CONVIVIAL: a graphical user interface for performing vibrational mean field configuration interactions

<u>Yann BOURET</u> and <u>Patrick CASSAM-CHENAI</u> Laboratoire J. A. Dieudonné, Université de Nice-Sophia-Antipolis

Jacques LIÉVIN

Université Libre de Bruxelles

Nice, October 2009

The Vibrational Mean Field Configuration Interaction method

$$H = \sum_{i_1} h_1(Q_{i_1}, P_{i_1}) + \sum_{i_1, i_2} h_2(Q_{i_1}, P_{i_1}, Q_{i_2}, P_{i_2}) + \dots + h_n(Q_1, P_1, Q_2, P_2, \dots, Q_n, P_n)$$

Consider a partition of the *n* modes into *q* sets I_1, I_2, \dots, I_q , of respectively p_1, p_2, \dots, p_q modes,

 $(I_1, I_2, \cdots, I_q) = (\{i_1^1, i_2^1, \cdots, i_{p_1}^1\}, \{i_1^2, i_2^2, \cdots, i_{p_2}^2\}, \cdots, \{i_1^q, i_2^q, \cdots, i_{p_q}^q\}).$

For each contraction, I_j , we define a partial Hamiltonian,

$$H_j = \sum_{i_1 \in I_j} h_1(Q_{i_1}, P_{i_1}) + \sum_{\{i_1, i_2\} \subset I_j} h_2(Q_{i_1}, P_{i_1}, Q_{i_2}, P_{i_2}) + \dots + h_{p_j}(Q_{i_1^j}, P_{i_1^j}, Q_{i_2^j}, P_{i_2^j}, \dots, Q_{i_{p_j}^j}, P_{i_{p_j}^j}),$$

The mean-field equation for I_j is :

$$[H_{j} + \langle \prod_{I_{k} \neq I_{j}} \phi_{V_{k}}(Q_{i_{1}^{k}}, \cdots, Q_{i_{p_{k}}^{k}}) | H - H_{j} | \prod_{I_{k} \neq I_{j}} \phi_{V_{k}}(Q_{i_{1}^{k}}, \cdots, Q_{i_{p_{k}}^{k}}) \rangle - \epsilon_{j}] \Phi_{j} = 0$$

Particular cases

- The partition, $(\{1\}, \{2\}, \dots, \{n\})$, corresponds to the VSCF method.
- The partition, $(\{1, 2, \dots, n\})$, corresponds to the VCI method.

General case: example CH_4

Artefactual symmetry breaking in VSCF-based methods

Symmetry	Level	SPECTRO	MM-T	MM-M	Expt. [15]
A ₁	zpe	9625.83	9635.61	9633.45	
	$v_4(T)$	1304.24	1297.97	1298.13	1310.76
	$v_2(E)$	1523.49	1518.77	1518.84	1533.33
	$2v_4$	2599.73	2570.62	2568.16	2587.04
	$2v_4(T)$	2600.17	2595.21	2594.81	2614.26
	$2v_4(E)$	2600.21	2601.91	2601.93	2624.62
	-	2902.58	2915.33	2907.31	2916.48
	$\left(v_3(T) \right)$	2997.64	3013.25	(3008.70)	3019.49
	$2v_2$	3047.73	3034.38	3034.68	3063.65
	$2v_2(E)$	3053.93	3041.10	3041.19	3065.14
	$2v_1$	5781.65	5811.47	5781.59	5790.00
	$2v_3$	5936.79	5995.14	5985.21	5968.10
	$2v_3(T)$	5936.99	6038.48	6013.33	6004.60
	$2v_3(E)$	5966.74	6042.67	6032.57	6043.80
\mathbf{B}_2	$v_{4}(T)$	1306.33	1300.33	1300.43	1310.76
	$v_3(T)$	2998.51	3021.15	3016.64	3019.49
\mathbf{B}_1	$v_{4}(T)$	1306.31	1300.39	1300.49	1310.76
	$\left(v_{3}(T)\right)$	2998.61	3021.23	3016.59	3019.49
A_2	$v_2(E)$	1525.83	1521.31	1521.33	1533.33

Table 3

The calculations using MULTIMODE involve two distinct potentials: (i) Taylor expansion (MM-T) of the normal coordinates; (ii) Morse-like expansion (MM-M) of symmetric normal coordinates. Experimental values are included to demonstrate the good prediction of MM-M for the splitting of the overtones. The overtones from SPECTRO are not reliable (see text).

