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Molecular Quantum Mechanics

Born-Oppenheimer approximation:

Computational Scaling: Exponential => Polynomial => Linear
?? ??

Coupled Cluster is the accurate approach for electronic correlation.
Could it also be the case for nuclear motion?
Can one automize the whole process?
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 The key-steps in solving the nuclear motion problem
 PES
 WF

 Vibrational Coupled Cluster (VCC)
 Theory 
 Benchmarks
 Implementation

 Response Theory 
 Spectra
 The Lanzcos method for calculating response 

functions
 Summary 
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What are we looking at?

System  M coupled distinguishable modes, index m

Orthonormal one-mode basis functions

Hartree-Products: M-mode basis

Total wave functionΨ = Cs s
s
∑

H Hamiltonian operator depending on 

qm ,
∂

∂qm

Coordinates (normal)qm

φm

sm

(qm)

|s〉 =
M∏

m=1

φm
sm

(qm)
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V (1),V (2),V (3),....,V (M )Potential Coupling Expansion 

More generally V =
∑

mn∈MCR{V}

V̄ mn(qm1
, .., qmn

)

The Hamiltonian/Watsonian

mn = (m1, m2, ..., mn)

H = T + V (q1, q2, q3, ...., qM )
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The Hamiltonian/Watsonian
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Nmaxc�
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�
M
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�
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V (1),V (2),V (3),....,V (M )Potential Coupling Expansion 

More generally V =
∑

mn∈MCR{V}

V̄ mn(qm1
, .., qmn

)

The Hamiltonian/Watsonian

mn = (m1, m2, ..., mn)

H = T + V (q1, q2, q3, ...., qM )

NM
ppd

Nmaxc�

n=1

�
M
n

�
Nn

ppd

In practice: generate grid for each coupling (man-made or automatic).
Then represent that in terms of a product of one-mode operators:
Product of polynomials.
We have automized that, adaptive density-guided approach (ADGA), 
using derivatives, etc. 
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• Static: Define grid apriori

• Iterative: some error control and adaption

• Aim?   V    -     or rather E, 

• ADGA: adaptive density-guided approach

Use one-mode densities to determine:
	

 Boundaries 
	

 Grid mesh

Ψ

Static and Adaptive PES  construction
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ρ(qm)av =

∑N

im |φm
im(qm)|2

N

Average density (VSCF)
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ADGA - test quantity
∫

I

ρ(qm) V (qm)dqm

Balances potential and wave function

Energy contribution from interval
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ADGA
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q0
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*

*
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Boundaries
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PAH example, 2M PES
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Summary: PES

We are addressing the scaling of the construction of the PES
through a combination of:

 → ADGA: Adaptive Density Guided Approach
 → Derivative information
 → Multi-level approaches
 → automatic a priori neglect of mode combinations

ADGA: Adaptive Density Guided Approach
 → Black box & Adaptive
 → Reduced cost & Scaling
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Second Quantization
Hartree product represented by occupation number vector

Mode: 1 2 3

First quant.:

ONV:

3
2 q3

2
0 q2

1
1 q1

0 1 0 0 1 0 0 0 0 0 1 0

OC, JCP, 2004.
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Second Quantization
Hartree product represented by occupation number vector

Mode: 1 2 3

First quant.:

ONV:

3
2 q3

2
0 q2

1
1 q1

0 1 0 0 1 0 0 0 0 0 1 0

Creation / annihilation operators

am†r | . . . 0000 . . .〉 = | . . . 0010 . . .〉

amr | . . . 0010 . . .〉 = | . . . 0000 . . .〉

OC, JCP, 2004.
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Second Quantization
Reference state: |!i〉 =

∏

m
am†im |vac〉

(0, 0, 0)
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Second Quantization
Reference state: |!i〉 =

∏

m
am†im |vac〉

Excitation operators: τµm =

∏

m∈m
am†am a

m
im

m

(0, 0, 0)
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Second Quantization
Reference state: |!i〉 =

∏

m
am†im |vac〉

Excitation operators: τµm =

∏

m∈m
am†am a

m
im

m

(0, 0, 0)

H assumed to be a sum of products, e.g. h1h2h3 = q1q2q23
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H =

