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1. INTRODUCTION

1.1. The Schrödinger equation

The dynamics of molecules is described in Born-Oppenheimer
approximation by a Schrödinger equation

ih∂tψ
h − h2

2
∆ψh + V (q)ψh = 0, (q, t) ∈ Rd ×R,

ψh(q, 0) = ψh0 (q) ∈ L2(Rd,CN )

V (q) ∈ CN,N is the potential: smooth, valued in the set of her-
mitian matrices and of subquadratic growth,

h =
√√√√melectron
Mnucleus

� 1,

ψh(t, q) is the wave function.
3



1.2. Examples of Potentials

The Jahn-Teller Hamiltonian:

VJT (q) = φ0(q)Id2 +


φ1(q) φ2(q)
φ2(q) −φ1(q)

 .

The pseudo Jahn-Teller Hamiltonian

VPJT (q) = φ0(q)Id3 +



φ1(q) 0 φ2(q)/
√

2

0 −φ1(q) φ2(q)/
√

2

φ2(q)/
√

2 φ2(q)/
√

2 0


.

Hagedorn’s potentials

Vhag(q) = φ0(q)Id4 +


VJT (q) 02

02 VJT (q)



The eigenvalues cross when φ1(q) = φ2(q) = 0.
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1.3. Quadratic functions of the wave function

The position density: q 7→ ‖ψh(t, q)‖2
CN

describes the probability of finding the molecule at time t in the
configuration q.

The energy level populations: ‖Π`(q)ψh(t, q)‖L2(Rd,CN )

describes the population of the `-th level if Π`(q) is a spectral
projector of the matrix V (q).

The momentum density: p 7→ (2πh)−d
∥∥∥∥∥∥ψ̂h

(
t, ph

)∥∥∥∥∥∥CN
describe the probability of finding the molecule at time t with the
momentum p.

The momentum expectation in the j-th direction:−ih∂jψh(t, q), ψh(t, q)

L2(Rd,CN )

.
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1.4. The Wigner transform (1)

The key for calculating all these quadratic quantities! The Wigner
transform is a generalized probability density in the phase space

Wh
ψh(t)

 (q, p) = (2π)−d
∫
ψh

q − h
2v, t

⊗ψh
q + h

2v, t
 ei v·p dv.

Examples:
• The energy level populations:

‖Π`(q)ψh(t, q)‖L2(Rd,CN ) = tr
∫
Wh(ψh(t))(q, p) Π`(q) dq dp.

• The momentum expectation in the j-th direction:−ih∂jψh(t, q), ψh(t, q)

L2(Rd,CN )

= tr
∫
pjW

h(ψh(t))(q, p) dq dp.
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1.4. The Wigner transform (2)

The aim: Describe

Π`(q)Wh
ψh(t)

(q, p) Π`(q)

or equivalently, describe

∫
a(q, p)Π`(q) Wh

ψh(t)
(q, p) dq dp

for scalar observables a(q, p) which are smooth in q and p.
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2. THE ALGORITHM

2.1. The single switch algorithm for Jahn-Teller Hamiltonians (1)

We choose V (q) = VJT (q) with two modes E±(q) and eigenpro-
jectors Π±(q),

E±(q) = φ0(q)±
√√√√φ1(q)2 + φ2(q)2.

The algorithm:

[A] Sampling of the initial Wigner function.

7→[B] Classical transport of the sampling points.

7→[C] Branching of the trajectories, whenever they attain a local
minimal eigenvalue gap, and weighting according to a generalized
Landau-Zener formula.

[D] Final computation of expectation values.
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2.1. The single switch algorithm for Jahn-Teller Hamiltonians (2)

Which place in the large family of surface hopping semi-group?
• The ‘father’: J. Tully and R. Preston, J. Chem. Phys., 55 (1971).
• The ‘brother’: A. Voronin, J. Marques, and A. Varandas, J. Phys. Chem.

102 (1998).

Interest and new (?) features:
• It is based on a deterministic branching scheme.
• It has rigorous mathematical derivation.
• Its constitutive branching condition is made according to a multi-
dimensional Landau-Zener formula.
• It generates fewer switches than most of the well-established
surface hopping schemes, which in principle allow for non-adiabatic
transitions at every time step of the discretization.
cf. C. Lasser and T. Swart, J. Chem. Phys. 129, (2008)
• The algorithm allows for general initial data (not only gaussian).
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Interest and new (?) features:
• It is based on a deterministic branching scheme.
• It has rigorous mathematical derivation.
• Its constitutive branching condition is made according to a multi-
dimensional Landau-Zener formula.
• It generates fewer switches than most of the well-established
surface hopping schemes, which in principle allow for non-adiabatic
transitions at every time step of the discretization.
cf. C. Lasser and T. Swart J. Chem. Phys. 129, (2008)
• The algorithm allows for general initial data (not only gaussian).

Main drawback: The possibly incorrect approximation of inter-
surface interferences if there are classical trajectories on different
surfaces, which arrive with comparable momenta simultaneously
near a conical intersection point.
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2.2. The Sampling

One samples the initial Wigner functions

(q, p) 7→ tr
Π±(q)W (ψh0 )(q, p)


to obtain two sets of phase space points, one related with the upper
and the other with the lower surface.

