Infrared spectra of small biomolecules from first-principle molecular dynamics simulations and effective normal mode analysis

R. Vuilleumier, M.-P. Gaigeot and D. Borgis

Département de chimie, Ecole Normale Supérieure (Paris)

LAMBE, Université d'Evry

Introduction

Normal mode analysis at the optimized geometry

Determination of normal modes from diagonalisation of the Hessian

Modes (phonons in cristals) and frequencies at T=0

No anharmonic effects

Vibrational spectra from MD

IR spectra including temperature and environmental effects

Obtained from the current-current autocorrelation function (linear response theory)

$$\omega \, \varepsilon''(\omega) = \frac{2\pi}{3V} \, \beta \int_{-\infty}^{+\infty} \langle \mathbf{j}(0) \cdot \mathbf{j}(t) \rangle \, e^{i\omega t} \, dt$$

ab initio Molecular Dynamics

forces on the atoms evaluated *on the fly* by an electronic structure calculation

Density Functional Theory is used for the electronic structure calculation

Plane waves, pseudopotentials

Electrons and nuclei propagated simultaneously by using an extended Lagrangian: Car-Parrinello Molecular Dynamics

Dipole moment also evaluated on the fly

Good agreement with experimental spectra in a large range of situations

IR spectrum of N-methyl actetamide in solution by ab initio MD

- NMA in 50 water molecules
- BLYP functional
- cutoff=70 Ry, TM pp
- 7 ps of NVE dynamics at 300 K (average)

Dipole moment of NMA obtained from assigning Maximally localized Wannier orbitals

IR spectrum of N-methyl actetamide in solution by ab initio MD

Interpretation of these spectra?

IRMPD 300K gas phase spectroscopy of the Ala₂H⁺ peptide

a model system: the protonated dialanine peptide

IRMPD 300K gas phase spectroscopy of the Ala₂H+ peptide

CPMD at 300 K

Continuous conformational dynamics between 2 conformers transA1 et transA2

$$\varphi_{\text{transA1}} = -162$$

$$\phi$$
transA2 = - 74°

The relative weight of each conformation probed during the dynamics will be naturally taken into account in the calculation of the infrared spectrum

IRMPD 300K gas phase spectroscopy of the Ala₂H+ peptide

Free energy profile measured along the 300K dynamics

$$G=-kT \ln P(\Phi)$$

$$\Phi_{\text{transA1}} = 198^{\circ}$$

$$\Phi_{\text{transA2}} = 284^{\circ}$$

No energy barrier for going from transA1 to transA2 : $\Delta G \approx 0.3$ kcal/mol

A reminder : $\Delta G \approx 2$ kcal/mol with static 0K calculations in the harmonic approximation

Entropic effects are important in structural equilibria

IRMPD 300K gas phase spectroscopy of the Ala₂H+ peptide

IR-MPD gas phase spectroscopy of the Ala₃H+ peptide

Exp. Spectrum features obtained as a result of all conformations. The dynamics of the N-H groups give rise to the complex 3100-3500 cm⁻¹ band. This complexity can not be obtained without dynamics.

Interpretation of the spectra

- What is the nature of the molecular motion underlying the IR bands?
- What is the origin of the band intensity?

I – band by band decomposition of IR spectra

- no easy interpretation of bands in terms of internal motions (complex molecules with number of atoms larger than 4-5)
- interpretation usually based on comparison with velocity autocorrelation functions

vibrational density of states of uracil in aqueous solution (CPMD) from M.-P. Gaigeot and M. Sprik, *JPC B* **107**, 10344 (2003)