Nt∑

t
ct

∏

m∈mt

∑

p,q
hmopq a

m†
p amq

Second Quantization
Reference state: |!i〉 =

∏

m
am†im |vac〉

Excitation operators: τµm =

∏

m∈m
am†am a

m
im

m

(0, 0, 0)

H assumed to be a sum of products, e.g. h1h2h3 = q1q2q23
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Vibrational Self Consistent Field

Ansatz: Wave function is a single Hartree-Product

Mode: 1 2 3

1
0 q1i

2
0 q2

3
0 q3

Virtual

Occupied

|Φi〉 =

M∏

m=1

a
†
im

|vac〉|Φi(q1, q2, ...qM )〉 =
M∏

m=1

φim
(qm)

Variational principle  Self-Consistent-Field eqs.
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VSCF can be fast!

JCTC, 2010

reason for this is the fact that lower fractions of the zm,t

coefficients are screened away when employing the combi-
nation of operator terms. This trick generates more operator
terms, and evidently more of these have nonnegligible
contributions. For PAH10, the percentages of terms screened
away with and without combination of operator terms are
70 and 84%, respectively, for the VSCF ground state.

4.4. ADGA PESs. The PESs constructed with the ADGA
are particularly suitable for larger systems since, as discussed
above, the ADGA is able to provide a more compact
representation of weak couplings compared to a static grid
approach. In this section we examine the performance of
VSCF using these PESs. As stated in a previous section, a
given two-mode MC may be approximated by as few as four
terms in the most favorable case. In Figure 5 we present the
distribution of operator terms per MC. Interestingly, the
percentage of MCs which are represented by only four terms
in the operator increases with increasing system size. This
is of course intimately related to the savings in the number
of single-point calculations observed in ADGA as compared
to the static grid approach. For instance, only four single-
point calculations are needed in the simplest case of four

terms in a coupling term. For PAH24, the biggest system
tested, the percentage of MCs represented by four or 16 terms
amounts to more than 90%.

At this point we note that the simple computational scaling
formula, eq 32, is not strictly valid when using the ADGA,
since the polynomial degree is allowed to adjust to the
number of single-point evaluations. However, due to the very
simple nature of this way of analyzing the results, we choose
to use it for ADGA results as well.

The computational scaling obtained for the ADGA PESs
is shown in Figure 6. A computational scaling of M1.52(0.05

is obtained, with a significant reduction in the computational
cost. One should also note that the asymptotic standard errors
obtained in the fitting procedure are sufficiently small to
justify the use of eq 32 in the fitting. The effect of the
screening on contributions to the Fm,i matrices is shown in
Figure 6 as well. A screening threshold of 10-4 on the Fm,i

contributions changes the computational scaling to M1.37(0.05,
whereas a scaling of M1.52(0.05 was found for the unscreened
one. The prefactor also changes significantly, thus making
the ADGA in combination with screening on Fm,i contribu-
tions very fast. The mean and maximum absolute deviations
are less than 0.2 cm-1, which is satisfactory for the VSCF
method.

4.5. Predicted Important Coupling. A different method
for screening away entire mode combinations is to employ
the so-called predicted important coupling (PIC) schemes
where the coupling strength of two different normal modes
is estimated by their “atom-by-atom” overlap.22 In the
simplest of these works, and the one used by Pele et al.,22

the criteria for judging whether a MC should be kept or
neglected is based on whether the displacement vectors
representing two normal coordinates introduce movement of
the same atoms, though additional criteria may be introduced.

We tested the version of PIC in ref 22 (as well as others
including additional criteria) but found that neglecting even
a few MCs in this way resulted in large errors (mean and
absolute) compared to the unscreened results. The neglect

Figure 4. Time for a single VSCF iteration as a function of system size (log-log scale) when two kinds of screening are combined.
The broken line represents the curve fitted to the CPU times.

Figure 5. Distribution of operator terms per MC for PAH1,
PAH10, and PAH24.

