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Semiclassical Wave Packets

To state time–dependent results in their most explicit form,

we need to discuss semiclassical wave packets φk(A, B, ~, a, η, x).

• These are generalizations of Harmonic oscillator states.

• They coincide with generalized squeezed states.

• In the molecular context, ~ will be ε2.

{φk(A, B, ~, a, η, x) } is an orthonormal basis of L2(Rd)

as k ranges over d–dimensional multi–indices.

• a ∈ Rd represents a classical position.

• η ∈ Rd represents a classical momentum.

• A and B are complex invertible d × d matrices that satisfy

AtB − BtA = 0 and A∗B + B∗A = 2 I.

The position uncertainty is determined by ε |A|, and

the momentum uncertainty is determined by ε |B|.
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φ0(A, B, ~, a, η, x) = π−d/4 ~−d/4 (det(A))−1/2

× exp
{
− (x − a) · BA−1(x − a)/(2~) + iη · (x − a)/~

}
.

There are raising and lowering operators with the same

algebraic properties as with the Harmonic oscillator.

Define the Fourier Transform

(F~ f)(ξ) = (2π~)−d/2
∫
Rd

f(x) e−iξ·x/~ dx.

Then

(F~ φk(A, B, ~, a, η, ·))(ξ) = e−ia·η/~ φk(B, A, ~, η,−a, ξ).
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If V (X) is smooth and bounded below, then

eiS(t)/~ ∑
|k|≤K

ck φk(A(t), B(t), ~, a(t), η(t), X)

solves the time–dependent Schrödinger equation

i ~ ∂ψ

∂t
= − ~2

2
∆X ψ + V (X) ψ,

up to an O(~1/2) error.

Here ȧ(t) = η(t),

η̇(t) = − V (1)(a(t)),

Ȧ(t) = i B(t),

Ḃ(t) = i V (2)(a(t)) A(t),

Ṡ(t) =
η(t)2

2
− V (a(t)).
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If V (X) is quadratic, there is no error.

There are many generalizations of this result.

(Time dependent V ’s. Higher order in ~1/2. Approximations

with exp(−C/~) errors from optimal truncation.)

Faou, Gradinaru, and Lubich recently developed a

numerical algorithm for solving semiclassical time–dependent

Schrödinger equations that is based on these wave packets.

It scales very well as the space dimension and/or

the approximation order are increased.
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The Time–Dependent Born–Oppenheimer Approximation

Molecular Hamiltonians can be written as

H(ε) = − ε4

2
∆X + h(X),

where the electron Hamiltonian h(X) depends parametrically

on the nuclear configuration X.

We wish to find approximate solutions to

i ε2
∂Ψ

∂t
= H(ε) Ψ.
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Born–Oppenheimer Approximations treat the electrons and

nuclei separately, while respecting the coupling between them.

STEP 1. For each configuration X of the nuclei, solve the

electronic eigenvalue problem.

h(X) Φ(X, x) = E(X) Φ(X, x).

• The various different discrete eigenvalues E(X) that

depend continuously on X are called electron energy levels.

STEP 2. Use the semiclassical wave packets for the nuclei with

an electron energy level E(X) playing the role of the potential.
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Hypotheses

• Assume the resolvent of h(X) is smooth in X.

• Assume E(X) is a non–degenerate level for all X, and

let Φ(X) be an associated normalized eigenvector with

phase chosen so 〈Φ(X, ·), ∇XΦ(X, ·) 〉Hel
= 0.

• Solve the semiclassical equations of motion

ȧ(t) = η(t),

η̇(t) = − E(1)(a(t)),

Ȧ(t) = i B(t),

Ḃ(t) = i E(2)(a(t)) A(t),

Ṡ(t) =
η(t)2

2
− E(a(t)).
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Theorem 1 The time–dependent Schrödinger equation has a

solution of the form ΨN,ε(X, x, t) + errorN,ε,

where ΨN,ε(X, x, t) =
N∑

n=0

ψn,ε(X, x, t) εn

and ‖ errorN,ε ‖ ≤ CN εN+1, for t ∈ [0, T ].

The zeroth order term in the expansion is

ψ0,ε(X, x, t)

= eiS(t)/ε2 Φ(X, x)
∑

|k|≤K

ck φk(A(t), B(t), ε2, a(t), η(t), X),

where the ck and K are arbitrary.
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Theorem 2 Under analyticity assumptions on h(X), we can

choose N(ε) = O(ε−2), such that the Schrödinger equation has

a solution of the form ΨN(ε),ε + errorε,

where ‖ errorε ‖ ≤ C exp
(
− Γ

ε2

)
, for t ∈ [0, T ].

