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I consider it useless and tedious to represent what exists, 
because nothing that exists satisfies me. Nature is ugly, and I 
prefer the monsters of my fancy to what is positively trivial. 

 Charles Baudelaire 
 “Salon of 1859” §3  
 Curiosités Esthétiques (1868) 
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I. Motivation 
Density Functional Theory isn’t really a black box: 

• Problems with systems with strong static correlation. (E.g., systems 
where the single determinantal reference is poor.) 

• Problems with systems where long-range correlation is important (i.e., 
the exchange-correlation hole is not very localized.)  (E.g., van der Waals 
forces, multi-center bonding, associative transition states, . . . ..) 

• Semi-ab initio functionals can fail when describing “unconventional” 
chemistry, e.g., highly charged systems. 

• In general, existing functionals are not “systematically improvable.” 

• Good News:  Existing Density-Functionals are quite accurate for 
thermodynamic properties and (in most cases) chemical dynamics.   

• Good News:  When DFT works, the accuracy/computational cost ratio of 
density-functional theory far exceeds that of most other methods. 

 
Can we “improve” DFT without using  

wave-function-based methods? 
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Past the density, but not yet to the wave function. . . . 
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“classic” quantum chemistry 

“Polydensity” alternative:  Gori-Giorgi,Percus,Savin. 
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Outline of the Remainder of the Talk 
 

II. The N-representability Problem 

III. The N-representability problem:  Special Case; 
electron pair density. 

IV. Variational approaches to the N-representability 
problem:  Special Case; electron pair density. 

V. Variational Approaches:  General Case. 

VI. Specific Variational Approaches:  Density Matrices, 
etc.. 

VII. Algorithmic Considerations 

VIII. The N-representability Problem, Revisited 
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II. The N-representability Problem 
 

Given: A descriptor, ( )f τ , which contains enough 
information to describe a molecular electronic 
system.   

There exists:  An energy function, [ ],v NE f , that depends only 
on the descriptor and the identity of the system 
(as encapsulated by the external potential, 
( )v r , and the number of electrons, N). 

There exists: A variational principle for the ground-state 
energy, namely: 

 [ ]
( )

[ ]. . ,
-representable 

; ming s v N
N f

E v N E f=
τ
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The variational principle follows directly from the variational 
principle for the wave function: 

 [ ] ,

. .
all appropriately antisymmetric

-fermion wavefunctions

ˆ
; min

v N

g s

N

H
E v N

Ψ Ψ
=

Ψ Ψ
 

or density matrix 
 [ ]. . ,

all -fermion
density matrices

ˆ ˆ; min Trg s v N N
N

E v N H⎡ ⎤= Γ⎣ ⎦   

 
This means that: 
 [ ]

( )
[ ]. . ,

all  that correspond to a
system containing  fermions

; ming s v N
f

N

E v N E f=
τ

 

 
If ( )f τ  corresponds to a system of N fermions, then it is said 
to be N-representable.   
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Definition:   The descriptor, ( )f τ , is said to be N-

representable if and only if it corresponds to a 
system of N-fermions.  Therefore, if ( )f τ  is N-
representable, then there exists some fermionic 
N-electron density matrix, NΓ , that is consistent 
with  ( )f τ .  I.e., 

 ( ) ( )( ) is -representable     yields N Nf N f↔ ∃Γ ∋ Γτ τ   

 
Notation:   NN  denotes the set of N-representable ( )f τ .  
 

The N-representability problem:  Find a way to constrain the 
variational principle so  that the correct ground-
state energy is obtained: 

 
( )

[ ] [ ]
( )

[ ], . . ,
  

min ; min
N

v N g s v N
f f

E f E v N E f
∈

=
Nτ τ
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All ... popularization involves a putting of 
the complex into the simple, but such a 
move is instantly deconstructive. For if the 
complex can be put into the simple, then it 
cannot be as complex as it seemed in the 
first place; and if the simple can be an 
adequate medium of such complexity, then 
it cannot after all be as simple as all that. 

 Terry Eagleton  
 Against the Grain 
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III. Variational Approaches to the N-representability problem:  
Special Case; electron pair density. 

The pair density is the probability of observing an electron at 1x  and 2x .  It is 
related to the structure factor in X-ray/neutron scattering. 

( ) ( ) ( )

( ) ( )

2 1 2 1 2
1

1 2
1

,

Tr

N

i j
i j i

N

i j N
i j i

ρ δ δ

δ δ

= ≠

= ≠

≡ Ψ − − Ψ

⎡ ⎤⎛ ⎞
= − − Γ⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

∑∑

∑∑

x x r x r x

r x r x

 

Simple Properties of the pair density:  
• normalization 

 ( ) ( )2 1 2 1 21 ,N N d dρ− = ∫∫ x x x x  

• nonnegativity 

 ( )2 1 20 ,ρ≤ x x  

• symmetry 

 ( ) ( )2 21 12 2, ,ρ ρ=x xx x  
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Hohenberg-Kohn-Ziesche Theorem:  2ρ →  all observable properties, 
including the energy and its components. 