Difficulty: It requires the approximation of high-dimensional os-
cillatory Fourier integrals.

Reference on Monte Carlo techniques in that context : Monte Carlo
sampling of Wigner functions and surface hopping quantum dynamics by S.
Kube, C. Lasser, M. Weber (Preprint).
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2.3. Transport

The sample points are transported along the classical trajectories
of the corresponding Hamiltonian systems

q̇±t = p±t , ṗ±t = −∇qE±(q±t ).

Denote by Φ±t (q, p) =
(
q±t , p

±
t

)
the trajectories passing in(q, p) at

time t = 0, then

Theorem [Lasser F. 07] : Let R ∈ R+,

Π`(q)Wh
ψh(t)

 (q, p) Π`(q) =Π`(q)Wh
ψh(s)

(q, p) Π`(q)
 ◦ Φ±−t+s(q, p)

+O(
√
h) + O(1/R2) + O(1/R5

√
h)

in {
√
φ1(q)2 + φ2(q)2 > R

√
h}.
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2.4. Transitions (1)

•When do the jumps occur?
One monitors, when a trajectory (q±t , p

±
t ) attains a local minimum

along the surface gap, that is when the function

t 7→
√√√√φ1(q±t )2 + φ2(q±t )2

attains a local minimum, i.e. when .

〈dφ(q)p | φ(q)〉R2 = 0,

where dφ(q) denotes the 2×d gradient matrix of φ(q) = (φ1(q), φ2(q)).

• The jumps
At points (q, p) with local minimal gap, all trajectories split.
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2.4. Transitions (2)

• The transition rate.
The new branch starts on the other surface in the same point (q, p)
and has the old weight times a Landau-Zener factor

T (q, p) = exp

−
π

h

|φ(q)|2

|dφ(q)p|

 .

The branch remaining on the same surface is reweighted by the
factor 1− T (q, p).

•More restrictive criterion of transitions
The Landau-Zener rate only causes a significant contribution, when
the gap |φ(q)| is of order h1/2. Hence, one can tighten the branch-
ing condition by additionally requiring, that the gap is of order
h1/2, which in turn reduces the number of trajectories.
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2.4. Transitions (3)

Denote by (Lth)(Wh(ψh0 )) the output of the algorithm at time t
and suppose

(A1) (ψh0 )h>0 is associated with RanΠ+, localized away from the
crossing and away from the set which contains the points issuing
classical trajectories, which arrive at the crossing without a unique
continuation through it.
(A2) The test function a ∈ C∞c

R2d,CN×N
 has its support at a

distance larger than R
√
h from the crossing.

(A3) Within the time-interval [0, tf ], each of the plus-trajectories
arriving at the support of a+ at time tf has performed at most one
jump generating minus-trajectories arriving at the support of a−,
which have not jumped at all.

15



2.4. Transitions (4)

Denote by (Lth)t≥0(Wh(ψh0 ) the output of the algorithm at time t

Theorem (Lasser F. [07]):
If one has (A1), (A2) and (A3) and if χ ∈ C∞c ([0, tf ],R), then,
there exist positive constantsC, h0 ∈ R∗+ such that for all 0 < h < h0

∣∣∣∣∣∣tr
∫
R2d+1 χ(t)

Wh
ψh(t)

− (Lth)(Wh(ψh0 ))
(q, p) a(q, p) dq dp dt

∣∣∣∣∣∣
≤ C h1/8.
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2.5. Final computations

At some final time tf one obtains two sets of phase space points,
one associated with the lower surface, the other with the upper
surface. Each point carries its specific weight, depending upon
how many transitions the trajectory has experienced and where in
phase space they have occurred. IfN points (q1, p1), . . . , (qN , pN )
with associated weights w1, . . . , wN have arrived on the upper
surface, for example, then any expectation value can be approxi-
mated as

〈
Aψ+(t) | ψ+(t)

〉
L2 ≈

N∑
j=1

a(qj, pj)wj δj,

where δj ≥ 0 denotes a suitable quadrature weight. In the case of
a grid based initial sampling, the quadrature weight is the volume
element of the corresponding initial point.
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3. THE NUMERICS (1)

We choose

V (q) = γ|q|2 +


q1 q2
q2 −q1

 , γ = 3.

ψh0 (q) = 1√
πh

exp
− 1

2h|q − q0|2 + i
h〈p0, q − q0〉R2

χ+(q)

χ+(q) = (cos θq, sin θq) where
q

|q|
= (cos(2θq), sin(2θq)).

q0 = (5h1/2, 0.5h1/2).

h = 0.001, 0.005, 0.01, 0.05, 0.1.

p0 = (−1, 0).

tf =


π (2γ)−1/2 for h = 0.001,
5
3π (2γ)−1/2 otherwise

(see Garcia-Fernández, Bersuker, A. Aramburu, and Moreno, Phys. Rev. B,
71, 184117 (2005).)
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3. THE NUMERICS (2)

We calculate the population, the position and the momentum ex-
pectation along the first coordinate as a function of time, all of
them associated with the upper surface.

t 7→ 〈Π+ψh(t) | Π+ψh(t)〉L2,

t 7→ 〈q1Π+ψh(t) | Π+ψh(t)〉L2,

t 7→ 〈−ih∂1Π+ψh(t) | Π+ψh(t)〉L2.

