

Laboratoire de Chimie Quantique

Institut de Chimie - UMR 7177 CNRS/ULP 4, rue Blaise Pascal - F 67000 Strasbourg Professeur Roberto Marquardt 0(033)3.90.24.13.07 (direct) 0(033)3.90.24.15.89 (fax) roberto.marquardt@chimie.u-strasbg.fr

> Global analytical potential energy surfaces: Searching for symmetry adapted functional forms

<u>Outline</u>

- 1) General concepts
- 2) Analytical Forms for XY_n type of molecules
- 3) Application to CH_4 and NH_3
- 4) Analytical Forms for adsorption processes $\mathsf{AB}\to\mathsf{AB}/\mathsf{M}$

Martin Quack, Fabio Mariotti, ETHZ

Kenneth Sagui, Marne-la-Vallée

David Luckhaus, UBC

Jinjing Zheng, Walter Thiel, Sergei Yurchenkov, MPI Mühlheim/Ruhr

Evert Jan Baerends, Vrije Universiteit Amsterdam

Roar A. Olsen, Leiden University (new address as from Sep 2008: Akershus University College, Norway)

<u>Methods</u>

ab initio calculation:

CASPT2, CCSD(T), MRCI, DFT

Dynamics:

$$\Psi(t, \boldsymbol{r}) = \sum_{n}^{N} \underbrace{b_{n}(t)}_{\text{time}} \underbrace{\Phi_{n}(\boldsymbol{r})}_{\text{space}}$$

$$\boldsymbol{b}(t) \;=\; \boldsymbol{U}(t,t_0) \; \boldsymbol{b}(t_0)$$

 $\Phi_n(\boldsymbol{r})$: spectroscopic states

Analytical PES criteria

choice of coordinates

Examples:

coordinates for dynamical calculations unique description of configuration space representation of kinetic energy

- cartesian coordinates of position vectors (*x*)
 - normal coordinates
 - Jacobi or Radau type of coordinates

coordinates for PES representation related to interatomic interactions symmetry advantage (permutation-inversion)

- Examples: interatomic distances (r_{ij})
 - valence bond elongation and angles

necessarily analytically related: $r_{ij}(oldsymbol{x})$ exists for all $oldsymbol{x}$

 $(oldsymbol{x}(r_{ij}) \ \underline{\mathsf{does not}} \ \mathsf{exist} \ \mathsf{for all} \ r_{ij})$

PES as positive definite sum of stretching and bending potentials

$$V = \underbrace{V_{s(XY)} + V_{s(YY)}}_{\text{two-body terms}} + \underbrace{V_{b(YXY)}}_{\text{three-body terms}}$$

reference energy at stable equilibrium molecular structure

Stretching potentials

$$V_{s(XY)} = \sum_{i=1}^{n} v_{s(XY)}(r_i)$$

$$V_{s(YY)} = \sum_{i>j=1}^{n} v_{s(YY)}(r_{ij})$$

$$v_s(r) = \frac{1}{2} f_s \left(\frac{1 - \exp(-a_s[r - r_e])}{a_s} \right)^2 \left(1 + \sum_n \epsilon_n \exp(-\left(\frac{r_n}{r}\right)^n) \right)^2$$

Г

Marquardt and Quack, JCP 109 (1998)

Switching upon bond dissociation

$$V_{s(XY)} = \sum_{i=1}^{n} \underbrace{f_s, a_s, r_e, \dots}_{v_{s(XY)}(r_i)} \quad (XY_n)$$

$$V_{s(XY)} \stackrel{r_n \to \infty}{=} \sum_{i=1}^{n-1} \underbrace{v_{s(XY)}(r_i)}_{f'_r, a'_s, r'_e, \dots} + D_e \qquad (\mathsf{XY}_{\mathsf{n}-1})$$

parameters are smoothly varying functions of bond distances $p=p(r_1,r_2,\ldots)$

$$p' = p(\ldots, r_k \to \infty, \ldots)$$

Bending potentials

$$V_b(\alpha) = \frac{1}{2} f_b(\alpha - \alpha_e)^2$$

$$X \stackrel{\bigcirc Y_i}{\longleftarrow} Y_j$$

$$\Rightarrow V_b(\alpha) = \frac{1}{2} f_b(\alpha - \alpha_e)^2 + \sum_{k \ge 3} a_{b_k} (\alpha - \alpha_e)^k$$