[ ] ( )2 1 2
2 1 2

1 2

,1
2eeV d d

ρ
ρ =

−∫∫
x x

x x
x x

 

[ ] ( ) ( ) ( )1 2
2 2 1 2 1 2

1 ,
2 1ne

v v
V d d

N
ρ ρ

+⎛ ⎞
= ⎜ ⎟−⎝ ⎠
∫∫

x x
x x x x  

The Kinetic energy functional is not known exactly.  Approximations 
are available. (Furche, Levy, March, Nagy, ...*) 

Variational Principle for the pair density: 

[ ] [ ] [ ] [ ]
2

. . 2 2 2
-representable 

, ming s ne ee
N

E v N T V V
ρ

ρ ρ ρ= + +  

N-representability problem:  We must restrict the variational principle 
to ( )2 1 2,ρ x x  that correspond to N-fermion systems.  (If one fails 
to do this, there will always exist 2-body Hamiltonians for which 
the error from the variational calculation is arbitrarily large.) 

                                         
*  J. Math. Phys. 46, 062107 (2005); Ayers & Levy Chem. Phys. Lett. 415, 211 (2005). 
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The Classical N-body Structure Problem 
 

Given: A potential representing the interaction between any 
pair of particles inside a system,  ( )1 2,V x x . 

Classical N-body structure problem:  Find the best (lowest-
energy) configuration of N-classical particles 
interacting with this potential. 

 [ ] ( )
1

min ,
i

N
Cl
N i j

i j i

E V V
= ≠

≡ ∑∑
x

x x  

Clearly  

 [ ] ( )
1

,
N

Cl
N i j

i j i

E V V
= ≠

≤ Ψ Ψ∑∑ r r .  

 so:  For every N-representable ( )2 1 2,ρ x x and any ( )1 2,V x x , 

 [ ] ( ) ( )2 1 2 1 2 1 2, ,Cl
NE V V d dρ≤ ∫∫ x x x x x x  

This is the only N-representability constraint on 2ρ . 
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For every N-representable ( )2 1 2,ρ x x and any ( )1 2,V x x , 

 [ ] ( ) ( )2 1 2 1 2 1 2, ,Cl
NE V V d dρ≤ ∫∫ x x x x x x  

 
In fact, as long as ( )1 2,V x x  is continuous,  

 [ ] ( ) ( )
2

2 1 2 1 2 1 2
-representable 

inf , ,Cl
N

N
E V V d d

ρ
ρ= ∫∫ x x x x x x . 

because: 

 

[ ] ( )

( )

( )

1

1 is
never true

1

min ,

inf ,

inf Tr ,

i

i j k
i

N

N
Cl
N i j

i j i

N

i j
i j i

N

i j N
i j i

E V V

V

V

= ≠

= ≠= =⎧ ⎫
⎨ ⎬
⎩ ⎭

Γ = ≠

=

=

⎡ ⎤⎛ ⎞
= Γ⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

∑∑

∑∑

∑∑

x

x x xx

r r

r r

r r

 

The solution usually looks like ( ) ( )A

2min

3
22

10

lim 2
j j

N N

j

e jε

ε

ε π σ
+

−
−−

=→

⎛ ⎞⎟⎜ ⎟⎜ ⎟Ψ = ⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∏

r r

. 
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For every N-representable ( )2 1 2,ρ x x and any ( )1 2,V x x , 

 [ ] ( ) ( )2 1 2 1 2 1 2, ,Cl
NE V V d dρ≤ ∫∫ x x x x x x  

In fact, as long as ( )1 2,V x x  is continuous,  

 [ ] ( ) ( )
2

2 1 2 1 2 1 2
-representable 

inf , ,Cl
N

N
E V V d d

ρ
ρ= ∫∫ x x x x x x . 

 

THEOREM:   For any ( )2 1 2,ρ x x  that is not N-representable, 

there exists a ( )1 2,V x x  such that  

 [ ] ( ) ( )2 1 2 1 2 1 2, ,Cl
NE V V d dρ> ∫∫ x x x x x x  

 

Known: The set of N-representable 2ρ  is a convex set.  (This follows 
directly from the definition,  

 ( ) ( ) ( )
22 1 2 1 2

1

ˆ, Tr Tr
N

i j N N
i j i

Lρρ δ δ
= ≠

⎡ ⎤⎛ ⎞
⎡ ⎤= − − Γ = Γ⎢ ⎥⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

∑∑x x r x r x  

If ( )
2
aρ  and ( )

2
bρ  are N-representable, then convex sums are also: 

 
( ) ( ) ( ) ( ) ( ) ( ){ }22 2

ˆ1 Tr 1a b a b
N Nt t L t tρρ ρ ⎡ ⎤+ − = Γ + − Γ⎣ ⎦  
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Hahn-Banach Separation Theorem:  Given two disjoint convex sets, 
1S  and 2S , there exists a hyperplane that separates the 

sets. For sets of pair densities:  

            ( ) ( ) 1
2 1 2 1 2 1 2

2

, , k

k

Q
w d d

Q
ρ

ρ
ρ

≥ ∈⎧
⎨≤ ∈⎩

∫ ∫ r r r r r r
S
S

 

 

 If the distance between 1S  and 2S  is greater than zero, then 
the “≤ ” and “≥ ” can be replaced by strict inequalities. 