Then with the lower surface and we compare the results with those
obtained for a reference solution computed with a rapidly con-
verging splitting scheme.
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FIGURE 1: Population, position and momentum expectation along the first
coordinate as a function of time for the upper energy surface.

The results of the single switch algorithm follow the values of the reference
solution. The plots correspond to the errors shown in next figure.
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FIGURE 2: Absolute error of population, position and momentum expec-
tation along the first coordinate as a function of time, all of them associated
with the upper surface.

The reference solution is computed by a numerically converged splitting
scheme. All errors stay below three precent.
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FIGURE 3: Number of trajectories used by the single switch algorithm as
a function of time.

The histogram of the non-adiabatic transition rates shows maxima for small
and large values of the rate. The arithmetic mean is 0.53.
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FIGURE 4: Dependance on h.

Population of the lower surface as a function of time for h = 0.005, 0.01, and
0.05. The population changes three times, the first and the last time by more
than fifty percent, inbetween by roughly ten percent.
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FIGURE 5: Mean error of population, position and momentum expectation
along the first coordinate as a function of the semiclassical parameter, all of
them related with the lower surface.

The dotted line is the function h 7→
√
h.
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4. EXTENSIONS OF THE ALGORITHM

4.1 Twofold eigenvalues.
Collaboration with C. Lasser

4.2 Pseudo Jahn-Teller hamiltonian (in progress).
Collaboration with V. Rousse

4.3 Avoided crossings (in progress).
Collaboration with C. Lasser
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4.1. Twofold eigenvalues (1)

V (q) = Vhag(q) = φ0(q)Id4 + B(φ1(q), φ2(q), φ3(q))

where

B(v1, v2, v3) =




v1 v2 + iv3

v2 − iv3 −v1

 0

0


v1 v2 − iv3

v2 + iv3 −v1




.

The modified observables:

b(q, p) = Π±(q)b(q, p)Π±(q).

Such b(q, p) still commute with the potential matrix V (q). If χ(q)
is an eigenvector of V (q), then the observable

b(q) = χ(q)⊗ χ(q)

describes orientation in one specific direction of one of the eigenspaces.
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4.1. Twofold eigenvalues (2)
The algorithm:

A. Initial sampling for the two four-by-four matrices Π±(Wψ0)Π±.

B. Classical transport by q̇ = p, ṗ = −∇qE±(q).

C. Branching when a trajectory attains a local minimal gap, and
same Landau-Zener rate AND conjugation of the matrix carried
by the branch remaining on the same surface by

R(q, p) = B


dφ(q)p ∧ φ(q)

|dφ(q)p ∧ φ(q)|

 ,

where x ∧ y = (x2y3 − x3y2, x3y1 − y3x1, x1y2 − x2y1).
That is, the old and the new branch respectively carry the weights

(1− T (q, p))R(q, p)W R(q, p) and T (q, p)W.

D. Computation of final expectation values.
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4.1. Twofold eigenvalues (3)

New phenomenon: The orientation turns when passing at the
crossing.

Question:
1- Is-it interesting from chemical point of view?
2- Has it been already observed?
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4.2. Pseudo Jahn-Teller Hamiltonian

V (q) = VPJT (q) =



q1 0 q2/
√

2

0 −q1 q2/
√

2

q2/
√

2 q2/
√

2 0


.

New aspect: 3 modes 0,
√
q2

1 + q2
2 and −

√
q2

1 + q2
2.

Modification of the algorithm: The three modes interact, each one
with the two other ones. The transitions probabilities have been
calculated by S. Brundobler and V. Elser, S-matrix for generalized
Landau-Zener problem, J. Phys. A, 26, pp. 1211–1227 (1993).

Questions: Generalization to “VPJT (φ1(q), φ2(q)) + φ0(q)Id3”.
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4.3. Avoided crossings

V (q) = V (q, δ) with E+(q, δ) = E−(q, δ) as δ goes to 0.

Questions:
•Which is the correct jump criterion?
• How to choose the new trajectories?

cf. G. Hagedorn, A. Joye, Molecular propagation through small avoided cross-
ings of electron energy levels, Rev. in Math. Physics, 11 (1999).
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CONCLUSION

Other open questions:
• Dealing with the interferences (very interesting from mathe-

matical point of view, from chemical point of view?). It requires
to be able to propagate more information on the wave function,
not only the diagonal part of the Wigner transform.
• Being able to say something for a potential which is the sum

of a Jahn-Teller potential and a pseudo Jahn-Teller one.
• What about potentials which are non linear functions of the

wave function?

V (q) = V0(q) + hα | ψh(t, q) |2β Id, α, β > 0.

Is-it pertinent for chemistry?
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