Ensure positive definiteness ?

$$\Rightarrow V_b(\alpha) = \frac{1}{2} f_b \left(\underbrace{\sum_{k=1}^K a_{b_k}(\alpha - \alpha_e)^k}_{\text{polynomial expansion}} \right)^2 \stackrel{\alpha \to \alpha_e}{\approx} \frac{1}{2} f_b(\alpha - \alpha_e)^2$$

Bending hypersurfaces in polyatomic molecules ?

idea: use polynomial expansions of symmetry adapted forms

suppose bending space is reducible in irreductible representations $1, 2, \ldots$ in the equilibrium structure point group symmetry

$$V_b = \frac{1}{2} f_{b_1} \left(\sum_{k=1}^K a_{b_k}^{(1)} s_k^{(1)} \right)^2 + \frac{1}{2} f_{b_2} \left(\sum_{k=1}^K a_{b_k}^{(2)} s_k^{(2)} \right)^2 + \dots$$

symmetry adapted forms $s_k^{(i)}$ from reduction in the tensor spaces

Example 1 The bending space of NH_3 is 3D and at k = 4, a 81D space must be reduced. Result of the reduction is

$$4 \mathsf{A}_1 \oplus \mathsf{A}_2 \oplus 5 \mathsf{E}$$

spanning a 15D space of non-vanishing expressions.

E-forms of power 4 that might be obtained are

$$\mathbf{s}_{4_{4}}^{(\mathsf{E})} = \begin{cases} s_{4_{4}}^{(\mathsf{E})}(a) = s_{1}^{(\mathsf{E})}(a)^{4} - s_{1}^{(\mathsf{E})}(b)^{4} \\ s_{4_{4}}^{(\mathsf{E})}(b) = -2s_{1}^{(\mathsf{E})}(a)^{3}s_{1}^{(\mathsf{E})}(b) - 2s_{1}^{(\mathsf{E})}(a)s_{1}^{(\mathsf{E})}(b)^{3} \\ s_{4_{5}}^{(\mathsf{E})} = \begin{cases} s_{4_{5}}^{(\mathsf{E})}(a) = s_{1}^{(\mathsf{E})}(a)^{4} - 6s_{1}^{(\mathsf{E})}(a)^{2}s_{1}^{(\mathsf{E})}(b)^{2} + s_{1}^{(\mathsf{E})}(b)^{4} \\ s_{4_{5}}^{(\mathsf{E})}(b) = 4s_{1}^{(\mathsf{E})}(a)^{3}s_{1}^{(\mathsf{E})}(b) - 4s_{1}^{(\mathsf{E})}(a)s_{1}^{(\mathsf{E})}(b)^{3} \\ s_{4_{5}}^{(\mathsf{E})}(b) = 4s_{1}^{(\mathsf{E})}(a)^{3}s_{1}^{(\mathsf{E})}(b) - 4s_{1}^{(\mathsf{E})}(a)s_{1}^{(\mathsf{E})}(b)^{3} \\ \end{cases}$$

Marquardt et al, JPC 109 (2005)

Example 2 The bending space of CH_4 is 6D and at k = 3, a 216D space must be reduced. Result of the reduction is

```
6 \mathsf{A}_1 \oplus 2 \mathsf{A}_2 \oplus 6 \mathsf{E} \oplus 8 \mathsf{F}_1 \oplus 4 \mathsf{F}_2
```

spanning a 56D space of non-vanishing expressions of power 3.

Complete reduction studies are necessary in order to guarantee maximum flexibility at a given expansion order.

Reduction may become very tedious in high dimensional spaces.

This lead to the development of a fully automatic, fully symbolic computer algebra program using MAPLE.