 
Choose the first convex set to be the set of N-representable pair 
densities, NN ; choose the second convex set to be a non-N-

representable pair density, 2ρ  
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For every N-representable ( )2 1 2,ρ x x and any ( )1 2,V x x , 

 [ ] ( ) ( )2 1 2 1 2 1 2, ,Cl
NE V V d dρ≤ ∫∫ x x x x x x  

In fact, as long as ( )1 2,V x x  is continuous,  

 [ ] ( ) ( )
2

2 1 2 1 2 1 2
-representable 

inf , ,Cl
N

N
E V V d d

ρ
ρ= ∫∫ x x x x x x . 

THEOREM:   For any ( )2 1 2,ρ x x  that is not N-representable, 

there exists a ( )1 2,V x x  such that  

 [ ] ( ) ( )2 1 2 1 2 1 2, ,Cl
NE V V d dρ> ∫∫ x x x x x x  

Proof: 
If ( )2 1 2,ρ x x  is not N-representable, then it follows from 

the Hahn-Banach separation theorem that there exists a 
potential for which this is true. 

This means that ( )2 1 2,ρ x x  is N-representable if and only if  

 [ ] ( ) ( )2 1 2 1 2 1 2, ,Cl
NE V V d dρ≤ ∫∫ x x x x x x  

for every possible ( )1 2,V x x . 
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Consequences 
 
N-representable pair densities are nonnegative: 
 Suppose that ( )2 1 2,ρ x x  is negative in the region Ω . Choose  

  ( )
( )

( )

1 2

1 2
1 2

0 ,
,

1 ,
wΩ

⎧ ∉ Ω⎪⎪⎪= ⎨⎪ ∈ Ω⎪⎪⎩

r r
r r

r r
 

Then [ ] 0Cl
NE w = .  But ( ) ( )2 1 2 1 2 1 2, , 0w d dρ <∫∫ x x x x x x . 

 

Normalization: 
Choose ( )1 1 2, 1w+ =x x ; then  

 ( ) [ ] ( )2 1 2 1 2 1
1

!, 1
2 !

N
Cl
N

i j i

Nd d E w
N

ρ +
= ≠

≥ = =
−∑∑∫∫ x x x x  

Choose ( )1 1 2, 1w− = −x x ; then  

 ( ) [ ] ( )2 1 2 1 2 1
1

!, 1
2 !

N
Cl
N

i j i

Nd d E w
N

ρ +
= ≠

− ≥ = − = −
−∑∑∫∫ x x x x  

So ( ) ( ) ( )2 1 2 1 21 , 1N N d d N Nρ− ≥ ≥ −∫∫ x x x x . 
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Generalized Davidson Constraint: 
 Choosing: 

 ( ) ( ) ( ) ( ) ( )
( )

2 2
1 2

1 2 1 2,
2 1

w
N
+

= ⋅ +
−

f r f r
r r f r f r  

 then  

 [ ] ( )
2

1

min 0
i

N
Cl
N i

i

E w
=

⎛ ⎞= ≥⎜ ⎟
⎝ ⎠
∑

x
f r   

This implies that  

 ( ) ( ) ( )( ) ( ) ( )2
2 1 2 1 2 1 2 1 1 1 1, d d dρ ρ⋅ ≥ −∫∫ ∫r r f r f r r r f r r r  

 

There are other similar arguments for all other previously 
known N-representability constraints on the pair density.
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It is the last lesson of modern science, 
that the highest simplicity of structure 
is produced, not by few elements, but by 
the highest complexity. 

 Ralph Waldo Emerson
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For every N-representable ( )2 1 2,ρ x x and any ( )1 2,V x x , 

 [ ] ( ) ( )2 1 2 1 2 1 2, ,Cl
NE V V d dρ≤ ∫∫ x x x x x x  

THEOREM:   The pair density ( )2 1 2,ρ x x  is N-representable, if 
and only if 

 [ ] ( ) ( )2 1 2 1 2 1 2, ,Cl
NE V V d dρ≤ ∫∫ x x x x x x  

for every ( )1 2,V x x .  Here the “classical” N-body 
energy is defined by 

 [ ] ( )
1

min ,
i

N
Cl
N i j

i j i

E V V
= ≠

≡ ∑∑
x

x x  

 

This is not a practical solution 
because it requires us to 
solve every possible classical 
many-body problem.  This is 
very hard. 
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IV. Variational approaches to the N-representability 
problem:  Special Case; electron pair density. 

