<u>Anharmonic Vibrational Spectroscopy Calculations for Large Molecular Systems:</u>
<u>Methods, Algorithms and Applications</u>

R.B. Gerber
Institute of Chemistry and Fritz Haber Research Center
Hebrew University of Jerusalem
Jerusalem 91904, Israel
and
Department of Chemistry
University of California, Irvine 92697, U.S.A.

Abstract

Recent results on anharmonic vibrational spectroscopy calculations for large molecules are presented. Developments for new Vibrational Self-Consistent Field (VSCF) are discussed, with focus on: (1) The scaling of correlated VSCF algorithms with N, the number of vibrational modes; (2) the role of vibrational degeneracy effects in the spectra; and (3) applications of the algorithms for a range of experimental systems, as a tool for determination of molecular structure and of other properties. Successful applications to systems of biological relevance (peptides, sugars) and for atmospheric species (large hydrated ions) are mentioned.

As a detailed application, the Raman spectrum of the CH stretching band in the hydrocarbon dodecane (C_{10} H_{22}) is discussed. Comparison with experiment is made, and conclusions on the roles of anharmonicity and of vibrational degeneracy are presented.

Directions for future progress are suggested.