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Symmetry-Adapted Polynomial Basis
for Global Potential Energy Surfaces -
Applications toXY4 Molecules.

Mathematical methods forab initio quantum chemistry.
F. Patras, Nice, 21 Octobre 2006
Joint work with P. Cassam-Chenaı̈
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• It is often necessary to deal with potential energy sur-
faces (P.E.S.) in a large domain of the nuclear configu-
ration space.

• Spectroscopy: case of floppy systems and/or highly-
excited states

• Chemical reaction dynamics, dissociation paths.

• Here, we will concentrate on the example ofCH4 with
a view to spectroscopy.

• Results on polynomial fitting of global P.E.S. are valid in
full generality and extend to the case where the polyno-
mial is in factor of an arbitrary totally symmetric func-
tion.
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Taking advantage of the permutation-
translation-rotation-inversion (PTRI)
group.
• The electronic potential energy surfaces for the nuclei

(P.E.S.) used in quantum chemistry inherit the symmetry
of the whole molecular system.

• Some PTRI invariance properties can be easily incorpo-
rated in alocal description of the P.E.S. (eg by choosing
symmetry-adapted local coordinates).

They can not,on structural grounds, be easilly incor-
porated in a global description, due to invariant theory
phenomena (more later).
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Goal of the talk.
• The present work presents a simplified technique to obtain

symmetry-adapted polynomial basis for global PES, together
with algorithmic recipes that make the problem computation-
nally tractable.

• It is the prolongation of the works of Schmelzer and Mur-
rell (Int. J. Quantum Chemistry, 1985) and of Collins and
Parsons (J. Chem. Phys., 1993) on the subject.
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Historical background
• The introduction of the theory of algebraic invariants

to expand a PES can be traced back to the work of
Schmelzer and Murrell (Int. J. Quantum Chemistry,
1985).

• They studied finite molecular point group actions to ob-
tain the dimensions of basis made of homogeneous in-
variant polynomials in the internal coordinates.

• Since, given a linear representation of a (finite or, more
generally, compact) groupG, all smoothG-invariant
functions are smooth functions of invariant polynomi-
als (Schwarz, 1975), this approach is suitable to express
any polynomial, analytic orC∞ invariant functions.
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• However, the study ofinvariant polynomials in the local co-
ordinates under the nuclear permutation groupis not enough
if the goal is the study of a large domain of the configuration
space.

• The reason is classical: even without considering invariants,
it is well known that local coordinates do not determine the
shape of a molecule -and one has usually to add extra, “re-
dundant” coordinates to specify the shape.
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E.g.CH4: Wang-Carrington, J. Chem. Phys. (2003).
They consider the bend symmetry coordinates for methane

sa =
1√
12

(2ω12 − ω13 − ω14 − ω23 − ω24 + 2ω34),

sb =
1

2
(ω13 − ω14 − ω23 + ω24),

sx =
1√
2
(ω24−ω13), sy =

1√
2
(ω23−ω14), sz =

1√
2
(ω34−ω12),

ωij = cos αij,

whereαij is the angle between bond vectorsi andj.
The lengths of the four bond vectors and the bend symme-
try coordinates do not determine the shape of the molecule.
They show that there are actually either one or two physical
possible shapes.
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• The ambiguities can be removed by adding an extra symme-
try coordinate.

• Wang and Carrington also suggest a rule to choose a unique
shape for given values of the bend coordinates, but“such a
rule entails excluding shapes and therefore cannot be used
to calculate high-lying levels”.

• These restrictions also apply to the approach by Schmelzer
and Murrell.
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• The Schmelzer-Murrell approach was extended by Collins
and Parsons to include the rotation-inversion group action in
the picture.

• Idea: generalize to the permutation-translation-rotation-
inversion group the classical constructions ofO(3) and finite
group invariants.

• Fundamental tool: the Molien series associated to the linear
action of a compact Lie groupG. The series can be com-
puted as:

Φ(λ) =

∫
G

1

det[I − λM(β)]
dµ(β),

whereµ is the Haar mesure onG

• Problem: in practice, the approach is restricted to molecules
with small permutation group.
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Two simple ideas behind the recursive procedure to be intro-
duced:

1. Treat separately (desentangle, at the invariant level), the ac-
tion of the orthogonal group and the one of the nuclear per-
mutation group.

2. Take systematically advantage of modern invariant theory
(Cohen-MacCauley rings in particular) to reformulate and
handle the problem.
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First step: symmetry-adaptation to the rotation-inversion
group O(3).

• Recall that, for a molecule withN atoms, the P.E.S.
is (except in a domain of measure zero) a(3N − 6)-
manifold.

