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_ Tepse | e It IS often necessary to deal with potential energy sur-
faces (P.E.S.) in a large domain of the nuclear configu-
— | ration space.
« | » | e Spectroscopy: case of floppy systems and/or highly-
excited states
< > |
e Chemical reaction dynamics, dissociation paths.
__Peezoras | e Here, we will concentrate on the example(f{, with
a view to spectroscopy.
Go Back

e Results on polynomial fitting of global P.E.S. are valid in
Full Screen full generality and extend to the case where the polyno-
mial is in factor of an arbitrary totally symmetric func-

_ Clese | tion.
Quit
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Taking advantage of the permutation-
translation-rotation-inversion (PTRI)

group.
e The electronic potential energy surfaces for the nuclei

(P.E.S.) used in quantum chemistry inherit the symmetry
of the whole molecular system.

e Some PTRI invariance properties can be easily incorpo-
rated in docal description of the P.E.S. (eg by choosing
symmetry-adapted local coordinates).

They can not,on structural grounds, be easilly incor-
porated in a global description, due to invariant theory
phenomena (more later).



Goal of the talk.

e The present work presents a simplified technique to obtain
symmetry-adapted polynomial basis for global PES, together
with algorithmic recipes that make the problem computation-
nally tractable.

e |t is the prolongation of the works of Schmelzer and Mur-
rell (Int. J. Quantum Chemistry, 1985) and of Collins and
Parsons (J. Chem. Phys., 1993) on the subject.
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Historical background

e The introduction of the theory of algebraic invariants
to expand a PES can be traced back to the work of
Schmelzer and Murrell (Int. J. Quantum Chemistry,
1985).

e They studied finite molecular point group actions to ob-
tain the dimensions of basis made of homogeneous in-
variant polynomials in the internal coordinates.

e Since, given a linear representation of a (finite or, more
generally, compact) groupr, all smoothG-invariant
functions are smooth functions of invariant polynomi-
als (Schwarz, 1975), this approach is suitable to expres:
any polynomial, analytic of’* invariant functions.



e However, the study ahvariant polynomials in the local co-
ordinates under the nuclear permutation gragmot enough
if the goal is the study of a large domain of the configuration
space.

e The reason is classical: even without considering invariants,
it is well known that local coordinates do not determine the
shape of a molecule -and one has usually to add extra, “re-
dundant” coordinates to specify the shape.
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E.g. C H,: Wang-Carrington, J. Chem. Phys. (2003).
They consider the bend symmetry coordinates for methane

1
Sq = E(zwm — W13 — Wiy — Wog — Way + 2wsy),
1
Sp = §(W13 — Wiy — Wz + Way),

1 1 1
Sy = ﬁ(wﬂ_wl:})a Sy = ﬁ(w%—wM), Sy = E(W?A—wm)a

u)ij = COS Olij,
whereq;; is the angle between bond vectorand;.

The lengths of the four bond vectors and the bend symme:
try coordinates do not determine the shape of the molecule
They show that there are actually either one or two physical

possible shapes.



e The ambiguities can be removed by adding an extra symme-
try coordinate.

e \Wang and Carrington also suggest a rule to choose a uniqu
shape for given values of the bend coordinates, futh a
rule entails excluding shapes and therefore cannot be usec
to calculate high-lying levels”

e These restrictions also apply to the approach by Schmelze
and Murrell.
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e The Schmelzer-Murrell approach was extended by Collins
and Parsons to include the rotation-inversion group action in
the picture.

e Idea: generalize to the permutation-translation-rotation-
inversion group the classical construction€4f) and finite
group invariants.

e Fundamental tool: the Molien series associated to the lineat
action of a compact Lie grou@r. The series can be com-
puted as:

]
2N = /G det[I — \M(B)]

wherep is the Haar mesure o

du(B),

e Problem: in practice, the approach is restricted to molecules
with small permutation group.



Two simple ideas behind the recursive procedure to be intro-
duced:

1. Treat separately (desentangle, at the invariant level), the ac
tion of the orthogonal group and the one of the nuclear per-
mutation group.

2. Take systematically advantage of modern invariant theory
(Cohen-MacCauley rings in particular) to reformulate and
handle the problem.
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First step: symmetry-adaptation to the rotation-inversion

Contents group O(S) .

