
— = 3 e 8.7
Ox ox o Oxr Oz i (87)




m which we get for the non linear law:

B Jup ouq Oug 3
n_E(Aa$ +6(A8:1; +X[a’b](az))+‘” (8.9)
1 for the linear law:
o 8u0 8u1

ng these expansions, with the non linear law, the following system is obtained:




82U0 (92
— FA = t 8.11
10 atQ (9$2 f($7 ) ( )
(92U1 (92U1 (9 0u0
— FA = —F a 8.12
P ot 02 oz oy ) Xab (8.12)
- the modified equation the same equation for ug is found but for wuy:

0°u 0%u
P at21 - B4 83321 = —(10) X[a.b (8.13)




eoretical justification of the expansions:

m liner law The situation is complex in full generality: non linear hyperbolic
equations exhibit a singularity after a finite time! But: the experiments are
performed during a short time interval and the Fourier transforms are computed on
these time intervals! Following a suggestion of Guy Metivier we are addressing the
problem during a small initial time interval in which the solution is smooth: plan to
use an approximation of the equation with a fixed point method proposed in
Majda. In any case we should smooth the characteristic function (the material is
changing smoothly)!

bdified equation The situation is simpler; we can use a priori inequalities for this
type of equation.




1 Explicit Solution

eflicients are assumed to be constant and we consider:

lamped at both ends: wu(z,0) =0 = u(x,[); Eigenfunctions are introduced :

EA% = —\po (8.14)
5(0) = 0 = 6(1) (8.15)

find A\ = "“3—32%4, on pose wr = /A, and the normalised eigenfunction:

= \/%sm(kTwz)




.1 Computation of wug

us consider | a force of frequency -

kT

f(x,t) = Fcos(ozt)sm(Ta;) (8.16)
h initial velocity: 2%(z,0) = 0 The solution
Uy = p(liijj(f?k)sm(k%x) (8.17)
responding to an initial condition
w(z,0) = - (_&f - Ak)sm(’“77%;)%(93,0) (8.18)




* the initial condition:

ug(x,0) = aosin(kTW:E) (8.19)

» solution 1s:

F kT

(=0 T %) (cos(at) — cos(wit)) + agcos(wit) | sin(—x) (8.20)




.2 Computation of u

nsidering the first solution with a global non linearity, we get:

k
sz’n3(—ﬁ:p) =

l

cos(at)?
p3(—a? + A\g)?

ud =

cos(at)?
p(—a? + Ag)

k k
5 [cos(Sat)sin(B%ﬁj) — 3608(30&75)82'7?,(%)

k k
SNy _ 9cos(at)sin( "7
Oug° B k3ms o 0 Oug® B k373 Oud

or B Y ror B oz

+3cos(at)sin(

blution uwq with frfrequency g—i or

for a quadratic non linearity.




cos(at)®  kimd
pP(—a2 + \)3 14

{3003(30475)003(3]67;—33) + 3003(3at)cos(lm;—w) (8.26)

Bklmc) — QCOS(Qt)COS(]m;—w) (8.27)

+9cos(at)cos(

01-1



cond case

the second pair of boundary conditions, we set:

F
©= p(—a? 4+ A\g) 4= (_,0(—042 + Ak) " ao> (8.28)




w we have:

k
ug = (c cos(at) + d cos(wit)) sm(%w)
3 2
3_ ¢ 3¢ 2

(ug)”® = [4 cos(3at) + 5 ( 5 + d*)cos(at)+
3c2d

4
3cd?

4

(cos((wr + 2a)t) + cos((wr — 2a)t))+

(cos((2wk + a)t) + cos((2wr — a)t)+)

2 d3
_|_%(d_ 4+ C2)C08(wkt) ZCOS(SWkt)}

2 2
1 . kmx . dkmx
1 (33m(T) — sin( l ))

(8.29)

(8.30)

(8.31)




o (au0>3 B O

Oxr \ Ox [> Ox
3kind 3 3c,c*
7 [4:003(30¢)-+-2?(?5'+‘d Jcos(at )+
3c%d
1 (cos((wg + 2a)t) + cos((wr — 2a)t))+
3cd?
T (cos((2wi + )t) + cos((2wy — a)1)+)

3d d? d’
+?(? —|—02)COS(Wkt)ZCOS(3wkt)}

(cos(“Tx) _ cos(gkzm)>

(8.32)

(8.33)
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o wr+H2a
2T 27 et

This last term provides secular terms for the corrector

 notice clearly terms of frequency 5= and g—fr‘ but also cross-modulations:

12 and frequencies
s

»

3wk w_k
2 2w’

m u1; they ought to be eliminated for example by using some renormalization

hnique:

t=s(1+ew;+...) (8.34)

 notice that the perturbation is larger if « is close to wg. this fact is used in practice:
 applied load uses two frequencies with the low one at the first resonance in [8].
re the low frequency is excited by the initial conditions.




Conclusion

Some simple models governed by ODE pr PDE show intermodulations;

But what is | the relative level of secondary peaks | for a given set of datas deserves

investigations: indeed |it is also the difficulty of the real experiments

Need to include other behaviors: shocks, friction

Need of more precise models: non linear beams including tractional, flexural,

torsional effects

Mixture of local models for the defect and global models for the undamaged

structure to obtain precise results at low computational cost.
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