 
THEOREM:   The pair density ( )2 1 2,ρ x x  is N-representable, if 

and only if 
 [ ] ( ) ( )2 1 2 1 2 1 2, ,Cl

NE V V d dρ≤ ∫∫ x x x x x x  
for every ( )1 2,V x x .   

Thus:  

 

[ ] [ ] [ ] [ ]

( ) [ ]{ }
[ ] [ ] [ ]

2

2 1 2 2

. . 2 2 2
-representable 

2 2 2
, , 

, min

min
Cl
N

g s ne ee
N

ne ee
w w E w

E v N T V V

T V V
ρ

ρ ρ

ρ ρ ρ

ρ ρ ρ
∀ ≥

= + +

= + +
r r

 

This is not very practical; but if we constrained this result using only one 

( )1 2,w r r , then that would be more acceptable.  Then: 

 [ ]
[ ]{ }

[ ] [ ] [ ]
2 2

. . 2 2 2, ; min
Cl
N

g s ne ee
w E w

E v N w T V V
ρ ρ

ρ ρ ρ
≥

≥ + +  
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So we have a lower bound: 

[ ]
[ ]{ }

[ ] [ ] [ ]
2 2

. . 2 2 2, ; min
Cl
N

g s ne ee
w E w

E v N w T V V
ρ ρ

ρ ρ ρ
≥

≥ + +  

We would like for this lower bound to be as tight as possible.  This suggests 
that we maximize over all the potentials, obtaining the tightest possible lower 
bound for a “simple” constrained variational principle. 

[ ]
[ ]{ }

[ ] [ ] [ ]
2 2

. . 2 2 2, max min
Cl
N

g s ne ee
w w E w

E v N T V V
ρ ρ

ρ ρ ρ
≥

≥ + +  

 
Theorem:    This construction produces the exact ground-state energy.  That 

is,  

 [ ]
[ ]{ }

[ ] [ ] [ ]
2 2

. . 2 2 2, max min
Cl
N

g s ne ee
w w E w

E v N T V V
ρ ρ

ρ ρ ρ
≥

= + +  
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Theorem:    This construction produces the exact ground-state energy.  That 
is,  

 [ ]
[ ]{ }

[ ] [ ] [ ]
2 2

. . 2 2 2, max min
Cl
N

g s ne ee
w w E w

E v N T V V
ρ ρ

ρ ρ ρ
≥

= + +  

 

Known:   The energy is a convex functional of the pair density.  That is, for any 
two pair densities, we have that  

 
( ) ( ) ( ) ( ) ( ) ( )

, 2 2 , 2 , 21 1a b a b
v N v N v NE t t t E t Eρ ρ ρ ρ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − ≤ ⋅ + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

 
Implication: This means that the set of pair densities whose energy is too 

small is convex.  Let NL  denote the set of density matrices 
with energy lower than the true ground-state energy,  

 [ ] [ ]{ }2 , 2 . . ,N v N g sE E v Nρ ρ= ≤L  

NL  is convex because if ( )
2
aρ  and ( )

2
bρ  are both in NL , then  

 

( ) ( ) ( ) ( ) ( ) ( )

[ ]
, 2 2 , 2 , 2

. .

1 1

,

a b a b
v N v N v N

g s

E t t t E t E

E v N

ρ ρ ρ ρ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − ≤ ⋅ + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
≤

 

Which implies that ( ) ( ) ( )
2 21a b

Nt tρ ρ+ − ∈L . 
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Theorem:    The exact ground-state energy is obtained by the max-min prob:  

 [ ]
[ ]{ }

[ ] [ ] [ ]
2 2

. . 2 2 2, max min
Cl
N

g s ne ee
w w E w

E v N T V V
ρ ρ

ρ ρ ρ
≥

= + +  

 

Known:   The set of pair densities with “too low” energy is convex. 
Known:   The set of N-representable pair densities is convex. 
Known: These two sets do not intersect because every N-representable pair 

density has energy greater than or equal to the true energy. 

Implication:  There exists some potential, ( )1 2,w x x , that separates these 

sets.  I.e., there exists a ( )1 2,w x x  such that  

 ( ) ( ) [ ] ( ) ( )
22

2 1 2 1 2 1 2 2 1 2 1 2 1 2, , , ,

NN

Cl
Nw d d E w w d d

ρρ

ρ ρ
∈∈

≥ >∫ ∫x x x x x x x x x x x x
LN
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Theorem:    The exact ground-state energy is obtained by the max-min prob:  

 [ ]
[ ]{ }

[ ] [ ] [ ]
2 2

. . 2 2 2, max min
Cl
N

g s ne ee
w w E w

E v N T V V
ρ ρ

ρ ρ ρ
≥

= + +  
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V.  Variational Approaches:  General Case. 
Given: A descriptor that determines all properties of any molecular 

system.  It is assumed that this is a “reduced” descriptor (i.e., 
less complex than the N-electron wavefunction) and that it is 
a linear functional of the N-electron density matrix. 

