The Time–Dependent Born–Oppenheimer Approximation, Crossings, Avoided Crossings, and Some Non-Adiabatic Transitions

George A. Hagedorn

Department of Mathematics, and Center for Statistical Mechanics, Mathematical Physics and Theoretical Chemistry Virginia Tech Blacksburg, Virginia 24061–0123 USA

hagedorn@math.vt.edu Nice Quantum Chemistry Workshop 14 Nov. 2008

Outline

- 1. Semiclassical Wave Packets
- 2. The Time–Dependent Born–Oppenheimer Approximation
- 3. Exponentially Small Non–Adiabatic Scattering Transitions
- 4. Propagation Through Level Crossings and Avoided Crossings

Semiclassical Wave Packets

To state time–dependent results in their most explicit form, we need to discuss semiclassical wave packets $\phi_k(A, B, \hbar, a, \eta, x).$

- These are generalizations of Harmonic oscillator states.
- They coincide with generalized squeezed states.
- In the molecular context, \hbar will be ϵ^2 .

 $\set{\phi_k(A, B, \hbar, a, \eta, x)}$ is an orthonormal basis of $L^2(\mathbb{R}^d)$ as k ranges over $d\!\!-\!\!$ dimensional multi $\!-$ indices.

- $a \in \mathbb{R}^d$ represents a classical position.
- $\eta \in \mathbb{R}^d$ represents a classical momentum.
- A and B are complex invertible $d \times d$ matrices that satisfy $A^tB - B^tA = 0$ and $A[*]B + B[*]A = 2I$. The position uncertainty is determined by $\epsilon\,|A|$, and the momentum uncertainty is determined by $\,\,\epsilon\,|B|.$

$$
\phi_0(A, B, \hbar, a, \eta, x) = \pi^{-d/4} \; \hbar^{-d/4} \; (\det(A))^{-1/2}
$$

$$
\times \; \exp \left\{ -(x - a) \cdot BA^{-1} (x - a)/(2\hbar) + i \eta \cdot (x - a)/\hbar \right\}.
$$

There are raising and lowering operators with the same algebraic properties as with the Harmonic oscillator.

Define the Fourier Transform

$$
(\mathcal{F}_{\hbar} f)(\xi) = (2\pi \hbar)^{-d/2} \int_{\mathbb{R}^d} f(x) e^{-i\xi \cdot x/\hbar} dx.
$$

Then

$$
(\mathcal{F}_{\hbar} \phi_k(A, B, \hbar, a, \eta, \cdot))(\xi) = e^{-ia \cdot \eta/\hbar} \phi_k(B, A, \hbar, \eta, -a, \xi).
$$

If $\ V(X)$ is smooth and bounded below, then

$$
e^{iS(t)/\hbar}\sum_{|k|\leq K}\;c_k\;\phi_k(A(t),B(t),\hbar,a(t),\eta(t),X)
$$

solves the time-dependent Schrödinger equation

$$
i \hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2} \Delta_X \psi + V(X) \psi,
$$

up to an $O(\hbar^{1/2})$ error.

Here

$$
\dot{a}(t) = \eta(t), \n\dot{\eta}(t) = -V^{(1)}(a(t)), \n\dot{A}(t) = i B(t), \n\dot{B}(t) = i V^{(2)}(a(t)) A(t), \n\dot{S}(t) = \frac{\eta(t)^2}{2} - V(a(t)).
$$

If $\ V(X)$ is quadratic, there is no error.

There are many generalizations of this result. (Time dependent V's. Higher order in $\hbar^{1/2}$. Approximations with $\, \exp(-C/\hbar) \,$ errors from optimal truncation.)

Faou, Gradinaru, and Lubich recently developed ^a numerical algorithm for solving semiclassical time–dependent Schrödinger equations that is based on these wave packets.

It scales very well as the space dimension and/or the approximation order are increased.

