2009.11

Potential energy surfaces and predicted infrared spectra for van der Waals complexes

Daiqian Xie

Department of chemistry, Nanjing University, China

dqxie@itcc.nju.edu.cn

5th International Meeting on Mathematical Methods for *ab initio* Quantum Chemistry, Nice

Outline

Introduction

- •Rg-(linear molecule) vdW complexes
- H₂-(linear molecule) vdW complexes
- Path integral Monte Carlo Study for He_N-N₂O

Summary

Introduction

The spectroscopy provides very useful information for the intermolecular potential energy surface (IPES) and dynamics.

Theoretical study of the ro-vibrational spectra provide complete description of the spectra.

Rigid monomer molecule

Separate the inter- and intra- molecular vibrations and fix the geometry of the linear molecule.

The rovibrational Hamiltonian:

$$R = \frac{\theta}{r_0}$$

$$\hat{H}\left(R,\theta,\hat{J}_{x},\hat{J}_{y},\hat{J}_{z}\right) = -\frac{\hbar^{2}}{2\mu}\frac{\partial^{2}}{\partial R^{2}} + \left(\frac{\hbar^{2}}{2\mu R^{2}} + \frac{\hbar^{2}}{2I}\right)\left(\frac{-1}{\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta} + \frac{\hat{J}_{z}^{2}}{\sin^{2}\theta}\right) + \frac{1}{2\mu R^{2}}\left(\hat{J}^{2} - 2\hat{J}_{z}^{2}\right) \\ + \frac{\cot\theta}{2\mu R^{2}}\cdot\hat{J}_{z}\left[\left(\hat{J}_{x} + i\hat{J}_{y}\right) + \left(\hat{J}_{x} - i\hat{J}_{y}\right)\right] + \frac{\hbar}{2\mu R^{2}}\frac{\partial}{\partial\theta}\cdot\left[\left(\hat{J}_{x} + i\hat{J}_{y}\right) - \left(\hat{J}_{x} - i\hat{J}_{y}\right)\right] + V(R,\theta)$$

 $V(R, \theta)$: potential energy of intermolecular interaction μ : reduced mass of the vdW molecule *I*: moment of inertia of the linear molecule This strategy is usually good for microwave spectra. But not enough for infrared spectra, which involves excitation of the intermolecule vibrations.

For example, for the infrared spectra of He-N₂O,

Band origin shift: Calculated :-0.019 cm ⁻¹, Observed: 0.253 cm ⁻¹

Y. Zhou and D.Q. Xie, J. Chem. Phys. 120, 8574(2004)

An improved way is to include the dependence of intramolecular modes

The observed infrared spectra usually involve excitation of only one intermolecule vibrations.

$$\hat{H} = -\frac{1}{2\mu_1} \frac{\partial^2}{\partial R^2} - \frac{1}{2\mu_2} \frac{\partial^2}{\partial Q^2} + B_1 \hat{j}_1^2 + \frac{\hat{j}_2^2}{2I_Q} + \frac{(\hat{J} - \hat{j}_1 - \hat{j}_2)^2}{2\mu_1 R^2} + V(R, \varphi, \theta_1, \theta_2, Q)$$

D. Q. Xie*, H. Ran, Y. Zhou, International Reviews in Physical Chemistry, 26 (3), 487 (2007)

(in the Body-Fixed frame)

The three-dimensional PES can be divided as:

 $V(R, \theta, Q) = V_{\text{mon}}(Q) + \Delta V(R, \theta, Q)$

 $V_{\text{mon}}(Q)$: PES for isolated linear molecule. $\Delta V(R, \theta, Q)$: IPES at fixed Q

Total wavefunction (in FBR): FBR: finite basis representation

 $\Psi_n^{JMp}(R,\theta,Q,\alpha,\beta,\gamma) = \sum_{j,K,\nu_1,\nu_2} c_{j,K,\nu_1,\nu_2}^{nJp} \psi_{\nu_1}(R) \psi_{\nu_2}(Q) P_j^K(\cos\theta) C_{KM}^{Jp}(\alpha,\beta,\gamma)$

$$C_{KM}^{Jp}(\alpha,\beta,\gamma) = [2(1+\delta_{K0})]^{-1/2} [D_{MK}^{J^*} + (-1)^{J+K+p} D_{M-K}^{J^*}], \quad p = 0,1$$

(total parity is given by $(-1)^{J+p}$)

$$\left[-\frac{1}{2\mu_2}\frac{d^2}{dQ^2} + V_{mon}(Q)\right]\psi_{v_2}(Q) = E_{v_2}\psi_{v_2}(Q)$$

For example of Rg-CO₂ complex:

The one-dimensional energy curve for the Q₃ coordinate of CO₂

$$\left[-\frac{1}{2M}\frac{d^2}{dQ_3^2} + V_{CO_2}(Q_3)\right]\psi_v(Q_3) = E_v\psi_v(Q_3)$$

$$Q_{3} = (r_{\rm CO1} - r_{\rm CO2}) / \sqrt{2}$$

 $E_{0obs.}^{1} = 2349.149 \text{ cm}^{-1}$ $E_{0cal.}^{2} = 2418.759 \text{ cm}^{-1}$ (without scale) $E_{0cal.}^{2} = 2349.1483 \text{ cm}^{-1}$ (scaled)

Scale factor = 0.971449

¹. J. Mol. Spec. 76, 430 (1979)

Then the PODVR grid points for Q can be determined by (PODVR: potential optimized discrete variable representation)

$$X_{mn} = \left\langle \psi_m \left| x \right| \psi_n \right\rangle$$

Vibrationally averaged intermolecular PES:

$$V_{\nu}(R,\theta) = \int_{-\infty}^{\infty} \psi_{\nu}(Q) \Delta V(R,\theta,Q) \psi_{\nu}(Q) dQ = \sum_{k} T_{k\nu}^{2} \Delta V(R,\theta,Q_{k})$$

Only a few PODVR grid points for Q are sufficient !