RN e Recall that, for a molecule witv atoms, the P.E.S.
IS (except in a domain of measure zero}3a&v — 6)-
I manifold.
S e Locally, one may therefore choose a paramerization of
the surface bysN — 6 local coordinates. However, as
GoBack we have seen witld'H,, for molecules containing five
atoms or more, the same values taken by the set o
Full Soreen 3N — 6 coordinates can correspond to several physically

inequivalent geometries.
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e S0, one or several, “redundant” coordinates have to be adde
to the “basic” ones in order to get a one-to-one correspon-
dance between sets of coordinates and molecular shapes.

e Of course, for dimensional reasons, the redundant coor-
dinates must be constrained to satisfy algebraic equations
(calledsyzygiesn the language of ring theory) relating them
to the BN — 6) basic, free coordinates.

e The fundamental reason for this need of redundant coordi-
nates is explained by a classical result due to Weyl.
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e Weyl's second main theorem for the orthogonal grotibg

classical groups1946) shows that the natural choice of, pos-
sibly redundant()(3)-invariant coordinates, is the set of the

w scalar products ofN — 1) “internal” vectors.

So, the algebra of)(3)-invariant polynomials in the Carte-
sians coordinatesP, is the algebra spanned by exactly
N(N-1) . :

—=— polynomial invariant of degree.

Out of this minimal set ofw generators, one is free to
form (by linear combination)3(N — 6) basic, algebraically
independent coordinates aféh " — (3N —6) = Y=TN+12
auxiliary invariant coordinates, related to the basic ones

through (explicit) syzygies.



e As a corollary of Weyl's computations, one gets a precise
picture of the algebra ab(3)-invariant polynomials.

e Let us once again exemplify with the particular case of the
methane molecule.

e For this molecule, we take for body-fixed origin the Radau

—
origin X. The Radau vectorX H; corresponding to hy-
drogen nuclei positions, are writtér; = (z}, 22, 23),1 =
1,...4

e We follow Weyl and definel0 = N(]g_l), N = 5 0(3)-
invariant coordinates by setting,

dij = (13 |75) -




We further ask that the coordinates be adapted ta_theuclear
permutation symmetry of the molecule, and choose the following
9 =12 — 3 = 12 — dimO(3) basic coordinates:

1
D= §(d11 + doo + ds3 + dys)

1
Soq = —=—(2d1y — di3 — dyy — dog — doy + 2d
2 \/TQ( 12 — Q13 — Q14 — Uo3 — A4 34)

1 1
Sop := §(d13—d14—d23+d24>, S3g 1= §(d11 — dog +d33 — dyy)

1 1
S?)y = 5(0311 —dgy —d33+ d44), S3z = §<d11 +day — ds3 — d44)

1 1
Sip = —=(doy — dy3), Say ;= —=(das — d
4 (24 13) 4y \/5( 23 14)

1
Sy = —2(d34 — d12)-

S
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These are essentially the usual symmetry-adapted linear comb
nations used in many studies on X¥holecules (eg in Wang-
Carrington), but here, they are linear combinations ofdhen-
stead of bond lengths and bond angles or cosines of bond angle
As a consequence of Weyl’s result, sinde = 5, one has to
introduce an extra (aledundan} symmetry coordinate, to make
the system complete. For example,

!
VG

S5 being the solution of a unique, monic, quartic, polynomial
Syzygy-:

Sy (d12 + dig + dig + dog + day + d34),

X4+043X3—|—042X2 —|—051X—|—Oé(),

whereq; is a homogeneous polynomial of degrkee- ¢ into the
remaining coordinates, ..., S,..



This property implies that ang)(3)-invariant polynomialP in
the Cartesians can be written uniquely as:

P:P0+P155—|—PQS§—|—P3S§,

where theP, are polynomials in the algebraically free variables
Sty eeey Sz

Conclusion: The algebr® of invariant polynomials under the
action of the rotation-inversion group is, wheneer> 5, a free
module over a polynomial algebra (generatedBy — 6 degree
2 polynomials in the cartesian coordinates).
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Next step: symmetry-adaptation to the nuclear permutation
group.

e Weyl's algebras of)(3)-invariants are a particular case of
Cohen-Macaulay algebras -which appear to be the right
framework to reformulate problems of invariant computa-
tions for the molecular symmetry groups.

e Recall a few facts and definitions.

e Definition 1: LetA be a graded algebra (eg over the real
numbers -sayP). The Krull dimensionn of A is the maxi-
mal number of algebraically independent elementslifeg
3N — 0).

e Definition 2: A setf, ..., 0,, of m homogeneous elements
of positive degree is a homogeneous system of parameter
(hsop) ifA is a finitely generated module over the polynomial
algebraCl6y, ..., 0,,].