The Time–Dependent Born–Oppenheimer Approximation

Molecular Hamiltonians can be written as

$$
H(\epsilon) = -\frac{\epsilon^4}{2} \Delta_X + h(X),
$$

where the electron Hamiltonian $h(X)$ depends parametrically on the nuclear configuration $X.$

We wish to find approximate solutions to

$$
i \epsilon^2 \frac{\partial \Psi}{\partial t} = H(\epsilon) \Psi.
$$

Born–Oppenheimer Approximations treat the electrons and nuclei separately, while respecting the coupling between them.

STEP 1. For each configuration X of the nuclei, solve the electronic eigenvalue problem.

$$
h(X) \Phi(X, x) = E(X) \Phi(X, x).
$$

 \bullet The various different discrete eigenvalues $E(X)$ that depend continuously on X are called electron energy levels.

STEP 2. Use the semiclassical wave packets for the nuclei with an electron energy level $E(X)$ playing the role of the potential.

Hypotheses

- \bullet Assume the resolvent of $h(X)$ is smooth in $X.$
- \bullet Assume $E(X)$ is a non–degenerate level for all X , and let $\Phi(X)$ be an associated normalized eigenvector with phase chosen so $\langle \Phi(X, \cdot), \nabla_X \Phi(X, \cdot) \rangle_{\mathcal{H}_{\rho}} = 0.$
- Solve the semiclassical equations of motion

$$
\dot{a}(t) = \eta(t), \n\dot{\eta}(t) = -E^{(1)}(a(t)), \n\dot{A}(t) = i B(t), \n\dot{B}(t) = i E^{(2)}(a(t)) A(t), \n\dot{S}(t) = \frac{\eta(t)^2}{2} - E(a(t)).
$$

Theorem 1 The time–dependent Schrödinger equation has a solution of the form $\Psi_{N,\epsilon}(X, x, t)$ + $error_{N,\epsilon}$,

where
$$
\Psi_{N,\epsilon}(X, x, t) = \sum_{n=0}^{N} \psi_{n,\epsilon}(X, x, t) \epsilon^n
$$

and $\|error_{N,\epsilon}\| \leq C_N \epsilon^{N+1}$, for $t \in [0, T]$.

The zeroth order term in the expansion is

 $\psi_{0,\epsilon}(X,\,x,\,t)$ = $\qquad \qquad = \quad e^{iS(t)/\epsilon^2} \quad \Phi(X,x) \quad \sum \quad c_k \ \phi_k(A(t),B(t),\epsilon^2,a(t),\eta(t),X),$ $|k| \leq K$

where the c_k and K are arbitrary.

Theorem 2 Under analyticity assumptions on $h(X)$, we can choose $N(\epsilon) = O(\epsilon^{-1})$ 2), such that the Schrödinger equation has a solution of the form $\qquad\qquad\mathsf{\Psi}_{N(\epsilon),\epsilon}\quad +\quad\emph{error}_{\epsilon},$ where $\quad \parallel error_{\epsilon} \parallel \quad \leq \quad C$ exp $\left(\right)$ − Γ $\left(\frac{1}{\epsilon^2}\right)$, for $t~\in~[0,\,T].$

Furthermore, given any $b>0$, this $N(\epsilon)$ can be chosen so that there exist D and $\gamma > 0$, such that

$$
\int_{|X-a(t)|>b} \ \Big\| \, \Psi_{N(\epsilon),\epsilon}(X,x,t) \, \Big\|_{\mathcal{H}_{\Theta}}^2 \ dX \quad \leq \quad D \ \exp\Big(-\frac{\gamma}{\epsilon^2}\Big) \, .
$$

Remarks

- Semiclassical wave packet techniques handle the nuclear motion.
- An adiabatic expansion handles the electronic states.
- We use the Method of Multiple Scales to separate semiclassical terms from adiabatic terms in the perturbation calculations.
- The analog of Theorem 1 is proven for Coulomb potentials.
- Theorem 2 follows from Theorem 1 and the estimate $\|error_{N-1,\epsilon} \| \leq \alpha \beta^N N^{N/2} \epsilon^N$ by a simple calculation.
- The form of the error estimate in Theorem 2 is optimal. Our approximation ignores tunnelling by the nuclei and non–adiabatic transitions by the electrons.