The FBR can be conveniently transformed to the DVR. Any local functions are assumed to be diagonal in the DVR.

The matrix elements of the Hamiltonian in the DVR are given by

$$\begin{split} \left\langle \alpha'\beta'q'K'\big|\hat{H}\big|\alpha\beta qK\right\rangle = \\ \left\langle \alpha'\big| -\frac{1}{2\mu_{1}}\frac{\partial^{2}}{\partial R^{2}}\big|\alpha\right\rangle \cdot \delta_{\beta'\beta} \cdot \delta_{KK} \cdot \delta_{q'q} + \left\langle q'\big| -\frac{1}{2\mu_{2}}\frac{\partial^{2}}{\partial Q^{2}}\big|q\right\rangle \cdot \delta_{\alpha'\alpha} \cdot \delta_{\beta'\beta} \cdot \delta_{KK} + \\ \left(\frac{1}{2\mu_{1}R_{\alpha}^{2}} + \frac{1}{I_{Q_{q}}}\right) \left\langle \beta'\big|\hat{j}^{2}\big|\beta\right\rangle \cdot \delta_{\alpha'\alpha} \cdot \delta_{KK} \cdot \delta_{q'q} + \frac{1}{2\mu_{1}R_{\alpha}^{2}} \left\{ \left[J\left(J+1\right)-2K^{2}\right] \cdot \delta_{\beta'\beta} \cdot \delta_{KK} - \left(1+\delta_{K0}\right)^{\frac{1}{2}}\Lambda_{JK}^{+} \cdot \left\langle \beta'\big|\hat{\mathbf{j}}_{+}\big|\beta\right\rangle \cdot \delta_{KK+1} - \left(1+\delta_{K'0}\right)^{\frac{1}{2}}\Lambda_{JK}^{-} \cdot \left\langle \beta'\big|\hat{\mathbf{j}}_{-}\big|\beta\right\rangle \cdot \delta_{KK-1} \right\} \cdot \delta_{\alpha'\alpha} \cdot \delta_{q'q} + \frac{V(R_{\alpha},\theta_{\beta}^{(K)},Q_{q})}{2} \cdot \delta_{\alpha'\alpha} \cdot \delta_{\beta'\beta} \cdot \delta_{KK} \cdot \delta_{q'q} \end{split}$$

$$\Lambda_{JK}^{\pm} = \sqrt{J(J+1)} - K(K\pm 1)$$

The IPES can be constructed at a few PODVR points of Q, so that the possible interpolation error could be avoided.

How many PODVR points are enough for the *r* **coordinate?**

For Example:

The vibrational energy levels (in cm⁻¹) of H_2 at a fixed Kr-H distance of 3.38Å.

v	6 DVR points	5 DVR points	4 DVR points
0	0.0	0.0	0.0
1	4157.6683	4157.6618	4157.6379
2	8079.4942	8079.4714	8079.4976
3	11769.4622	11769.5329	11768.7091

Five PODVR grid points are enough 0.6050, 0.7332, 0.8607, 1.0000, 1.1694 Å

Lanczos algorithm: (Lanczos 1950)

Three term recursion:

where

$$\boldsymbol{\alpha}_{k} = \boldsymbol{\psi}_{k}^{\mathrm{T}} \mathbf{H} \boldsymbol{\psi}_{k}$$
$$\boldsymbol{\beta}_{k} = \left\| (\mathbf{H} - \boldsymbol{\alpha}_{k-1}) \boldsymbol{\psi}_{k-1} - \boldsymbol{\beta}_{k-1} \boldsymbol{\psi}_{k-2} \right\|$$

Reduction of H:

$$\mathbf{T}_{K\times K} = \begin{bmatrix} \alpha_1 & \beta_2 & \cdots & 0 \\ \beta_2 & \alpha_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_K \end{bmatrix} = \mathbf{Q}_{N\times K}^{\mathrm{T}} \mathbf{H}_{N\times N} \mathbf{Q}_{N\times K}$$

• Diagonalization (QL or inverse iteration):

 $\mathbf{T}^{(K)}\mathbf{z}_i^{(K)} = E_i^{(K)}\mathbf{z}_i^{(K)}$

– Lanczos eigenvectors:

$$\mathbf{Z}_{i}^{(K)} \equiv \begin{pmatrix} z_{1i}^{(K)} \\ z_{2i}^{(K)} \\ \vdots \\ z_{Ki}^{(K)} \end{pmatrix}$$

- Lanczos eigenstates:

$$\boldsymbol{\phi}_i^{(K)} = \sum_{k=1}^K \ \boldsymbol{z}_{ki}^{(K)} \boldsymbol{\psi}_k$$

Convergence:

$$\mathbf{H}\boldsymbol{\phi}_{i}^{(K)} = E_{i}^{(K)}\boldsymbol{\phi}_{i}^{(K)} + \boldsymbol{\beta}_{K}\boldsymbol{z}_{Ki}^{(K)}\boldsymbol{\psi}_{K+1}$$

If
$$|z_{Ki}^{(K)}| \rightarrow 0$$
, $\phi_i^{(K)}$ converges!

- Scaling laws:
 - Memory $\propto N$, CPU $\propto N^2$.
 - Capable of handling problems with *N* up to 10⁸.

