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The iterative solution of the Contracted Schrodinger

Equation (CSE) Is a recently developed method for the
study of the electronic structure of atoms and molecules.
In this approach,

the second-order Reduced Density Matrix

(2-RDM) Is determined directly without a
previous knowledge of the N-electron
wave-function.

Here, a general survey of the method will be sketched.



A 2-RDM purification procedure has lately been
Inserted after each CSE iteration.

Attention will be centered here on the spin properties
of the second-order Correlation Matrices (2-CM) which
play a central role In this purification procedure.

The results of several applications for singlet states,
which will be shown here, reach a precision of

10—°au.

The main spin conditions for Correlation matrices

corresponding to doublets and to triplets will be
presented.
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A second-order Reduced Density Matrix (2-RDM) Is
defined in second Quantization as:

1
*Dijim = 5 <9 aldlana |@ >
In first quantization this is equivalent to the integration of
the square of the N-electrons wave function over the

variables of N-2 electrons.
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Let us consider a matrix M which Is the representation of
an operator O in the N-electron space. This space Is
spanned by a set of N-electron configurations |A >. It can
be shown that the contraction of this matrix into the
two-electron space which Is spanned by a set of
two-electron configurations |\ > is given by:

> My ?DM =M
AQ

where the matrix 2D is the second order Transition Re
duced Density Matrix (2-TRDM).



That Is,
| -
7 52 < A|©OIQ2 >< Qlp'q" sr|A >
AQ

The contraction of the Density Matrix, D into a two-electror
space Is the matrix operation equivalent to the integratior
over N-2 electron variables
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The matrix representation of the Schrodinger equation Is

HD = ED
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By applying the matrix contracting mapping (Valdemoro
1983) to both sides of this equation

Z (HD)AQ ZQ/\,Q — F 22
A

where the matrix 2D** is the second order Transition
Reduced Density Matrix (2-TRDM).



By applying the matrix contracting mapping (Valdemoro
1983) to both sides of this equation

Z (HD)AQ ZQA,Q — F 22
A

where the matrix 2D** is the second order Transition
Reduced Density Matrix (2-TRDM).

One obtains the second-order CSE in a compact form

< P Iék CLZCL;CLmCLg ®>=F <9 CLZCL;CLmCLg D >



Let us replace H by

. |
H = 5 E OHiJ;k’l CLTCLTCLZCL]€
i)j7k7l

where

|

OH@j;kjl — {N 1 (hi;k(ij,g + hj;l(si’]f) + < Z]‘kl >

Is the Reduced Hamiltonian (Bopp,Coleman, Valdemoro)
which has the same symmetry properties as the
two-electron matrix,
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The next step Is to transform the left hand side of the
equaﬂon

— Z < CID\OHH ki aTaTalak CLJr TaSaT.ICI) == /5 szq;rS
,]kl

INto 1ts normal form
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this matrix equation is equivalent to the integro-
differential equation reported in 1976 by Cohen and
Frishberg and by Nakatsuiji.

Nakatsuji showed that the solution of this equation
IS the solution of the Schrodinger equation

The CSE Is an indeterminate hierarchy equation of the

form:

E*D = function(H, °D, °D, *D)
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In a spin-orbital representation the CSE splits into three
coupled equations (summations over all posible values
of common indices are implicit with the restrictions

r<sandk < ). The D* block, which Is equivalent to

the D77, is:
Dee  Ofoe
o 0 7o oo 0 r7aa
E Doo _ Dijm;qrs Hrs;pm + Dz’jm;prs Hrs;qm
15pq e D(.){Oéﬂ 0 frap _ DC_){Oéﬁ 0 frap
s 1M pU uv;qm zym;guv uv;pm
(1<j;p<q) L Daaao OHOéOé 4+ Da@ﬁ OHﬂﬁ
17kl;pqrs rs;kl 17kl;pqrs rs;kl

L poead  Opap

1) Mn;pquu uv;mn
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And the af; a5 block, which is the only one which is theo
retically necessary for singlets, has the form:
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where

/

Dl i
_ Dgz(;jﬁ'rsq OH%?pm + Dggnﬁ, S OH?“Bséqm
_ Dgﬁj;puv OHfggmq D?jﬁ;uvq OHfggpn
+ D ](jg;gqu ’ 7?9?1{:6 + D g’iﬁgqrs OH ffkf
T D?ﬂ?ﬁﬁpuqv OHggmn

0 %?kg OH?"S;M — OHrs;ﬁk

OHggmn OHUE;mﬁ

OHW OH@;IEZ — OHfg;Zl%

rs;kl
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The indeterminacy of this equation can be

removed by approximating the higher-order

RDMs Iin terms of the lower-order ones
(Colmenero and Valdemoro) .

