Simulating dynamic processes involving DNA

Krystyna Zakrzewska
Laboratoire de Biologie et Chimie des Protein
UMR 5086 CNRS - Université Lyon 1) - http://www.ibcp.fr
k.zakrzewska@ibcp.fr

I will be talking about

> Influence of Conformational Dynamics on the Exciton states of DNA
> Studies of DNA Conformation : ABC

Influence of Conformational Dynamics on the Exciton States of DNA

Motivation

> Photoreactions upon absorption of UV radiation by DNA can have lethal or mutagenic effects.
$>$ Whether the excited singlet states are localised on one base or extend over certain number
$>$ Standard viewpoint: excitation is localised since exciton splitting is not observed
$>$ The progress in experimental and theoretical methods

Exciton formalism

$$
\begin{aligned}
& H=H_{0}+V \\
& H_{0}=\sum_{\text {molecules }, k}^{n} H_{k} \quad \text { and } \quad\left|\Phi_{m}^{i}\right\rangle=\Psi_{m}^{i} \prod_{\text {molecules }, k \neq m}^{n} \Psi_{k}^{0} \\
& V=\iint \frac{\rho^{(k)}\left({\underset{r}{r}}_{(k)}^{r^{(k)}}\right) \boldsymbol{\rho}^{(l)}\left(\stackrel{r}{r}^{(l)}\right)}{\left|r^{(k)}-r^{(l)}\right|} d r^{(k)} d r^{(l)} \\
& \left\langle\Psi_{n}^{i} \Psi_{m}^{j}\right| V\left|\Psi_{n}^{k} \Psi_{m}^{l}\right\rangle=\frac{\left\langle\Psi_{n}^{i}\right| \rho^{(n)} r\left|\Psi_{n}^{k}\right\rangle\left\langle\Psi_{m}^{j}\right| \rho^{(m)} r\left|\Psi_{m}^{l}\right\rangle}{\left|r^{(n)}-r^{(m)}\right|} \\
& \text { Interaction between } \\
& \text { transition charges }
\end{aligned}
$$

Experimental absorption spectra of bases

Regular B-DNA conformation

Topography of 3 typical eigenstates

DNA Dynamic Structure

$(\mathrm{dA})_{12} .(\mathrm{dT})_{12}$

$(\mathrm{dAdT})_{6} .(\mathrm{dT})_{6}$

Structural parameters

Twist

Roll

Diagonal term distribution

Dipolar coupling for 100 conformations

Correlation between dipolar coupling and helicoidal parameters

Slide

conformation number

Comparison of the absorption spectra

Reduction of spatial extent by dynamics

Topography of the eigenstates

$$
<1>\text { in red, }<11>\text { in blue }
$$

$$
(d A)_{12 .} \cdot(d T)_{12} \quad(d A d T)_{6} \cdot(d A d T)_{6}
$$

Participation ratio for 30 eigenstates of $(d A)_{10}(d T)_{10}$

Single conformation Single distribution of monomer transition energies

Four conformations 500 distributions of monomer transition energies

Topography of a few eigenstates, $(\mathrm{AT})_{10}(\mathrm{AT})_{10}$

Calculated absorption spectra for $(\mathrm{AT})_{10}(\mathrm{AT})_{10}$

Position and participation of the eigenstates

Conclusions

> Oligomer absorption is only slightly shiftd to higher energies
> Off-diagonal terms correlated with helicoidal parameter fluctuations
> Fluctuations reduce the delocalisation
> Influence of off-diagonal disorder smaller then diagonal disorder

DNA Conformational studies: ABC

Dixit et al. Biophys. J. 89 (2006) 3721
Lavery et al. Nucleic Acids Res. (2009) submitted

Molecular Dynamics

Molecular dynamics simulation consists of the numerical, step-bystep, solution of the classical equations of motion, which for a simple atomic system may be written:

$$
\begin{aligned}
F_{i} & =m_{i} a_{i} \\
F_{i} & =-\nabla V \\
-\frac{d V}{d r_{i}} & =m_{i} \frac{d^{2} r_{i}}{d t^{2}}
\end{aligned}
$$