Finite precision arithmetic

– Loss of orthonormality among Lanczos states:

$$\langle \psi_k | \psi_{k'} \rangle \neq \delta_{kk'}, \qquad |k-k'| >> 0$$

- Unnormalized Lanczos eigenstates

$$\left\langle \boldsymbol{\phi}_{i}^{(K)} \left| \boldsymbol{\phi}_{i}^{(K)} \right\rangle = \sum_{k,k'}^{K} z_{ki}^{(K)} z_{k'i}^{(K)} \left\langle \boldsymbol{\psi}_{k} \left| \boldsymbol{\psi}_{k'} \right\rangle \neq 1 \right.$$

Observation: sum of norms of converged copies in a cluster = # of copies:

$$\sum_{i} \left\langle \phi_{i}^{(K)} \left| \phi_{i}^{(K)} \right\rangle = M$$

Arithmetic average

$$\left\langle \chi_{m} \left| \phi_{n} \right\rangle^{2} = \sum_{i=1}^{M} \left\langle \chi_{m} \left| \phi_{i}^{(K)} \right\rangle^{2} \right/ M$$

H. Guo, R. Chen, D.Q. Xie, J. Theo. Comp. Chem. 1,173 (2002)

Calculation of the transition intensity

The line intensity of a transition at a temperature *T* :

$$I_{Jpn \to J'p'n'} \propto (E_{J'p'n'} - E_{Jpn}) [e^{-E_{Jpn'}/kT} - e^{-E_{J'p'n'}/kT}] \sum_{M} \sum_{M'} \sum_{A=X',Y',Z'} \left| \left\langle \Psi_{n}^{JMp} \left| \mu_{A} \right| \Psi_{n'}^{J'M'p'} \right\rangle \right|^{2}$$

component of the dipole moment along A axis of the space-fixed (SF) frame

The calculated dipole moment in BF frame is rewritted as:

$$\mu_{+1} = -\frac{1}{\sqrt{2}}(\mu_x + i\mu_y), \qquad \mu_{-1} = \frac{1}{\sqrt{2}}(\mu_x - i\mu_y), \qquad \mu_0 = \mu_z$$

Transfomation between BF and SF frames:

$$\mu'_{g} = \sum_{h=-1}^{1} \mu_{h} D^{1}_{gh}(\alpha, \beta, \gamma)$$

(Wigner rotation function

The rovibrational wave function can be rewritten as:

$$\Psi_n^{JMp}(R,\theta,Q,\alpha,\beta,\gamma) = \sum_K \Psi_K^{Jnp}(R,\theta,Q) C_{KM}^{Jp}(\alpha,\beta,\gamma)$$

The transition intensity:

$$I_{Jpn \to J'p'n'} \propto (2J+1)(2J'+1)(E_{J'p'n'} - E_{Jpn})[e^{-E_{Jpn}/kT} - e^{-E_{J'p'n'}/kT}]$$

$$\left| \sum_{K} \sum_{K'} [(1+\delta_{K0})(1+\delta_{K'0})]^{-\frac{1}{2}} \sum_{h} \left\{ (-1)^{K} \begin{pmatrix} J & J' & 1 \\ -K & K' & h \end{pmatrix} + (-1)^{J+p} \begin{pmatrix} J & J' & 1 \\ K & K' & h \end{pmatrix} + (-1)^{K+J'+p'+K'} \begin{pmatrix} J & J' & 1 \\ -K & -K' & h \end{pmatrix} + (-1)^{J+p+J'+p'+K'} \begin{pmatrix} J & J' & 1 \\ K & -K' & h \end{pmatrix} \right\} \int \Psi_{K}^{Jnp} \mu_{h} \Psi_{K'}^{Jn'p'} d\tau \right|^{2}$$

$$(Winger 3-j symbol)$$

He-N₂O: rovibraional spectra in the v_3 region of N₂O

Y. Zhou and D.Q. Xie, J. Chem. Phys. 124, 144317(2006)

■ Consider the *Q*₃ normal mode for the antisymmetric vibrational stretching of N₂O molecule

 $Q_3 = 8.834062(r_1 - r_{1e}) - 4.056573(r_2 - r_{2e})$

- CCSD(T) method with aug-cc-pVTZ basis set
- Bond function (3s 3p 2d1f 1g) (for 3s and 3p, *a* =0.9,0.3,0.1; for 2d, *a* =0.6,0.2, for f, g, *a* =0.3)
- The supermolecular approach
- Full CP was used to correct BSSE

$$V_{\text{int}} = V_{vdW}(\chi_A + \chi_B) - (V_A(\chi_A + \chi_B) + V_B(\chi_A + \chi_B))$$

 5 PODVR points for Q₃ coordinate: -2.0202, -0.9586, 0.0, 0.9586, 2.0202 and 250 geometries for each IPES

Vibrational energy levels (in cm⁻¹) for ⁴He-N₂O and ³He-N₂O

		Groun	d state	v ₃ state		
		⁴ He-N ₂ O ³ He-N ₂ O		⁴ He-N ₂ O	³ He-N ₂ O	
0	0	-21.4252	-18.2289	-21.2548	-18.0738	
0	1	-9.3540	-7.5059	-9.3467	-7.4957	
0	2	-7.2367	-5.4854	-7.2031	-5.4566	
0	3	-4.1228	-1.5844	-4.0833	-1.5431	
1	0	-2.2008		-2.1451		

Frequency of v₃ band of N₂O: 2223.7567cm⁻¹

Band shift in ⁴He: 0.2532cm⁻¹ (obs), 0.1704cm⁻¹ (cal) in ³He: 0.2170cm⁻¹ (obs), 0.1551cm⁻¹ (cal)

The calculated line intensities of ³He-N₂O and ⁴He-N₂O at a rotatotaional tempreture of 2K.

He-CO₂:Assignment of the hot band in the infrared spectra

xperimental researches:

- 1. M. J. Weida, J. M. Sperhac, and D. J. Nesbitt, J. Chem. Phys. 101, 8351 (1994)
- 2. Y. Xu and W. Jager, Journal of Molecular Structure 599, 211 (2001)
- 3. K. Nauta and R. E. Miller, J. Chem. Phys. 115 (22), 10254 (2001)
- 4. J. Tang and A. R. W. Mckellar, J. Chem. Phys. 121, 181 (2004)
- 5. A. R. W. Mckellar, J. Chem. Phys. 125, 114310 (2006)

heoretical researches:

- 1. G. S. Yan, M. H. Yang, and D. Q. Xie, J. Chem. Phys. 109, 10284 (1998)
- 2. T. Korona, R. Moszynski, F. Thibault, J.-M. Launay, B. Bussery-Honvault, J. Boissoles, and P. E. S. Wormer, J. Chem. Phys. 115, 3074 (2001)
- 3. F. Negri, F. Ancliotto, G. Mistura, and F. Toigo, J. Chem. Phys. 111, 6439 (1999)

Weida, et al., J. Chem. Phys. 101, 8351 (1994)

TABLE III. List of observed HeCO2 v3 hot band transitions.