244 J. Chem. Theory Comput., Vol. 6, No. 1, 2010 Hansen et al.

PAH4

PAH12

PAH1 PAH2

PAH7

PAH24

PAH4

PAH12

PAH1 PAH2

PAH7

PAH24

CPU-time: log-log plot. VSCF scaling per iteration 
per state and with nM 
coupling potential:

Mn

F̂mφm = �φm

Build mean-field.
Watch out to include only 
terms really coupling 
something.2M PES, PAHs
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Vibrational Correlation

• VSCF: Mean field theory. 

• Provides a reasonable set of one-mode 
functions

• Defines a correlation problem.

• VCI: Linear expansion in Hartree-Products

• FVCI: given basis, the exact solution.

torsdag den 18. november 2010



Exponential parameterization: |VCC〉 = exp(T )|!i〉

Cluster operator:

Vibrational Coupled Cluster Theory

TISE:

Projection:

m

T =

∑

m

∑

µm

tµmτµm

excitation 
operators

amplitudes

eµm = 〈µm| exp(−T )H exp(T )|!i〉 = 0
E = 〈!i|H exp(T )|!i〉

exp(−T )H exp(T )|Φi〉 = E|Φi〉

VCC[n]                    truncate at n-th level coupling
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VCC response theory - first encounter

 Ground state: solve non-linear t-eqs.
 Excited states: Response theory

AR = ωR

Aµmνm
′ =

∂

∂tνm
′

〈µm| exp(−T )H exp(T )|Φi〉

All equations solved by iterative techniques:
Huge A matrix never constructed explicitly
Olsen (Davidson) algorithms ++
Doable, far from being generally easy!

Asym VCC jacobian
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Benchmark Calculations: 
∆E relative to FVCI for Fundamentals

Formaldehyde 4M potential 

   VCI
 VCC
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 Ethylene 3M potential 
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The challenge of implementing VCC:
One of 39 pages of equations for VCC[3] with H3
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1. Computer derives detailed equations
BCH Commutator expansion, SQ algebra, long lists involving contractions between integrals and amplitudes

2. Identify computational convenient form
Find intermediates. Rearrange for minimal operation count.

3. Process the resulting lists of terms and intermediates

 Computational scaling: VCI and VCC similar scaling
VCC[2] VCC[3] VCC[4] VCC[5] VCC[6]

H2 M3 M4 M5 M6 M7

H3 M3 M4 M5 M6 M7

H4 M4 M5 M6 M7 M8

H5 M5 M6 M6 M7 M8

Automatic Derivation of VCC

P Seidler and O Christiansen J. Chem. Phys. 131, 234109 (2009)
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VCC scaling illustrations
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VCC cost reductions

๏ Now: General and “fast” - difficult to develop but now we 
have a general framework.

๏ Shown only a glimse of the theory and details 

๏ Further avenues to explore

➡Parrallelization is in progress

➡Exploit sparsity

➡Define other models and reduction tricks
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Additional Members:VCC[2pt3]

F
(0)

= H1 + F2 + F3

U
(1)
2 = H2 − F2

U
(2)
3 = H3 − F3

H = F
(0)

+ U
(1)
2 + U

(2)
3

Full 2M, approximate 3M

JCP,2009

Tildes: T1 similarity transf.
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Additional Members:VCC[2pt3]

F
(0)

= H1 + F2 + F3

U
(1)
2 = H2 − F2

U
(2)
3 = H3 − F3

H = F
(0)

+ U
(1)
2 + U

(2)
3

Full 2M, approximate 3M

3M equations

eµ3
= 〈µ3|[F, T3]

(2)+Ũ
(2)
3 +[Ũ (1)

2 , T2]
(2)+[Ũ (2)

3 , T2]
(3)+[Ũ (1)

2 , T3]
(3)+[Ũ (2)

3 , T3]
(4)

+
1

2
[[Ũ (1)

2 , T2], T2]
(3) +

1

2
[[Ũ (2)

3 , T2], T2]
(4) + [[Ũ (1)

2 , T2], T3]
(4)

+ [[Ũ (2)
3 , T2], T3]

(5) +
1

2
[[Ũ (2)

3 , T3], T3]
(6) +

1

6
[[[Ũ (2)

3 , T2], T2], T2]
(5)|Φi〉

JCP,2009

Tildes: T1 similarity transf.