R. Burcl, S. Carter, N. C. Handy, Chem. Phys. Lett. **373**, 357-365 (2003).

VMFCI Convergence with the number of iterations

		Step 0	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
CMu_A	ν_1	8607.17	8562.01	8610.13	8599.51	8604.15	8602.97	8603.43
0 111 04	ν_1 ν_2	4301.54	4346.44	4303.40	4308.75	4304.61	4305.25	4304.85
	ν_2	9269.15	8434.91	8502.39	8430.60	8439.83	8433.05	8434.18
	ν_4	3279.51	3465.49	3407.24	3424.15	3418.05	3419.79	3419.17
CH_4	ν_1	297 2.15	297 1.39	2972.30	2972.2 1	2972.24	2972.24	2972.24
-	ν_2	$152\ 7.48$	$153 \ 4.05$	1532.21	1532.47	$1532.4 \ 0$	1532.41	1532.41
	ν_3	3 176.01	30 62.09	30 65.73	3061.53	3061.74	3061.5 8	3061.60
	ν_4	$12 \ 95.15$	132 0.08	$131 \ 7.25$	1318.18	$1318.0\ 6$	1318.1 0	1318.09
CD_4	ν_1	2113.93	2113.72	2114.00	2113.98	2113.98	2113.98	2113.98
	ν_2	1088.49	1091.96	1091.26	1091.36	1091.34	1091.35	1091.34
	ν_3	2343.19	2280.99	2282.47	2280.73	2280.80	2280.75	2280.75
	ν_4	989.36	1003.08	1001.93	1002.32	1002.28	1002.29	1002.29
CT_4	ν_1	1731.74	1731.65	1731.79	1731.78	1731.78	1731.78	1731.78
	ν_2	892.24	894.65	894.24	894.30	894.29	894.29	894.29
	ν_3	1996.59	1952.17	1953.05	1952.00	1952.04	1952.01	1952.01
	ν_4	851.69	861.39	860.70	860.93	860.91	860.91	860.91

Minimal symmetry preserving contraction scheme: $\{1\}^{n+1}, \{2,3\}^{n+1}, \{4,5,6\}^{n+1}\{7,8,9\}^{n+1}$, where *n* is the step number

A basis set of 10 HO has been used for each degree of vibration, with no truncation. The degree of vibration labelled by, 1, corresponds to the vibrational mode ν_1 , those labelled by 2 and 3 to the doubly degenerate mode ν_2 , 4, 5, 6 and 7, 8, 9, to the triply degenerate modes ν_3 and ν_4 , respectively

VMFCI versus traditional contractions

	Harmonic level	MSP-CI	MSP-VMFCI	MSP-VSCFCI	Converged
ν_4	1345	1356	1295	1318	1309
ν_2	1570	1567	1527	1532	1528
$2\nu_4$	2691	2714	2591	2638	2588
$2\nu_4$	2691	2719	2597	2643	2610
$2\nu_4$	2691	2719	2597	2643	2622
ν_1	3036	3013	2972	2972	2925
ν_3	3157	3214	3176	3062	3027
$2\nu_2$	3141	3131	3051	3061	3051
$2\nu_2$	3141	3134	3054	3064	3054
$3\nu_4$	4036	4079	3896	3966	3868
$3\nu_4$	4036	4087	3905	3974	3905
$3\nu_4$	4036	4088	3905	3974	3915
$3\nu_4$	4036	4088	3906	3974	3929
$3\nu_2$	4711	4694	4573	4588	4573
$3\nu_2$	4711	4699	4579	4594	4579
$3\nu_2$	4711	4699	4579	4594	4579

Wave numbers in cm^{-1} of the vibrational levels of methane calculated for different MSP-methods. MSP-CI goes in the wrong direction for modes 3 and 4 MSP-VSCFCI always go in the right direction and modes 1 and 2 are closer to the converged value than with MSP-CI. (HO modal basis set with quantum number less than 10. Order 0 rotational corrections).