Furthermore, given any b > 0, this N(ε) can be chosen so that

there exist D and γ > 0, such that

∫
|X−a(t)|>b

∥∥∥ ΨN(ε),ε(X, x, t)
∥∥∥2Hel

dX ≤ D exp
(
− γ

ε2

)
.

11



Remarks

• Semiclassical wave packet techniques handle the nuclear motion.

• An adiabatic expansion handles the electronic states.

• We use the Method of Multiple Scales to separate semiclassical

terms from adiabatic terms in the perturbation calculations.

• The analog of Theorem 1 is proven for Coulomb potentials.

• Theorem 2 follows from Theorem 1 and the estimate

‖ errorN−1,ε ‖ ≤ α βN NN/2 εN by a simple calculation.

• The form of the error estimate in Theorem 2 is optimal.

Our approximation ignores tunnelling by the nuclei and

non–adiabatic transitions by the electrons.
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Remarks (continued)

• There are several other approaches. See, for example,

• C. Fermanian–Kammerer, P. Gérard.

• G. Panati, H. Spohn, S. Teufel.

• C. Lasser, C. Fermanian–Kammerer.

• A. Martinez, V. Sordoni.
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Exponentially Small Non–Adiabatic Transitions

We only have leading order results for small ε

when nuclei have 1 degree of freedom

and the electron Hamiltonian is an analytic n × n matrix.

Example that illustrates rigorous results

h(x) =
1

2

(
1 tanh(x)

tanh(x) −1

)
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Scattering with large negative t asymptotics

eiS(t)/ε2φk(A(t), B, ε2, a(t), η, x) Φup(x).
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What should we expect?

• The nuclei behave like classical particles (at least for small k).

• The electrons should feel a time–dependent Hamiltonian

h̃(t) =
1

2

(
1 tanh(a(t))

tanh(a(t)) −1

)
,

and we should simply use the Landau–Zener formula

to get the exponentially small transition probability.

• For η = 1, energy conservation predicts the momentum

after the transition to be 1.9566.
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This intuitive picture is wrong!

• The transition amplitude is larger than predicted.

• The momentum after the transition is larger than predicted.

Additional Surprises

• For incoming state φk, the nuclear wave function after the

transition is not what one might näıvely expect.

• The nuclear wavepacket after transition is a φ0.

• The transition amplitude is asymptotically of order

ε−k exp
(
−α/ε2

)
.
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Position space plot at time t = −10 of the probability density

for being on the upper energy level.
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Momentum space plot at time t = −10 of the probability density

for being on the upper energy level.
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Position space probability density at time t = 9.

Lower level plot is multiplied by 3 × 108.
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Lower level plot is multiplied by 3 × 108.
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Position space probability density at time t = −10.
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Momentum space probability density at time t = −10.
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Position space probability density at time t = 9.

Plot for the lower level has been multiplied by 107.
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Momentum space probability density at time t = 9.

Plot for the lower level has been multiplied by 107.
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What’s going on, and how do we analyze it?

• We expand Ψ(x, t) in generalized eigenfunctions of H(ε).

• We then do a WKB approximation of the generalized

eigenfunctions that is valid for complex x.

• We find that the Landau–Zener formula gives the correct

transition amplitude for each generalized eigenfunction.

This amplitude behaves roughly like exp

(
− C

|p| ε2
)

,

where p is the incoming momentum.

• So, higher momentum components of the wave function are

drastically more likely to experience a transition.

We get the correct result by using Landau–Zener for each p

and then averaging.
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Why do we always get a Gaussian?

• In the formulas, the extra shift in momentum occurs

in the exponent.

• In momentum space φk all have the same exponential factor.

The extra shift does not appear in the polynomial that

multiplies the exponential.

• For small ε, to leading order, the polynomial factor looks like

its largest order term near where the Gaussian is

concentrated in momentum.

•
(

p

ε

)k
exp

(
− (p − η)2

ε2

)
is approximately ε−k times a Gaussian

for η 6= 0.
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Molecular Propagation through Level Crossings

• There are many different types of crossings because of

symmetry considerations.