It can then be solved iteratively.



Replacing the Hamiltonian by the 52 operator in the CSE
one has:

<<I>\52aaj;amag]<1>>— S(S+1) < ®|dla amal\®>

where the spin operator is:

A A 2 A

: N, — N N
$* = =Y dldaa, S =
CLCLCL+( 5 )+2

r,S




By transforming the string of operators into its normal

form Iin the
Spin Equation, the elements of the 2-RDM are expressed

In terms of those of the 3- and 4-RDMs.
The relations thus obtained are replaced into the CSE.

This spin-adaptation of the CSE is useful in order to
direct the convergence towards a stationary state of a
given spin.



B Choosing a reasonable N-representable (or closely
so) 2-RDM and its corresponding 1-RDM.

B Approximating the 3- and 4-RDMs.

B Replacing all these matrices into the right-hand
side of the equation, which takes the form:

Ei—l—l QQ’H—l _ Mz

= thus |
- tr(M")
EH—1 _ A s
N
()
2Di+1 _ MZ

XXVI Niza October 2006 — p.16/4



for constructing high-order RDMs were obtained by
extending the method proposed by Valdemoro in 1992
for approximating a 2-RDM In terms of the 1-RDM
which exploited the duality between holes and particles.

In their present version, these algorithms are rather
efficient.

An up-to-date revision of this subject, to which the
groups of Harriman, Mazziotti, Nakatsuji and Valdemoro
have actively contributed, will appear this year in
Advances in Chemical Physics.

In the practice, the different proposals are rather similar.
As an example, we show here the most economical

algorithm for the 4-RDM:
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A 4-RDM algorithm

4 __
4! Dz7j7k7l; p7Q7’r7S -

P 1 3 1 3
Z (—1)" P 3I( Dip °Dj i tigrs + Dig "Dikjipr,s
P
1 1
+ Dkr SD',j,l,pq,s + SDij/f psq,r Dl;s)

— Z 2' 2! (2ngpq 2Dk,l;r,s

2 2 2 2
iR D@ 05,8 D] ksgr T D; N X Dj,l,q, )
B 4' Aivjakl;paq’,r:s
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A 4-RDM algorithm

4 __
4! Dz7j7k7l; p7Q7’r7S -

P 1 3 1 3
E :(_1) P 3! ( Di;p Dj,kyl;qms + Dj;q Di,kl;pms
P
| 3 3 1
D/fr D',j,l,pq,s + Dij/f p,q,r Dl;s)

— Z 7) 21 21 (2ngpq 2Dk,l;r,s

2 2 2 2
L D@ 5,8 Dﬂfqr + D, k3D, Dj,l,q, )
B 4' Aivjakl;paq”r:s

the sums on P and P’ involve the permutations among
the row Iindices of the two matrices’ elements

appearing in each product.
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A 4-RDM algorithm

4
4! Dz7j7k7l; p7Q7’r7S -

P 1 3 1 3
E :(_1) P 3! ( Dip "Djrisgrs + Diig "Diiiprs
D
1 3 3 1
D/fr ngl,pq,s =+ Dljk D,q,T Dl;s)

_ Z 7) 2 2 (2ngpq 2Dk,l;r,s

) ) ) )
i D@,l;p,s Dj,k;qﬂ“JV Di,k;p,r Dj,l;q,s)

4
+ 4! Ai,j,k,l;p,qms

The matrix *A is the error of the approximation which,
IN MazziottI’'s approach, coincides with the fourth-order

cumulant of a moment expansion of the 4-RDM.
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Recently, Alcoba proposed a very interesting parametric
algorithm for the 4-RDM which, for given values of the
parameter, yields the algorithms proposed by each of the
groups working in the field. This algorithm also permits to
carry out an optimization of the parameter which
Improves the process.



B A subsidiary algorithm is used for approximating the
SA matrix.

® The diagonal of the 4-RDM is rendered positive
semidefinite and renormalized.

B A subsidiary algorithm guaranties that the 2-, 3- and
4-RDMs are consistent among themselves with
respect to contraction, while it only stores the 2- and
3-RDMs.



