A new approach for calculating rotational spectra

Patrick CASSAM-CHENA \ddot{I}^a and Jacques Liévin b

^aLaboratoire J.-A. Dieudonné, Université de Nice-Sophia-Antipolis ^bService de Chimie Quantique et Photophysique, ULB

Nice, November 2010

Forbidden rotational lines of CH4

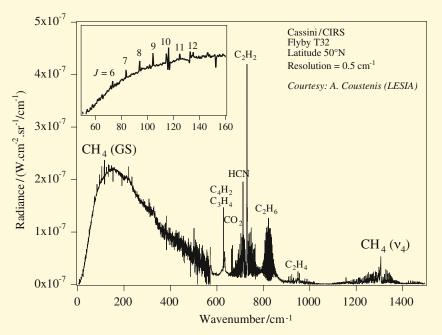


Fig. 1. Example of a Cassini CIRS spectrum showing far infrared emission lines of methane.

in Titan atmosphere (32 th Cassini flyby: 950 km, 13/06/2007)

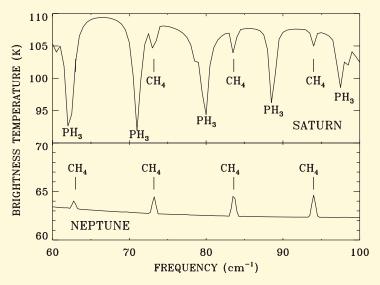


Fig. 5. Upper panel: synthetic spectrum of zenith radiation from Saturn at a resolution of $0.5 \,\mathrm{cm}^{-1}$. The strongest features arise from allowed rotational transitions in PH₃. The CH₄ features are distortion dipole envelopes R(6), R(7), and R(8), with R(5) being obscured by the lowest frequency phosphine line. Some very weak NH₃ transitions (unlabeled) contribute as well. All these lines occur in absorption. Lower panel: synthetic spectrum of zenith radiation from Neptune at a resolution of $0.5 \,\mathrm{cm}^{-1}$. The methane is abundant enough that the distortion dipole envelopes R(5) to R(8) are the strongest narrow features present. The stratosphere is sufficiently warm that these lines appear in emission on a continuum arising from collision-induced H₂-H₂ and H₂-He absorption.

can be used to derive CH4 abundances in Titan, Saturn and Neptune.

Problem: electric dipole moment uncertainty

Table 2 Dipole moment parameters.

Fit #	Nb. data	σ	d _{RMS} (%)	$d_{\mathrm{RMS}}^{J}\left(\%\right)$	μ ₀ (μD)	μ _D (μD)	μ _{2,4} (mD)	μ _{4,4} (mD)
1 2 3	92 92 (GS) 96 (Dyad) 96	1.468 1.468 1.309 1.306	8.52 8.52 8.74 8.74	3.53 3.53 3.98 3.98	7.976 (29) 7.976 (28) - 7.9765 ^a	22.559 (82) 22.559 (79) - 22.559 ^a	- 7.00 (13) 7.00 (13)	- -36.09 (16) -36.09 (15)
Hilico [23] Ozier [28] Wishnow [25]	(Calc.) (Stark) 3 ^b	- - -	- - -	- - -	7.90 - -	22.34 24.06 (45) 23.82 (88) 23.94 (1.20)	10.8 - -	-34.7 - -
Ozier [41] Mourbat [40]	2 (Calc.)	- -	- -	- -	- -	-	- 7.186	-33.8 (4.9) -37.47

For fit number 2 (global fit), the two numbers correspond to the cold and hot band lines, respectively. $d_{\rm RMS}^J$ is the root mean square deviation for total intensities of J clusters (see text). The two μ_D values indicated for Wishnow correspond to the so-called low-(0.24 cm⁻¹) and high-(0.06 cm⁻¹) resolution spectra from this reference.

Boudon et al. JQSRT 111, p. 1117 (2010)

Can ab initio calculations resolve the controversy?

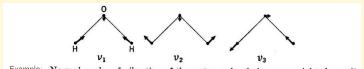
^a Fixed value.

^b Unresolved clusters.

Effective observable theory - condition 1

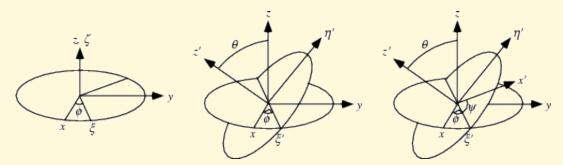
Two families of distinguishable degrees of freedom (dof) \leadsto two sets of operators: X and Y acting on each family respectively.