Integration algorithms

$$
\begin{aligned}
& \text { Velocity Verlet algorithm } \\
& r(t+d t)=r(t)+v(t) d t+1 / 2 a(t) d t^{2} \\
& v(t+d t)=v(t)+1 / 2[a(t)+a(t+d t)] d t
\end{aligned}
$$

Leap-frog algorithm

$$
\begin{aligned}
& r(t+d t)=r(t)+v(t+1 / 2 d t) d t \\
& v(t+1 / 2 d t)=v(t-1 / 2 d t)+a(t) d t
\end{aligned}
$$

Force field used

$$
\sum_{\text {valence }} K\left(\theta-\theta_{e q}\right)^{2}+\sum_{\text {dihedrals }} V_{n} / 2[1+\cos (n \phi-\gamma)] \quad \text { Bonded energy }
$$

$$
+\sum_{i} \sum_{j=i+4}\left(\varepsilon_{i j} \sigma_{i j}^{12} / r_{i j}^{12}-2 \varepsilon_{i j} \sigma_{i j}^{6} / r_{i j}^{6}\right)
$$

Non-bonded energy

$$
+332 \sum_{i=1, n} \sum_{j=i+1, n} q_{i} q_{j} / r_{i j}
$$

Periodic boundary conditions

16 possible dinucleotides

GG	G	A	C	T
\mathbf{G}	GG	GA	GC	GT
\mathbf{A}	AG	AA	AC	AT
\mathbf{C}	CG	CA	CC	CT
\mathbf{T}	TG	TA	TC	TT

- G - T -
- C - A -

10 unique dinucleotides

$\mathbf{G G}$	\mathbf{G}	\mathbf{A}	\mathbf{C}	T
\mathbf{G}	$\mathbf{G G}$	$\mathbf{G A}$	$\mathbf{G C}$	GT
\mathbf{A}	$\mathbf{A G}$	$\mathbf{A A}$		AT
\mathbf{C}	$\mathbf{C G}$	$\mathbf{C A}$		
\mathbf{T}		TA		

$$
\begin{array}{r}
-\mathrm{G}-\mathrm{T}- \\
-\mathrm{C}-\mathrm{A}-
\end{array}
$$

136 unique tetramers

```
AAAA AAAC AAAG AAAT AAGA AAGC AAGG AAGT
AATA AATC AATG AATT ACGA ACGC ACGG ACGT
AGAA AGAC AGAG AGAT AGCA AGCC AGCG AGCT
AgGA AGGC AGGG AGGT AGTA AGTC AGTG AGTT
ATAA ATAC ATAG ATAT ATGA ATGC ATGG ATGT
CAAA CAAC CAAG CAAT CAGA CAGC CAGG CAGT
CATA CATG CCGA CCGG CGAA CGAC CGAG CGAT
CGCA CGCG CGGA CGGC CGGG CGGT CGTA CGTC
CGTG CGTT CTAA CTAG CTGA CTGC CTGG CTGT
GAAA GAAC GAAG GAAT GAGA GAGC GAGG GAGT
GATA GATC GATG GCGA GCGC GCGG GGAA GGAC
GGAG GGAT GGCA GGCC GGCG GGGA GGGC GGGG
GGGT GGTA GGTC GGTG GGTT GTAA GTAC GTAG
GTGA GTGC GTGG GTGT TAAA TAAC TAAG TAAT
TAGA TAGC TAGG TAGT TATA TCGA TGAA TGAC
TGAG TGAT TGCA TGGA TGGC TGGG TGGT TGTA
TGTC TGTG TGTT TTAA TTGA TTGC TTGG TTGT
```