Contraction-truncation effectiveness

The VMFCI equation is solved in the space spanned by product functions,

$$\phi_{V_j}(Q_{i_1}^j, \cdots, Q_{i_{p_j}}^j) = \prod_{i \in I_j} \phi_{v_i}(Q_i),$$

truncated on energy criteria.

Energies in cm^{-1} of the vibrational levels of ozone for different truncation schemes

		{1,2	2,3} truncated	d at:	$\{\{1,3\},\{2\}\}\$ truncated at:			
Ass.	irreps.	$5000 \ {\rm cm}^{-1}$	$7000 { m ~cm^{-1}}$	$9000 \ {\rm cm^{-1}}$	$5000 \ {\rm cm^{-1}}$	$7000 { m ~cm^{-1}}$	$9000 {\rm ~cm^{-1}}$	
ZPE	A1	1453.58	1453.54	1453.54	1453.54	1453.54	1453.54	
$0\ 1\ 0$	A1	698.87	698.84	698.82	698.83	698.82	698.82	
$0 \ 0 \ 1$	B1	1045.00	1044.27	1044.06	1044.06	1044.04	1044.04	
$1 \ 0 \ 0$	A1	1103.26	1102.61	1102.50	1102.51	1102.50	1102.50	
$0\ 2\ 0$	A1	1395.19	1395.08	1395.03	1395.13	1395.03	1395.02	
$0\ 1\ 1$	B1	1740.00	1726.86	1726.37	1726.62	1726.32	1726.30	
$1 \ 1 \ 0$	A1	1802.22	1793.84	1793.58	1793.72	1793.54	1793.53	
$0 \ 0 \ 2$	A1	2093.04	2063.51	2061.63	2061.62	2061.26	2061.25	
$0\ 3\ 0$	A1	2094.95	2088.80	2088.68	2088.87	2088.68	2088.66	
$1 \ 0 \ 1$	B1	2143.40	2114.68	2112.96	2112.80	2112.52	2112.51	
$2 \ 0 \ 0$	A1	2212.84	2200.47	2200.13	2200.37	2200.07	2200.06	

ZPE-lowering criterium

ZPE after 2-mode contractions for CH_2D_2 (**ZPE VSCF** 8460.04 cm^{-1})