• Ex. X normal coordinates operators and conjugate moments



Example: Normal modes of vibration of the water molecule in mass-weighted coordinates. To represent actual relative motions in space, the arrows representing displacements of the oxygen atom should be only one-fourth as long as here shown.

• Ex. Y Euler angles operators and conjugate moments



Effective observable theory - condition 2

The Hamiltonian H(X,Y) which act on the tensor Hilbert space $V = V_{\mathbf{X}} \otimes V_{\mathbf{y}}$ is "dominated" by a term of the form, $H_0(X) \otimes Id_{\mathbf{y}}$.

$$\longrightarrow$$
 Introducing ε and $H(X, Y, \varepsilon) = H_0(X) \otimes Id_{\mathbf{y}} + \varepsilon H_1(X, Y)$

such that
$$H(X, Y, 0) = H_0(X) \otimes Id_Y$$
 and $H(X, Y, 1) = H(X, Y)$.

 \leadsto Given an eigenbasis for the $dimV_{\mathbf{y}}$ -degenerate eigenspaces of $H(X, \mathbf{Y}, 0)$,

$$H(X, Y, 0)|\psi_n \otimes \Psi_K\rangle = \nu_n |\psi_n \otimes \Psi_K\rangle \quad \forall K.$$

We assume that, for some fixed n, the $\dim V_{\mathbf{y}}$ eigenstates $(\psi_n \otimes \Psi_K)_K$ of H(X, Y, 0) are in one-to-one correspondance with $\dim V_{\mathbf{y}}$ eigenstates of $H(X, Y, \varepsilon)$, denoted by $(\phi_{n,K}(\varepsilon))_K$, with a smooth ε dependency.

Effective wave operator

The $\phi_{n,K}(\varepsilon)$'s can be expanded on the tensorial product basis set as,

$$\phi_{n,K}(\varepsilon) = \sum_{n',K'} c_{n',K'}^{n,K}(\varepsilon) \; \psi_{n'} \otimes \Psi_{K'}.$$

Defining $dim V_{\mathbf{X}}$ linear operators on $V_{\mathbf{y}}$, $\Psi_{n'}(Y, \varepsilon)$, by

$$\forall n', \forall \Psi_K, \quad \Psi_{n'}(Y, \varepsilon)\Psi_K := \sum_{K'} c_{n',K'}^{n,K}(\varepsilon) \ \Psi_{K'},$$

and then, a so-called "effective wave operator" from $V_{\mathbf{y}}$ onto $V_{\mathbf{x}} \otimes V_{\mathbf{y}}$, $\phi_n(Y,\varepsilon)$, by

$$\phi_n(Y,\varepsilon) = \sum_{n'} \psi_{n'} \otimes \Psi_{n'}(Y,\varepsilon),$$

 $\phi_{n,K}(\varepsilon)$ assumes a peudo-factored form,

$$\phi_{n,K}(\varepsilon) = \phi_n(Y,\varepsilon)\Psi_K.$$

Effective Hamiltonians

Finding the $\dim V_{\mathbf{y}}$ eigenpairs $(E_{n,K}(\varepsilon), \phi_{n,K}(\varepsilon))_K$ of $H(X, Y, \varepsilon)$ at once, amounts to finding effective operators $\phi_n(Y, \varepsilon)$ and $E_n(Y, \varepsilon)$ acting on $V_{\mathbf{y}}$ such that,

$$H(X, Y, \varepsilon)\phi_n(Y, \varepsilon) = \phi_n(Y, \varepsilon)E_n(Y, \varepsilon) \tag{1}$$

$$\phi_n(Y,\varepsilon)\Psi_K = \phi_{n,K}(\varepsilon) \tag{2}$$

$$E_n(Y,\varepsilon)\Psi_K = E_{n,K}(\varepsilon)\Psi_K \tag{3}$$

Effective Dipole Moment

For $\varepsilon = 1$, the Hermitic conjugate of the generalized eigenequation,

$$H(X,Y)\phi_n(Y) = \phi_n(Y)E_n(Y)$$

is,

$$\phi_n^\dagger(Y)H(X,Y) = E_n^\dagger(Y)\phi_n^\dagger(Y),$$

One derives for the laboratory-fixed, dipole moment, D(X, Y), acting on $V_{\mathbf{x}} \otimes V_{\mathbf{y}}$, an effective Hermitian operator, $D_n(Y)$, acting solely on $V_{\mathbf{y}}$, by,

$$D_n(Y) = \langle \phi_n^{\dagger}(Y)D(X,Y)\phi_n(Y)\rangle_{\mathbf{X}}.$$
 (4)

with the normalization condition,

$$\langle \phi_n^{\dagger}(Y)\phi_n(Y)\rangle_{\mathbf{X}} = Id_{\mathbf{Y}},$$
 (5)

where the notation $\langle \cdots \rangle_{\mathbf{X}}$ means that integration is carried over the **x**-variables only