e The algebraA is Cohen-Macaulaif A is a free module over
Cl04, ...,0,,] (egP is a free module over the polynomial al-
gebra generated by the basic coordin&lgsS,,, ..., S4. and
Is Cohen-Macaulay).

e Classical, fundamental -and useful- Theorems

e Theorem 1: For any linear representation of a finite grauip
the algebra of invariant polynomialB“ is Cohen-Macaulay
(includes the results Schmelzer-Murrell).



e Theorem 2: Let; a finite subgroup oG L (V). Then,R% is
a polynomial algebra if and only @ is generated by pseudo-
reflections (elements with precisely one eigenvalue not equa
to 1).

e \ery strong restriction: most linear representations associ-
ated to nuclear permutation groups will give raise to Cohen-
Macaulay non-polynomial invariant algebras !!
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Contents e Theorem 3: Lets be the product of a reductive group over
the real numbers with a finite group, 1&t be a linear rep-
RN resentation of7, then the ring of invariants?“ is Cohen-
Macaulay.
e e In particular, the Theorem holds whenev@ris a nuclear
PTRI group -that is, one may always find basic and redundant
_Peeziors | invariants to describe the invariant polynomials associated to
the group and, moreover, the (purely algebraic) process of
B taking the permutation invariants in the Cohen-Macaulay al-
gebra ofO(3)-invariants preserves the Macaulay properties
_ Fursoeen | of the ring.
Close
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Application to C'H4

e Let us illustrate how these results apply concretel¢'td 4.

e In each particular case, the abstract algebraic methods shoul
be adapted to take advantage numerically, as far as possible
from the particular symmetry properties of the molecule -eg,
by choosing, from the beginning a good family of symmetry-
adapted coordinates.

e We write P for the algebra of)(3)-invariants andz = 3,
for the hydrogen nuclei permutation group.



e From the previous theorems, we deduce that#@) x G-
invariant algebrdP® has a so-called Hironaka decomposi-
tion:

PG = R[fl, sooy fm]@R[fl, soog fm]gl@ . @R[fl, cooy fm]gp

where thef; are3N — 6 algebraically independent invariant
polynomials and the; auxiliary invariants.

e The (bi)-sef{ fi, ..., fu; g1, -.-, g, } is usually refered to as an
integrity basis forP¢.
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The total numbenf + p) of polynomials to compute in order to
get an explicit Hironaka decomposition Bf“ follows from the
computation of the Molien series of the algebra:

Hilb(PY,t) =) dimP{ t' (1)

>0
The Molien series also reads:

1 4 gdeglor) ot pdeglgp)
(1 — tdes(f).. (1 — tdeg(Fm))”

So, if the degrees of the basic invariants are given, then the quar
tity, Mol(t) - (1 —tdestn)), (1 —tde9l/n)) determines the number

of auxiliary invariants of each degree.

The problem of generatin®“ comes down to the computation
of a complete set of such auxiliary invariants given a set of basic
invariants.

Mol(t) = (2)



The set of Dbasic and auxiliary  coordinates
{Sl, Sga, SQb, ng, S3y, ng, S4x, S4y, 542'; 55} is well adapted fo
the permutation group actiori; and S5 transform as the trivial
representation of,, whereas the representation Xf on the
vector spacR < Sy, ..., S4. > generated bybs,, ..., Sy. splits
into a direct sum of irreducible representations:

R < S2a7 SQb > EBR < S?)wa SBy7 S3z > @R < 54357 S4ya S4z > .

The computation of the Molien series follows:
(1-=2)°(A-17)3(1-14)2 _
1+t 2+ 13 - Mol(t) =

1+ 458349t 1262+ 1885 4+-21¢ " +2413+26¢° + 1 5¢ 10 +- 8¢+ 4¢ 12
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Next step: constructing a family of algebraically independent

Contents ge ne rato IS.

e Due to the decomposition

44 142 |
R < S5, 5% > @R < 83, 53, S3. > OR < Sy, Suy, Saz >,
] the algebraically independent polynomial§ can be
searched in the invariant subalgebrdd[Ss,, Sa)™,
&I R[Sva S?)ya S3Z]E41 andR[S4m7 S4y7 542]24-
Go Back e However, the corresponding representations are generated b
reflections -so that the 2nd structure theorem applies: these
— algebras are polynomial algebras. The corresponding basic

invariants are known -they have already appeared in the lit-

= terature.
Quit



1. Degree 2:

=D = Sg, + Sy,
V2

S, S5, + S,

N V3

S5+ 55, + 5%,

V3

Sy — 3528
_ ]3 — 2a 26 2a

f4 2 \/E

fs = I§ = SS:CSSySBz

f6 — Izi)) = S4ms4ys4z

fgzlgi

ngIZI

2. Degree 3:

3. Degree 4:
Sy, + S5 + 53
f? _ I;)l — 3x 3y 3z
V3
Sy + Sy, + 8.

V3

fgzlj:




Inductive determination of the auxiliary invariants

e Concretely, it can be shown easily that one can choose
auxiliary invariants of the algebra of polynomial invariants
that are homogeneous when considered as polynomials ove
any of the set of variables{Ss,, Say}, {34, 3y, 53}
{S4s, S4y, Si-}- We say that such a polynomial is multi-
homogeneous and write respectively(P), d3(P), dy(P)
for the partial degrees with respect to the three sets of vari-
ables.
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e For example, here are two typical invariant polynomials, re-
S spectively of multidegreed), 1,2) and(0, 3, 2):

SSzS4xS4y =+ SByS4mS4Z =+ S3:nS4yS4z

44 142 |
S§’ZS4$S4y + Sgy54x54z + ngS4yS4Z.
e We denote byBas(ds, ds, d,) the set of all the monomials
in the basic invariants of partial degreés ds, d,.
Page 29 of 34
e The general structure of the algorithm for computing auxil-
p— lary invariants reads as follows. As already alluded at, the
algorithm is by induction (with respect to the degrees of
S— generators). The algorithm constructs for each multi-degree
(dy, ds, dy) a complete seux(ds, ds, d,) of auxiliary in-
s variants.

Quit



e Initialization of the algorithm: compute, inductively, for
all multidegree d,, ds, d,) the corresponding set of multi-
homogeneous monomials in the basic, algebraically indepen:
dent, invariantsBas(dy, ds, d).

SetAux(ds, ds, dy) = {1} for (ds, ds, dys) = (0,0,0), and
Auzx(dy, d3, d,) = () in all other cases.

e For1 < n < 12, assume also that the auxiliary invariants
of total degreen — 1 have been constructed. Put the lexi-
cographical order on the multi-degrees, ds, d4), such that
d2 + d3 + d4 = n.
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e For (0,1,n — 1) < (dy,d3,dy) < (n — 1,1,0), con-

struct all the invariant monomials in the basic invariants and
the auxiliary invariants that can be obtained as the prod-
uct of an element ofBas(d,, d}, d;) with an element of
Auz(dy”,d3”,d,”) such thatdy, = d, + dy”,ds = dj +
ds”,dy = d), + dy”. Call Inv(ds,,ds,d,) this set of mono-
mials.

Using the Reynolds operator associated to the nuclear sym
metric group.y,

C’afrd Z g

9624

which is a projector from the algebra of polynomials in
the S,,, ..., S4, to the algebra otl,-polynomial invariants,
construct an ordered set of generatds$d,,ds,d,) =
{b1, ..., by} for the vector space 0f ;-polynomial invariants
of multi-degre€(ds, ds, d).



e Test recursively if the elements @ (d, ds, d,) belong to
the linear span off nv(ds, ds, d,). If the elementd; be-
longs to Inv(ds, ds,d,), proceed tob;;; as long asi <
k. Else, Set[nv(dz,d3,d4) = ]nU<d27d3,d4) U {bz},
Auz(dy, d3, dy) = Aux(dy, ds, dy) U {b;} and proceed to
b1 as long ag < k. When all theb; have been consid-
ered, a complete family of auxiliary invariants of multi de-
gree(d,, ds, dy) has been obtainedluxz(ds,, ds, d).

e Proceed to the next multidegregly, ds, dy), in the lexico-
graphical order till the process terminates.
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Conclusions

e Due to the structure theorems for invariant algebras and Co-
henMacauly algebras, the results apply for any P.E.S anc
molecule.

e Working out the particular case 6f H, show that one can
take advantage at various levels of the structure of the mole-
cules to speed up the algorithms -and optimize the internal
structure of the integrity basis.

e Although the algorithms work in full generality, this makes
the case-by-case computation of integrity basis an interesting
process on its own.



e This algebraic/geometric optimization is most probably in-
teresting for the understanding of the symmetry constraints
for the geometry of the P.E.S.

e Perspectives: extension of the methodology to the dipole mo-
ment surfaces (DMS).



