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1 Introduction

external actuation.

1.1 Some previous papers

papers related to the use of the | frequency response

high frequency by a low frequency:

"

Several recent experimental studies show that it is possible to detect

defects in a structure by considering its vibro- acoustic response to an

On this topic there is a vast literature in applied physics. We recall some

for non destructive

testing; in particular generation of higher harmonics, cross-modulation of a

J
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In Ekimov-Didenkulov-Kasakov (1999), [2], the authors report
experiments with torsional waves in a rod with a crack: they use HF
torsional wave (20kHz) and a LF flexural wave (12 Hz).

In Zaitsev-Sas (1999), [12], the authors report experiments with plate
vibration submitted to LF (20-60Hz) vibration by a shaker and HF
(15-30 kHz) oscillations by a piezo-actuator. They notice that weak
modulation side-lobes are observed for the undamaged sample but
drastic increase in nonlinear vibro-acoustic of the damaged sample.

Some theoretical explanations are provided.

Other results may be found in Sedunov-Tsionsky-Donskoy(2002)
13],Sutin-Donskoy (1998), [1], Moussatov-Castagnede-Gusev(2002), [5]

GDR 2501 (Etude de la propagation ultrasonore en milieux

inhomognes en vue du controle non destructif)

/
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In Vanderborck-Lagier-Groby (2003) [10], ”a vibro-acoustic method,
based on frequency modulation, is developed in order to detect
defects on aluminum and concrete beams. Flexural waves are
generated at two very separated frequencies by the way of two
piezoelectric transducers. The low one corresponds to the first
resonance f,,, the second one to a high non modal frequency f,. The
nonlinear response, due to the defects inside the structure, is

detected by non-zero flexural waves at f, = nf,, frequencies.

see Vanderborck-Lagier(2004) — beam experimentation

N /




/V ery recent experiments \

have been performed on a real bridge by G. Vanderborck with four
prestressed cables: two undamaged cables, a damaged cable and a safe
one but damaged at the anchor;

these experiments have been performed in the frame of the European
program “Promoting competitive and sustainable growth ”of 15/12/99.

The cables are roughly 100 m long, 4 tones weight, 15cm in diameters.

The experiments have proved the presence of the damaged cable but
also the safe one damaged at the anchor.

Routine experimental checking with the lower eigenfrequencies had
only proved only the presence of the very damaged cable by
comparison with data collected 15 years ago.

See Vanderborck-Lagier(2004) [13] for a presentation of the results of
the experiment with a new post processing graphic presentation of

experimental results. J




Difficulties of the experiments:

e non linearities of the shakers (including piezoelectric actuators)

e Natural non linearities: supports, links of complex multi structures as

air planes, bridges etc




/Orientation \

We intend to present simple spring mass models, simple bar models with
damage and use asymptotic expansions and numerical methods to
try to get results which show some similarity with the experiments of [10].
Asymptotic expansions have been used for at least a century and for
example has been used recently for numerical approximation of bifurcation

of structures in PotierFerry-Cochelin and coworkers (1993) [4].

The key idea is to look at the solution in the frequency domain I
for the

experiments and consequently for the numerics.

In a paper to be submitted (Lagier-Vandeborck) [7] several types of nonlinearities
of defects are considered: contact elasticity, threshold contact model, nonlinear
filling material. This last case will be considered for bar models: it may happen
in case of corrosion: the voided crack is filled by a new dusty material: then the

elastic crack response is related to the elastic properties of the filler. In this case
Qseems reasonable to consider a nonlinear elastic relation for the filler. J

7
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2 Background of Fourier transform

2.1 Basic formulas

2.1.1 Fourier transform

FNW) = fw) = | foe=ar
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- . sin(tA |
sinc(2nvA)  X[o,4] = e imAY sin(r Av) = Ae "™ sinc(rAv) (2.3)
TV
. . . . . . sin(t)
with the sampling function (“sinus cardinal”) sinc(t) = (2.4)
F(e*™) = 6,, and F(™UT) =1 ,T =6, T (2.5)
A : .

F(cos(2miat)X[o,4]) = §(Ta€_Z7TAVSiHC(7TI/A) + 7_ge ™ sinc(27vA))

(2.6)
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Figure 1: Fourier of sin(t)x—10.10(t)
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Figure 2: Fourier of (sin(t) 4+ 0.2sin(5.2t))x—10,10(%)

"

/

12



2.2 Numerical computation of Fourier transform

Sum of two sinus

sin_p_sin.sci
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frequency in herz
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\Sgure 3: Norm of the Fourier transform of sin(27t) + .2sin(20xt) in [0, 50]

€erz
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/3 Simplest mechanical example \

in which we can exhibit intermodulations.