Watson-Eckart Hamiltonian decomposition

- \bullet X normal coordinates operators and conjugate moments
- Y Euler angles operators and conjugate moments

$$H_{watson}(X,Y) = H_0(X) \otimes Id_{\mathbf{y}} + H_1(X,Y)$$

$$H_0(X) = \frac{1}{2}\vec{P}^T \cdot \vec{P} + V_{BO} - \frac{1}{8} Tr(\mu) + \frac{1}{2} \vec{\pi}^T \mu \vec{\pi}$$

$$H_1(X,Y) = \sum_{\alpha\beta} \frac{1}{2} \mu_{\alpha\beta} \otimes \Pi_{\alpha} \Pi_{\beta} - \mu_{\alpha\beta} \pi_{\alpha} \otimes \Pi_{\beta}$$

 μ : effective reciprocal inertial tensor,

 $\vec{\pi}$: Coriolis coupling operator,

 $\vec{\Pi}$: the total angular momentum.

Rayleigh-Schrödinger perturbative expansion and solution

$$E(Y,\varepsilon) = \nu_0 I d_{\mathbf{y}} + \varepsilon E^{(1)}(Y) + \varepsilon^2 E^{(2)}(Y) + \varepsilon^3 E^{(3)}(Y) + \varepsilon^4 E^{(4)}(Y) + ...,$$

$$\phi(Y,\varepsilon) = \psi_0 \otimes Id_{\mathbf{y}} + \varepsilon \phi^{(1)}(Y) + \varepsilon^2 \phi^{(2)}(Y) + \varepsilon^3 \phi^{(3)}(Y) + \varepsilon^4 \phi^{(4)}(Y) + ...,$$

$$E^{(1)}(Y) = \langle \psi_0 \otimes Id_{\mathbf{y}} | H_1(X,Y) | \psi_0 \otimes Id_{\mathbf{y}} \rangle_{\mathbf{x}} := H_1(Y)_{0,0},$$

$$\phi^{(1)}(Y) = \sum_{k \neq 0} \psi_k \otimes \frac{H_1(Y)_{k,0}}{\nu_0 - \nu_k}$$

$$E^{(2)}(Y) = \sum_{k \neq 0} \frac{H_1(Y)_{0,k} H_1(Y)_{k,0}}{\nu_0 - \nu_k},$$

. . .

Dipole moment expansion and solution

dipole moment:
$$D_f(X, Y) = \sum_{\alpha = x, y, z} D_{\alpha}(X) \otimes \lambda_{f\alpha}(Y)$$
,

$$D_f(Y) = D_f^{(0)}(Y) + \varepsilon D_f^{(1)}(Y) + \varepsilon^2 D_f^{(2)}(Y) + \dots + \varepsilon^n D_f^{(n)}(Y) + \dots,$$

• order 0

$$D_f^{(0)}(Y) = \sum_{\alpha=x,y,z} \langle \psi_0 | D_{\alpha}(X) | \psi_0 \rangle_{\mathbf{X}} \lambda_{f\alpha}(Y)$$

 $^{12}CH_4, GS \rightsquigarrow 0$

• order 1

$$D_f^{(1)}(Y) = \sum_{\alpha = x, y, z} \sum_{k_1 \neq 0} \frac{\langle \psi_{k_1} | D_{\alpha}(X) | \psi_0 \rangle_{\mathbf{X}}}{\nu_0 - \nu_{k_1}} H_1(Y)_{0, k_1} \lambda_{f\alpha}(Y) + \frac{\langle \psi_0 | D_{\alpha}(X) | \psi_{k_1} \rangle_{\mathbf{X}}}{\nu_0 - \nu_{k_1}} \lambda_{f\alpha}(Y) H_1(Y)_{k_1, 0}$$

$$^{12}CH_4, \ GS \ \leadsto \frac{\mu_2^{(2)}}{2} (\lambda_{fx}(\Pi_y\Pi_z + \Pi_z\Pi_y) + \lambda_{fy}(\Pi_x\Pi_z + \Pi_z\Pi_x) + \lambda_{fz}(\Pi_y\Pi_x + \Pi_x\Pi_y)) + hc$$