 ( ) ˆTr f Nf L⎡ ⎤= Γ⎣ ⎦τ  

 

( ) ( )*
1 1, , , ,

0 1;   1

N i N N
i

i i
i

w

w w

Γ = Ψ Ψ

≤ ≤ =

∑

∑

r r r r… …
 

Implication:  Because ( ) ˆTr f Nf L⎡ ⎤= Γ⎣ ⎦τ , the set of N-representable   

( )f τ  is a closed, convex set. 
Given: It is assumed that some portion of the energy can be evaluated 

exactly in terms of this descriptor.  This portion of the energy is 
denoted  

 { )ˆW h f=   
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Theorem: The remainder of the energy, [ ]F f , can be 
exactly represented by a convex functional. 

Proof: 
Let [ ]F f  denote the Legendre transform functional.  I.e.: 

 [ ] { ),
ˆ

ˆˆsup minTr
N

v N N

h

F f H h f
Γ

⎛ ⎞
⎡ ⎤= Γ −⎜ ⎟⎣ ⎦

⎝ ⎠
  

1.  This functional is exact.  For a specific choice, 0̂h ,  

 

[ ] { )
[ ] { ) [ ]

, 0

0 , . .

ˆˆminTr

ˆ ˆminTr ,

N

N

v N N

v N N g s

F f H h f

F f h f H E v N

Γ

Γ

⎛ ⎞
⎡ ⎤≥ Γ −⎜ ⎟⎣ ⎦

⎝ ⎠

⎡ ⎤+ ≥ Γ =⎣ ⎦

  

If 0̂h  is associated with a maximum, then the energy is exact.  Otherwise 
one has the variational principle. 
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2.  This functional is convex.   

( ) ( ) ( ) ( ) ( ) ( ){ )
( )( )

( ){ ) ( ) ( ){ )
( ){ )

( ) ( ) ( ){ )

,
ˆ

,

ˆ

,

ˆ ,

,
ˆ

ˆˆ1 sup minTr 1

ˆ1 minTr
sup

ˆ ˆ1

ˆˆminTr
sup

ˆˆ1 minTr 1

ˆsup minTr

N

N

N

N

N

a b a b
v N N

h

v N N

a b
h

a
v N N

b
h v N N

v N

h

F tf t f H h tf t f

t t H

t h f t h f

t H t h f

t H t h f

t H

Γ

Γ

Γ

Γ

Γ

⎛ ⎞⎡ ⎤ ⎡ ⎤+ − = Γ − + −⎜ ⎟⎣ ⎦⎣ ⎦ ⎝ ⎠

⎛ ⎞⎡ ⎤+ − Γ⎣ ⎦⎜ ⎟
= ⎜ ⎟

⎜ ⎟− − −
⎝ ⎠
⎛ ⎞⎡ ⎤Γ −⎣ ⎦⎜ ⎟
⎜ ⎟=
⎜ ⎟⎡ ⎤− Γ − −⎣ ⎦⎜ ⎟
⎝ ⎠

≤ ( ){ )
( ) ( ) ( ){ )

( ) ( ) ( )

,
ˆ

ˆ

ˆˆsup 1 minTr 1

1

N

a
N

b
v N N

h

a b

t h f

t H t h f

t F f t F f

Γ

⎛ ⎞
⎡ ⎤Γ −⎜ ⎟⎣ ⎦

⎝ ⎠

⎛ ⎞
⎡ ⎤+ − Γ − −⎜ ⎟⎣ ⎦

⎝ ⎠

⎡ ⎤ ⎡ ⎤≤ ⋅ + −⎣ ⎦ ⎣ ⎦
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Theorem: ( )f τ  is N-representable if and only if  

 { )ˆ ˆpartial
Nh f E h⎡ ⎤≥ ⎣ ⎦  

 Here  

 { )ˆ ˆ ˆmin Tr
N

partial
N f NE h h L

Γ

⎡ ⎤ ⎡ ⎤= Γ⎣ ⎦⎣ ⎦  

Proof: 

If ( )f τ  is N-representable, then clearly  

 { ) { )ˆ ˆ ˆˆmin Tr
N

partial
f N Nh f h L E h

Γ

⎡ ⎤⎡ ⎤≥ Γ =⎣ ⎦ ⎣ ⎦  

If ( )f τ  is not N-representable then because NN  is a convex set, we can 

use the Hahn-Banach separation theorem to obtain the proof. 