We consider a 1 d.o.f example of a spring mass system with a non linear
spring.

In many situations in solid mechanics, it is common to assume small load
hypothesis which is modeled with a small parameter ¢; for a 1 dof:

my" + kiy + ksy® = éFcos(at) (3.1)

The solution is of order O(e) so that we can perform the change of
function: Y = ¥ which is solution of:

mY" + kY + &ksY? = Fcos(at) (3.2)
it can be put in dimensionless form introducing (3.3)
a characteric time and lenth: 7™, L* (3.4)

~

Y

. t
K and puting: ¢t = U= Ta (32

15
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k
i 4 T2 4 ¢
mm m

possible choice: T™ = | k’ﬂ and set
1

ﬁvT*Q
mL*’

~2 kS T*QL*Q 3

I —

FT*2
mL*

cos(aT™t)

~2 k3
m

€ = ¢

T*ZL*Q

i+ u + eu® = F cos(at)

4 Duffing equation

asymptotic expansions on the other side.

a = aT™, one obtains:

This model equation will be solved numerically on one side and with

To study the three body problem, Lagrange introduced an averaging method;
Poincaré used it also for celestial mechanics; introductory and theoretical

background may be found in in Roseau (|11]). and Verhulst, Sanders-Verhulst

&IM’ 6]); many practical problems are considered in Nayfeh ([8}9]).

/
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il 4+ u + eu® = F cos(at) (4.1)

4.1 Solution by double scale expansion

“Naive expansion “ fails to obtain bounded

solutions,| shift in fundamental and intermodulation frequency | Many

methods: including averaging, double scale expansion ... Following
notations of [8], we seek a double scale expansion of the solution, setting:

T():t, T1:€t

so that
2

d
— =Dg+e€Dy + ... = Dg +2eDgDy + ...

dt " dt?
u = ’LLO(T(),Tl) -+ Eul(To,Tl) + ...

\_ /

17




from which we get the first two equations:

D%UO + Uy = FCOS(O&TQ)
D%ul +uy = —2DgD1ug — ug

(4.2)

18



Ghe solution ug may be expressed as:

ug = a(Ty1) cos(Ty + B(11)) — ¢ cos(alpy)  with ¢ =

—1+ 2
| | 1 .
or ug = A(T; e’ — %ewTD + c.c. with A = 5@6"5

4.1.1 First order term

The first order term is solution of ( after the computation of u3 ):

2
Diuy +uy = —(2iA" + 3(AA + ¢ ) )etto 4

3
(6AA+ ¢ )¢ 1ol A3 311y 4+ 2 ¢ 37,@’1"0_'_

8
ﬂeimam L 34% oram,
2 2
_%ﬁei(l—lﬂa)ﬂ) 31195 i(1-20)T0 | ¢ ¢

(4.3)

(4.4)

(4.5)
(4.6)
(4.7)

(4.8)
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In the right hand side the term in e*!0 produces unbounded terms (the so

called secular terms of celestial mechanics). We eliminate this term by

imposing:
_ 3AH2 .
2iA" + 3A%A + ;b =0 wusing A= %ew (4.9)
3a®>  3ag?
ia’ — af’ + % + a4q§ =0 (4.10)

3
a is constant and 0 = 5111 + By with 31 = 1 ( + ¢ ) (4.11)

An approximate solution:

U >~ Uy + €U

The level of the computed lobes of u = ug + euy is ( @ = ¢ when u(0) =0

and %(0) = 0): angular frequency — lobe.

\_ /
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14 €61 — Tﬂ;ma (4.12)
Trax 3.0.(2.a° 2
o — (—(b + € ¢421 Ci o—;)¢ )) (4.13)
3
3ﬂ+a&)meﬂ?m; (4.14)

Tz (3.0%.¢/4)

(24 a+2.e0) — € > 1-@2+ta) (4.15)
(—2+a—2.0]) — eTﬂ;ax i (_3(61_2¢_|{4())é)2) (4.16)
(1+2“+6&)H_fﬂ?xu(yggf;aﬁﬂ 4-17)
3. — eTmam ¢’ (4.19)

2 (4.(1—-9.02))

21
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4.1.2 Behavior of intermodulation picks

Trar  (3.0%.¢/4)

24+ a+2.e€p)—e¢ 2 (1-(2+a)?)