Dipole moment 2^{nd} order correction

$$D_{f}^{(2)}(Y) = \sum_{\alpha=x,y,z} \left(\sum_{k_{1},k_{2}\neq0} \frac{1}{(\nu_{0} - \nu_{k_{1}})(\nu_{0} - \nu_{k_{2}})} \left(\langle \psi_{k_{1}} | D_{\alpha}(X) | \psi_{k_{2}} \rangle_{\mathbf{X}} H_{1}(Y)_{0,k_{1}} \lambda_{f\alpha}(Y) H_{1}(Y)_{k_{2},0} + \langle \psi_{0} | D_{\alpha}(X) | \psi_{0} \rangle_{\mathbf{X}} H_{1}(Y)_{0,k_{2}} H_{1}(Y)_{k_{2},k_{1}} \lambda_{f\alpha}(Y) \right) - \sum_{k_{1}\neq0} \frac{\langle \psi_{0} | D_{\alpha}(X) | \psi_{k_{1}} \rangle_{\mathbf{X}}}{(\nu_{0} - \nu_{k_{1}})^{2}} \left(\lambda_{f\alpha}(Y) H_{1}(Y)_{k_{1},0} H_{1}(Y)_{0,0} + H_{1}(Y)_{0,0} H_{1}(Y)_{0,k_{1}} \lambda_{f\alpha}(Y) \right) - \frac{\langle \psi_{0} | D_{\alpha}(X) | \psi_{0} \rangle_{\mathbf{X}}}{2} \sum_{k_{1}\neq0} \frac{1}{(\nu_{0} - \nu_{k_{1}})^{2}} \left(\lambda_{f\alpha}(Y) H_{1}(Y)_{0,k_{1}} H_{1}(Y)_{k_{1},0} + H_{1}(Y)_{0,k_{1}} H_{1}(Y)_{k_{1},0} \lambda_{f\alpha}(Y) \right) \right)$$

- \rightarrow correction to $\mu_2^{(2)}$
- $\rightarrow \mu_2^{(4)}$ in factor of $(\Pi_y\Pi_x + \Pi_x\Pi_y)(\Pi_x^2 + \Pi_y^2 + \Pi_z^2)$ for body fixed z-axis
- $\rightarrow \mu_4^{(4)}$ in factor of $[(\Pi_y\Pi_x + \Pi_x\Pi_y), \Pi_z^2)]_+$ for body fixed z-axis
- \rightarrow no more $(\lambda_{fx}D_x^{body-fixed} + \lambda_{fy}D_y^{body-fixed} + \lambda_{fz}D_z^{body-fixed}) + hc$

Speed of convergence with the order of the perturbation

Energies in cm^{-1} of methane rotational levels in its vibrational ground state

	Van Vleck Perturbation ^a				$STDS^c$		
	ord2	ord4	$\operatorname{ord}6$	ord0	ord2	$\operatorname{ord}4$	
J=1	10.59973	10.44174	10.44237	10.63296	10.48010	10.48008	10.481648
J=2	31.79918	31.32521	31.32439	31.89887	31.43746	31.43742	31.442121
	31.79918	31.32521	31.32463	31.89887	31.43772	31.43769	31.442387
J=3	63.59837	62.65041	62.64064	63.79775	62.86645	62.86635	62.875779
	63.59837	62.65041	62.64162	63.79775	62.86749	62.86742	62.876841
	63.59837	62.65041	62.64285	63.79775	62.86879	62.86877	62.878169

^a X. G. Wang et E. L. Sibert, Spectrochimica Acta A, **58** (2002) 863. 12 force constants adjusted on experiment.

^b P. Cassam-Chenaï and J. Liévin, Int. J. Quantum Chem. **93**, 245-264 (2003). Purely *ab initio* results.

 $[^]c$ C. Wenger and J. P. Champion, J. Quant. Spectrosc. Radiat. Transfer **59**, 471-480 (1998). From an effective Hamiltonian accurate to 10^{-5} cm⁻¹.

Energies in cm^{-1} of methane rotational levels in its vibrational ground state

	$Carter/Bowman^a$	$Wang/Carrington^b$	$Wang/Sibert^c$	${\it Cassam-Chena\"i/Li\'{e}vin}^d$	$STDS^e$
J=1	10.47	10.430	10.44237	10.48165	10.481648
J=2	N/A	N/A	31.32439	31.44213	31.442121
	N/A	N/A	31.32463	31.44240	31.442387
J=3	N/A	N/A	62.64064	62.87581	62.875779
	N/A	N/A	62.64162	62.87689	62.876841
	N/A	N/A	62.64285	62.87824	62.878169
J = 4 - 18	N/A	N/A	N/A	largest relative di	fference 2.10^{-5}

 $[^]a$ S. Carter et J. M. Bowman, J. Phys. Chem. **A104**, 2355 (2000). MULTIMODE using Lee, Martin and Taylor PES.