Remarks (continued)

- There are several other approaches. See, for example,
	- C. Fermanian–Kammerer, P. Gérard.
	- G. Panati, H. Spohn, S. Teufel.
	- C. Lasser, C. Fermanian–Kammerer.
	- A. Martinez, V. Sordoni.

Exponentially Small Non–Adiabatic Transitions

We only have leading order results for small ϵ when nuclei have 1 degree of freedom and the electron Hamiltonian is an analytic $n\times n$ matrix.

Example that illustrates rigorous results

$$
h(x) = \frac{1}{2} \left(\begin{array}{cc} 1 & \tanh(x) \\ \tanh(x) & -1 \end{array} \right)
$$

Scattering with large negative t asymptotics

 $e^{iS(t)/\epsilon^2}$ $\phi_k(A(t),B,\epsilon^2)$ $, a(t), \eta, x) \; \Phi_\mathsf{up}(x).$

What should we expect?

- \bullet The nuclei behave like classical particles (at least for small k).
- The electrons should feel ^a time–dependent Hamiltonian

$$
\widetilde{h}(t) \;=\; \frac{1}{2}\,\left(\begin{array}{cc}1 & \text{tanh}(a(t))\\ \text{tanh}(a(t)) & -1\end{array}\right),
$$

and we should simply use the Landau–Zener formula to get the exponentially small transition probability.

 \bullet For $\eta=1$, energy conservation predicts the momentum after the transition to be 1.9566.

This intuitive picture is wrong!

- The transition amplitude is larger than predicted.
- The momentum after the transition is larger than predicted.

Additional Surprises

- \bullet For incoming state ϕ_k , the nuclear wave function after the transition is not what one might naïvely expect.
	- \bullet The nuclear wavepacket after transition is a $\phi_{\mathsf{O}}.$
	- The transition amplitude is asymptotically of order

$$
\epsilon^{-k} \exp(-\alpha/\epsilon^2).
$$

Position space plot at time $t = -10$ of the probability density for being on the upper energy level.

Momentum space plot at time $t = -10$ of the probability density for being on the upper energy level.

Position space probability density at time $t = 9$. Lower level plot is multiplied by 3×10^8 .

Momentum space probability density at time $t = 9$. Lower level plot is multiplied by 3×10^8 .

Position space probability density at time $t = -10$.

Momentum space probability density at time $t = -10$.

Position space probability density at time $t = 9$. Plot for the lower level has been multiplied by 10^7 .

Momentum space probability density at time $t = 9$. Plot for the lower level has been multiplied by 10^7 .

What's going on, and how do we analyze it?

- We expand $\Psi(x,\,t)$ in generalized eigenfunctions of $H(\epsilon).$
- We then do ^a WKB approximation of the generalized eigenfunctions that is valid for complex $x.$
- We find that the Landau–Zener formula gives the correct transition amplitude for each generalized eigenfunction. This amplitude behaves roughly like $\left(\begin{array}{c} 1 \ 1 \end{array}\right)$ − $\, C \,$ $|p| \, \epsilon^2$) $"$)
) where p is the incoming momentum.
- So, higher momentum components of the wave function are drastically more likely to experience ^a transition. We get the correct result by using Landau–Zener for each p and then averaging.

Why do we always get ^a Gaussian?

- In the formulas, the extra shift in momentum occurs in the exponent.
- In momentum space ϕ_k all have the same exponential factor. The extra shift does not appear in the polynomial that multiplies the exponential.
- For small ϵ , to leading order, the polynomial factor looks like its largest order term near where the Gaussian is concentrated in momentum.

•
$$
\left(\frac{p}{\epsilon}\right)^k \exp\left(-\frac{(p-\eta)^2}{\epsilon^2}\right)
$$
 is approximately ϵ^{-k} times a Gaussian
for $\eta \neq 0$.