~

(4.20)

Increase with ¢ and €, decrease with «; for the mechanical non linear spring

€ — g2 @T.ZL.Q

m
€ increases with ks I
, the damage!

Behavior of the rate of lobe at 2 + a + 2¢(3; over main lobe at a: see figure

"

J
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4.2 Admissible parameters

an obvious limitation: the angular frequencies should remain in the order

they get for very small €. After manipulations:

9ep?

5(1
(1+—3

) < «

23
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rapport du lobe en alpha+2 sur lobe en alpha
alfa=5.5669485 beta1=1.125, y0=0 ,v0= 0

0.006

0.005

0.004—

0.003

0.002—

0.001—

0.10

...epsilon

Figure 4: Rate of intermodulation to main lobe (

Vo = 1)

/
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/4 .3 Numerical issues \

For a = 407, wg = 27, F = 100, ¢ = .6348445087¢ — 2. ad = .7977691380,

(4.21)
v = —.7578806812, 1 = —5.366518580, 3/41)°¢p = —.1371241364 (4.22)
o < P> (4.23)

General tendency:

e The pick of 3wy is much larger than the pick in a £+ 2wy which are the

most natural picks in the experiments;

e | it is delicate to find datas such that the secondary picks at a & 2wy

actually appear when the differential equation is solved numerically.

e Question: algorithm and software for detecting the secondary picks?

e then find (by optimization) datas such that the secondary picks are

\ important: criteria for damage. J

25




displacement with

. alpha=69.115038, nualpha=10, F=100, dt=0.01, y0=0, vO0=—1.5076257
displac

0.06

0.04—

0.02—
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E time

-0.06 ; , . , . , . , . , . , . , . , . , ;

Figure 5: Linear response y, v,, =1
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F(u)

absolute value of Fourier transform of displacement with

alpha=69.115038, nualpha=10, F=100, dt=0.01, y0=0, vO0=—1.5076257

14—

12—

10—

freqin Hz

Figure 6: Fourier of linear response,

32 36

Vi, = 1
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non lin displacement with

d,alplha=62.831853, nualpha=10, F=1450, dt=0.01, y0=0, v0=-27.972687 ,k1=950 ,lJambda=0.2
isplac

Figure 7: zoom of non linear response vy,

2.0

Vi

0

time
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non lin displacement with

.alplha=62.831853, nualpha=10, F=1450, dt=0.01, y0=0, v0=-27.972687 ,k1=950 ,Jambda=0.2
isplac

time

y1llon
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absolute value of Fourier transform of non lin displacement with
Fa(lp)ha=62.831853, nualpha=10, F=1450, dt=0.01, y0=0, v0=—-27.972687 .k1=950 ,Jambda=0.2
u

1200
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800
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Figure 9: Fourier of non linear response y, v,

36

freqin Hz
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absolute value of Fourier transform of non lin displacement with
ia:l(p};a=62.83 1853, nualpha=10, F=1450, dt=0.001, y0=0, v0=-27.972687 .k1=950 ,Jambda=0.2
u

freqin Hz

Figure 10: Fourier of non linear responsey 1,, =1

Fyldte4
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L2

L1

Two masses on stretched cables

"
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/5 Transverse vibrations: vibrating masses on\

streched cables in large displacement

Work performed with Theissen (doctoral student of U. Muenster);
Erasmus students N. Goris and I. Altrogge worked on this topic during
their stay in UNSA (2004-2005). We consider n masses attached to
horizontal springs (or cables) which are in tension Ty, at rest ; the tension
is positive when the cable is in traction which is assumed; at rest the mass
m; is submited to the force T' the masses are moving (vertically)
transversely to the springs; we denote by uper case letters quantities in the

rest position and lower case in the current configuration.

5.1 Masses in vertical displacement

Here we assume that the masses can move only vertically.

Ko L; lenth at rest; [; lenth at time ¢; as the masses are moving vertically

33
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2 =L+ (yi — yi—1)?

e and the change of tension of the linear elastic spring due to
the change of of lenth
T; =To + ki|l;(y) — L] =Ty + kz(\/Lf + (y; —yi—1)? — L;). this
tension is directed along the axis of the spring.

e Denote by 6;, the angle of the spring with the horizontal axis, we have
o y1 = Laitan(bh), vi—yi—1 = Litan(0;)  yn — yn—1 = Lntan(6y).