39 oligomer database

GGGGGGGGGGGGG	AAAAAAAAAAAAA	CGCGCGCGCGCGC
TATATATATATAT	AGAGAGAGAGAGA	TGTGTGTGTGTGT
AGGGAGGGAGGGA	CGGGCGGGCGGGC	TGGGTGGGTGGGT
GAAAGAAAGAAAG	CAAACAAACAAAC	TAAATAAATAAAT
CGGCCGGCCGGCC	AGGAAGGAAGGAA	TGGTTGGTTGGTT
TAATTAATTAATT	CGGACGGACGGAC	AGGCAGGCAGGCA
AGGTAGGTAGGTA	TGGATGGATGGAT	CGGTCGGTCGGTC
TGGCTGGCTGGCT	CAAGCAAGCAAGC	GAACGAACGAACG
TAACTAACTAACT	CAATCAATCAATC	TAAGTAAGTAAGT
GAATGAATGAATG	TGAGTGAGTGAGT	CGAGCGAGCGAGC
TGCGTGCGTGCGT	TAGATAGATAGAT	GACAGACAGACAG
TACATACATACAT	AGCTAGCTAGCTA	TGCATGCATGCAT
CGATCGATCGATC	TGACTGACTGACT	CGTACGTACGTAC

ABC oligomers - construction

G-D-ABCD-ABCD-ABCD-G

- 15 base pairs
- Central tetranucleotide repeats
- GC terminal base pairs for stability
- No sampling for $\mathrm{i}<3$ or $\mathrm{i}>13$
- Two copies of each tetranucleotide

Simulation protocol

- AMBER program
- PARM94 parameters
- Truncated octahedral box (~7600 waters)
- Neutralising K+ counterions
- Particle mesh Ewald electrostatics
- 2 fs timestep (SHAKE on X-H)
- Careful equilibration, NVT \rightarrow NPT
- Save configuration every 1 ps
- 15 ns trajectories (1st cycle)

Mtf binding site - twist_8 Na^{+}red, K^{+}blue

a γ transition

α / γ transitions in $\mathbf{N a}^{+}$dynamics

Refinement of the amber force field for nucleic acids simulations: PARMBSCO

Pérez et al. Biophys. J. 92 (2007) 3817

AMBER PARM BSCO

X-ray
Minimized

BSC0: Pérez et al. Biophys. J. 92 (2007) 3817

$A B C$ - round $2-39 \times 18$-mers

GCAAAAAAAAAAAAAAGC	GCATCAATCAATCAATGC	GCGGGGGGGGGGGGGGGC	Amber parmbsc0 150 mM KCl 11,500 water molecules 37,000-47,000 atoms 2.75μ s of trajectories 50-100 ns / oligomer 3,000,000 snapshots
GCACAAACAAACAAACGC	GCCGCGCGCGCGCGCGGC	GCGTGGGTGGGTGGGTGC	
GCATAAATAAATAAATGC	GCGACGGACGGACGGAGC	GCACTAACTAACTAACGC	
GCAGAGAGAGAGAGAGGC	GCGCCGGCCGGCCGGCGC	GCAGTAAGTAAGTAAGGC	
GCCGAGCGAGCGAGCGGC	GCGTCGGTCGGTCGGTGC	GCATTAATTAATTAATGC	
GCCTAGCTAGCTAGCTGC	GCTACGTACGTACGTAGC	GCTATATATATATATAGC	
GCGAAGGAAGGAAGGAGC	GCTGCGTGCGTGCGTGGC	GCGATCGATCGATCGAGC	
GCGCAGGCAGGCAGGCGC	GCAAGAAAGAAAGAAAGC	GCGATGGATGGATGGAGC	
GCGTAGGTAGGTAGGTGC	GCACGAACGAACGAACGC	GCGCTGGCTGGCTGGCGC	
GCTCAGTCAGTCAGTCGC	GCATGAATGAATGAATGC	GCGTTGGTTGGTTGGTGC	
GCTGAGTGAGTGAGTGGC	GCTAGATAGATAGATAGC	GCTATGTATGTATGTAGC	
GCGCATGCATGCATGCGC	GCGAGGGAGGGAGGGAGC	GCTCTGTCTGTCTGTCGC	
GCAGCAAGCAAGCAAGGC	GCGCGGGCGGGCGGGCGC	GCTGTGTGTGTGTGTGGC	