VCC[2pt3]/H3  M3 scaling as compared to VCC[3]/H3 M4
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Benchmarks: H2CO, SOCl2, HFCO, CCl2O
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Another newcomer: VCC[3pt4]
NB: Poster Alberto Zoccante

VCC[2]
VCC[2pt3]
VCC[3]
VCC[3pt4]
VCC[4]
...

VCC[3pt4]
M4

VCI[4]
M5

3.8 12.0
-1.5 31.9
0.2 1.9
0.2 1.7
0.1 2.3

Ethylene-oxide.  3M PES. 
5 fundamentals of B1 symmetry.

Deviation from VCC[4].  
The new hierarchy
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Spectra and states

• Challenge:  The number of states increases 
wildly with the number of degrees of 
freedom.

• Calculating all the states explicitely 
becomes impossible

• The stable determination of specific states 
in dense regions is problematic.

• Can we work around this?
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Excited state Calcs.: Response Theory
H0 → H0 + V

t

Ψ → Ψ(t)
〈Ψ(t)|X|Ψ(t)〉 = 〈Ψ|X|Ψ〉 + response

Studying the response of the ground state can be used to study excited 
states: 

From Linear response function: One-Photon Spectra
From quadratic response function: Two-photon spectra

V!t" = #
Y

!Y!"Y"Y exp!− i"Yt" . !22"

Here, Y is a perturbation operator, e.g., a component of the
electric dipole operator, "Y is an associated frequency, and !Y
is a strength parameter at our disposal.

Choosing a particular solution $#0% for H0 as the refer-
ence state, the corresponding time-dependent wave function
is denoted $#̄0!t"% and is obtained by solving the time-
dependent Schrödinger equation. The time-dependent expec-
tation value &#̄0!t"$X$#̄0!t"% of a Hermitian operator X can be
expanded as

&#̄0!t"$X$#̄0!t"% = &#0$X$#0%

+ #
Y

!Y!"Y"&&X,Y%%"Y
exp!− i"Yt" + . . . ,

!23"

where &#0$X$#0% is the expectation value in absence of V!t".
The expansion coefficient &&X ,Y%%"Y

is the linear response
function controlling the linear response of the expectation
value &#̄0$X$#̄0% to the perturbation Y with associated fre-
quency "Y. In higher orders in the field strength, nonlinear
response functions enter the expansion in Eq. !23". The
strength of response theory lies in its ability to treat different
approximate wave function parametrizations in a unified
framework. $#0% needs, therefore, not be an exact solution to
the Schrödinger equation for H0. On the other hand, if the
exact eigenstates '$0% , $k%( of H0 are known, the linear re-
sponse function for the reference state $0% can be written in
the form

&&X,Y%%"Y
= #

k
) &0$X$k%&k$Y$0%

"Y − "k
−

&0$Y$k%&k$X$0%
"Y + "k

* , !24"

where "k=Ek−E0 is the difference between the excited state
energies Ek and the ground state energy E0 of the unper-
turbed system.

We note that the response function +Eq. !24", has poles
when the external frequency "Y matches an excitation energy
and that the corresponding residues provide the transition
probabilities. This path is often used to calculate approxi-
mate spectra. However, as already discussed in Sec. I, the
focus of this paper is a more global view where the spectrum
is calculated for a range of frequencies.

Equation !24" does not take into account the limited life-
time of excited states. The lifetime of an excited state is
determined by several factors including, among others, spon-
taneous emission and decay due to molecular collisions. It is
difficult, if not impossible, to address these effects in a gen-
erally applicable theory. For the linear response function, a
simple approach is to add a damping factor to the excited
state energies,26

Ek → Ek − i$k, !25"

where $k=1 /2%k=1 / !2&k" and &k is the lifetime of the state
$k%. For an unperturbed Hamiltonian, this results in a decay
of the excited states

$k!t"% = exp!− i!Ek − i$k"t"$k% , !26"

&k!t"$k!t"% = exp!− 2$kt"&k$k% . !27"

In practice, a common damping factor is used. In this case,
the exact linear response function +Eq. !24", becomes

&&X,Y%%"Y

$ = #
k
- &0$X$k%&k$Y$0%

"Y + i$ − "k
−

&0$Y$k%&k$X$0%
"Y + i$ + "k

. . !28"

From this expression, we conclude that phenomenological
damping can be also included in approximate linear response
functions by adding a complex damping factor to the fre-
quency of the perturbation "Y →"Y + i$. We return to the
relationship between the damped response function and the
absorption spectrum in Sec. II E.