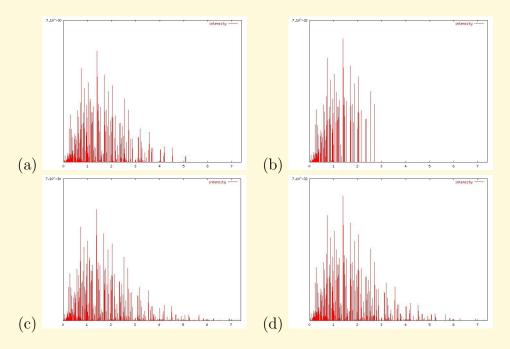
 $[^]b$ X. G. Wang et T. Carrington, J. Chem. Phys ${\bf 121},~2937~(2004).$ CI calculation using Schwenke PES.

 $[^]c$ X. G. Wang et E. L. Sibert, Spectrochimica Acta A **58**, 863 (2002). 12 force constants adjusted on experiment .

 $[^]d$ P. Cassam-Chenaï and J. Liévin, Int. J. Quantum Chem. **93**, 245-264 (2003). VMFCI using Lee, Martin and Taylor PES + generalised perturbation with 1 parameter B_0 scaled by a factor 1.0002535.

 $[^]e$ C. Wenger and J. P. Champion, J. Quant. Spectrosc. Radiat. Transfer **59**, 471-480 (1998). From an effective Hamiltonian accurate to 10^{-5} cm⁻¹.

Comparison with HITRAN at 500K



Q-Branch of the vibrational ground state of methane. Comparison of the extrapolation from HITRAN for $^{12}CH_4$ (a) and $^{13}CH_4$ (b) with *ab initio* calculated spectra for $^{12}CH_4$ (c) and $^{13}CH_4$ (d). Units as in HITRAN, intensities in [cm $^{-1}$ / (molecule . cm $^{-2}$)], wave numbers in cm $^{-1}$. Isotopic abundances: 0.988274 for $^{12}CH_4$, 0.0111031 for $^{13}CH_4$.

R-Branch: \rightarrow average relative error of 2.10⁻⁵ on line positions up to J=14

Convergence of the equilibrium CH distance of methane and electric dipole moment first derivatives with orbital basis set

Method	$r_e ext{ (in } \rho A)$	$\frac{\partial \mu_z}{\partial q_{3z}}$ (in au)	$\frac{\partial \mu_z}{\partial q_{4z}}$ (in au)
MRCI/VQZ	1.08826	-0.00358(1)	+0.00233(5)
MRCI/ACVQZ	1.08690	-0.00357(65)	+0.00230(4)
MRCI/ACV5Z	1.08635	-0.00355(46)	+0.00232(0)
MRCI/ACV6Z	1.08624	-0.00354(38)	+0.00233(26)

The derivatives are with respect to the mass-weighted, Cartesian, normal coordinates of the force field of Lee, Martin and Taylor. MRCI calculations with frozen core for the VQZ basis set and full core excitations for the ACVnZ basis sets. The CI space for the ACV6Z calculation is spanned by about 16 Million CSFs.

Dipole moment derivatives of ¹²CH4 (in Debye) (adimensional normal coordinates)

Ref.	This work	Loete (1988)	Mourbat (1998)
$rac{\partial \mu_z}{\partial q_{3z}}$	-0.074875	-0.07561(4)	-0.0754(17)
$rac{\partial \hat{\mu}_z}{\partial q_{Az}}$	+0.0750256	+0.07950(8)	+0.0808(16)
$rac{\partial^2 \mu_z}{\partial q_1 \partial q_{3z}}$	-0.00920	N/A	-0.0009(01)
$rac{\partial^2 \mu_z}{\partial q_1 \partial q_{Az}}$	-0.01528	-0.01657	-0.0145(12)
$\partial^2 u_{\gamma}$	-0.00743	-0.00800	-0.0080(03)
$\frac{\partial q_{2a}\partial q_{3z}}{\partial q_{2a}\partial q_{4z}}$ $\frac{\partial^2 \mu_z}{\partial q_{2a}\partial q_{4z}}$	+0.00880	+0.01286	+0.0060(09)
$\frac{\partial q_{2a}\partial q_{4z}}{\partial q_{3x}\partial q_{3y}}$	-0.01620	N/A	-0.0310(15)
$\frac{\partial^2 \mu_z}{\partial q_{3x} \partial q_{4y}}$	-0.01568	-0.01611	-0.0163(06)
$-\frac{\partial^2 \mu_z}{\partial q_{4x} \partial q_{4y}}$	+0.02583	+0.02736	+0.0337(09)

"This work" corresponds to an ACV6Z/MRCI full core dipole moment calculation for first derivatives, a VQZ/MRCI frozen core calculation for second derivatives.