Frequency (cm ⁻¹)	Peak absorbance (×10 ⁻⁴) ^a	Frequency (cm ⁻¹)	Absorbance (×10 ⁻⁴)
2347.9305	3	2349.7367	3
2348.0022	3	2350.1536	6
2348.2619	• 4	2350.1869	5
2348.3179	2	2350.5311	6
2348.3966	5	2350.5444	5
2348.4457	5	2350.7978	4
2348.5263	3	2351.0401	3
2348.9434	7	2351.4294	ь
2349.5298	5		

^aAbsorbance is at a jet temperature of 4.6 K. All intensities have an uncertainty of $\pm 2 \times 10^{-4}$.

^bPartially overlapped with (CO₂)₂ monomer transition.

Korona, et al., J. Chem. Phys. 115, 3074 (2001)

Transition	Frequen	cy (cm ⁻¹)	Δ (cm ⁻¹)	Intensity	
$J'_{K'_aK'_c} \leftarrow J''_{K''_aK''_c}$	Theory	Experiment a	Expt theor	Theory	Experiment ^a
$4_{04} \leftarrow 3_{13}$	2347.7449			0.0	
$1_{01} \leftarrow 1_{10}$	2347.8199	2347.9305	0.1106	4.8	3 ± 2
$2_{21} \leftarrow 3_{12}$	2347.8699			0.9	
$3_{21} \leftarrow 3_{12}$	2348.0819	2348.0022	-0.0797	3.0	3 ± 2
$2_{02} - 1_{11}$	2348.1149	2348.2619	0.1470	4.2	4 ± 2
$2_{21} \leftarrow 2_{12}$	2348.3619			0.0	
4 ₂₂ ←4 ₁₃	2348.4129	2348.3179	-0.0950	0.6	2 ± 2
$4_{22} - 3_{31}$	2348.4399	2348.3966	-0.0433	3.9	5 ± 2
$3_{21} \leftarrow 2_{12}$	2348.5739	2348.4457	-0.1282	5.4	5 ± 2
$3_{22} - 3_{13}$	2348.7689			0.3	
$2_{20} - 2_{11}$	2348.7849	2348.5263	-0.2586	1.8	3 ± 2
$5_{05} - 4_{14}$	2348.8769			0.3	
$2_{20} \leftarrow 1_{11}$	2349.2649	2348.9434	0.3215	2.4	7 ± 2
4 ₂₃ ← 3 ₃₀	2349.4239	2349.5298	0.1052	0.0	5 ± 2

TABLE IV. Theoretical infrared transitions in the frequency range of 2347.7–2351.4 cm⁻¹ in the ν_5 band of He–CO₂ and a tentative assignment of the observed ν_5 transitions.

wave number is not surprising. Except for seven lines the theoretical intensity pattern closely follows the experimental one. However, a few noticeable exceptions are observed. Thus, the assignment reported in Table IV should definitely be considered as tentative and more work should be done to produce a definite assignment of the observed transitions.

New ab initio potential calculation:

- Jacobi coordinate (R, θ , Q_3);
- about 700 symmetry unique points;
- aVQZ basis set plus bond functions;
- CCSD(T) level

Five PODVR grid points, -0.21715, -0.10325, 0.0, 0.10325, and 0.21715 a_0 , for the Q_3 coordinate

Energy levels (cm⁻¹) of bound vibrational states

No bound states with the stretching excitation

New Assignment of 'hot band' transitions:

	Obs.		Our work			Ref.		
	v(cm⁻¹)	Ι	v(obscal.)	I	assignment	v(obscal.)	I	assignment
1	2347.9305	3±2	0.0096	0.2	1 ₁₁ ←2 ₀₂	0.1106	4.8	1 ₀₁ ←1 ₁₀
2	2348.0022	3±2	0.0026	1.2	3 ₂₁ ←3 ₁₂	-0.0797	3.0	3 ₂₁ ←3 ₁₂
3	2348.2619	4±2	-0.0663	1.6	4 ₂₂ ←5 ₁₅	0.147	4.2	2 ₀₂ ←1 ₁₁
4	2348.3179	2±2	-0.0041	1.5	4 ₂₂ ← 3 ₁₃	-0.095	0.6	4 ₂₂ ←4 ₁₃
5	2348.3966	5±2	0.0418	7.1	1 ₀₁ ←2 ₁₂	-0.0433	3.9	4 ₂₂ ← 3 ₃₁
6	2348.4457	5±2	0.0386	6.9	2 ₀₂ ←3 ₁₃	-0.1282	5.4	3 ₂₁ ←2 ₁₂
7	2348.5263	3±2	-0.0257	2.3	2 ₂₀ ←2 ₁₁	-0.2586	1.8	2 ₂₀ ←2 ₁₁
8	2348.9434	7±2	-0.0223	0.1	5 ₅₁ ←4 ₀₄	-0.3215	2.4	2 ₂₀ ←1 ₁₁
9	2349.5298	5±2	-0.0422	0.9	4 ₂₂ ←5 ₀₅	0.1059	0.0	4 ₂₃ ←3 ₃₀
10	2349.7367	3±2	0.0479	1.0	6 ₁₆ ←6 ₄₃	-0.1242	0.2	4 ₄₀ ←4 ₃₁
11	2350.1536	6±2	-0.019	0.1	2 ₁₂ ← 2 ₂₁	0.1457	0.9	5 ₂₄ ←4 ₃₁
12	2350.1869	5±2	0.0385	1.0	1 ₁₀ ←2 ₁₁	0.156	0.6	4 ₂₃ ←4 ₁₄
13	2350.5311	6±2	0.0154	10.	3 ₁₃ ←2 ₁₂	-0.0948	6.3	4 ₂₃ ←3 ₁₂
14	2350.5444	5±2	-0.0037	2.7	4 ₂₃ ← 3 ₁₂	-0.1955	8.7	3 ₂₂ ←2 ₁₁
15	2350.7978	4±2	0.0274	4.6	2 ₂₁ ←1 ₁₀	-0.1251	9.9	2 ₂₁ ←1 ₁₀
16	2351.0401	3±2	0.0254	2.5	2 ₀₂ ←2 ₁₁	0.0542	3.0	5 ₂₄ ←4 ₁₃