Marquardt and Sagui, Mol. Phys. 105 (2007)

Levenberg-Marquardt algorithm to minimize $\chi^2 = \sum_i \; (V^{\rm real}_i - V^{\rm model}_i)^2$

Extended algorithm to minimize $\chi^2 + \sum_k \lambda_k C_k$

(Marquardt and Quack, JCP 109 (1998))

 C_k : additional non-linear conditions.

Example 1: XY bond dissociation energy

$$C = \underbrace{\frac{f_s}{2 a_s^2} \left(1 + \sum_n \epsilon_n\right)^2}_{D_e} - D_e^{\text{"exp}''}$$

Example 2: NH_2 barrier to linearity in the asymptotic limit $NH_2 + H$ (Renner-Teller problem).

The analytical expression for the barrier height is

$$E_{\text{barr}}(\text{NH}_2) = \text{Fb1}_2 \left[\frac{1}{3} \text{ AB1}_{1,1,2} (-1 - \text{ ce } 2) \sqrt{3} + \frac{1}{3} \text{ AB1}_{2,1,2} (-1 - \text{ ce } 2)^2 + \frac{2}{3} \text{ AB1}_{2,2,2} (-1 - \text{ ce } 2)^2 + \frac{1}{9} \text{ AB1}_{3,1,2} (-1 - \text{ ce } 2)^3 \sqrt{3} + \frac{2}{9} \text{ AB1}_{3,2,2} (-1 - \text{ ce } 2)^3 \sqrt{3} + \frac{2}{9} \text{ AB1}_{3,3,2} (-1 - \text{ ce } 2)^3 \sqrt{6} + \frac{1}{9} \text{ AB1}_{4,1,2} (-1 - \text{ ce } 2)^4 + \frac{2}{9} \text{ AB1}_{4,2,2} (-1 - \text{ ce } 2)^4 + \frac{2}{27} \text{ AB1}_{4,3,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{3} + \frac{4}{9} \text{ AB1}_{4,4,2} (-1 - \text{ ce } 2)^4 \right]^2 \\ + \text{Fb2}_2 \left[\left(-\frac{1}{6} \text{ AB2}_{1,1,2} (-1 - \text{ ce } 2) \sqrt{6} - \frac{1}{18} \text{ AB2}_{2,1,2} (-1 - \text{ ce } 2)^2 \sqrt{6}\sqrt{3} - \frac{1}{6} \text{ AB2}_{2,2,2} (-1 - \text{ ce } 2)^2 - \frac{1}{18} \text{ AB2}_{3,1,2} (-1 - \text{ ce } 2)^3 \sqrt{6} - \frac{1}{18} \text{ AB2}_{3,2,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{3} - \frac{1}{16} \text{ AB2}_{3,2,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{3} - \frac{1}{19} \text{ AB2}_{3,3,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{3} - \frac{1}{18} \text{ AB2}_{4,1,2} (-1 - \text{ ce } 2)^4 - \frac{1}{27} \text{ AB2}_{4,3,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{3} - \frac{1}{9} \text{ AB2}_{3,3,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{3} - \frac{1}{18} \text{ AB2}_{4,2,2} (-1 - \text{ ce } 2)^4 - \frac{1}{27} \text{ AB2}_{4,3,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{3} - \frac{1}{9} \text{ AB2}_{4,4,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{3} - \frac{1}{16} \text{ AB2}_{2,1,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{3} - \frac{1}{18} \text{ AB2}_{4,2,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{3} - \frac{1}{12} \text{ AB2}_{2,2,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{3} - \frac{1}{9} \text{ AB2}_{3,1,2} (-1 - \text{ ce } 2)^3 \sqrt{2} - \frac{1}{16} \text{ AB2}_{2,1,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{2} - \frac{1}{9} \text{ AB2}_{3,1,2} (-1 - \text{ ce } 2)^3 \sqrt{2} - \frac{1}{18} \text{ AB2}_{4,1,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{2} - \frac{1}{9} \text{ AB2}_{4,3,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{2} - \frac{1}{9} \text{ AB2}_{4,3,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{2} - \frac{1}{9} \text{ AB2}_{4,3,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{2} - \frac{1}{9} \text{ AB2}_{4,3,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{2} - \frac{1}{9} \text{ AB2}_{4,3,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{2} - \frac{1}{9} \text{ AB2}_{4,3,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{2} \right]^2 \right] + \frac{1}{9} \text{ aB2}_{4,4,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{2} - \frac{1}{9} \text{ AB2}_{4,5,2} (-1 - \text{ ce } 2)^4 \sqrt{6}\sqrt{2} \right]^2 + \frac{1}{9} \text{ aB2$$