At present, a Convergence Regulating Device Is
Introduced into the CSE iterative process in order to
accelerate its convergence. This device consists In

replacing the numerical matrix of integrals " H by
A
N
(2)

where A Is the shift of energy that one selects.

OH _ Oﬂ

—TEeqg

[
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At present, a Convergence Regulating Device Is
Introduced into the CSE iterative process in order to
accelerate its convergence. This device consists In

replacing the numerical matrix of integrals " H by

A

N

()

where A Is the shift of energy that one selects. The
CSE takes the following form:

[

OH _ Oﬂ

—TEeqg

E?“Gg QQreg — M — M_ AQQ

—Treqg



At present, a Convergence Regulating Device Is
Introduced into the CSE iterative process in order to
accelerate its convergence. This device consists In

replacing the numerical matrix of integrals " H by

A
N
()
where A Is the shift of energy that one selects.

According to the choice of A, the process may be either

damped or accelerated. In a CSE process an appropriate
A value Is:

[

OH _ Oﬂ

—TEeqg

A = %T?(Oﬁ)

Where K |S the number Of SD|n'Orb|ta|S XXVI Niza October 2006 — p.21/4



When no other implementations are introduced upon the
iterative process the convergence towards the FCI

energy value Is not complete, since the process diverges
before reaching the exact value.

Mazziotti proposed to purify the 2-RDM by constraining it
to obey both the D and () N-representability conditions.



When no other implementations are introduced upon the
iterative process the convergence towards the FCI
energy value Is not complete, since the process diverges
before reaching the exact value.

Mazziotti proposed to purify the 2-RDM by constraining it
to obey both the D and () N-representability conditions.
He inserted this purification procedure after each CSE
iteration; and the convergence of the overall process was
significantly improved. This clearly indicated that the
2-RDM should be rendered as closely N-representable as
possible.



Since
2 1 1
21°Djjrs = "Dy 'Djy — Ok Dig+ Cijp,
the part of the 2-RDM which causes problems is the

Correlation matrix C.

Thus, the emphasis should be set on correcting
this matrix.



The form of the Correlation matrix is
Ciikl = Z < ®|al ap |9 >< ] a;[-ag P >
/4P
The CM is directly related to the Garrod and Percus

G-matrix

Cijikg = Giggg



And representing just the spins of the different states

Cogrirr = S (S, M| o 78", M)(S", M'|0" 7" |S, M)

— GJT;T’J’

Clearly, C and G have a set of spin-components.



In what follows the analysis will be centered on the
G-matrix because

G > 0

and this property must reflect the properties of the G
spin-components. Thus,

In a 2-RDM purifi cation procedure-besides

the D and Q-conditions -the properties of the G
spin-components should also be imposed.




The set of conditions that the spin-components of the
CM or, equivalently, the G-matrix must satisfy when
corresponding to a pure spin-state were reported last
year in International Journal of Quantum Chemistry.

Here we will consider the form taken by these general
relations In the three specific cases:

SINGLET, DOUBLET and TRIPLET



In what follows, a bar over an index indicates a (3
spin-orbital. The decomposition of the G-matrix in terms
of the spin components Is:

Gi,k;l,j

&

i,k;l,J

1,k;0,7

0,0Giki; + 110Gk
1,-1)G

000Gk + 06k

i,k;l,J
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In what follows, a bar over an index indicates a (3
spin-orbital. The decomposition of the G-matrix in terms

of the spin components Is:

Gi,k;l,j — (0,0)"74,k;l,5 (1,0)Gz‘,k;l,j

Girii = ©00)Gixi + 10Giki;

The symbols (0,0), (1,0), (1, —1) refer to the (S’, M)
guantum numbers of the &’ states in

Gikli = Z < O a;-f ag | >< P’ a;f-;al D >
O/ £ D
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In what follows, a bar over an index indicates a (3
spin-orbital. The decomposition of the G-matrix in terms
of the spin components Is:

Gi,k;l,j — (0,0)"74,k;l,5 (1,0)Gz‘,k;l,j
— (17—1>G

Girii = 000ies + 1,00Giri;

i,k;l,J i,k;l,J

The other relevant relations are:

ikl = — 2 10)Gikl;
1
Dy, 8

Y

il;k,j

XXVI Niza October 2006 — p.28/4



Thus, only the block-matrix 5. 5 IS needed to get all
the spin-components.