$ \{\{1\}^{\infty}, \{2\}^{\infty}\} \\ 8459.91 $	$ \{\{1\}^{\infty}, \{3\}^{\infty}\} \\ 8459.74 $	$\begin{array}{c} \{\{1\}^{\infty},\{4\}^{\infty}\} \\ 8460.02 \end{array}$	$\begin{array}{c} \{\{1\}^{\infty}, \{5\}^{\infty}\} \\ 8459.81 \end{array}$	$ \{\{1\}^{\infty}, \{6\}^{\infty}\} \\ 8447.97 $	$\begin{array}{c} \{\{1\}^{\infty},\{7\}^{\infty}\} \\ 8459.85 \end{array}$
$\{\{1\}^{\infty}, \{8\}^{\infty}\}\ 8459.93$	$\{\{1\}^{\infty}, \{9\}^{\infty}\}\ 8458.98$	$ \{\{2\}^{\infty}, \{3\}^{\infty}\} \\ 8460.03 $	$\{\{2\}^{\infty}, \{4\}^{\infty}\}\ 8459.77$	$ \{\{2\}^{\infty}, \{5\}^{\infty}\} \\ 8460.03 $	$ \{\{2\}^{\infty}, \{6\}^{\infty}\} \\ 8460.00 $
$ \{\{2\}^{\infty}, \{7\}^{\infty}\} \\ 8459.82 $	$ \{\{2\}^{\infty}, \{8\}^{\infty}\} \\ 8453.51 $	$ \{\{2\}^{\infty}, \{9\}^{\infty}\} \\ 8460.04 $	$ \{\{3\}^{\infty}, \{4\}^{\infty}\} \\ 8460.03 $	$ \{\{3\}^{\infty}, \{5\}^{\infty}\} \\ 8460.01 $	$\{\{3\}^{\infty}, \{6\}^{\infty}\}\8459.83$
$\{\{3\}^{\infty},\{7\}^{\infty}\}\ 8459.93$	$ \{\{3\}^{\infty}, \{8\}^{\infty}\} \\ 8460.04 $	$ \{\{3\}^{\infty}, \{9\}^{\infty}\} \\ 8460.00 $	$ \{\{4\}^{\infty}, \{5\}^{\infty}\} \\ 8460.02 $	$ \{\{4\}^{\infty}, \{6\}^{\infty}\} \\ 8460.00 $	$ \{\{4\}^{\infty}, \{7\}^{\infty}\} \\ 8459.97 $
$ \{\{4\}^{\infty}, \{8\}^{\infty}\} \\ 8459.93 $	$ \{\{4\}^{\infty}, \{9\}^{\infty}\} \\ 8460.01 $	$\{\{5\}^{\infty}, \{6\}^{\infty}\}\ 8459.99$	$ \{\{5\}^{\infty}, \{7\}^{\infty}\} \\ 8460.04 $	$ \{\{5\}^{\infty}, \{8\}^{\infty}\} \\ 8460.03 $	$ \{\{5\}^{\infty}, \{9\}^{\infty}\} \\ 8460.03 $
$ \{\{6\}^{\infty}, \{7\}^{\infty}\} \\ 8459.99 $	$ \{\{6\}^{\infty}, \{8\}^{\infty}\} \\ 8460.04 $	$\{\{6\}^{\infty}, \{9\}^{\infty}\}\ 8459.90$	$ \{\{7\}^{\infty}, \{8\}^{\infty}\} \\ 8460.02 $	$ \{\{7\}^{\infty}, \{9\}^{\infty}\} \\ 8460.04 $	$\{\{8\}^{\infty}, \{9\}^{\infty}\}\ 8460.03$

A basis set of 10 HO per degree of vibration has been used for the VSCF calculation, so that there are 100 product functions in the basis set of the 2-mode contractions.

A heptatomic interstellar molecule: C_2H_4O

 $\begin{array}{c} \text{VSCF/} \\ \text{VSCFCI}(\nu_1 - \nu_6 - \nu_9 - \nu_{13}, \nu_3 - \nu_5 - \nu_{12}; 34072, 17000) \\ \text{VSCFCI}(\nu_1 - \nu_6 - \nu_9 - \nu_{10} - \nu_{13} - \nu_{15}; 19464) \\ \text{VCI} \end{array}$

		Gaz	phase	Liquid phase Solid Phase			Computed		
Assi	Assignment		R	Raman	amorphous	crystalline		VMFCI	type of motion
	ν_1	-	3018	3005	3011	3024	3005	2919	ν_{s,CH_2}
	$ u_2$	1497	1498	1490	1492	1481 - 1495	-	1497	σ_{CH_2}
A_1	$ u_3$	1270	1270	1266	1267	1266 - 1268	1266	1272	Ring breath.
	$ u_4$	-	1148	1120	-	1119 - 1129	1147	1123	ω_{CH_2}
	ν_5	877	877	867	856	857-875	854	879	Ring deform.
	ν_6	-	ia	3063	3073	3050-3051	3073	3032	ν_{as,CH_2}
A_2	ν_7	ia	ia	(1345)	1043	1043 - 1046	1046	1149	$ au_{CH_2}$
	ν_8	1020	ia	807	821	837-851	818	1019	$ ho_{CH_2}$
	ν_9	-	3006	3005	3001	2996-3006	2995	2913	ν_{s,CH_2}
B_1	ν_{10}	1470	1472	-	1467	1455 - 1467	1467	1468	σ_{CH_2}
	ν_{11}	-	1151	1150	1169	1159 - 1169	1152	1125	ω_{CH_2}
	ν_{12}	822	840	867	-	816-825	859	823	Ring deform.
	ν_{13}	3065	3065	3063	3061	3062-3075	3058	3041	$ u_{as,CH_2} $
B_2	ν_{14}	-	1142	1150	-	1146 - 1161	1160	1147	$ au_{CH_2}$
	ν_{15}	808	821	-	794	794 -798	796	794	$ ho_{CH_2}$

Watson-Eckart Hamiltonian decomposition I $H_{watson}(X, Y) = H_0(X) + \varepsilon H_1(X, Y)$

• Ex. *X*

Example: Normal modes of vibration of the water molecule in mass-weighted coordinates. To represent actual relative motions in space, the arrows representing displacements of the oxygen atom should be only one-fourth as long as here shown.