Convergence of $\mu_2^{(2)}$ (μD) for $^{12}CH4$

VBF	Perturb order	1st derivatives (VQZ)	+ 2nd derivatives (VQZ)
1206	1	22.73	22.28
VBF	Perturb order	1st derivatives (ACV6Z)	+ 2nd derivatives (VQZ)
VBF 1206	Perturb order 1	1st derivatives (ACV6Z) 22.60	+ 2nd derivatives (VQZ) 22.15

VBF: number of vibrational zeroth order eigenfunctions used in the perturbation formulas. The 1206 (resp. 4101) functions were obtained by a VMFCI with a final CI of 4935 functions (truncation at 12225.0cm^{-1}) (resp. 52096 functions (truncation at 18349.0cm^{-1})).

Effective dipole moment parameters of ¹²CH4

	VQZ/2nd order	Hilico (1987)	Boudon (2010)	Wishnow (2007)
$\mu_2^{(2)} \; (\mu {\rm D})$	22.30	22.34	22.56	23.94/23.82
$\mu_2^{(4)} \; ({\rm nD})$	-1.15	N/A	N/A	N/A
$\mu_4^{(4)} \text{ (nD)}$	+2.31	N/A	N/A	N/A

Partition function of ¹²CH4 at 296K

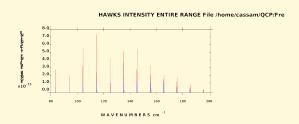
	this work	(McDowell) Hitran	(Wenger) Dijon a
GS only	586.959		
GS + dyad ord 1	590.602		
GS + dyad ord 2	590.652		
GS scaled + dyad ord2	590.427	590.4	590.5

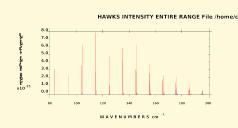
^a http://icb.u-bourgogne.fr/JSP/TIPS.jsp

R(7) - R(18) Comparison with SOLEIL

(a) Soleil

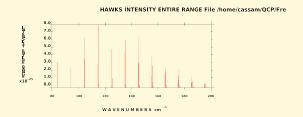
(b) hitran08

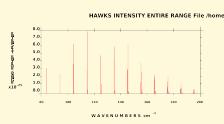




(c) ord1

(d) ord2





Average relative error after global scaling with respect to the 93 transitions reported in the Soleil experiment: ord1: 6.55%; ord2 6.32%

The Mean Field Configuration Interaction method

$$H = \sum_{i_1} h_1(Q_{i_1}, P_{i_1}) + \sum_{i_1, i_2} h_2(Q_{i_1}, P_{i_1}, Q_{i_2}, P_{i_2}) + \dots + h_n(Q_1, P_1, Q_2, P_2, \dots, Q_n, P_n)$$

Consider a partition of the n degrees-of-freedom (dof) into q sets I_1, I_2, \dots, I_q , of respectively p_1, p_2, \dots, p_q dof,

$$(I_1,I_2,\cdots,I_q)=(\{i_1^1,i_2^1,\cdots,i_{p_1}^1\},\{i_1^2,i_2^2,\cdots,i_{p_2}^2\},\cdots,\{i_1^q,i_2^q,\cdots,i_{p_q}^q\}).$$

For each contraction, I_i , we define a partial Hamiltonian,

$$H_{j} = \sum_{i_{1} \in I_{j}} h_{1}(Q_{i_{1}}, P_{i_{1}}) + \sum_{\{i_{1}, i_{2}\} \subset I_{j}} h_{2}(Q_{i_{1}}, P_{i_{1}}, Q_{i_{2}}, P_{i_{2}}) + \dots + h_{p_{j}}(Q_{i_{1}^{j}}, P_{i_{1}^{j}}, Q_{i_{2}^{j}}, P_{i_{2}^{j}}, \dots, Q_{i_{p_{j}}^{j}}, P_{i_{p_{j}}^{j}}),$$

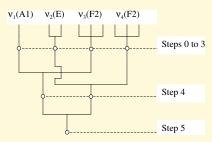
The mean-field equation for I_j is:

$$[H_{j} + \langle \prod_{I_{k} \neq I_{j}} \phi_{V_{k}}(Q_{i_{1}^{k}}, \cdots, Q_{i_{p_{k}}^{k}}) | H - H_{j} | \prod_{I_{k} \neq I_{j}} \phi_{V_{k}}(Q_{i_{1}^{k}}, \cdots, Q_{i_{p_{k}}^{k}}) \rangle - \epsilon_{j}] \Phi_{j} = 0$$

Particular cases

- The partition, $(\{1\}, \{2\}, \dots, \{n\})$, corresponds to the VSCF method.
- The partition, $(\{1, 2, \dots, n\})$, corresponds to the VCI method.