• Locally, one may therefore choose a paramerization of
the surface by3N − 6 local coordinates. However, as
we have seen withCH4, for molecules containing five
atoms or more, the same values taken by the set of
3N − 6 coordinates can correspond to several physically
inequivalent geometries.
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• So, one or several, “redundant” coordinates have to be added
to the “basic” ones in order to get a one-to-one correspon-
dance between sets of coordinates and molecular shapes.

• Of course, for dimensional reasons, the redundant coor-
dinates must be constrained to satisfy algebraic equations
(calledsyzygiesin the language of ring theory) relating them
to the (3N − 6) basic, free coordinates.

• The fundamental reason for this need of redundant coordi-
nates is explained by a classical result due to Weyl.
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• Weyl’s second main theorem for the orthogonal group (The
classical groups,1946) shows that the natural choice of, pos-
sibly redundant,O(3)-invariant coordinates, is the set of the
N(N−1)

2 scalar products of(N − 1) “internal” vectors.

• So, the algebra ofO(3)-invariant polynomials in the Carte-
sians coordinates,P , is the algebra spanned by exactly
N(N−1)

2 polynomial invariant of degree2.

• Out of this minimal set ofN(N−1)
2 generators, one is free to

form (by linear combination) (3N − 6) basic, algebraically
independent coordinates andN(N−1)

2 −(3N−6) = N2−7N+12
2

auxiliary invariant coordinates, related to the basic ones
through (explicit) syzygies.
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• As a corollary of Weyl’s computations, one gets a precise
picture of the algebra ofO(3)-invariant polynomials.

• Let us once again exemplify with the particular case of the
methane molecule.

• For this molecule, we take for body-fixed origin the Radau
origin X . The Radau vectors

−−→
XHi corresponding to hy-

drogen nuclei positions, are written−→r i = (x1
i , x

2
i , x

3
i ), i =

1, ..., 4

• We follow Weyl and define10 = N(N−1)
2 , N = 5 O(3)-

invariant coordinates by setting,

di,j := 〈−→ri |−→rj 〉 .
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We further ask that the coordinates be adapted to theΣ4 nuclear
permutation symmetry of the molecule, and choose the following
9 = 12− 3 = 12− dimO(3) basic coordinates:

S1 :=
1

2
(d11 + d22 + d33 + d44)

S2a :=
1√
12

(2d12 − d13 − d14 − d23 − d24 + 2d34)

S2b :=
1

2
(d13−d14−d23 +d24), S3x :=

1

2
(d11−d22 +d33−d44)

S3y :=
1

2
(d11−d22−d33 +d44), S3z :=

1

2
(d11 +d22−d33−d44)

S4x :=
1√
2
(d24 − d13), S4y :=

1√
2
(d23 − d14)

S4z :=
1√
2
(d34 − d12).
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These are essentially the usual symmetry-adapted linear combi-
nations used in many studies on XY4 molecules (eg in Wang-
Carrington), but here, they are linear combinations of thedi,j in-
stead of bond lengths and bond angles or cosines of bond angles.
As a consequence of Weyl’s result, sinceN = 5, one has to
introduce an extra (orredundant) symmetry coordinate, to make
the system complete. For example,

S5 :=
1√
6
(d12 + d13 + d14 + d23 + d24 + d34),

S5 being the solution of a unique, monic, quartic, polynomial
syzygy:

X4 + α3X
3 + α2X

2 + α1X + α0,

whereαi is a homogeneous polynomial of degree4 − i into the
remaining coordinatesS1, ..., S4z.
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This property implies that anyO(3)-invariant polynomialP in
the Cartesians can be written uniquely as:

P = P0 + P1S5 + P2S
2
5 + P3S

3
5 ,

where thePi are polynomials in the algebraically free variables
S1, ..., S4z.

Conclusion: The algebraP of invariant polynomials under the
action of the rotation-inversion group is, wheneverN ≥ 5, a free
module over a polynomial algebra (generated by3N − 6 degree
2 polynomials in the cartesian coordinates).
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Next step: symmetry-adaptation to the nuclear permutation
group.
Interlude: Cohen-Macaulay algebras

• Weyl’s algebras ofO(3)-invariants are a particular case of
Cohen-Macaulay algebras -which appear to be the right
framework to reformulate problems of invariant computa-
tions for the molecular symmetry groups.

• Recall a few facts and definitions.

• Definition 1: LetA be a graded algebra (eg over the real
numbers -sayP). The Krull dimensionm of A is the maxi-
mal number of algebraically independent elements inA (eg
3N − 6).