Ref.: J. Chem. Phys. 115(2001)3074

Transitions from $v_3=0$ to $v_3=1$ state of CO₂ with the complex at the van der Waals ground state at T=4.1 K.

Calculated shift of band origin: 0.101 cm⁻¹ ; Observed value: 0.094 cm⁻¹

Journal of Chemical Physics, 128, 124323(2008)

H₂-(linear molecule) vdW complexes

$$\hat{H} = -\frac{1}{2\mu_1} \frac{\partial^2}{\partial R^2} - \frac{1}{2\mu_2} \frac{\partial^2}{\partial Q^2} + B_1 \hat{j}_1^2 + \frac{\hat{j}_2^2}{2I_Q} + \frac{(\hat{J} - \hat{j}_1 - \hat{j}_2)^2}{2\mu_1 R^2} + V(R, \varphi, \theta_1, \theta_2, Q)$$

Radial DVR/Angular FBR

Sin-DVR for *R* coordinate

PODVR for *Q* coordinate

The basis set for angular coordinate $(\theta_1, \theta_2, \phi)$:

$$j_{1}, j_{2}, m, K; JMP \rangle = (2 + 2\delta_{K0}\delta_{m0})^{-\frac{1}{2}} [D_{MK}^{J}Y_{j_{1}m}(\theta_{1}, \phi)\Theta_{j_{2},K-m}(\theta_{2})] + (-1)^{J+P} D_{M-K}^{J}Y_{j_{1}-m}(\theta_{1}, \phi)\Theta_{j_{2},m-K}(\theta_{2})]$$

Vibrationally averaged intermolecular PES:

$$V_{\nu}(\vec{R}) = \int_{-\infty}^{\infty} \psi_{\nu}(Q) \Delta V(\vec{R}, Q) \psi_{\nu}(Q) dQ = \sum_{k} T_{k\nu}^{2} \Delta V(\vec{R}, Q_{k})$$

Transition diploe moments:

$$\bar{d}_{\alpha}(\bar{R}) = \int_{-\infty}^{\infty} \psi_{\nu=1}(Q) d_{\alpha}(\bar{R}, Q) \psi_{\nu=0}(Q) dQ = \sum_{k} T_{k1} \mu_{\alpha}(\bar{R}, Q_{k}) T_{k0}(Q) dQ = \sum_{k} T_{k1} \mu_{\alpha}(\bar{R}, Q) T_{k0}(\bar{R}, Q) dQ = \sum_{k} T_{k1} \mu_{\alpha}(\bar{R}, Q) T_{k1}(\bar{R}, Q) d$$

In the angular FBR, the angular kinetic energy matrix elements:

 $\langle j'_1, j'_2, m', K'; JMp | \hat{\boldsymbol{j}}_1^2 | j_1, j_2, m, K; JMp \rangle = j_1(j_1+1)\delta(j'_1j_1)\delta(j'_2j_2)\delta(K', K)\delta(m', m)$ $\langle j'_1, j'_2, m', K'; JMp | \hat{\boldsymbol{j}}_2^2 | j_1, j_2, m, K; JMp \rangle = j_2(j_2+1)\delta(j'_1j_1)\delta(j'_2j_2)\delta(K', K)\delta(m', m)$

 $\langle j'_{1}, j'_{2}, m', K'; JMp | (\hat{J} - \hat{j}_{1} - \hat{j}_{2})^{2} | j_{1}, j_{2}, m, K; JMp \rangle$ $= \langle j_1', j_2', m', K'; JMp | \hat{J}^2 - \hat{J}(\hat{j}_1 + \hat{j}_2) - (\hat{j}_1 + \hat{j}_2)\hat{J} + (\hat{j}_1 + \hat{j}_2)^2 | j_1, j_2, m, K; JMp \rangle$ $= [J(J+1) - 2K^{2} + 2m(K-m) + j_{1}(j_{1}+1) + j_{2}(j_{2}+1)]\delta(j_{1}'j_{1})\delta(j_{2}'j_{2})\delta(K',K)\delta(m',m)$ $-(1+\delta(K',0)\delta(m',0))^{1/2}\Lambda_{JK}^{-}\Lambda_{j_1m}^{-}\delta(j_1'j_1)\delta(j_2'j_2)\delta(K',K-1)\delta(m',m-1)$ $-(1+\delta(K,0)\delta(m,0))^{\frac{1}{2}}\Lambda_{JK}^{+}\Lambda_{j_1m}^{+}\delta(j_1'j_1)\delta(j_2'j_2)\delta(K',K+1)\delta(m',m+1)$ $-(1+\delta(K',0)\delta(m,0))^{\frac{1}{2}}\Lambda_{JK}^{-}\Lambda_{j_{2}K-m}^{-}\delta(j_{1}'j_{1})\delta(j_{2}'j_{2})\delta(K',K-1)\delta(m',m)$ $-(1+\delta(K,0)\delta(m,0))^{1/2}\Lambda^+_{jK}\Lambda^+_{j_2K-m}\delta(j_1'j_1)\delta(j_2'j_2)\delta(K',K+1)\delta(m',m)$ + $(1 + \delta(K, 0)\delta(m, 0))^{1/2}\Lambda^{+}_{j_1m}\Lambda^{-}_{j_2K-m}\delta(j'_1j_1)\delta(j'_2j_2)\delta(K', K)\delta(m', m+1)$ $+(1+\delta(K,0)\delta(m',0))^{\frac{1}{2}}\Lambda^{-}_{j_1m}\Lambda^{+}_{j_2K-m}\delta(j'_1j_1)\delta(j'_2j_2)\delta(K',K)\delta(m',m-1)$