The two following needed conditions are:

(O,O)Ga,&;a,oz > 0

(1,—1)Ga,ﬂ;oz,ﬁ > 0

The D and () conditions are also imposed in our
purification procedure.



When the state Is a doublet with M = % the relations
linking the different spin components of the G-matrix are:

(%7_%)
1
§ 57l77/7/L7.]

Llim,j

1
3G = @-HGilm,
e HGitm; = @ 1HGin

— & H)Gitm; = —@,1Gium;
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Besides the D and () N-representability conditions, the
purification code for doublets which is now In progress
Imposes:




For a triplet state with M = 1, the relations linking the
different spin-components of the G-matrix are:

/ +(1,1)Gi753m7j T (171)Gz’,l;m,j \
_(1,1)Gi,l;m,j — (1,1)Gi,l;m,j
\ +("Diy =" D;7)(*Dinyj ="' Dir;5)

1 1 5
4 Tibmg = 7 22)Gipmng = P) 20 fm.;
(27

G = @)Gilm,;

— @)Gitmj = — 21)Giim,;




By using the G matrix spin-blocks all its spin-components
can be obtained. The spin-conditions which must be
Imposed are:

(1,O)Gozﬁ;ozﬁ > 0

(272)G504;504 > 0




Besides the positivity of the G-matrix blocks there are
other conditions that these matrices must satisfy. Thus, In
singlets one has:

K
L L (I)’ CLm’CI)’ <(I)"a CLZ"(I)>: %:G@/;il _

m  ®'£D

For doublets and triplets more vanishing sums must be
Imposed during the purification procedure.
These vanishing sums derive from the properties of the

operators S., or S_, or N, and the orthogonality
of the eigenstates involved.



The results obtained in the calculation of the potential
energy curves for the symmetric bond stretchings of

BeHs and L9

will now be presented.



Symmetric Stretching of the H-Be-H bond

T T T T I !

Mg
w
>
(@)
| -
()]
-
LL
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Symmetric Stretching of the Li-Li bond

T T T T I !

HF
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Performance of the purification procedure

Without
—1.79 10~
—6.89 10~
—1.32 1073
= —0.0018

> @O O O

(55 Iterations)
—4.31 107
—3.92 107
~1.22107°
E +0.0006

> @ O O

(15 Iterations)
—1.06 1
—1.99 1

—2.02 1

-+0.0006

(35

Iterations)

—6.42 10°°

1.10 107
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Performance of the purification procedure

Without (15 lterations) (35 Iterations)

D -1.90 x 10~ 7.04 x 107° 2.91x 107
Q -3.86 x 107° -3.08x 10~ -2.05x 107
G -1.73 x 107° -7.55x 107° -5.30 x 107°
Ay = +0.0070 +0.0001 +0.0001

(55 lterations)
D 3.56 x 10~°
Q -1.62 x 10~
G -4.22 x 107°
AN = +0.0001

XXVI Niza October 2006 — p.39/4



These results were obtained with 40/100 CSE iterations
for BeH,/Lis.When more iterations were carried out the

precision reached at the equilibrium point was of 10au.
In both cases.

As shown, the purification procedure imposing the
D, @, @unG conditions

In the SINGLET case yielded very good applicative
results.



The iterative solution of the spin-adapted
CSE for Singlets can now be considered a
COMPETITIVE METHOD

to the study of the electronic structure of
atoms and molecules.
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This I1s mainly due to the
conditions imposed on the G spin-components

through our 2-RDM purifi cation procedure
at each CSE iteration.



In spite of the higher complexity of these cases,
a similar good performance can be expected for
the

DOUBLETS AND TRIPLETS

purifi cation procedures.
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Programming codes

B At present the purification code for the Doublet
states Is being developped and after this is achieved
the code for Triplets will be written.

® The memory and execution time of the present codes
should be optimized by computing experts in order to

render them as black boxes as the Gaussian,
Gamess,etc ones.



Theoretical Research In progress

B The states whose first-order description needs more

than one determinant is still an open question
those cases the 3-RDM and 4-RDM cumulant

since In
mautrice:

have rather large valued elements. Approximations

for these elements are being looked for.

B We are considering different possible approac
order to apply the CSE methodology to the ca

nes In
culation

of large systems. We expect that the philosop

“Dividing to vanquish” jointly with the theo
developments of Alcoba, Bochicchio,Lain and

Yy
retical
Torre fol

Open systems Reduced Density Matrices may

render this possible.

iza October 2006 — p.42/4.
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