Theorem: The exact ground-state energy can be obtained 
using  

 [ ] [ ]
partial

. .
ˆ ˆ ˆ

ˆ, max min
N

g s
h hf E h

E v N F f h f
⎡ ⎤≥ ⎣ ⎦

= + ⋅  

  



   
29

The 2-electron reduced density matrix 
  

( ) ( ) ( ) ( )*
2 1 2 1 2 1 2 3 1 3, ; , 1 , , , ,N N NN N d′ ′ ′ ′Γ = − Ψ Ψ∫∫ … … …r r r r r r r r r r r r  

 
Variational Principle:  

[ ] [ ] [ ]
2

. . 2 2 2
 from antisymmetric 

ming s ne eeE T V V
Γ Ψ

= Γ + Γ + Γ  

N-representability problem:  We must restrict the variational principle to 2Γ  
that correspond to antisymmetric wavefunctions.*  (If one fails to do 
this, there will always exist 2-body Hamiltonians for which the error 
from the variational calculation is arbitrarily large.) 

 

 

[ ] [ ] [ ]
2

. . 2 2 2
 from antisymmetric 

ming s ne eeE T V V
Γ Ψ

= Γ + Γ + Γ  

                                         
*  In practice, it is more convenient to consider any pair density that corresponds to an 

ensemble average of fermionic wave functions. 
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• the only density matrices that cause problems are those that give too small 
an energy for some Hamiltonian.   

• non-N-representable density matrices with energies that are too high could 
be ignored.   

[ ]{ }
[ ] [ ] [ ]

2 2 . .

. . 2 2 2
ˆfor every 

min
g s

g s ne ee
E E H

E T V V
Γ Γ ≥

= Γ + Γ + Γ  

• This condition is actually identical to the N-representability condition.  
That is, 2Γ  is (ensemble) N-representable if and only if  

[ ] [ ] [ ]2 2 2 . .ne ee g sT V V EΓ + Γ + Γ ≥  

for every Hamiltonian. 
• Equivalently, if 2Γ  is not N-representable, there exists some system with  

[ ] [ ] [ ]2 2 2 . .ne ee g sT V V EΓ + Γ + Γ <  

One can make the error arbitrarily large by scaling the Hamiltonian. 

[ ]{ }
[ ] [ ] [ ]

2 2 . .

. . 2 2 2
ˆfor every 

min
g s

g s ne ee
E E H

E T V V
Γ Γ ≥

= Γ + Γ + Γ  

• Actually, we can get the right energy if we only ensure that the 
energy is greater than the ground-state energy for the specific 
system of interest.  That is, if we require  
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[ ] [ ] [ ] [ ]2 2 2 . . ;ne ee g sT V V E v NΓ + Γ + Γ ≥  
For the system of interest, then we clearly can’t get too low an 
energy. 

• This gives the variational principle: 

[ ]{ }
[ ] [ ] [ ]

2 2 . .

. . 2 2 2
ˆ for the  of interest

min
g s

g s ne ee
E E H

E T V V
Γ Γ ≥

= Γ + Γ + Γ  

• For an arbitrarily Hamiltonian, though, 

[ ]{ }
[ ] [ ] [ ]

2 2 . .

. . 2 2 2
ˆ for one arbitrary 

min
g s

g s ne ee
E E H

E T V V
Γ Γ ≥

≥ Γ + Γ + Γ  

Since 

[ ]{ }
[ ] [ ] [ ]

2 2 . .

. . 2 2 2
ˆ for the  of interest

min
g s

g s ne ee
E E H

E T V V
Γ Γ ≥

= Γ + Γ + Γ  

but, in general, 

[ ]{ }
[ ] [ ] [ ]

2 2 . .

. . 2 2 2
ˆ for one arbitrary 

min
g s

g s ne ee
E E H

E T V V
Γ Γ ≥

≥ Γ + Γ + Γ  

the ground-state energy is obtained by  
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[ ]{ }
[ ] [ ] [ ]

2 2 . .

. . 2 2 2
ˆ ˆ

max min
g s

g s ne ee
H E E H

E T V V
⎡ ⎤Γ Γ ≥ ⎣ ⎦

= Γ + Γ + Γ  

The maximizing Ĥ  is the energy operator for the system. 

This is not a practical procedure—one has to solve the many-fermion 
problem many times to do the outer maximization.  It is better to 
just solve it once, outright.  