Applications: CH₄

Stretching potential

◊ ab initio data MR-SDCI

Marquardt and Quack, *J. Chem. Phys.* 109 (1998) Marquardt and Quack, *J. Phys. Chem. A* 108 (2004)

CH stretching potential in highly distorted CH_4

Marquardt and Quack, J. Phys. Chem. A 108 (2004)

21

Applications: NH_3

NH₃ dissociation channels (octade) $- - \operatorname{NH}_3({}^1A_1) \longrightarrow \operatorname{NH}({}^3\Sigma^-) + \operatorname{H}_2({}^1\Sigma_q^+),$ $\Delta_r H_0^{\circ} \approx 414 \text{ kJ mol}^{-1}$ ▓ःः₩ $- \mathsf{NH}_3({}^1A_1) \longrightarrow \mathsf{NH}_2({}^2B_1) + \mathrm{H}({}^2S_{(1/2)}),$ $\Delta_r H_0^{\circ} \approx 448 \text{ kJ mol}^{-1}$ $--- \operatorname{NH}_{3}(^{1}A_{1}) \longrightarrow \operatorname{NH}_{2}(^{2}A_{1}) + \operatorname{H}(^{2}S_{(1/2)}),$ $\Delta_r H_0^{\circ} \approx 590 \text{ kJ mol}^{-1}$ 0 2 3 r / (100 pm)

♦ singlet * triplet

4

5

Merging of CCSD(T) CBS (\diamond) and MR-CI VTZ (*) data

number of parameters

- *31 APOT3 Marquardt *et al JPC B* 109 (2005) global
 84 LTYCJ Lin *et al JCP* 117 (2002) semi-global
 91 LCH Leonard *et al CPL* 370 (2003) local
 812 RMH Rajamäki *et al JCP* 118 (2003) local
- * with 10 additional, non-linear conditions among these parameters

Vibrational term values NHD_2 (in cm⁻¹)

Sym	Levels	$Experiment^{[1]}$	Theory				
			$RMH^{[2]}$	$APOT2^{[3]}$	APOT4 ^[4]	APOT4 ^[5]	
A^-	(0) ^u	0.171	0.17	0.13	0.16	0.16	
A^+	$(2^{1})^{ }$	810.23	810.22	835.07	808.81	808.8 <mark>2</mark>	
A^-	$(2^{1})^{u}$	819.56	819.58	843.19	817.52	817.5 <mark>3</mark>	
A^+	$(4_a^1)^l$	1233.37	1233.11	1256.16	1234.29	1234. <mark>31</mark>	
A^-	$(\mathbf{4_a}^1)^{u}$	1235.89	1235.65	1258.30	1236.71	1236.7 <mark>3</mark>	
		÷	÷	÷		÷	
B^+	$(4_{b}^{1})^{I}$	1461.79	1461.57	1483.36	1461.48	1461.4 <mark>9</mark>	
B^-	$({\bf 4_b}^1)^{u}$	1461.99	1461.78	1483.47	1461.65	1461.65	
		:	:	:		:	
A^+	$(3_{a}^{1})^{I}$	2430.80	2430.11	2442.80	2435.43	2435.4 <mark>7</mark>	
A^-	$(3_{a}^{1})^{u}$	2434.62	2434.07	2443.98	2437.09	2437. <mark>13</mark>	
		÷	÷	:		÷	
B^+	$(3_{b}^{1})^{I}$	2559.81	2557.99	2553.08	2564.11	2564.1 <mark>5</mark>	
B^-	$(3_{b}^{1})^{u}$	2559.96	2558.14	2553.18	2564.22	2564.2 <mark>6</mark>	
		:				:	
A^-	$(1^{1})^{ }$	3404.24	3407.10^{e}	3399.59	3406.27	3406.2 <mark>4</mark>	
A^+	$(1^1)^{u}$	3404.32	3407.35 ^{<i>f</i>}	3403.31	3406.33	3406.3 <mark>0</mark>	
	× ,					i	