FIG. 2. Potential-Energy Curves for H_2 , H_2 , and H_2 ⁺ A large-scale pullout of this drawing appears at the front of this issue In general 1so has been omitted from stat

Molecular Propagation through Level Crossings

- There are many different types of crossings because of symmetry considerations.
- Generic Minimal Multiplicity quantum mechanical crossings occur on codimension 1, 2, 3, and 5 submanifolds.
- For codimension 1 crossings we have rigorous results through order $\epsilon^1.$
- For higher codimension crossings we have rigorous results through order ϵ^{O}
- These results are obtained by using matched asymptotic expansions.
- There are more recent approaches:

C. Fermanian–Kammerer, P. Gérard, C. Lasser, G.–L. Panati,

H. Spohn, S. Teufel, Y. Colin de Verdière.

Codimension 1 Example

$$
h(X) = \begin{pmatrix} X \sin^2(X) & -X \sin(X) \cos(X) \\ -X \sin(X) \cos(X) & X \cos^2(X) \end{pmatrix}.
$$

\n
$$
E_{\mathcal{A}}(X) = 0. \qquad E_{\mathcal{B}}(X) = X.
$$

\n
$$
\Phi_{\mathcal{A}}(X) = \begin{pmatrix} \cos(X) \\ \sin(X) \end{pmatrix}.
$$

\n
$$
i \epsilon^2 \frac{\partial \Psi}{\partial t} = -\frac{\epsilon^4}{2} \frac{\partial^2 \Psi}{\partial X^2} + h(X) \Psi.
$$

Incoming Outer Solution

$$
e^{i\,\eta_0^2\,t/(2\epsilon^2)}\,\phi_0(1+i\,t,\,1,\,\epsilon^2,\,\eta_0\,t,\,\eta_0,\,X)\,\,\Phi_{\mathcal{A}}(X)\,\,+\,\,O\left(\epsilon^2\right).
$$

Inner Solution

Rewrite the Schrödinger equation in terms of rescaled variables $s = t/\epsilon$ and $Y = (X - \eta_0 t)/\epsilon$. Expand formally for small ϵ .

$$
\Psi(X, t) = e^{i \eta_0^2 t/(2\epsilon^2)} \phi_0(1 + it, 1, \epsilon^2, \eta_0 t, \eta_0, X) \Phi_A(X)
$$

+ $\epsilon \eta_0 \left(\int_{-\infty}^{s + Y/\eta_0} e^{i \eta_0 r^2/2} dr \right)$
 $\times e^{i S^{\mathcal{B}}(t)/\epsilon^2} \phi_0(A^{\mathcal{B}}(t), B^{\mathcal{B}}, \epsilon^2, a^{\mathcal{B}}(t), \eta^{\mathcal{B}}(t), X) \Phi_B(X)$
+ $O(\epsilon^{1+\delta})$

Here,

$$
S^{\mathcal{B}}(t) = \eta_0^2 t/2 - \eta_0 t^2 + t^3/3, \qquad A^{\mathcal{B}}(t) = 1 + (i + 1/\eta_0) t,
$$

$$
B^{\mathcal{B}}(t) = 1 - i/\eta_0, \quad a^{\mathcal{B}}(t) = \eta_0 t - t^2/2, \text{ and } \eta^{\mathcal{B}}(t) = \eta_0 - t.
$$

Outgoing Outer Solution

$$
\Psi(X, t) = e^{i \eta_0^2 t/(2\epsilon^2)} \phi_0(1 + it, 1, \epsilon^2, \eta_0 t, \eta_0, X) \Phi_A(X)
$$

+ $\epsilon (1 + i) \pi^{1/2} \eta_0^{1/2}$
 $\times e^{i S^B(t)/\epsilon^2} \phi_0(A^B(t), B^B, \epsilon^2, a^B(t), \eta^B(t), X) \Phi_B(X)$
+ $O(\epsilon^{1+\delta})$