• Ex. Y Euler angles

Watson-Eckart Hamiltonian decomposition II

$$H_{watson}(X,Y) = H_0(X) + \varepsilon H_1(X,Y)$$

where, $X = [(Q_i)_i, (P_k)_k]$, and Y, denotes the Euler angles in the Eckart frame and their conjugate momenta.

$$H_0(X) = \frac{1}{2}\vec{P}^T \cdot \vec{P} + V_{BO} - \frac{1}{8} Tr(\mu) + \frac{1}{2} \vec{\pi}^T \mu \vec{\pi}$$
$$\varepsilon H_1(X,Y) = \frac{1}{2} (\vec{\Pi} - 2\vec{\pi})^T \mu \vec{\Pi}$$

Rayleigh-Schrödinger perturbation theory ...

 $H_N(\varphi_0 + \varepsilon \psi_1 + \varepsilon^2 \psi_2 + \cdots) = (\lambda_0 + \varepsilon \lambda_1 + \varepsilon^2 \lambda_2 + \cdots).(\varphi_0 + \varepsilon \psi_1 + \varepsilon^2 \psi_2 + \cdots)$

... generalised for a module over a non-commutative ring

•
$$A = \sum_{n_x, n_y, n_z} \mathbb{C} \prod_x^{n_x} \prod_y^{n_y} \prod_z^{n_z}$$

• $\forall i \neq 0, \varepsilon^i \lambda_i \in A$

• $\forall i \neq 0, \ \varepsilon^i \ \psi_i = \sum_k a_k \ \varphi_k$ where the $(\varphi_k)_k$ are the eigenfunctions of H_0 associated to the eigenvalues $(\mu_k)_k$ and the $(a_k)_k$ are elements of the ring A.

 $\lambda_0 = \mu_0,$

$$\varepsilon^1 \lambda_1 = \langle \varphi_0 | \varepsilon H_1 | \varphi_0 \rangle,$$

$$arepsilon^2 egin{array}{lll} eta_2 = \sum_{k
eq 0} rac{\langle arphi_0 |arepsilon H_1| arphi_k
angle \langle arphi_k |arepsilon H_1| arphi_0
angle}{\mu_0 - \mu_k}, \end{array}$$

$$\begin{split} \varepsilon^{3} \lambda_{3} &= \sum_{k,k'\neq 0} \frac{\langle \varphi_{0} | \varepsilon H_{1} | \varphi_{k} \rangle \langle \varphi_{k} | \varepsilon H_{1} | \varphi_{k'} \rangle \langle \varphi_{k'} | \varepsilon H_{1} | \varphi_{0} \rangle}{(\mu_{0} - \mu_{k})(\mu_{0} - \mu_{k'})} \\ &- \sum_{k\neq 0} \frac{\langle \varphi_{0} | \varepsilon H_{1} | \varphi_{k} \rangle \langle \varphi_{0} | \varepsilon H_{1} | \varphi_{0} \rangle \langle \varphi_{k} | \varepsilon H_{1} | \varphi_{0} \rangle}{(\mu_{0} - \mu_{k})^{2}}, \end{split}$$

