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The surface hopping method.

• Many trajectories are run, starting in one or more excited electronic states.

• The initial conditions (nuclear coordinates Q and momenta P) are sampled

from a suitable distribution.

• The potential energy for a trajectory Q(j)(t) is provided by the PES of the

“current” state, K(j)(t).

• The current state can change because of nonadiabatic transitions K → L

(surface hops).

• In computing the time-dependent or final product properties, only the current

state of each trajectory is taken into account. For instance, the electronic

contribution to the total energy is given by the current PES, and the state

population is the fraction of trajectories ΠK(t) that are running on state K.

The hopping probability depends on the computed state probabilities P
(j)
L (t)

and their rates of change Ṗ
(j)
K .
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Semiclassical treatment: surface hopping.
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Semiclassical treatment: surface hopping.
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Tully’s “fewest switches” algorithm for SH (1990)

Underlying assumptions:

• There is one representative point of the nuclear motion, Q(j)(t), for all the

electronic states.

• The electronic time-evolution for the j-th trajectory is expressed by a wave-

function, that can be expanded on the adiabatic basis:
∣

∣

∣
Ψ(j)(t)

〉

=
∑

L

C
(j)
L (t)

∣

∣

∣
ψ

(j)
L

〉

• The C
(j)
L (t) coefficients are determined by solving the TDSE:

ih̄
dΨ(j)

dt
= ĤelΨ

(j).

• The state probabilities for the trajectory j are: P
(j)
L (t) =

∣

∣

∣
C

(j)
L (t)

∣

∣

∣

2

.

They can be averaged over NT trajectories: pL =
1

NT

NT
∑

j=1

P
(j)
L



• For a two state system, the probability to make a transition from state K to

state L for the j-th trajectory is:

T
(j)
K→L(t) = max

{

0,
P

(j)
K (t) − P

(j)
K (t + ∆t)

P
(j)
K (t)

∆t

}

≃ max

{

0,
−Ṗ (j)

K (t)

P
(j)
K (t)

∆t

}

• The number of state switches is minimized assuming that the flux of proba-

bility between the two states results from probability transferring in only one

direction.

• Very easy to implement.

• Probably the most popular algorithm for SH.



Internal consistency

Internal consistency requirement: ΠK(t) = pK(t)

We want to define a K → L transition probability T
(j)
K→L(t), for a time step

∆t, such that the above requirement is satisfied.

For a two state system {ψK, ψL}:

In a time step ∆t: ∆pK = ṗK∆t

and ∆ΠK = −ΠKTK→L + ΠLTL→K

So : TK→L = max

{

0,
−ṗK
ΠK

∆t

}

This condition is not easily implemented and may lead to artifacts in the case

of swarms of trajectories corresponding to different channels.

Tully′s prescription : T
(j)
K→L = max

{

0,
−Ṗ (j)

K

P
(j)
K

∆t

}



Comparison with quantum calculations

Excited state decay of trans-azobenzene, n→ π∗ excitation.
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The coherence problem

• Integrating the TDSE for a single representative point on different PES is

a good approximation of the quantum wavepacket dynamics, as far as the

wavepackets occupy approximately the same positions in the phase space.

• When the average position and momentum of two wavepackets are very dif-

ferent, they evolve quite independently (quantum decoherence).

• Neglecting quantum decoherence in SH leads to discrepancies between ΠK(t)

and pK(t). Decoherence and internal consistency are strongly connected.

• Usually the averaged state probabilities pK(t) are just disregarded.



Low coupling regions

Consider a two state system (1 and 2). Far from the strong interaction region,

the state probabilities exhibit fast Rabi oscillations:

P2(t) ≃ P2(t0) +
2V

|∆E|[ℑ{C
∗
1(t0)C2(t0)} cos(Ωt)−ℜ{C∗

1(t0)C2(t0)} sin(Ωt)]

where ∆E is the 1 − 2 energy gap, V is the nonadiabatic coupling and Ω =√
∆E2 + 4V 2.

Such oscillations are due to the coherence of the 1 and 2 wavepackets, that

should disappear as the wavepackets take different paths in the two PES, but

is conserved in trajectory calculations.

Due to the oscillations, we have 2 → 1 hops, much more frequently than

viceversa, because: 1) once in the PES 1, ∆E increases and V decreases, and

2) some upward hops are frustrated.

This bias can significantly affect the simulation of slow decays.



Avoided crossing with oscillatory coupling.

Potential energy curves and coupling.
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Coherence effects after the crossing

After the passage through the avoided crossing, the probability oscillations

cause an exponential decay with τ ≃ 7 ps.
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Decoherence correction

To introduce quantum decoherence corrections in a semiclassical method, we

must:

• evaluate how far from each other the representative points would travel on

the different PES;

• correct the probabilities and coefficients computed by the TDSE according

to the distance between the representative points.



Our proposal

• We associate a gaussian wavepacket to each representative point:

Gi(Q,P) = N
∏

α

exp

[

−m
1/2
α (Qα −Qi,α)

2

4σ2
+ iPi,αQα

]

where Qα is a nuclear cartesian coordinate.

• One wavepacket G0 travels on the current PES, UK .

• More wavepackets are created, every nD time steps, on the other states L,

if their probabilities PL(t) have increased in time. Each new wavepacket Gi

has initially the same Qi as G0, and the module of Pi is adjusted for energy

conservation.

• The trajectories Qi(t), with i 6= 0, are computed in a simplified way, to avoid

performing electronic calculations at geometries different from the current one,

Q0. All the momenta Pi are updated every nD steps, using only the informa-

tion needed for energy conservation, computed at Q0.



• We compute the overlaps between G0 and the wavepackets travelling on the

other PESs:

|〈G0|Gi〉| =
∏

α

exp

[

−m
1/2
α (Q0,α −Qiα)

2

8σ2
− σ2(P0,α − Piα)

2

2m
1/2
α

]

• When the overlap |〈G0|Gi〉| drops below a threshold smin, the wavepacket Gi

should not interfere any more with the time evolution of the current state:

therefore it is suppressed, and the corresponding probability is attributed to

G0.

• When a surface hopping occurs, a new G0 is created, and all the other

wavepackets on the same PES are suppressed.

• The decoherence correction (DC) depends on two parameters:

• The overlap threshold, which is chosen to be very small in the following

applications (smin = 10−9).

• The gaussian width σ, which is varied to test its influence on the results.



Surface hopping with decoherence correction.
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1D model:

ionic/neutral crossing, many passages.

Potential energy curves and coupling.
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Ionic/neutral crossing.

Time dependent population of the first electronic state.
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Ionic/neutral crossing.

Accumulated error Err(t) for t=1000 fs

Err(t) =
1

t

∫ t

o

∣

∣p1(t
′) − P quant

1 (t′)
∣

∣ dt′
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Avoided crossing with oscillatory coupling.

Time dependent population of the first electronic state.
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2D model: conical intersection.

Potential energy curves with different couplings.

coupling constant γ = 0.03 a.u.
coupling constant γ = 0.01 a.u.

no coupling

X, bohr

en
er

gy
,
a.

u.

65432

0.06

0.05

0.04

0.03

0.02

0.01

0

-0.01



Conical intersection.

Transition probability for one passage through the intersection region, as a

function of the coupling strength γ.
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Excited state decay of trans-azobenzene,

n→ π∗ excitation.

A long lasting wavepacket.
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Perspectives

• Turn-over: one recruitment for five retirements.

• In 2010 the University of Pisa will not have enough money to pay the salaries

of the permanent staff.
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