Fitting of the potential energy surface

$$\Delta V(R,\varphi,\theta_1,\theta_2,Q) = \left[\sum_{l_1 l_2 l} g_{l_1 l_2 l}(R,Q) A_{l_1 l_2 l}(\theta_1,\theta_2,\varphi)\right] \exp\left[\sum_{l_1 l_2 l} d_{l_1 l_2 l}(R,Q) A_{l_1 l_2 l}(\theta_1,\theta_2,\varphi)\right]$$

(For a set value of R and Q)

with

$$A_{l_1 l_2 l}(\theta_1, \theta_2, \varphi) = \sum_{m=-l<}^{l<} \begin{pmatrix} l_1 & l_2 & l \\ m & -m & 0 \end{pmatrix} Y_{l_1 m}(\theta_1, \varphi_1) Y_{l_2, -m}(\theta_2, \varphi_2)$$

where

$$\varphi = \varphi_1 - \varphi_2 \qquad \qquad l_{<} = \min(l_1, l_2)$$

(both l_1 and $l + l_1 + l_2$ must be even)

Fitting of the dipole moment surface

$$\mu_{\alpha}(R, \phi, \theta_{1}, \theta_{2}, Q) = \sum_{l_{1}l_{2}l} g_{l_{1}l_{2}l;\alpha}(R, Q) A_{l_{1}l_{2}l;\alpha}(\theta_{1}, \theta_{2}, \phi) \quad , \alpha = x, y, \text{ or } z$$

The angular form of μ_z is the same as that for the potential energy.

$$A_{l_1l_2l;x}(\theta_1,\theta_2,\varphi) = \sum_m \begin{pmatrix} l_1 & l_2 & l \\ m & -m+1 & -1 \end{pmatrix} \Theta_{l_1m}(\theta_1)\Theta_{l_2-m+1}(\theta_2)\cos(m\varphi)$$

$$A_{l_{1}l_{2}l;y}(\theta_{1},\theta_{2},\varphi) = \sum_{m} \begin{pmatrix} l_{1} & l_{2} & l \\ m & -m+1 & -1 \end{pmatrix} \Theta_{l_{1}m}(\theta_{1})\Theta_{l_{2}-m+1}(\theta_{2})\sin(m\varphi)$$

Calculation of the transition intensity

$$\Psi_{n}^{JMp}(R,\varphi,\theta_{1},\theta_{2},Q,\alpha,\beta,\gamma) = \sum_{K} \left[\Psi_{K+}^{Jnp}(R,\varphi,\theta_{1},\theta_{2},Q) D_{MK}^{J*}(\alpha,\beta,\gamma) + (-1)^{J+p} \Psi_{K-}^{Jnp}(R,\varphi,\theta_{1},\theta_{2},Q) D_{M-K}^{J*}(\alpha,\beta,\gamma) \right]$$

$$\begin{split} I_{Jpn \to J'p'n'} &\propto (2J+1)(2J'+1)(E_{J'p'n'} - E_{Jpn})[e^{-E_{Jpn'}/kT} - e^{-E_{J'p'n'}/kT}] \\ &\left| \sum_{K} \sum_{K'} \sum_{h} (-1)^{K} \left\{ \begin{pmatrix} J & J' & 1 \\ -K & K' & h \end{pmatrix} \int \Psi_{K+}^{Jnp*} \mu_{h} \Psi_{K'+}^{J'n'p'} d\tau \right. \\ &\left. + (-1)^{J+p} \begin{pmatrix} J & J' & 1 \\ K & K' & h \end{pmatrix} \int \Psi_{K-}^{Jnp*} \mu_{h} \Psi_{K'+}^{J'n'p'} d\tau \right. \\ &\left. + (-1)^{J'+p'} \begin{pmatrix} J & J' & 1 \\ -K & -K' & h \end{pmatrix} \int \Psi_{K+}^{Jnp*} \mu_{h} \Psi_{K'-}^{J'n'p'} d\tau \right. \\ &\left. + (-1)^{J+p+J'+p'} \begin{pmatrix} J & J' & 1 \\ -K & -K' & h \end{pmatrix} \int \Psi_{K-}^{Jnp*} \mu_{h} \Psi_{K'-}^{J'n'p'} d\tau \right]^{2} \end{split}$$

H₂-N₂O: rovibraional spectra in the v_3 region of N₂O

Y. Zhou, H. Ran, and D.Q. Xie, *J. Chem. Phys.*, 125, 174310(2006) H₂: possibly the most abundant molecule in the universe *p*H₂: indistinguishable boson superfluid behavior

Nuclear spin state: I = 0 for pH_2 , I = 0, 2 for oD_2

I = 1 for oH_2 and pD_2

At low temperature: $j_{\rm H} = 0$ for $p \rm H_2$ and $o \rm D_2$

 $j_{\rm H} = 1$ for oH_2 and pD_2

- CCSD(T) method
- •
- aug-cc-pVTZ basis set for H atom cc-pVTZ plus diffuse functions (1s1p1d) for O and N atoms
- Bond function (3s 3p 2d1f) (for 3s and 3p, *a* =0.9,0.3,0.1; for 2d, *a* =0.6,0.2, for f, *a* =0.3)
- 4 PODVR points for Q₃ coordinate: -1.6507, -0.5246, 0.5246, 1.6507 and about 5000 geometries in total *R*: [4.5a₀, 15.0a₀] with 12 points θ₁, θ₂, φ in increments of 30°

Contour plots of potential energy surface for N₂O-H₂ at R = 5.43 a₀ for $Q_3 = -0.5246$. (a) $\varphi = 0^{\circ}$ (b) $\varphi = 90^{\circ}$ (c) $\theta_2 = 93.6^{\circ}$. The contour spacing is 30 cm⁻¹

Pure vibrational energy levels (in cm⁻¹) for first ten bound states of four species of N_2O -hydrogen complexes.