• Generic Minimal Multiplicity quantum mechanical crossings

occur on codimension 1, 2, 3, and 5 submanifolds.

• For codimension 1 crossings we have rigorous results

through order ε1.

• For higher codimension crossings we have rigorous results

through order ε0

• These results are obtained by using matched asymptotic

expansions.

• There are more recent approaches:

C. Fermanian–Kammerer, P. Gérard, C. Lasser, G.–L. Panati,

H. Spohn, S. Teufel, Y. Colin de Verdière.
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Codimension 1 Example

h(X) =

 X sin2(X) −X sin(X) cos(X)

−X sin(X) cos(X) X cos2(X)

 .

EA(X) = 0. EB(X) = X.

ΦA(X) =

(
cos(X)
sin(X)

)
. ΦB(X) =

(
− sin(X)
cos(X)

)
.

i ε2
∂Ψ

∂t
= − ε4

2

∂2Ψ

∂X2
+ h(X) Ψ.

Incoming Outer Solution

ei η2
0 t/(2ε2) φ0(1 + i t, 1, ε2, η0 t, η0, X) ΦA(X) + O

(
ε2

)
.
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Inner Solution

Rewrite the Schrödinger equation in terms of rescaled variables

s = t/ε and Y = (X − η0 t)/ε. Expand formally for small ε.

Ψ(X, t) = ei η2
0 t/(2ε2) φ0(1 + i t, 1, ε2, η0 t, η0, X) ΦA(X)

+ ε η0

( ∫ s+Y/η0

−∞
eiη0r2/2 dr

)

× ei SB(t)/ε2 φ0(A
B(t), BB, ε2, aB(t), ηB(t), X) ΦB(X)

+ O
(
ε1+δ

)

Here,

SB(t) = η2
0 t/2 − η0 t2 + t3/3, AB(t) = 1 + (i + 1/η0) t,

BB(t) = 1 − i/η0, aB(t) = η0 t − t2/2, and ηB(t) = η0 − t.
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Outgoing Outer Solution

Ψ(X, t) = ei η2
0 t/(2ε2) φ0(1 + i t, 1, ε2, η0 t, η0, X) ΦA(X)

+ ε (1 + i) π1/2 η
1/2
0

× ei SB(t)/ε2 φ0(A
B(t), BB, ε2, aB(t), ηB(t), X) ΦB(X)

+ O
(
ε1+δ

)
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Codimension 2 Example

h(X) =

 X1 X2

X2 −X1

 .

EA(X) = − (X2
1 + X2

2)1/2. EB(X) = (X2
1 + X2

2)1/2.

ΦA(X) =

 − sin(θ/2)

cos(θ/2)

 , ΦB(X) =

 cos(θ/2)

sin(θ/2)

.

where θ = tan−1(X2/X1) with − π
2 ≤ θ ≤ 3π

2 .

i ε2
∂Ψ

∂t
= − ε4

2

(
∂2Ψ

∂X2
1

+
∂2Ψ

∂X2
2

)
+ h(X) Ψ.
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Incoming Outer Solution

ei SA(t)/ε2 φ0(A
A(t), BA(t), ε2, aA(t), ηA(t), X) ΦA(X) + O

(
ε2

)
.

aA(t) =

 η0 t − t2/2

0

 , ηA(t) =

(
η0 − t

0

)
,

SA(t), AA(t), BA(t) fairly complicated, but AA(0) = I.

Inner Solution

Rescale : s = t/ε, Y1 = (X1 − η0 t)/ε, Y2 = X2/ε.

In the new variables, the leading order inner solution can be written

explicitly in terms of parabolic cylinder functions of complex

order and complex argument.
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Outgoing Outer Solution

ei SA(t)/ε2
∑
k

ck φk(A
A(t), BA(t), ε2, aA(t), ηA(t), X) ΦA(X)

+ ei SB(t)/ε2 φ0(A
B(t), BB(t), ε2, aB(t), ηB(t), X) ΦB(X) + O

(
εδ

)
.

aA(t) =

 η0 t + t2/2

0

 , ηA(t) =

(
η0 + t

0

)
,

aB(t) =

 η0 t − t2/2

0

 , ηB(t) =

(
η0 − t

0

)
,

Probability that the system moves to the upper surface is

( 1 + π/η0 )1/2 + O
(
εδ

)
.
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              Avoided Crossings



Results for Codimension 2 Avoided Crossings
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