Proof by 
picture 
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One-Electron Density Matrix 
 

( ) ( ) ( )*
1 1 1 2 3 1 2; , , , ,N N NN dγ ′ ′= Ψ Ψ∫∫ … … …r r r r r r r r r r  

 
For a Hamiltonian of the form  

( ) ( )
1 1

1ˆ ˆ
N N

i i
i i j i i j

H t v r
= = ≠

= + +
−∑ ∑∑r

r r
 

The energy can be written in terms of the first-order density matrix as: 

[ ] ( ) ( ) ( ) ( ) [ ]

[ ] [ ]
, , 1 1 1 1 1 1 1 1

ˆ,

ˆ ;

ˆTr

t v N ee

eeh N

E t v d d V

E h V

γ δ γ γ

γ γ γ

′ ′ ′⎡ ⎤= − + +⎣ ⎦

⎡ ⎤= +⎣ ⎦

∫∫ r r r r r r r r
 

 
The variational principle is: 

[ ]. .
 from 

ˆ ˆ, min Trg s eeE h N h V
γ

γ γ
Ψ

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦  

Define min
ˆE h⎡ ⎤

⎣ ⎦  as the ground-state energy of the independent particle 

model with Hamiltonian ĥ . 
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( )
1

min
antisymmetric 

ˆ
ˆ min

N

i
i

h
E h =

Ψ

Ψ Ψ
⎡ ⎤ =⎣ ⎦ Ψ Ψ

∑ r
 

 

Theorem (Garrod and Percus):  ( )1 1,γ ′r r  is (ensemble) N-representable if 

and only if  

min
ˆ ˆTr h E hγ⎡ ⎤ ⎡ ⎤≥⎣ ⎦ ⎣ ⎦  

for every ĥ . 
 

{ }
[ ]

min

. .
ˆ ˆ ˆTr  for every 

ˆ ˆ, min Trg s ee
h E h h

E h N h V
γ γ

γ γ
⎡ ⎤ ⎡ ⎤≥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦  
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{ }
[ ]

min

. .
ˆ ˆ ˆTr  for every 

ˆ ˆ, min Trg s ee
h E h h

E h N h V
γ γ

γ γ
⎡ ⎤ ⎡ ⎤≥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦  

If we choose just one ĥ , then  

{ }
[ ]

min

. .
ˆ ˆ ˆTr  for one specific 

ˆ ˆ, min Trg s ee
h E h h

E h N h V
γ γ

γ γ
⎡ ⎤ ⎡ ⎤≥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤≥ +⎣ ⎦ ⎣ ⎦  

 

Assertion: 
The exact ground-state energy is obtained by 

{ }
[ ]

min

. .
ˆ ˆ ˆTr

ˆ ˆ, max min Trg s ee
h h E h

E h N h V
γ γ

γ γ
⎡ ⎤ ⎡ ⎤≥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦  

The maximizing ĥ  is an interesting choice for the one-electron 
Hamiltonian in the mean-field model, because it represents a 
“one-electron energy operator” for the system. 

 One-Electron Density 
 

( ) ( )
1

N

i
i

ρ δ
=

= Ψ − Ψ∑x r x  
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For a Hamiltonian of the form  

( )
2

1 1

1ˆ
2

N N
i

i
i i j i i j

H v r
= = ≠

⎛ ⎞−∇
= + +⎜ ⎟

⎜ ⎟−⎝ ⎠
∑ ∑ ∑ r r

 

The energy can be written in terms of the electron density as: 

[ ] ( ) ( ) [ ],v NE v d Fρ ρ ρ= +∫ x x x  

 
The variational principle is: 

[ ] ( ) ( ) [ ]. .
 from 

, ming sE v N v d F
ρ

ρ ρ
Ψ

= +∫ x x x  

 

Define [ ]minv v  as the ground-state energy of the classical structure 
problem with energy 

 

( ) ( )

( ) ( )

1
1

min
1

, ,

min min
i

N

N i
i

N

i
i

E v

v v N v

=

=

=

⎡ ⎤= = ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

∑

∑

…

x x

x x x

x x
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Theorem:  ( )ρ x  is (ensemble) N-representable if and only if  

( ) ( ) [ ]minv d v vρ ≥∫ x x x  

for every ( )v x . 

 

This constraint merely implies that ( ) 0ρ ≥x .  If ( ) 0ρ <x  at some point, 

then one can obtain a contradiction by letting ( )v →∞x  at that point, 

while it stays the same elsewhere. 
 
The exact ground-state energy is obtained from 

[ ]
( ) ( ) [ ]{ }

( ) ( ) [ ]
min

. .

 for every 

, ming s

v x v v v

E v N v d F
ρ ρ

ρ ρ
≥

= +
∫

∫
x

x x x  

Assertion: 
The exact ground-state energy is obtained by 

[ ]
( ) ( ) [ ]{ }

( ) ( ) [ ]
min

. . , max ming s
v v d v v

E v N v d F
ρ ρ

ρ ρ
≥

= +
∫

∫
x x x

x x x  
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Maximizing ( )v x  ensures that the energy of the sytem does 
not get “too low.”  Except for a constant shift, the maximizing 
( )v x  is a representation of the local energy, ( )xE , of the 

system since requiring  
( ) ( ) [ ]. . ;g sd E v Nρ ≥∫ x x xE  

is sufficient to enforce the variational principle. 
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The Pair Density, Revisited 
 