[1] S	onels <i>et a</i>	n/,		
~	J. Chem.	Phys.	119	(2003)

[2] Rajamäki *et al*,

J. Chem. Phys. 118 (2003)

[3] Marquardt *et al*,

J. Phys. Chem.B 109 (2005)

- [4] Marquardt *et al*, *to be pub*. calculation D. Luckhaus
- [5] Values MCTDH (F. Gatti)

CO/Cu(100) PES

essentially 6D problem: r, θ, ϕ, x, y, z

prototype system for (non-dissociative) adsorption processes, but only one analytical, semi-empirical PES representation:

Tully et al, J. Vac. Sci. Techn. A (1993)

cluster vs slab type calculations

zero coverage PES? lateral diffusion barrier? periodicity at Wigner-Seitz boundary?

Generic analytical forms AB/M: 2 body and 3 body potentials

 $V_{XM}(r) = D_{XM} \left[\exp(-2A_{XM}[r - R_{XM}]) - 2C_{XM} \exp(-A_{XM}[r - R_{XM}]) \right]$

 $r = r_{ABM}(n)$ $c = \cos(\theta_n)$

$$V_{\text{ABM}}(r,c) = D_{\text{ABM}} \sum_{\ell=0}^{N_{\text{leg}}} W_{\ell} P_{\ell}(c) R_{\ell}(r)$$

$$R_{\ell}(r) = \exp\left(-\left(\frac{R_{\text{ABM}}^{(\ell)}}{r}\right)^6\right) - 1$$

Some potential parameters vary *slowly* as a function of the positions x and y parallel to the substrate, and perpendincularly along z.

$$\begin{split} p(x,y) \ &= \ p_{\rm t} \ c(x) \ c(y) \\ &+ \ p_{\rm b} \ (c(x) \ s(y) + s(x) \ c(y)) \\ &+ \ p_{\rm h} \ s(x) \ s(y) \end{split}$$

$$c(x) = \cos^{2}(\frac{\pi x}{a})$$
$$s(x) = \sin^{2}(\frac{\pi x}{a})$$
$$= 1 - c(x)$$

a = Wigner Seitz lattice parameter

Discussion on the CO/Cu(100) PES

Lateral diffusion potential

- ◇, slab calculations ADF Becke-Perdew GGA, VWN-LDA TZIP basis Fouquet *et al*, J. Chem. Phys. 119 (2003)
 - X cluster calculations MOLPRO many different cluster sizes TH3 functional (Tozer and Handy) cc-pVTZ basis
- — Tully *et al*, *J. Vac. Sci. Techn. A* (1993)
- ---- representation from Tully *et al*, adjusted (this work)

Harmonic Vibrational Wavenumb	pers (in ${ m cm}^{-1}$)
-------------------------------	---------------------------

label	present work			Т	exp [3]	
	harmonic		harmonic[1]		anharmonic[2]	
CO stretch (A)	2066	2069	2179	2180	2150	2079
CO adsorption (A)	320	384	<i>3</i> 10	372	345	345
CO frust rot (E)	299	304	<i>3</i> 62	<i>3</i> 57	335	285
CO frust tra (E)	8	6	4	4	27	32

2nd row: inclusion of Cu vibrations

[1] Tully et al, J. Vac. Sci. Techn. A (1993)
[2] Tremblay et al, J. Chem. Phys. (2008)
[3] Graham et al, J. Chem. Phys. (1998)

Analytical, global representations of multidimensional PES are useful but still challenging.

Generic form of compact, global PES for XY_n due to new , unconventional functional forms. Important advantage of using symmetry.

CH₄ and NH₃ first global analytical PES from *ab initio* that (nearly) fulfills expectations regarding both spectroscopy and reaction dynamics.

CO/Cu(100) first global analytical PES from *ab initio*. Diffusion barrier agrees well with

experimental value after inclusion of zero point energy. Cluster type models insufficient for lateral potentials!