We enforce y,, = 0. See the picture with two masses and 3 cables.

\_ /
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The equation of the dynamics:

where —T;sin(60;) + T;115in(0;11) is the vertical component of the force
acting on mass 7; we assume that there is no horizontal movement so the
horizontal component of the force does not work. The applied load on

mass ¢ 1S denoted by w;; 1t is the control to be determined.

with one degree of freedom section (5.2

"

35
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Set
G = (i = yi_l), and note that sin(arctan((;)) = o so that
Ls VI+QG
(5.2

possible approximations:

Tisin(0;) = ToGi + (Th kL)(—%gMgguo(gﬁ)) (5.4)

_ (Wir1—yi)
Lict

Same expansion for T;11sin(0;11) with (11 =

of freedom section (5.2

"

jump to one degree

/
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5.1.1 Linearized equation

my! = —Tp ((yz _Lyi—l) 4 (yz—ll-;l _1%)) Tou
i i+

corrector equations may be obtained; details for 1 d.o.f below. 77

"

37



/5.2 Case with 1 d.o.f
5.2.1 Model with 1 d.o.f
In this case, with yo = 0, y» = 0 we have

mlyl” = —Tlsm(el) + TQSZTL(QQ) + uq

with 61 = atan(y1/L1), 62 = —atan(yi/Ls)

Y1
1 2

hypothesis with scilab routine ode; (sin(tan) is Lipshitz) but

myy1” = —Tlsin(atan(%)) — Tgsz’n(atan(L—)) + uq

The numerical solution of this model may be performed without stiff

it is not obvious to prescribe the right mechanical constants

to obtain clear intermodulation peaks; I

also trouble of the experiments!

"

(5.5)

(5.6)
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5.2.2 Approximation

Here set (1 = %—11, (o = —%—12. Start from previous approximation
—T1sin(01) + Tasin(f2) =
3 3 5 3 3 5%
To(Ga — 1) — (To — kaLa) (=52 + 250) o+ (Ty — haLo)(~ 2 + 22
expand y; = eny + €1y + €313 + O(e*) to get
—T1sin(01) + Tasin(b2) =
1 1 1 1 1 1
—€T, — Ty(— + —)ne — €T,
€ O(L1 +L2)771 € O(Ll +L2)772 € O(Ll +L2)773+
63 T() — ]flLl TO — ]{ZQLQ 3
i O(e?
(M )0

"

39
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e The term in € provides the linearised equation,

1 1

min’ = —TO(L—l + L—Q)m + uq (5.13)

e the second equation provides 1y =0

e and the term in €,

1 1 1 T() - lel TO - k2L2 3
, - + 5.14
Li Lo )13 ( L3 L3 n (5.14)

mns = To( 5

equation similar to what is obtained for the simplest mechanical

example!

jump to non linear string section (6]

\_ /
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stressed
damaged cables

1 )
A A ) (N -
_/ _/
L1 L
L2 3
unstressed
cables L
0
L m, L m, L
) ) o .
stressed
undamageq
R S S S S S S S S S R S S e e S S S SRS
e e e et e e e e e e e e e e ettt e e e e e e e e e e e e e ettt de te du e e e e e e e e et %% 20 20 20 2e e e du e e e te!
R R RIS
e e et e T T e e e e e e e e e e e e e e e e e e e 2 2 2 2 2 202020 Te e e e e e e e e e e ululule e e e 20 20 20 20 20 20 202!
S e S SIS
R R R RS

Two masses on stretched cables
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@.2.3 A possible damage of a cable \

is breakage of several fibers, this will cause decrease of rigidity k; say for
cable 1.

Let us start with undamaged cables of same rigidity k. If we note Lg, the
common length of the unstressed cables, and L their common stressed lenth,
their tension is Ty = k(L — Lo);

now, after damage, k1 < k = ks, cable 1 becomes longer and cable 2 shorter,
L1 > Lo, the tension goes down to Too = k1(L1 — Lo) = ka(La — Lo);

note the limit case of cable 1 broken is k1 = 0 so that the cable 2 gets lenth

Lo but the system is no longer working properly!