General case: example CH_4



Artefactual symmetry breaking in VSCF-based methods

Table 3
Low lying vibrational levels of methane, calculated using SPECTRO and MULTIMODE, and compared with experiment

				_	•
Symmetry	Level	SPECTRO	MM-T	MM-M	Expt. [15]
A_1	zpe	9625.83	9635.61	9633.45	
	$v_4(T)$	1304.24	1297.97	1298.13	1310.76
	$v_2(E)$	1523.49	1518.77	1518.84	1533.33
	$2v_4$	2599.73	2570.62	2568.16	2587.04
	$2v_4(T)$	2600.17	2595.21	2594.81	2614.26
	$2v_4(E)$	2600.21	2601.91	2601.93	2624.62
	v_1	2902.58	2915.33	2907.31	2916.48
	$v_3(T)$	2997.64	3013.25	3008.70	3019.49
	$2v_2$	3047.73	3034.38	3034.68	3063.65
	$2v_2(E)$	3053.93	3041.10	3041.19	3065.14
	$2v_1$	5781.65	5811.47	5781.59	5790.00
	$2v_3$	5936.79	5995.14	5985.21	5968.10
	$2v_3(T)$	5936.99	6038.48	6013.33	6004.60
	$2v_3(E)$	5966.74	6042.67	6032.57	6043.80
\mathbf{B}_2	$v_4(T)$	1306.33	1300.33	1300.43	1310.76
	$v_3(T)$	2998.51	3021.15	3016.64	3019.49
\mathbf{B}_1	$v_4(T)$	1306.31	1300.39	1300.49	1310.76
-	$v_3(T)$	2998.61	3021.23	3016.59	3019.49
A_2	$v_2(E)$	1525.83	1521.31	1521.33	1533.33

The calculations using MULTIMODE involve two distinct potentials: (i) Taylor expansion (MM-T) of the normal coordinates; (ii) Morse-like expansion (MM-M) of symmetric normal coordinates. Experimental values are included to demonstrate the good prediction of MM-M for the splitting of the overtones. The overtones from SPECTRO are not reliable (see text).

R. Burcl, S. Carter, N. C. Handy, Chem. Phys. Lett. 373, 357-365 (2003).

VMFCI Convergence with the number of iterations

Minimal symmetry preserving contraction scheme: $\{1\}^{n+1}, \{2,3\}^{n+1}, \{4,5,6\}^{n+1}, \{7,8,9\}^{n+1},$ where n is the step number

		Step 0	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
CMu_4	ν_1	8607.17	8562.01	8610.13	8599.51	8604.15	8602.97	8603.43
	ν_2	4301.54	4346.44	4303.40	4308.75	4304.61	4305.25	4304.85
	ν_3	9269.15	8434.91	8502.39	8430.60	8439.83	8433.05	8434.18
	ν_4	3279.51	3465.49	3407.24	3424.15	3418.05	3419.79	3419.17
CH_4	ν_1	297 2.15	297 1.39	2972 .30	2972.2 1	2972.24	2972.24	2972.24
	ν_2	152 7.48	$153 \ 4.05$	1532.21	1532.47	$1532.4\ 0$	1532.41	1532.41
	ν_3	3 176.01	30 62.09	3 0 65.73	3061 .53	3061.74	3061.5 8	3061.60
	ν_4	12 95.15	132 0.08	$131\ 7.25$	1318 .18	$1318.0\ 6$	1318.1 0	1318.09
CD_4	ν_1	2113.93	2113.72	2114.00	2113.98	2113.98	2113.98	2113.98
	ν_2	1088.49	1091.96	1091.26	1091.36	1091.34	1091.35	1091.34
	ν_3	2343.19	2280.99	2282.47	2280.73	2280.80	2280.75	2280.75
	ν_4	989.36	1003.08	1001.93	1002.32	1002.28	1002.29	1002.29
$\overline{CT_4}$	ν_1	1731.74	1731.65	1731.79	1731.78	1731.78	1731.78	1731.78
	ν_2	892.24	894.65	894.24	894.30	894.29	894.29	894.29
	ν_3	1996.59	1952.17	1953.05	1952.00	1952.04	1952.01	1952.01
	ν_4	851.69	861.39	860.70	860.93	860.91	860.91	860.91