The expressions in this section are valid for any molecu-
lar system and encompasses both vibrational and electronic
states. The separation of the total response function into elec-
tronic and vibrational parts is discussed in, e.g., Refs. 24 and
54. In this paper, it suffices to note that we only consider the
manifold of vibrational states within a single electronic state.
This means that all states in the above equations should be
considered as vibrational states representing solutions to the
vibrational Schrödinger equation.

C. VCI

In this article, we use the VCI method to account for the
mode correlation in a state specified by a reference vibra-
tional self-consistent field !VSCF" Hartree product, '0. The
anzats for the VCI wave function is

#0 = c0'0 + #
k

ck'k, !29"

where 'k are Hartree products excited relative to the refer-
ence. The expansion coefficients are obtained by applying
the variational principle which results in an eigenvalue equa-
tion

H0c = E0c , !30"

where H0 is the matrix representation of the vibrational
Hamiltonian, E0 is the VCI energy, and the vector of coeffi-
cients c= !c0 ,c1 ,c2 , . . . ,ck" is assumed to be normalized. In
general, we will choose the reference state to be the ground
state. The dimension of H0 is usually very large and it is
often impossible to obtain the eigensolutions by direct diago-
nalization. Instead, iterative procedures are employed. Spe-
cifically, we use the Davidson method55 or minor variations
of it,11,56 as this method is known to be very efficient for
converging a single extremum eigenvector.

To obtain excited states and their associated transition
moments relative to the ground state, we now turn to re-
sponse theory.

D. VCI response theory

In this section, we discuss how to evaluate response
functions in VCI for arbitrary frequencies. We restrict our-
selves to the case of real operators and assume them to be
identical !Y =X". This is sufficient for the absorption spectra
we wish to calculate and simplifies the notation. The VCI
linear response function can be expressed as
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From response functions to spectra
V!t" = #

Y
!Y!"Y"Y exp!− i"Yt" . !22"

Here, Y is a perturbation operator, e.g., a component of the
electric dipole operator, "Y is an associated frequency, and !Y
is a strength parameter at our disposal.

Choosing a particular solution $#0% for H0 as the refer-
ence state, the corresponding time-dependent wave function
is denoted $#̄0!t"% and is obtained by solving the time-
dependent Schrödinger equation. The time-dependent expec-
tation value &#̄0!t"$X$#̄0!t"% of a Hermitian operator X can be
expanded as

&#̄0!t"$X$#̄0!t"% = &#0$X$#0%

+ #
Y

!Y!"Y"&&X,Y%%"Y
exp!− i"Yt" + . . . ,

!23"

where &#0$X$#0% is the expectation value in absence of V!t".
The expansion coefficient &&X ,Y%%"Y

is the linear response
function controlling the linear response of the expectation
value &#̄0$X$#̄0% to the perturbation Y with associated fre-
quency "Y. In higher orders in the field strength, nonlinear
response functions enter the expansion in Eq. !23". The
strength of response theory lies in its ability to treat different
approximate wave function parametrizations in a unified
framework. $#0% needs, therefore, not be an exact solution to
the Schrödinger equation for H0. On the other hand, if the
exact eigenstates '$0% , $k%( of H0 are known, the linear re-
sponse function for the reference state $0% can be written in
the form

&&X,Y%%"Y
= #

k
) &0$X$k%&k$Y$0%

"Y − "k
−

&0$Y$k%&k$X$0%
"Y + "k

* , !24"

where "k=Ek−E0 is the difference between the excited state
energies Ek and the ground state energy E0 of the unper-
turbed system.

We note that the response function +Eq. !24", has poles
when the external frequency "Y matches an excitation energy
and that the corresponding residues provide the transition
probabilities. This path is often used to calculate approxi-
mate spectra. However, as already discussed in Sec. I, the
focus of this paper is a more global view where the spectrum
is calculated for a range of frequencies.