Before such a breakdown, if the change of tension is substantial, this causes
a substantial change of the fundamental frequency; indeed, this is the

routine monitoring of cable bridges!

The nonlinear vibroacoustic testing aims at monitoring the cables before

such a substantial change. J
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5.2.4 Datas

e [ unstressed length,

e [ half of the lenth of the span, or lenth of each of the stressed

undamaged cables.
e ik undamaged spring constant,
e from which “undamaged” tension Ty = k(L — Ly),
e [, (with Ly < L1 < L) increased lenth of the damaged cable,
e from which, Ly, = 2L — L7 decreased lenth of the undamged cable,

e from which “damaged”tension Toy = k(Lo — L),

Tod

e from which spring constant of the damaged cable k1 = 24—

43
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6 A non linear string model

A model of non linear string has been introduced first by Kirchoff in 1877
and rederived by Carrier in 1945.

l
Ytt — T(/O yf;)ya:a: — f (6'1)

For the classical linear string model, 7' is the tension of the string,

assumed to be constant; in a next step, a natural asumption is:

[
T:To—l—k/ yi
0

it involves the linearized change of lenth as the length of the deformed

string 1s:

[
)= [ VT+2

\_ /
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e Several mathematical studies of this type of equations have been
performed recently (Medeiros(1994), Clark- Lima (1997).

e Following the lines of the discrete model, we intend to investigate a

string made of two materials (safe and dameged).

e For a damaged string, k£ will be small on a small portion of the string:

d—e d+e l
T:T0+k/ y§+/€d/ y§+k/ ya
0 d—e d-+e

45




13

- — - . _ _

L1

(|2

/

Two masses on stretched cables moving freely

"
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Two masses on stretched cables (cable 2 damaged) moving freely
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7 Masses moving freely in a plane

7.1 Model

Here, we assume that the masses can move freely; we denote:
X; . T L.
the position at rest, the curent position (7.1)
Yi Yi
e [, lenth at rest; [; lenth at time ¢; as the masses are moving freely:

iz, )% = (25 — x1) + (i — yiz1))”

e and the change of tension of the linear elastic spring due to the change

of of lenth
T; =To; + killi(x,y) — L;] =. this tension is directed along the axis of
the spring:

\_ - /
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e Denote by 6;, the angle of the spring with the horizontal axis, we have,
. cosb;
T; =
' sinb;

Vi — Yi—1 = li(x,y)sinb;, x; —x;_1 = l;(x,y)cosb;

49
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Equation of the dynamics

miazi” = —TiCOS(ei) + TZ'_|_1COS<(9¢_|_1) + fz 1=1...n
mz-yi” = —T@SZTL(QZ) + Ti+1sin(¢9i+1) + g; 1=1...n

We can express 6; with respect to z;, y;, to obtain:

li (x7y> li+1(x7y)

miyz’” — —TZ(CU,Z/) L + Ti-l—l(xay) Akl + gi 1=1...n

i (x,y) lig1(z,y)

"

(7.2)

(7.3)

/
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/7 .2 A possible damaged model

stressed
damaged cables

my
AR\
\_/

unstressed

cables L

L)

m
i
O

> stressed
@\ undamaged
cables

One mass on stretched cables

/
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/7.2. 1 possible damaged cable \

is | breakage of several fibers |, this will cause decrease of rigidity k; say for
cable 1.

e Let us start with undamaged cables of same rigidity k. If we note Ly,
the common length of the unstressed cables, and L their common
stressed lenth, their tension is Ty = k(L — Lg);

e now, after damage, k1 < k = ko, cable 1 becomes longer and cable 2
shorter, L1 > Lo, the tension goes down to

Todam = k1(L1 — Lg) = ko(Le — Lyg);

e note the limit case of cable 1 broken is £; = 0 so that the cable 2 gets
lenth Ly but the system is no longer working properly!

e Before such a breakdown, if the change of tension is substantial, this
causes a substantial change of the fundamental frequency; indeed, this

/

k is the routine monitoring of cable bridges!