$$\begin{split} \varepsilon^{4} \lambda_{4} &= \sum_{k,k',k''\neq 0} \frac{\langle \varphi_{0} | \varepsilon H_{1} | \varphi_{k} \rangle \langle \varphi_{k} | \varepsilon H_{1} | \varphi_{k'} \rangle \langle \varphi_{k'} | \varepsilon H_{1} | \varphi_{k''} \rangle \langle \varphi_{k''} | \varepsilon H_{1} | \varphi_{0} \rangle}{(\mu_{0} - \mu_{k})(\mu_{0} - \mu_{k''})(\mu_{0} - \mu_{k''})} \\ &- \sum_{k,k'\neq 0} \frac{\langle \varphi_{0} | \varepsilon H_{1} | \varphi_{k} \rangle \langle \varphi_{k} | \varepsilon H_{1} | \varphi_{k'} \rangle \langle \varphi_{0} | \varepsilon H_{1} | \varphi_{0} \rangle \langle \varphi_{k'} | \varepsilon H_{1} | \varphi_{0} \rangle}{(\mu_{0} - \mu_{k})(\mu_{0} - \mu_{k'})^{2}} \\ &- \sum_{k,k'\neq 0} \frac{\langle \varphi_{0} | \varepsilon H_{1} | \varphi_{k} \rangle \langle \varphi_{0} | \varepsilon H_{1} | \varphi_{0} \rangle \langle \varphi_{k'} | \varepsilon H_{1} | \varphi_{0} \rangle \langle \varphi_{k'} | \varepsilon H_{1} | \varphi_{0} \rangle}{(\mu_{0} - \mu_{k})^{2}(\mu_{0} - \mu_{k'})} \\ &- \sum_{k,k'\neq 0} \frac{\langle \varphi_{0} | \varepsilon H_{1} | \varphi_{k} \rangle \langle \varphi_{0} | \varepsilon H_{1} | \varphi_{0} \rangle^{2} \langle \varphi_{k'} | \varepsilon H_{1} | \varphi_{0} \rangle}{(\mu_{0} - \mu_{k})^{2}(\mu_{0} - \mu'_{k})} \\ &+ \sum_{k\neq 0} \frac{\langle \varphi_{0} | \varepsilon H_{1} | \varphi_{k} \rangle \langle \varphi_{0} | \varepsilon H_{1} | \varphi_{0} \rangle^{2} \langle \varphi_{k} | \varepsilon H_{1} | \varphi_{0} \rangle}{(\mu_{0} - \mu_{k})^{3}}. \end{split}$$

Speed of convergence with the order of the perturbation

Energies in cm^{-1} of methane rotational levels in its vibrational ground state

	Van V	leck Pertur	$bation^a$		STDS^{c}		
	ord2	ord4	ord6	ord0	ord2	ord4	
J = 1	10.59973	10.44174	10.44237	10.63296	10.48010	10.48008	10.481648
J=2	31.79918	31.32521	31.32439	31.89887	31.43746	31.43742	31.442121
	31.79918	31.32521	31.32463	31.89887	31.43772	31.43769	31.442387
J = 3	63.59837	62.65041	62.64064	63.79775	62.86645	62.86635	62.875779
	63.59837	62.65041	62.64162	63.79775	62.86749	62.86742	62.876841
	63.59837	62.65041	62.64285	63.79775	62.86879	62.86877	62.878169

^{*a*} X. G. Wang et E. L. Sibert, Spectrochimica Acta A, **58** (2002) 863. 12 force constants adjusted on experiment.

 b P. Cassam-Chenaï and J. Liévin, Int. J. Quantum Chem. **93**, 245-264 (2003). Purely *ab initio* results.

 c C. Wenger and J. P. Champion, J. Quant. Spectrosc. Radiat. Transfer **59**, 471-480 (1998). From an effective Hamiltonian accurate to $10^{-5}~{\rm cm}^{-1}$.

Energies in cm^{-1} of methane rotational levels in its vibrational ground state

	$Carter/Bowman^a$	$Wang/Carrington^b$	$Wang/Sibert^c$	Cassam-Chenaï/Liévin ^{d}	$\operatorname{Exp.}^{e}$
J = 1	10.47	10.430	10.44237	10.48165	10.481648
J=2	N/A	N/A	31.32439	31.44213	31.442121
	N/A	N/A	31.32463	31.44240	31.442387
J = 3	N/A	N/A	62.64064	62.87581	62.875779
	N/A	N/A	62.64162	62.87689	62.876841
	N/A	N/A	62.64285	62.87824	62.878169
J = 4 - 18	N/A	N/A	N/A	largest relative d	ifference 2.10^{-5}

^{*a*} S. Carter et J. M. Bowman, J. Phys. Chem. **A104**, 2355 (2000). MULTIMODE using Lee, Martin and Taylor PES.