• Definition 2: A setθ1, ..., θm of m homogeneous elements
of positive degree is a homogeneous system of parameters
(hsop) ifA is a finitely generated module over the polynomial
algebraC[θ1, ..., θm].
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• The algebraA is Cohen-Macaulayif A is a free module over
C[θ1, ..., θm] (egP is a free module over the polynomial al-
gebra generated by the basic coordinatesS1, S2a, ..., S4z and
is Cohen-Macaulay).

• Classical, fundamental -and useful- Theorems

• Theorem 1: For any linear representation of a finite groupG,
the algebra of invariant polynomialsRG is Cohen-Macaulay
(includes the results Schmelzer-Murrell).
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• Theorem 2: LetG a finite subgroup ofGL(V ). Then,RG is
a polynomial algebra if and only ifG is generated by pseudo-
reflections (elements with precisely one eigenvalue not equal
to 1).

• Very strong restriction: most linear representations associ-
ated to nuclear permutation groups will give raise to Cohen-
Macaulay non-polynomial invariant algebras !!
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• Theorem 3: LetG be the product of a reductive group over
the real numbers with a finite group, letV be a linear rep-
resentation ofG, then the ring of invariantsRG is Cohen-
Macaulay.

• In particular, the Theorem holds wheneverG is a nuclear
PTRI group -that is, one may always find basic and redundant
invariants to describe the invariant polynomials associated to
the group and, moreover, the (purely algebraic) process of
taking the permutation invariants in the Cohen-Macaulay al-
gebra ofO(3)-invariants preserves the Macaulay properties
of the ring.
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Application to CH4

• Let us illustrate how these results apply concretely toCH4.

• In each particular case, the abstract algebraic methods should
be adapted to take advantage numerically, as far as possible,
from the particular symmetry properties of the molecule -eg,
by choosing, from the beginning a good family of symmetry-
adapted coordinates.

• We writeP for the algebra ofO(3)-invariants andG = Σ4
for the hydrogen nuclei permutation group.



Home Page

Title Page

Contents

JJ II

J I

Page 23 of 34

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• From the previous theorems, we deduce that theO(3) ×G-
invariant algebraPG has a so-called Hironaka decomposi-
tion:

PG = R[f1, ..., fm]⊕R[f1, ..., fm]g1⊕· · ·⊕R[f1, ..., fm]gp.

where thefi are3N − 6 algebraically independent invariant
polynomials and thegi auxiliary invariants.

• The (bi)-set{f1, ..., fm; g1, ..., gp} is usually refered to as an
integrity basis forPG.
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The total number (m + p) of polynomials to compute in order to
get an explicit Hironaka decomposition ofPG follows from the
computation of the Molien series of the algebra:

Hilb(PG, t) =
∑
i≥0

dimPG
i ti, (1)

The Molien series also reads:

Mol(t) =
1 + tdeg(g1) + ... + tdeg(gp)

(1− tdeg(f1))...(1− tdeg(fm))
. (2)

So, if the degrees of the basic invariants are given, then the quan-
tity, Mol(t) · (1− tdeg(f1))...(1− tdeg(fm)) determines the number
of auxiliary invariants of each degree.
The problem of generatingPG comes down to the computation
of a complete set of such auxiliary invariants given a set of basic
invariants.



Home Page

Title Page

Contents

JJ II

J I

Page 25 of 34

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The set of basic and auxiliary coordinates
{S1, S2a, S2b, S3x, S3y, S3z, S4x, S4y, S4z; S5} is well adapted to
the permutation group action:S1 andS5 transform as the trivial
representation ofΣ4, whereas the representation ofΣ4 on the
vector spaceR < S2a, ..., S4z > generated byS2a, ..., S4z splits
into a direct sum of irreducible representations:

R < S2a, S2b > ⊕R < S3x, S3y, S3z > ⊕R < S4x, S4y, S4z > .

The computation of the Molien series follows:
(1−t2)3(1−t3)3(1−t4)2

1+t+t2+t3
·Mol(t) =

1+t2+5t3+9t4+12t5+18t6+21t7+24t8+26t9+15t10+8t11+4t12
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Next step: constructing a family of algebraically independent
generators.

• Due to the decomposition

R < S2a, S2b > ⊕R < S3x, S3y, S3z > ⊕R < S4x, S4y, S4z >,

the algebraically independent polynomialsfi can be
searched in the invariant subalgebrasR[S2a, S2b]

Σ4,
R[S3x, S3y, S3z]

Σ4, andR[S4x, S4y, S4z]
Σ4.