Codimension 2 Example

$$
h(X) = \left(\begin{array}{cc} X_1 & X_2 \\ X_2 & -X_1 \end{array}\right).
$$

 $E_{\mathcal{A}}(X) =$ $- (X_1^2$ $x_1^2 + x_2^2$ $E_{\mathcal{B}}(X) = (X_1^2)$ $x_1^2 + x_2^2$ $\binom{2}{2}$ ^{1/2}.

$$
\Phi_{\mathcal{A}}(X) = \begin{pmatrix} -\sin(\theta/2) \\ \cos(\theta/2) \end{pmatrix}, \qquad \Phi_{\mathcal{B}}(X) = \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{pmatrix}.
$$

where $\theta = \tan^{-1}(X_2/X_1)$ with − π $\frac{\pi}{2} \leq \theta \leq \frac{3\pi}{2}$ 2 .

$$
i \epsilon^2 \frac{\partial \Psi}{\partial t} = -\frac{\epsilon^4}{2} \left(\frac{\partial^2 \Psi}{\partial X_1^2} + \frac{\partial^2 \Psi}{\partial X_2^2} \right) + h(X) \Psi.
$$

Incoming Outer Solution

$$
e^{i S^{\mathcal{A}}(t)/\epsilon^{2}} \phi_{0}(A^{\mathcal{A}}(t), B^{\mathcal{A}}(t), \epsilon^{2}, a^{\mathcal{A}}(t), \eta^{\mathcal{A}}(t), X) \Phi_{\mathcal{A}}(X) + O(\epsilon^{2}).
$$

$$
a^{\mathcal{A}}(t) = \begin{pmatrix} \eta_{0} t - t^{2}/2 \\ 0 \end{pmatrix}, \qquad \eta^{\mathcal{A}}(t) = \begin{pmatrix} \eta_{0} - t \\ 0 \end{pmatrix},
$$

$$
S^{\mathcal{A}}(t), \quad A^{\mathcal{A}}(t), \quad B^{\mathcal{A}}(t) \quad \text{fairly complicated, but } A^{\mathcal{A}}(0) = I.
$$

Inner Solution

Rescale:
$$
s = t/\epsilon
$$
, $Y_1 = (X_1 - \eta_0 t)/\epsilon$, $Y_2 = X_2/\epsilon$.

In the new variables, the leading order inner solution can be written explicitly in terms of parabolic cylinder functions of complex order and complex argument.

Outgoing Outer Solution

$$
e^{i S^{\mathcal{A}}(t)/\epsilon^2} \sum_{k} c_k \phi_k(A^{\mathcal{A}}(t), B^{\mathcal{A}}(t), \epsilon^2, a^{\mathcal{A}}(t), \eta^{\mathcal{A}}(t), X) \Phi_{\mathcal{A}}(X)
$$

+ $e^{i S^{\mathcal{B}}(t)/\epsilon^2} \phi_0(A^{\mathcal{B}}(t), B^{\mathcal{B}}(t), \epsilon^2, a^{\mathcal{B}}(t), \eta^{\mathcal{B}}(t), X) \Phi_{\mathcal{B}}(X) + O(\epsilon^{\delta}).$

$$
a^{\mathcal{A}}(t) = \begin{pmatrix} \eta_0 t + t^2/2 \\ 0 \end{pmatrix}, \qquad \eta^{\mathcal{A}}(t) = \begin{pmatrix} \eta_0 + t \\ 0 \end{pmatrix},
$$

$$
a^{\mathcal{B}}(t) = \begin{pmatrix} \eta_0 t - t^2/2 \\ 0 \end{pmatrix}, \qquad \eta^{\mathcal{B}}(t) = \begin{pmatrix} \eta_0 - t \\ 0 \end{pmatrix},
$$

Probability that the system moves to the upper surface is

$$
(1 + \pi/\eta_0)^{1/2} + O(\epsilon^{\delta}).
$$

Avoided Crossings

Results for Codimension 2 Avoided Crossings