52



The aim of non linear vibroacoustic testing :
monotoring the cables before
such a substantial change!
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7.2.2 Datas

e [ unstressed length,

e [ half of the lenth of the span, or lenth of each of the stressed

undamaged cables.
e k undamaged spring constant, k1 damaged spring constant,

e from which “undamaged” tension Ty = k(L — L),

® Todam = k1(L1 — Lo) = k((2L — L1) — Lo)

o [ = Z;ii (L — Lg) + L increased lenth of the damaged cable,

e from which, Ly, = 2L — L, decreased lenth of the undamged cable,

54
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7.2.3 Damage and symmetry breaking

Lenthy computations by expansion:

Ir — Ll + €uq + GZUQ + €3U3 + ... (74)
y = vy + vy + €z + ... (7.5)

show that the symetry breaking due to the lenth increase of the damaged
cable causes the apparition of non linear terms which cancel for an
undamaged system;

a substantial increase of the intermodulation lobes should appear!

Jump to bar model section |9

\_ /
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/8 Actively controled system, non destructive\
testing

e The case of an actively controled system is prospective; real
experiments are not yet performed.

e Idea: to detect damage in real time taking adavantage of the data
processed by the real time actuators used for the optimal control; real
time control, research group: “Echtzeit Optimierung grosser
Systeme”in Germany.

e Example of the vibrating masses: the forces u; are now the control we
consider the simple case of a quadratic functional:

F(u) = /O f (Zuf(t)) dt

with final time conditions:

K yi(ty) =0, yi(ty) =0 J

56




e The initial conditions may be seen as a perturbation of the system, the
active control brings to rest the system:;

o7




~

this process is supposed to be performed regularly during the lifetime
of the system; in practice y; is measured by sensors and the control u;
is a force performed by actuators; both devices transform electric

energy in mechanical energy.
the communication between both devices goes trough some computer

If we are able to distinguish the response of a damaged system from an
undamaged one, this opens the path of monitoring controled systems

in real time as a dayly routine during their life.

Numerical approach: to solve damaged and undamaged system and

compare

Perturbation approach, introduce a small parameter € and expand the
solution with respect to it; theoretical basis: the controled system

should satisfy second order sufficient conditions (Malanowski, Maurer

) J
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Datas for an example of controlled 2 masses

Theissen (U. Muenster)

Top=To2="1o3= ] 1
ki =ky = k3 = 5
mi = Mo = 1

L1 =Ly=Ls= 1
t 100

~

worked out by by K.

59



Figure 11: Frequences of uy
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9 Bar models with defects

Bar models with longitudinal waves (dynamical traction and compression)

are considered.

0%?u  On
— = t 9.1
PaE By = 1 @) (9.1)
With a non linear stress-strain law:
ou ou . 5
n = E(A% + EX[“’b](a—x) ) (9.2)
Also a linear law is considered with a modified equation::
ou
= FA— 9.3
" Ox (9:3)

\_ /

63




4 N

it may correspond to the action of a non linear spring acting on part of the
bar :

’u  On

patQ T ax —I_ EX[a,b]U’B — f(x7t) (94)

We could as well assume that the applied load is of order epsilon without

any assumption on the nonlinearity. Assuming ¢ to be small an

approximate solution is searched for with the following ”ansatz”:

u=1uy+eus +... dou (9.5)
u? = ug + 3eudui + . .. (9.6)

ou’  Oug® Oug 2 Ouy
— = — 3 . 9.7
oz Oz e or Ox i (97)
(9.8)
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From which we get for the non linear law:

B Oug Ouq Oug 3
n_E(Aﬁx +6<A&Ij +X[“’b](0az))+”' (9.9)
and for the linear law:
o 8u0 6’u1

Using these expansions, with the non linear law, the following system is

obtained:

"
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uo

82
{ p 8t2
82u1
P~ 5¢2

— FA
— FA

82u0
ox?2
8211,1
ox?2

— f(il?,t)

(9.11)

= —E2 (%)Bxa,b

ox

ox

For the modified equation the same equation for ug is found but for wu;:

(3’2’&1

P o2

Jump to the conclusion

"

10

— FA

(3’2u1

Ox?

— —(10)*X[a (9.12)
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Theoretical justification of the expansions:

Non liner law The situation is complex in full generality: non linear

~

hyperbolic equations exhibit a singularity after a finite time! But: the

experiments are performed during a short time interval and the Fourier

transforms are computed on these time intervals! Following a

suggestion of Guy Metivier we are addressing the problem during a

small initial time interval in which the solution is smooth: plan to use

an approximation of the equation with a fixed point method proposed

in Majda. In any case we should smooth the characteristic function
(the material is changing smoothly)!