п	N_2O-pH_2	N_2O-oH_2	N_2O-oD_2	N_2O-pD_2
1	-64.7179	31.4662	-84.6173	-48.1361
2	-35.0508	63.2391	-52.9458	-14.6583
3	-27.6110	77.4146	-40.6190	2.9199
4	-23.3189	81.7838	-36.4570	8.8001
5	-18.1627	86.5550	-30.2769	12.9811
6	-11.0445	88.6383	-28.0395	14.7727
7	-6.7396	91.2522	-23.2572	16.6810
8	-0.9296	96.5342	-17.8034	21.0470
9		101.2074	-13.6489	24.1322
10		105.8023	-8.5608	29.8419

 $V_{min} = -242.43 \text{ cm}^{-1}$

The ground state energies for oH_2 and pD_2 are 118.48675 cm⁻¹ and 59.78042 cm⁻¹

Band origin shift:

 N_2O-pH_2 : 0.2219 cm⁻¹(cal); 0.2261 cm⁻¹(obs) N_2O-oH_2 : 0.4236 cm⁻¹(cal); 0.6238 cm⁻¹(obs) N_2O-oD_2 : 0.3585 cm⁻¹(cal); 0.4534 cm⁻¹(obs) N_2O-pD_2 : 0.5437 cm⁻¹(cal); 0.7900 cm⁻¹(obs)

The contour plots of probability density integrated over two angular variables θ_1 and φ for some vibration states of N₂O-*p*H₂ at $Q_3 = -0.5246$.

The contour plots of probability density integrated over two angular variables θ_1 and φ for some vibration states of N₂O-oD₂ at $Q_3 = -0.5246$.

The calculated line intensities at a rotational temperature of T = 1.5K. The transition frequencies are relative to the band origin.

^a J. Tang and A. R. W. McKellar, JCP 117, 8308 (2002) 45

The calculated line intensities for N_2O-D_2 at a rotational temperature of T =1.5K. The transition frequencies are relative to the band origin.

From vdW complexes to clusters:

Spectroscopic studies offer insights into dynamical and structural information.

Superfluidity Within a Small Helium-4 Cluster

S. Grebenev et al., Science, 278, 2083 (1998)

In ⁴He, sharp rotational lines, absent Q branch→ free linear rotor In ³He, broad line → conventional rotation diffusion in viscous solution

High resolution infrared spectra of CO₂ solvated with helium atoms

J.Tang and A.R.W.McKellar, J. Chem. Phys. 121, 181 (2004)

Due to microscopic superfludity

For quantum solvents such as ⁴He and *para*-H₂, microscopic superfluidity and transition from vdW complexes to quantum solvation have been established.

Theoretical description requires both QM approach to the finite temperature dynamics and accurate intermolecular PES

Path integral Monte Carlo Study for He_N-N₂O

Hamiltonian for a ⁴He cluster doped with a N₂O molecule:

{p_i ; r_i }: the momenta and positions of the helium atoms {p₀; r_0 }: the momenta and position of the N₂O molecule

Any physical observable <0> can be evaluated as

$$\left\langle \hat{O} \right\rangle_{\beta} = \frac{1}{Z} \operatorname{Tr} \left\{ \hat{O} \hat{\rho}(\beta) \right\}$$
$$= \frac{1}{Z} \int d\mathbf{q} d\mathbf{q}' d\Omega d\Omega' \left\langle \mathbf{q} \Omega \left| \hat{O} \right| \mathbf{q}' \Omega' \right\rangle \left\langle \mathbf{q}' \Omega' \right| \hat{\rho}(\beta) \left| \mathbf{q} \Omega \right\rangle$$

$$\hat{\rho}(\beta) = e^{-\beta \hat{H}}$$
 (Density operator)

$$Z = \text{Tr}\{\hat{\rho}(\beta)\}$$
 (Partition function)

$$\beta = 1/k_BT$$

$$\mathbf{q} = (\mathbf{r}_0, \{\mathbf{r}_i \mid i > 0\})$$
imaginary time

In the path integral picture with a finite number (K) of discretization o the imaginary time, the density matrix can be written as

$$\left\langle \mathbf{q}' \mathbf{\Omega}' \middle| e^{-\beta \hat{H}} \middle| \mathbf{q} \mathbf{\Omega} \right\rangle = \tau = \beta / K$$

$$\int \cdots \int \prod_{k=2}^{K} d\mathbf{q}_{k} d\mathbf{\Omega}_{k} \prod_{k=1}^{K} \left\langle \mathbf{\Omega}_{k} \middle| e^{-\tau \hat{H}^{\text{rot}}_{N_{2}0}} \middle| \mathbf{\Omega}_{k+1} \right\rangle \left\langle \mathbf{q}_{k} \middle| e^{-\tau \hat{H}^{\text{tr}}(\mathbf{\Omega}_{k})} \middle| \mathbf{q}_{k+1} \right\rangle (\mathbf{q}_{k+1}) = (\mathbf{q} \mathbf{\Omega})$$

$$\sum_{l=0}^{\infty} \frac{2l+1}{4\pi} e^{-\tau B_{v}^{N_{2}0} l(l+1)} p_{l}(\cos \gamma)$$

$$\left(\frac{1}{4\pi\Lambda\tau} \right)^{3/2} \left(\frac{1}{4\pi\lambda\tau} \right)^{3N/2} e^{-0.5\tau \left[V(R_{k}) + V(R_{k+1}) \right]}$$

$$\times e^{-\left(R^{k} - R^{k+1}\right)^{2} / 4\Lambda\tau} e^{-\sum_{i}^{N} \left(r_{i}^{k} - r_{i}^{k+1}\right)^{2} / 4\lambda\tau}$$

The **Bosonic exchange effect** was incorporated into PIMC by Including permutation sampling.