Maximally localized modes

 velocities in cartesian coordinates written as linear combinaison of modes

$$\dot{x}_i(t) = Z_{ik}\dot{q}_k(t)$$

that are decoupled at equilibrium

$$\langle \dot{q}_k(0)\dot{q}_l(0)\rangle = \delta_{kl}$$

and are maximally localized in frequency by minimisation of

$$\Omega^{(n)} = \sum_{k} \left(\frac{1}{\pi} \int_{0}^{+\infty} d\omega \, \omega^{2n} P_{k}^{q}(\omega) - \left(\frac{1}{\pi} \int_{0}^{+\infty} d\omega \, \omega^{n} P_{k}^{q}(\omega) \right)^{2} \right)$$

where
$$P_k^q(\omega) = \int_{-\infty}^{+\infty} \langle \dot{q}_k(0) \dot{q}_k(t) \rangle \cos \omega t \, dt$$
 is the power spectrum of q

Generalized Eigenvalue problem

Minimization of $\Omega^{(n)}$ leads to a generalized eigenvalue problem:

$$\left[\int d\omega \, \omega^n P_{kj}^x(\omega) \right] Z_{ji} = \lambda_i \left[\int d\omega \, P_{kj}^x(\omega) \right] Z_{ji}$$

with the matrices

$$P_{kj}^{x}(\omega) = \int \langle \dot{x}_k(0)\dot{x}_j(t)\rangle \cos \omega t \ dt$$

satisfying

$$\int d\omega P_{kj}^{x}(\omega) = \langle \dot{x}_{k}(0)\dot{x}_{j}(0)\rangle \left(= \frac{k_{B}T}{m_{k}}\delta_{kj} \right)$$

Effective normal modes

Minimizing $\Omega^{(n)}$ is equivalent, for n = 2, to solve the generalized eigenvalue problem

$$\langle F_i F_j \rangle z_j = \omega^2 \langle p_i p_j \rangle z_j$$

By integration by part we have

$$\langle F_i F_j \rangle = k_B T \langle \frac{\partial^2 E}{\partial x_i \partial x_j} \rangle$$

(conformational temperature)

We are thus lead to solve
$$\langle \frac{\partial^2 E}{\partial x_i \partial x_j} \rangle z_j = \omega^2 \, m_i \, z_i$$

Use of internal coordinates instead of cartesian coordinates

NMA is highly flexible (CH₃)

- cartesian coordinates not appropriate
- internal coordinates: 11 stretchs, 3 torsions, 14 bends, 2 out-of-plane
- linear combinaison of internal coordinates to maximally localize the resulting power spectra
- no need for Eckart frame

Amide modes of NMA in water at 300 K

Comparison between gas phase and aqueous phase

Potential Energy Distribution (PED) used to describe the effective normal modes

Aqueous phase:

- Amide I (1516 cm-1): st C=O 54%, b NH 37%
- Amide II (1493 cm-1): b NH 48%, st CN 24%, C3 sym 12%
- Amide III (1243 cm-1): st CN 39%,b NH 35%, st C=O 12%

Gas phase:

- Amide I (1598 cm-1): st C=O 96%, b NH 1,3%
- Amide II (1426 cm-1): b NH 47%, st CN 10%, C3 sym 14%
- Amide III (1179 cm-1): st CN 26%,b NH 25%, st C=O 21%

Stabilization of the zwitterionic form in water

- lower C=O stretch frequency
- stiffer C-N strech
- in agreement with dipole moment change between gas phase and solution
- partly due to H-bonding to water

Alanine dipeptide in gas phase (configuration C7 equa)

Alanine dipeptide in gas phase: amide modes

Effective normal modes (phonons) in ice Ih

- AIMD simulation of 16 water molecules at 240 K (16 ps)
- 141 effective normal modes
- no frozen phonons approximation

• bands made of 45, 48, 16, 16 and 16 modes respectively

Lowest modes are very harmonic

One mode in the OH stretch region

- mainly one peak character but still delocalized
- mixing of symetric and asymetric OH stretch