( ) ( ) ( )2 1 2 1 2
1

,
N

i j
i j i

ρ δ δ
= ≠

≡ Ψ − − Ψ∑∑x x r x r x  

For a Hamiltonian of the form  

( )
2

1 1

1ˆ
2

N N
i

i
i j i ii j

H v r
= ≠ =

⎛ ⎞ −∇
= + +⎜ ⎟

⎜ ⎟−⎝ ⎠
∑ ∑ ∑r r

 

The energy can be written in terms of the pair density as: 

[ ] ( ) ( ) ( ) [ ]1 2
, 2 2 1 2 1 2 2

1 2

1 1,
2 1v N

v v
E d d T

N
ρ ρ ρ

⎛ ⎞+
= + +⎜ ⎟− −⎝ ⎠
∫∫

x x
x x x x

x x
 

The variational principle is: 

[ ] [ ]
2

. . , 2
 from 

, ming s v NE v N E
ρ

ρ
Ψ

=  

Define ( )2
minV V⎡ ⎤

⎣ ⎦  as the ground-state energy of the classical structure 

problem with 2-body interaction potentials 
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( ) ( ) ( )2 2
min

1

min ,
i

N

i j
i j i

V V
= ≠

≡ ∑∑
x

x x  

 

 
Assertion: 
The exact ground-state energy is obtained by 

[ ]
( ) ( ) ( ) ( ) ( ) ( ){ }

[ ]
2 22 2

2 1 2 1 2 min

. . , 2

, ,

, max ming s v N
V V V V

E v N E
ρ ρ

ρ
⎡ ⎤≥
⎣ ⎦

=

∫∫ x x x x

 

Maximizing ( ) ( )2
1 2,V x x  ensures that the energy of the sytem 

does not get “too low.”  Except for a constant shift, the 
maximimizing ( ) ( )2

1 2,V x x  is a representation of the pairwise 

interaction energy, ( )1 2,x xE . 
Sketch of Proof 

Step 1.  [ ]2T ρ  can be chosen to be convex. 
Proof: 

[ ]2T ρ  can be constructed using the Legendre-transform formalism,  
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[ ]
( ) ( )

( ) ( ) ( ) ( )
2

1 2

2 2
2 2 1 2 1 2 1 2

,

sup ; , ,
V

T E V N V d dρ ρ⎡ ⎤= −⎣ ⎦ ∫∫
x x

x x x x x x  

This formalism always gives convex functionals.   
 
Step 2.  The energy functional can be chosen to be convex. 
Proof: 

[ ] ( ) ( ) ( ) [ ]1 2
, 2 2 1 2 1 2 2

1 2

1 1,
2 1v N

v v
E d d T

N
ρ ρ ρ

⎛ ⎞+
= + +⎜ ⎟− −⎝ ⎠
∫∫

x x
x x x x

x x
 

Since [ ], 2v NE ρ  is the sum of a linear functional and a convex functional, it 

is convex. 
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Step 3.  The set of all ( )2 1 2,ρ x x  that give too small an energy is an open, 

convex set. 

[ ]{ }, 2 , 2 . .v N v N g sE Eρ ρ≡ <L  

Proof: 
 The energy is a convex functional.  For any convex functional, the set 
of arguments for which the function is less than or equal to some value is 
convex. 

Step 4.  The set of all N-representable ( )2 1 2,ρ x x  is closed and convex. 

{ }2 2 is ensemble -representableNρ ρ≡N  

Proof: 
 The proof is a standard exercise, and follows from the fact any 
ensemble-N-representable pair density can be written as  
 

[ ] ( ) ( ) ( ) (*
2 1 2 1 2 1 1

1

; , Tr
N N

N i j i i N i
i j i i

wρ δ δ
= ≠

⎡⎛ ⎞
′Γ ≡ − − Ψ Ψ⎢⎜ ⎟

⎢⎝ ⎠⎣
∑∑ ∑ … …x x x r x r z z z

 

1; 0 1i i
i

w w= ≤ ≤∑  
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Step 5.  The sets of N-representable pair densities and pair densities with 
too low an energy do not intersect. 

Proof: 

[ ]
2

, 2 . .min v N g sE E
ρ

ρ
∈

=
N

 

and so no N -representable 2ρ  is in 

[ ]{ }, 2 , 2 . .v N v N g sE Eρ ρ≡ <L  

Step 6. There must exists some ( ) ( )2
1 2,V x x  such that  

( ) ( ) ( ) ( ) ( ) ( )2 2
2 1 2 1 2 1 2 2 1 2 1 2 1 2, , , ,V d d V d dρ ρ≥∫∫ ∫∫x x x x x x x x x x x xN L

 

For all 2ρ ∈N N  and 2ρ
L  in ,v NL . 

Proof: 
This is the so-called geometric Hahn-Banach Theorem.  

Step 7.  The “constant of separation” in this result is ( )2
minV , the solution to 

the classical structure problem.  
Proof:  A bit complicated; it is the Banach-space analogue of the “polar cone 
theorem” used by Garrod and Percus. 
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