The "raw" PIMC data were extrapolated to the limit of $\tau \rightarrow 0$,

$$\left\langle E\right\rangle_{\beta}^{PIMC} = a + b\tau^2$$

Distance distribution of the *i* **th He atom**,

$$\langle R_i \rangle = \frac{1}{K} \left\langle \sum_{k=1}^{K} \left| \mathbf{r}_{ik} - \mathbf{r}_{0k} \right| \right\rangle_{\beta}$$

Orientation estimator:

$$\left\langle \cos \theta_i \right\rangle = \left\langle \frac{\mathbf{n} \cdot \mathbf{R}_i}{R_i} \right\rangle_{\beta}$$

Vibrational band origin shifit:

$$\Delta \nu = \left\langle E^{\nu=1} \right\rangle_{\beta} - \left\langle E^{\nu=0} \right\rangle_{\beta}$$

Effective rotational and centrifugal distortion constants:

$$E(J) = B_{eff} J(J+1) - D_{eff} J^2 (J+1)^2$$

$$\langle n(\tau) \bullet n(0) \rangle = \frac{1}{Z} \operatorname{Tr} \left\{ e^{-\beta H} e^{\tau H} n e^{-\tau H} \bullet n \right\}$$
$$= \frac{1}{Z} \left(\exp(-2B\tau + 4D\tau) + \sum_{J>0} \exp\left[-\beta BJ(J+1) + \beta DJ^2(J+1)^2\right] \times \left\{ J \exp(2BJ\tau - 4DJ^3\tau) + (J+1) \exp\left[-2B(J+1)\tau + 4D(J+1)^3\tau\right] \right\} \right)$$

(Orientational correlation function)

Refitting for He-N₂O PES

The formula for analytic potential energy surface:

 $P_l(\cos\theta)$ is Legendra polynomial

 $A(R,\theta)$ is short range linear term: $A(R,\theta) = \exp(d^0)R^{-2}\sum_{i=0}^4 R^i \sum_{l=0}^5 g_i^l \frac{P_l(\cos\theta)}{\sqrt{2l+1}}$]

 $B(R,\theta) \text{ is short range exponential term: } B(R,\theta) = \sum_{l=1}^{4} d^l \frac{P_l(\cos\theta)}{\sqrt{2l+1}} + (-R)\sum_{l=0}^{4} b^l \frac{P_l(\cos\theta)}{\sqrt{2l+1}}$

 $f_i[D(\theta)R]$ is dumping factor which is defined as $f_n(x) = 1 - e^{-x} \sum_{k=0}^n x^k / k!$ where $D(\theta) = \sum_{l=0}^4 b^l \frac{P_l(\cos \theta)}{\sqrt{2l+1}}$

Contour plot in Jacobi coordinates of the He–N₂O PES

PIMC simulation parameters

Effective rotational temperature,

T=0.37K

J. Chem. Phys., 121, 181, 2004.

Rotational constant

B=0.4190 cm⁻¹ , for ground state of N₂O 0.4156 cm⁻¹ , for ground state of N₂O

• Accept ratio

0.3-0.6, to enhance the efficiency of PIMC sampling.

- Number of time slices of transitional freedom: N=256, 384,512.
- Number of time slices of rotation freedom: N= 32, 64, 128
- Sampling steps More than 2,000,000 sampling steps to reach quasiergodicity

Benchmark calculation: He-N₂O dimer of different time slices

Number of time slices		- E (cm ⁻¹)	E (cm-1)	$\wedge v(cm^{-1})$	
Translation	Rotation	$- L_{\nu=0}(\text{CH}^{+})$	∟ _{v=1} (Cm ⁻)		
256	64	-23.797	-23.546	0.251	
384	64	-22.684	-22.443	0.241	
384	128	-22.326	-22.090	0.235	
512	64	-22.203	-21.973	0.230	
512	128	-21.839	-21.615	0.224	
640	64	-21.944	-21.719	0.225	
Extrapolation $(\tau \rightarrow 0)$		-21.110	-20.904	0.206	
Rot-vib Energ	y Calculation	-21.481	-21.295	0.186	

Angular distribution of helium atoms around the N_2O probe molecule in the ${}^{4}\text{He}_{N}$ - N_2O complexes. The density is normalized.

⁴He density $\rho(r, \theta)$ and averaged positions of the ⁴He atoms around the N₂O molecule. The 'bond' only shows the configurations of rings.

Vibrational band origin shift for the ⁴He_N-N₂O clusters

Effective rotational constant *B*_{*eff*}

Summary

- It now becomes possible to include the explicit dependence of the intramolecular degrees of freedom in the studies of the rovibrational spectra of the complex.
- With the explicit involvement of one intramolecular vibrational coordinate that is related to the transition in the infrared spectra, full prediction of the infrared spectra including the shift of band origin can be achieved.
- 3. The **vibrationally averaged potentials** are essential to simulate the spectroscopic properties of the related **vdW clusters**.

Further developments :

. complexes with a non-linear molecule

. complexes with an open-shell linear molecule.

Acknowledgments

Graduate Students: Hong Ran, Zheng Li, Lecheng Wang, Yanzi Zhou

Collaborators:

Prof. Hua Guo, University of New Mexico, USA Prof. P.N. Roy, University of Waterloo, Canada

Funding:

NSFC; MOE; MOST