• However, the corresponding representations are generated by
reflections -so that the 2nd structure theorem applies: these
algebras are polynomial algebras. The corresponding basic
invariants are known -they have already appeared in the lit-
terature.
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1. Degree 2:

f1 = I2
2 :=

S2
2a + S2

2b√
2

f2 = I2
3 :=

S2
3x + S2

3y + S2
3z√

3

f3 = I2
4 :=

S2
4x + S2

4y + S2
4z√

3

2. Degree 3:

f4 = I3
2 :=

S3
2a − 3S2

2bS2a√
10

f5 = I3
3 := S3xS3yS3z

f6 = I3
4 := S4xS4yS4z

3. Degree 4:

f7 = I4
3 :=

S4
3x + S4

3y + S4
3z√

3

f8 = I4
4 :=

S4
4x + S4

4y + S4
4z√

3
.



Home Page

Title Page

Contents

JJ II

J I

Page 28 of 34

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Inductive determination of the auxiliary invariants

• Concretely, it can be shown easily that one can choose
auxiliary invariants of the algebra of polynomial invariants
that are homogeneous when considered as polynomials over
any of the set of variables:{S2a, S2b}, {S3x, S3y, S3z},
{S4x, S4y, S4z}. We say that such a polynomial is multi-
homogeneous and write respectivelyd2(P ), d3(P ), d4(P )
for the partial degrees with respect to the three sets of vari-
ables.
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• For example, here are two typical invariant polynomials, re-
spectively of multidegrees(0, 1, 2) and(0, 3, 2):

S3zS4xS4y + S3yS4xS4z + S3xS4yS4z

S3
3zS4xS4y + S3

3yS4xS4z + S3
3xS4yS4z.

We denote byBas(d2, d3, d4) the set of all the monomials
in the basic invariants of partial degreesd2, d3, d4.

• The general structure of the algorithm for computing auxil-
iary invariants reads as follows. As already alluded at, the
algorithm is by induction (with respect to the degrees of
generators). The algorithm constructs for each multi-degree
(d2, d3, d4) a complete setAux(d2, d3, d4) of auxiliary in-
variants.
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• Initialization of the algorithm: compute, inductively, for
all multidegrees(d2, d3, d4) the corresponding set of multi-
homogeneous monomials in the basic, algebraically indepen-
dent, invariants:Bas(d2, d3, d4).
SetAux(d2, d3, d4) = {1} for (d2, d3, d4) = (0, 0, 0), and
Aux(d2, d3, d4) = ∅ in all other cases.

• For 1 ≤ n ≤ 12, assume also that the auxiliary invariants
of total degreen − 1 have been constructed. Put the lexi-
cographical order on the multi-degrees(d2, d3, d4), such that
d2 + d3 + d4 = n.
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• For (0, 1, n − 1) ≤ (d2, d3, d4) ≤ (n − 1, 1, 0), con-
struct all the invariant monomials in the basic invariants and
the auxiliary invariants that can be obtained as the prod-
uct of an element ofBas(d′2, d

′
3, d

′
4) with an element of

Aux(d2”, d3”, d4”) such thatd2 = d′2 + d2”, d3 = d′3 +
d3”, d4 = d′4 + d4”. Call Inv(d2, d3, d4) this set of mono-
mials.

• Using the Reynolds operator associated to the nuclear sym-
metric groupΣ4,

1

Card(G)

∑
g∈Σ4

g

which is a projector from the algebra of polynomials in
the S2a, ..., S4z to the algebra ofΣ4-polynomial invariants,
construct an ordered set of generatorsB(d2, d3, d4) =
{b1, ..., bk} for the vector space ofΣ4-polynomial invariants
of multi-degree(d2, d3, d4).
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• Test recursively if the elements ofB(d2, d3, d4) belong to
the linear span ofInv(d2, d3, d4). If the elementbi be-
longs to Inv(d2, d3, d4), proceed tobi+1 as long asi <
k. Else, setInv(d2, d3, d4) := Inv(d2, d3, d4) ∪ {bi},
Aux(d2, d3, d4) := Aux(d2, d3, d4) ∪ {bi} and proceed to
bi+1 as long asi < k. When all thebi have been consid-
ered, a complete family of auxiliary invariants of multi de-
gree(d2, d3, d4) has been obtained,Aux(d2, d3, d4).

• Proceed to the next multidegree,(d2, d3, d4), in the lexico-
graphical order till the process terminates.
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Conclusions

• Due to the structure theorems for invariant algebras and Co-
henMacauly algebras, the results apply for any P.E.S and
molecule.

• Working out the particular case ofCH4 show that one can
take advantage at various levels of the structure of the mole-
cules to speed up the algorithms -and optimize the internal
structure of the integrity basis.

• Although the algorithms work in full generality, this makes
the case-by-case computation of integrity basis an interesting
process on its own.
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• This algebraic/geometric optimization is most probably in-
teresting for the understanding of the symmetry constraints
for the geometry of the P.E.S.

• Perspectives: extension of the methodology to the dipole mo-
ment surfaces (DMS).