Equation !24" does not take into account the limited life-
time of excited states. The lifetime of an excited state is
determined by several factors including, among others, spon-
taneous emission and decay due to molecular collisions. It is
difficult, if not impossible, to address these effects in a gen-
erally applicable theory. For the linear response function, a
simple approach is to add a damping factor to the excited
state energies,26

Ek → Ek − i$k, !25"

where $k=1 /2%k=1 / !2&k" and &k is the lifetime of the state
$k%. For an unperturbed Hamiltonian, this results in a decay
of the excited states

$k!t"% = exp!− i!Ek − i$k"t"$k% , !26"

&k!t"$k!t"% = exp!− 2$kt"&k$k% . !27"

In practice, a common damping factor is used. In this case,
the exact linear response function +Eq. !24", becomes

&&X,Y%%"Y

$ = #
k
- &0$X$k%&k$Y$0%

"Y + i$ − "k
−

&0$Y$k%&k$X$0%
"Y + i$ + "k

. . !28"

From this expression, we conclude that phenomenological
damping can be also included in approximate linear response
functions by adding a complex damping factor to the fre-
quency of the perturbation "Y →"Y + i$. We return to the
relationship between the damped response function and the
absorption spectrum in Sec. II E.

The expressions in this section are valid for any molecu-
lar system and encompasses both vibrational and electronic
states. The separation of the total response function into elec-
tronic and vibrational parts is discussed in, e.g., Refs. 24 and
54. In this paper, it suffices to note that we only consider the
manifold of vibrational states within a single electronic state.
This means that all states in the above equations should be
considered as vibrational states representing solutions to the
vibrational Schrödinger equation.

C. VCI

In this article, we use the VCI method to account for the
mode correlation in a state specified by a reference vibra-
tional self-consistent field !VSCF" Hartree product, '0. The
anzats for the VCI wave function is

#0 = c0'0 + #
k

ck'k, !29"

where 'k are Hartree products excited relative to the refer-
ence. The expansion coefficients are obtained by applying
the variational principle which results in an eigenvalue equa-
tion

H0c = E0c , !30"

where H0 is the matrix representation of the vibrational
Hamiltonian, E0 is the VCI energy, and the vector of coeffi-
cients c= !c0 ,c1 ,c2 , . . . ,ck" is assumed to be normalized. In
general, we will choose the reference state to be the ground
state. The dimension of H0 is usually very large and it is
often impossible to obtain the eigensolutions by direct diago-
nalization. Instead, iterative procedures are employed. Spe-
cifically, we use the Davidson method55 or minor variations
of it,11,56 as this method is known to be very efficient for
converging a single extremum eigenvector.

To obtain excited states and their associated transition
moments relative to the ground state, we now turn to re-
sponse theory.

D. VCI response theory

In this section, we discuss how to evaluate response
functions in VCI for arbitrary frequencies. We restrict our-
selves to the case of real operators and assume them to be
identical !Y =X". This is sufficient for the absorption spectra
we wish to calculate and simplifies the notation. The VCI
linear response function can be expressed as
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where only the first term contributes if ωy + ωk > 0 as is typically the case for positive

frequencies and a ground state reference state.

The regular oscillator strength for transition from the ground state to a final state f is

defined as (using atomic units)

fof =
4π

3
ωf |µof |2 =

4π

3
ωf

�

α=x,y,z

|�Ψo|µα|Ψf�|2 (9)

where µα is the α component of the dipole operator. Thus, we can obtain the regular

oscillator strengths as the infinite lifetime limit of the imaginary linear response function

spherically averaged

fof =
4ωf

3

�

α=x,y,z

lim
γ→0

Im[��µα, µα��γωf
] (10)

The absorbance is proportional to f.