II - Infrared intensities: atomic polar tensor

The infrared spectrum is obtained from the current-current autocorrelation function:

$$\omega \, \varepsilon''(\omega) = \frac{2\pi}{3V} \, \beta \int_{-\infty}^{+\infty} \langle \mathbf{j}(0) \cdot \mathbf{j}(t) \rangle \, e^{i\omega t} \, dt$$

with the current:
$$\mathbf{j}(t) = \left(\sum_{i} \left(\frac{\partial \mathbf{M}}{\partial \mathbf{r}}\right) \cdot \mathbf{v}_{i}\right)(t)$$

IR intensity related to the atomic polar tensors

APT from ab initio Molecular Dynamics

- Density Functional Theory based ab initio Molecular Dynamics
- APT calculated in the framework of Density Functional Perturbation Theory
- Maxwell Relation: $\frac{\partial M^{\beta}}{\partial r_{i}^{\alpha}} = \frac{\partial^{2} E_{tot}}{\partial r_{i}^{\alpha} \partial E^{\beta}} = \frac{\partial^{F}_{i}}{\partial E^{\beta}}$

Linear response to a uniform electric field (also polarizability)

see also: A. Pasquarello et R. Resta, Phys. Rev. B 68, 174302 (2003)

Infrared and Raman intensities of bands

APT in localized modes

$$\frac{\partial \vec{M}}{\partial q_i} = Z_{ij} \frac{\partial \vec{M}}{\partial x_j}$$
 transition moment (vector)

Oscillator strength of mode *i*

$$f_i \propto \langle \left| \frac{\partial \vec{M}}{\partial q_i} \right|^2 \rangle \approx \langle \left| \frac{\partial \vec{M}}{\partial q_i} \right| \rangle^2$$
 (infrared)

$$f_i \propto \langle \left| rac{\partial ar{lpha}}{\partial q_i}
ight|^2
angle \qquad ext{(Raman)}$$

NMA transition moments and intensities

Amide I: I=1

Amide II: I=2.06

Amide III: I=0.53

Reconstruction of the Infrared Spectrum of NMA

Main peaks of NMA spectrum

Cheap approximate way for calculating IR and Raman intensities

approximate
$$\langle \frac{\partial \vec{M}}{\partial x_i} \frac{\partial \vec{M}}{\partial x_j} \rangle$$
 by $\langle \frac{\partial \vec{M}}{\partial x_i} \rangle \langle \frac{\partial \vec{M}}{\partial x_j} \rangle$

two useful properties (integration by parts):

$$k_B T \langle \frac{\partial \vec{M}}{\partial x_i} \rangle = \langle \vec{M} F_i \rangle \qquad k_B T \langle \frac{\partial \bar{\alpha}}{\partial x_i} \rangle = \langle \bar{\alpha} F_i \rangle$$

best linear function of coordinates to represent the total dipole or polarizability (electric hamonicity)

Polarized Raman spectrum of ice Ih from bands decomposition

polarizability tensor calculated from linear response for 1000 configurations

Infrared spectrum of ice Ih

—— IR spectrum as a sum of bands

------ IR spectrum directly from the autocorrelation function of the total dipole

Conclusion

- IR spectra from autocorrelation function of the current (classical dynamics)
- use of ab initio MD to describe 1) finite temperature equilibrium,
 2) bond anharmonicity and 3) electronic polarization
- applications for systems in gas phase, liquid phase, solids...
- Interpretation localization principle in frequency
- generalization of the normal mode analysis at finite temperature and for anharmonic systems
- suggests a way to study overtone and combination bands
- we now want to move towards non-linear spectroscopies which involve multiple time correlation functions

Acknowledgements

Codruta Marinica (Post-Doc, now at LCAM-Orsay France)

Alvaro Cimas-Samaniego (Post-Doc)

Michaël Martinez (PhD, now Post-Doc in Heidelberg Germany)

Frederic Bellencontre (PhD, now Engineer)

Groups of P Maître & G Ohanessian - Orsay France

Group of JP Schermann, C Desfrançois, G Grégoire - Villetaneuse France

Group of JP Simons/L. Snoek - Oxford UK

Michiel Sprik - Cambridge UK

Riccardo Spezia & J.Y. Salpin (Evry)