Modified equation The situation is simpler; we can use a priori

Jump to the conclusion |10

"

inequalities for this type of equation.
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9.1 Explicit Solution

Coeflicients are assumed to be constant and we consider:

Clamped at both ends: wu(z,0) =0 = u(x,[); Eigenfunctions are

introduced :
0% ¢
FA— = -\ 9.13
52 po (9.13)
¢(0) =0 =o(l) (9.14)
we find A\, = k2 - E—pA on pose wi = /A and the normalised eigenfunction:

O = \/737,71(1?56).
N /
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9.1.1 Computation of ug

let us consider | a force of frequency -

f(x,t) = Fcos(ozt)sm(k%x) (9.15)
with initial velocity: %(az, 0) = 0 The solution
Uy = p(F_(z;(f?k)sm(kTﬂx) (9.16)
corresponding to an initial condition
uo(,0) = (_&f " Ak)sm(kl”x)ag’f (,0) (9.17)

\_ /
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For the initial condition:

ug(x,0) = aosin(kTﬂa:) (9.18)

the solution is:

F L
= £ ) (cos(at) — cos(wit)) + agcos(wit) sm(Ta;)

(9.19)

uo(x,0) =

\_ /
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1.2 Computation of u;

Considering the first solution with a global non linearity, we get:

3 cos(at)? g km

uO:

cos(at)? [
p(—a® + Ap)?

p3(—a? + \g)

k k
COS(SO&t)SiTL(S%:U) — 3608(30475)87:71(%:6)

5 81n°(——1) =

[

3kmx - kmx

+3cos(at)sin(

Oz 13

solution uq with frfrequency g—i

g—o‘ for a quadratic non linearity.
T

"

) — QCos(Qt)sm(T)

2%3 B k3 @ug
oxr Ox 13 Ox

or
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N3 g o .
pg(C_O;ga+)>\k)3 ZZ [3608(36%)608(3%33)—I—BCOS(Bth)COS(%x) (9.25)

Jkmx kmx
l ) — 9003(at)cos(—)}

+9cos(at)cos( :

(9.26)

71-1



4 N

Second case

for the second pair of boundary conditions, we set:

— q— (—p - Y ao) (9.27)
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Now we have:

k
Uy = @:cos(ai)—%cicos(a%t))sin(—%FE)
3 2
(ug)® = {%fcos(Sai)-+-%;(%%—+—d2)cos(a¢)+—

3c%d
4

3cd?
4

(cos((wg + 2a)t) + cos((wg — 2a)t))+

(cos((2wi + a)t) + cos((2wi — a)t)+)

d d? d’
+3_<——|—(32)COS(Wkt)ZCOS<3wkt)}

2 2
1 . kmx . JkTmx
1 (SSZn(—7r—)——szn( l ))

(9.28)

(9.29)

(9.30)
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or \ ox ) ~— 1B 0w 3

344 re3 3¢ c?

7 [ 1 cos(3at) + 5(5 + d2)003(04t)‘|’
3c2d

1 (cos((wg + 2a)t) + cos((wg — 2a)t))+
3cd?

1 (COS((QWk + Ck)t) -+ COS((2C‘-}]€ — Oé)t)"‘)

3d  d? d’
+5 (5 + 62)008(%75)1003(3%’5)}

(COS(WT””) - COS(SkZT f”)) (9.32)
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We notice clearly terms of frequency 5- and g—i but also

cross-modulations: “EF2% et 29ET® gnd frequencies 22 Y& This last term
27 27 2w 2w

provides secular terms for the corrector term uq; they ought to be

eliminated for example by using some renormalization technique:

t=s(14+ews+...) (9.33)

We notice that the perturbation is larger if « is close to wy. this fact is
used in practice: the applied load uses two frequencies with the low one at
the first resonance in [10]. Here the low frequency is excited by the initial

conditions.

\_ /
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/10 Conclusion \
e Some simple models governed by ODE or PDE show intermodulations;

the relative level of secondary peaks I
e But for a given set of datas

deserves investigations: indeed

it is also the difficulty of the real experiments

e The | use of explicit expansions is necessary |to understand the

behavior of secondary peaks!
e Need to include other behaviors: shocks, friction

e Need of more precise models: non linear beams including tractional,
flexural, torsional effects; plates, shells, smart materials

(piezoelectric...).

e Mixture of local models for the defect and global models for the

undamaged structure to obtain precise results at low computational

K cost. J
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