In this paper we seek to calculate the absorption through considering ωIm[��µα, µα��ω]

for small non-zero γ. Overall the damping introduces a modification that is small for ω away

from resonance but significant close to resonance. With one common damping factor (γ) we

can also write the imaginary part response function (for real states and real operators) as

Im{��Y, Y ��γωy
} =

�

k �=0

|�Ψo|Y |Ψk�|2(
γ

(ωy − ωk)2 + γ2
− γ

(ωy + ωk)2 + γ2
). (11)

The imaginary part of the response function thus gives the absorption where each pole has

been broadened by a Lorentzian. Thus, we have Lorentzians at ωY = ±ωk with FWHM

of 2γ. There are numerous physical reasons for the broadening of spectra, only some of

which leads to Lorentzian shape. Nevertheless, from a pragmatical point of view some

degree of broadening of the simulated spectra is appropriate in relation to physical effects

not otherwise accounted for.

B. Vibrational coupled cluster theory

The form of the linear response function in VCC in the absence of damping is wellestab-

lished as

��X;Y ��ωY =
1

2
C±ω

�
ηXtY (ωY ) + ηY tX(−ωY ) + FtX(−ωY )t

Y (ωY )

�
. (12)

(A− ωY 1)t
Y (ωY ) = −ξY . (13)

6

1. Let γ → 0. Note that there are poles at ωy  → ωk

Poles and residues determines excitation energies and transition probabilities

Leads to response eigenvalue equations - that is what was used before

2. Consider a finite γ:
A Lorentzian broadened spectrum occur

Ψexact(t) spectra

��X,Y ��approx
ωy

 approx. spectra

��X,Y ��exact
ωy

Ψapprox(t)

AR = ωR
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Idea now: use directly damped response 
functions to determine absorption spectra

Linear response functions determine the absorption spectrum 
defined as

VCI wave function -> VCI response function -> VCI spectrum
VCC wave function -> VCC response function -> VCC spectrum

!!X;X""!
" = − bXT

#A − $! + i"%I&−1bX

− bXT
#A + $! + i"%I&−1bX, $31%

where the elements of the bX column vector and the A matrix
are given as

bi
X = !#0'X'$̃i" , $32%

Aij = !$̃i'H0'$̃ j" − %ij!#0'H0'#0" . $33%

Here, '#0" is the VCI reference state and '$̃i" are basis func-
tions in an orthogonal complement space, i.e., !$̃i '#0"=0.
Such a space may, for instance, be constructed from the basic
VSCF Hartree products as

'$̃i" = '$i" −
ci

!

1 + c0
$'$0" + '#0"% . $34%

If we were interested in the value of the linear response
function for only a few frequencies, the most obvious solu-
tion would be to solve the response equations

#A − $! + i"%I&z−
X = bX, $35%

#A + $! + i"%I&z+
X = bX, $36%

and calculate the response function as

!!X;X""!
" = − bXT

z−
X − bXT

z+
X. $37%

However, since we are interested in the response function for
an entire range of frequencies, this strategy is not particularly
attractive and we shall seek another route. In principle, we
may diagonalize the A matrix which is real and symmetric,

UTAU = ! . $38%

The linear response function may then be written as

!!X;X""!
" = − (

i
'bXT

ui'2) 1
!i − ! − i"

+
1

!i + ! + i"
* ,

$39%

where ui denotes the columns of U. It is instructive to note
that this expression is, in fact, identical to the form of Eq.
$28% for the exact state. This is seen by noting that the trans-
formation of bXT

with U constructs the exact transition ma-
trix elements within the chosen VCI basis, e.g.,

dbi
X = (

j
bj

XUji = (
j

!#0'X'$̃ j"Uji = !#0'X'i" , $40%

where dbi
X indicates a representation in a basis where A is

diagonal and 'i" is an exact eigenstate within the VCI basis,
c.f., the definition of A in Eq. $33%.

From Eq. $39% we can easily obtain the absorption spec-
trum from the imaginary part $see Sec. II E%. However, the
full diagonalization of A is not feasible in practice. We there-
fore propose to use the Lanczos method as an efficient way
to approximately diagonalize the matrix. We emphasize
again that the motivation is not to obtain the individual
eigenvectors of the A matrix but rather that the resulting
effective spectrum will provide good approximations to the

response function and thus the physical spectrum will re-
semble the exact one in a global sense. Reference 35 dis-
cusses this perspective further and we shall return to it in
Sec. II E. To proceed, we substitute the A matrix by its ap-
proximation A$j% #see Eq. $15%&. We furthermore define the
starting vector for the Lanczos algorithm as

q1 =
1
q

bX, q = +bX+ . $41%

The approximate response function then becomes

!!X;X""!
",$j% = − q2q1

T$A$j% − $! + i"%I%−1q1

− q2q1
T$A$j% + $! + i"%I%−1q1. $42%

Substituting Eq. $15% into Eq. $42% and diagonalizing T$j%

using Eq. $11%, we obtain the final result that

!!X;X""!
",$j% = − q2(

i
'S1i

$j%'2

&) 1

!i
$j% − ! − i"