^b X. G. Wang et T. Carrington, J. Chem. Phys **121**, 2937 (2004). CI calculation using Schwenke PES.

 c X. G. Wang et E. L. Sibert, Spectrochimica Acta A 58, 863 (2002). 12 force constants adjusted on experiment.

 d P. Cassam-Chenaï and J. Liévin, Int. J. Quantum Chem. **93**, 245-264 (2003). VMFCI using Lee, Martin and Taylor PES + generalised perturbation with 1 parameter related to the equilibrium distance scaled by a factor 1.0002535.

 e C. Wenger and J. P. Champion, J. Quant. Spectrosc. Radiat. Transfer **59**, 471-480 (1998). From an effective Hamiltonian accurate to 10^{-5} cm⁻¹.

Effective dipole moment

- "first order correction to the wave function" $\varepsilon \psi_1 = \sum_{k \neq 0} \frac{|\varphi_k\rangle \langle \varphi_k|\varepsilon H_1|\varphi_0\rangle}{\mu_0 \mu_k}$,
- dipole moment: $\mu_f = \sum_{\alpha=x,y,z} \lambda_{f\alpha} \mu_{\alpha}, \quad \lambda_{f\alpha}(Y), \quad \mu_{\alpha}(X)$
- "first order effective dipole moment" $\langle \phi_0 + \varepsilon \psi_1 | \mu_f | \phi_0 + \varepsilon \psi_1 \rangle$
- Spherical top: $\langle \phi_0 | \mu_\alpha | \phi_0 \rangle = 0 \rightsquigarrow \langle \phi_0 | \mu_f | \varepsilon \psi_1 \rangle + hc$
- Watson formula

$$\lambda_{f\alpha} \sum_{k \neq 0} \frac{\langle \varphi_0 | \mu_\alpha | \varphi_k \rangle \langle \varphi_k | \varepsilon H_1 | \varphi_0 \rangle}{\mu_0 - \mu_k} + hc$$

 $= \theta(\lambda_{fx}(\Pi_y\Pi_z + \Pi_z\Pi_y) + \lambda_{fy}(\Pi_x\Pi_z + \Pi_z\Pi_x) + \lambda_{fz}(\Pi_y\Pi_x + \Pi_x\Pi_y))$

Comparison with HITRAN at 500K

P. Cassam-Chenaï, J. Quant. Spectrosc. Radiat. Transfer 82, 251-277 (2003).

Q-Branch of the vibrational ground state of methane at 500K. Comparison of the extrapolation from HITRAN for ${}^{12}CH_4$ (a) and ${}^{13}CH_4$ (b) with *ab initio* calcu-

lated spectra for ${}^{12}CH_4$ (c) and ${}^{13}CH_4$ (d). Units as in HITRAN, intensities in [cm⁻¹ / (molecule . cm⁻²)], wave numbers in cm⁻¹. Isotopic abundances: 0.988274 for ${}^{12}CH_4$, 0.0111031 for ${}^{13}CH_4$.

References

- CONVIV : (CONtracting VIbrations Variationnally):
- P. Cassam-Chenaï, J. Liévin, Journal of Computational Chemistry 27, 627-640 (2006).

• Applications:

CH4, vibrational and rotational spectra

P. Cassam-Chenaï and J. Liévin, Int. J. Quantum Chem. 93, 245-264 (2003).

P. Cassam-Chenaï, J. Quant. Spectrosc. Radiat. Transfer 82, 251-277 (2003).

C2H4O, comparison with P-VMWCI and experimental assignments D. Bégué, C. Pouchan, N. Gohaud, P. Cassam-Chenaï, J. Liévin, J. Chem. Phys **127**, 164115-164124 (2007).

CF3H, comparison with MCTDH and rotational corrections: P. Cassam-Chenaï, Y. Scribano, J. Liévin, Chemical Physics Letters, **466**, p.16-20, (2008).

- CONVIVIAL : (CONVIV Interface And Layout):
- Y. Bouret, P. Cassam-Chenaï