- data on all base pairs with all possible nearest neighbours (32 cases +4 nn neighbours)
- data on all inter-base pair steps with all possible nearest neighbours (136 cases)

Distributions of helical parameters for A_{9} and $\mathrm{A}_{9} \mathrm{G}_{10}$ in the AGTC oligomer:
$0-50 \mathrm{~ns}$ with SPC/E water \square
$50-100 \mathrm{~ns}$ with SPC/E water $(\square$
$0-50 \mathrm{~ns} \quad$ with TIP4PEW water $(-)$

GCTACGTAC $\dot{\$} T A C G T A G C$

CGATGCATGなATGCATCG

Distributions of helical parameters for the central G base pair and central GT step in three CGTA tetranucleotide fragments in positions $5 \rightarrow 8\left(_\right), 11 \rightarrow 14\left(_\right)$and $13 \rightarrow 16\left(__{(—)}\right)$

Coisplecenent Shear Sols

RR $\quad=$
$\mathrm{YR} \quad \square$
$\mathrm{RY} \quad-$

Average base pair step parameters and distributions

Shift

Slide

Rise

Twist

GG
CG

Nearest-neighbour effects on base pair step parameters

Next-nearest neighbour effects on base pair parameters ...

Sequence	Xdisp	Inclination	Propeller	Buckle
AAAAA CAAAC	$\begin{array}{\|l\|} \hline-1 \AA \\ -1.6 \AA \end{array}$	$\begin{aligned} & \hline 0^{\circ} \\ & 7.5^{\circ} \end{aligned}$	$\begin{aligned} & -16^{\circ} \\ & -18^{\circ} \end{aligned}$	$\begin{aligned} & 3^{\circ} \\ & 8^{\circ} \end{aligned}$
GCATG TCATT	$\begin{aligned} & -1.8 \AA \\ & -1.3 \AA \end{aligned}$	$\begin{aligned} & 10^{\circ} \\ & 4^{\circ} \end{aligned}$	$\begin{aligned} & -12^{\circ} \\ & -10^{\circ} \end{aligned}$	$\begin{array}{\|l} -3^{\circ} \\ -3^{\circ} \end{array}$
$\begin{aligned} & \text { GGGGG } \\ & \text { CGGGC } \end{aligned}$	$\begin{aligned} & -3.1 \AA \\ & -1.6 \AA \end{aligned}$	$\begin{aligned} & \hline 11^{\circ} \\ & 7^{\circ} \end{aligned}$	$\begin{aligned} & -4^{\circ} \\ & -14^{\circ} \end{aligned}$	$\begin{aligned} & -2^{\circ} \\ & -6^{\circ} \end{aligned}$
ACGTA TCGTT	$\begin{aligned} & -1.3 \AA \\ & -0.9 \AA \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 4^{\circ} \end{aligned}$	$\begin{aligned} & -11^{\circ} \\ & -8^{\circ} \end{aligned}$	$\begin{array}{\|l} \hline-6^{\circ} \\ 1^{\circ} \end{array}$

And so onwards to hexanucleotides ...

GCAAACGTAAACGTAAACGTAAGC GCCAACGTCAACGTCAACGTCAGC GCGAACGTGAACGTGAACGTGAGC GCTAACGTTAACGTTAACGTTAGC GCACACGTACACGTACACGTACGC GCGCACGTGCACGTGCACGTGCGC GCAGACGTAGACGTAGACGTAGGC GCCGACGTCGACGTCGACGTCGGC GCGGACGTGGACGTGGACGTGGGC GCATACGTATACGTATACGTATGC

GC-Y-XABCDY-XABCDY-X-GC

Acknowledgements

Peter Varnai

Benjamin Bouvier
Jean-Pierre Dognon
Emanuela Emanuele
Dimitra Markovitsi
Philippe Millié
Delphine Onidas

ABC Consortium
Laboratoire
Francis Perrin
CEA - CNRS

Charges