A basis set of 10 HO has been used for each degree of vibration, with no truncation. The degree of vibration labelled by, 1, corresponds to the vibrational mode ν_1 , those labelled by 2 and 3 to the doubly degenerate mode ν_2 , 4, 5, 6 and 7, 8, 9, to the triply degenerate modes ν_3 and ν_4 , respectively

VMFCI versus traditional contractions

	Harmonic level	MSP-CI	MSP-VMFCI	MSP-VSCFCI	Converged
$ u_4$	1345	1356	1295	1318	1309
ν_2	1570	1567	1527	1532	1528
$2\nu_4$	2691	2714	2591	2638	2588
$2\nu_4$	2691	2719	2597	2643	2610
$2\nu_4$	2691	2719	2597	2643	2622
ν_1	3036	3013	2972	2972	2925
ν_3	3157	3214	3176	3062	3027
$2\nu_2$	3141	3131	3051	3061	3051
$2\nu_2$	3141	3134	3054	3064	3054
$3\nu_4$	4036	4079	3896	3966	3868
$3\nu_4$	4036	4087	3905	3974	3905
$3\nu_4$	4036	4088	3905	3974	3915
$3\nu_4$	4036	4088	3906	3974	3929
$3\nu_2$	4711	4694	4573	4588	4573
$3\nu_2$	4711	4699	4579	4594	4579
$3\nu_2$	4711	4699	4579	4594	4579

Wave numbers in cm^{-1} of the vibrational levels of methane calculated for different MSP-methods. MSP-CI goes in the wrong direction for modes 3 and 4 MSP-VSCFCI always go in the right direction and modes 1 and 2 are closer to the converged value than with MSP-CI. (HO modal basis set with quantum number less than 10. Order 0 rotational corrections).

ZPE Convergence in CH4 VMFCI scheme

	${f ZPE} \ {f in} \ {f cm}^{-1} \ ({f nb.} \ {f bf})$						
step type	$\nu_1 \ (10 \ \mathrm{bf})$	$\nu_3 \ (220 \ \mathrm{bf})$	$\nu_2 \ (120 \ \mathrm{bf})$	$\nu_4 \ (680 \ \mathrm{bf})$			
MSP-VMFCI	97 36.817797	9 817.832496	9 830.213859	9 828.829953			
MSP-VMFCI	972 4.937053	9721 .80854	972 4.971052	972 4.624952			
MSP-VMFCI	9721.4 92681	9721 .614393	9721 .617023	9721 .613361			
MSP-VMFCI	9721.4 94016	9721.489 747	9721.4 94231	9721.4 93759			
MSP-VMFCI	9721.4893 35	9721.489 504	9721.489 515	9721.489 508			
MSP-VMFCI	9721.4893 34	9721.48932 8	9721.4893 35	9721.4893 34			
MSP-VMFCI	9721.489327	9721.489327	9721.489327	9721.489327			
$VMFCI(\nu_1 - \nu_3;48000)$	9704.716 97	(0 (1781 bf)	97 21.489327	97 21.489327			
$VMFCI(\nu_1 - \nu_3; 22000)$	9704.716 970 (330 bf)		9704.716 867	9704.716 590			
VCI(18349)		9698.84 1643 (52096 bf)					

179,520,000 HO product basis functions at step 0.

Effective observable theory - open problems

→ Radius of convergence :

$$R = \frac{inf(\nu_n - \nu_{n-1}, \nu_{n+1} - \nu_n)}{sup_{\alpha,\beta}(\mu_{\alpha,\beta})}$$
?

→ Speed of convergence:

what accuracy can be expected on energy levels and wave functions as a function of 1/R and perturbation order?

References

- CONVIV : (CONtracting VIbrations Variationnally):
- P. Cassam-Chenaï, J. Liévin, Journal of Computational Chemistry 27, 627-640 (2006).
- Applications:

CH4, vibrational and rotational spectra

- P. Cassam-Chenaï and J. Liévin, Int. J. Quantum Chem. 93, 245-264 (2003).
- P. Cassam-Chenaï, J. Quant. Spectrosc. Radiat. Transfer 82, 251-277 (2003).
- P. Cassam-Chenaï, J. Math. Chem., in press (2010).

C2H4O, comparison with P-VMWCI and experimental assignments

D. Bégué, C. Pouchan, N. Gohaud, P. Cassam-Chenaï, J. Liévin, J. Chem. Phys **127**, 164115-164124 (2007).

CF3H, comparison with MCTDH and rotational corrections:

P. Cassam-Chenaï, Y. Scribano, J. Liévin, Chemical Physics Letters, 466, p.16-20, (2008).