+
1

!i
$j% + ! + i"

* . $43%

From this equation, it is seen that after the construction of
the Lanczos chain, only diagonalization of the low-
dimensional tridiagonal T$j% matrix is required. This can be
done very efficiently using standard methods. In addition,
only the first element of each eigenvector is needed. The
price we pay is, of course, that A$j% is only an approximation
to the full A matrix and the response function is therefore
also only approximate. However, as we shall see in Sec. II E,
the Lanczos method in a certain way picks out the features of
A which are most important.

E. Absorption spectra

In response theory, the polarizability is the negative of
the linear response function. The absorption spectrum due to
the operator X is, apart from a constant factor, therefore
given as

'X
"$!% = − ! Im!!X;X""!

" . $44%

Using Eqs. $39% and $41%, we see that the exact absorption
spectrum within the given VCI basis is

'X
"$!% = q2(!(

i
'q1ui'2) 1

(
, "

$!i − !%2 + "2-
−

1
(
, "

$!i + !%2 + "2-* . $45%

Similarly, the approximate spectrum obtained using the
Lanczos method becomes

'X
",$j%$!% = q2(!(

i
'S1i

$j%'2) 1
(
, "

$!i
$j% − !%2 + "2-

−
1
(
, "

$!i
$j% + !%2 + "2-* . $46%

As is well-known, the effect of introducing phenomenologi-
cal damping is thus to convolute the absorption spectra by
Lorentzian functions of width 2"=). Since the value of the
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How solved in practice?
Lanczos iteration

Asymmetric matrix Lanzcos iteration on response A matrix:

Therefore uv = (UTV ). If (UTV ) = 0 then it is likely there are some symmetry reasons for

this that also enforces C(ω) to be zero. Otherwise one can revert back to option 1 above,

but we will continue our discussion taking option 2 as default.

We will assume that A is a real nonsymmetric matrix. Let us try to tridiagonalize A in

the sense that we seek non-singular Q and P T
= Q−1

such that

T = P TAQ (25)

where T is an asymmetric tri-diagonal matrix. That is,

AQ = QT (26)

ATP = PT T
(27)

P TQ = 1 (28)

Consider now the above equations as an iterative procedure. At the level of dimension k

the matrices and vectors are of dimension k. The tridiagonal T has the form

T (k)
=





α1 γ1 0 0 0 0 0

β1 α2 γ2 0 0 0 0

. . . . . . .

. . . . . . γk−1

0 . . . 0 βk−1 αk





(29)

Where we have introduced the superscript k to indicate the k-dimensional approximation.

Let us denote the columns of Q as q1, q2, ...qk We thus have

Aqj = γj−1qj−1 + αjqj + βjqj+1 (30)

ATpj = βj−1pj−1 + αjpj + γjpj+1 (31)

for j = 1, N − 1 and with the definitions γ0q1 = 0 and β0p1 = 0. From bi-orthogonality

follows

αj = pT
j Aqj (32)

We then obtain

βjqj+1 = rj = (A− αj)qj − γj−1qj−1 (33)

γjpj+1 = sj = (AT − αj)pj − βj−1pj−1 (34)

9

NB Focus is not on Lanzcos as eigensolver, but on accurate 
calculation of matrix functions. Note start guess.

While there is some flexibility in choosing βj and γj they are related through

1 = pT
j+1qj+1 = (

sj
γj
)(
rj

βj
) (35)

Different choices correspond to different ways of constructing the relative chains for pj and

qj. We follow many others in choosing βj =

�
|sTj rj|, γj = sTj rj/βj ((Golub and Van Loan

reports βj =

�
|rT

j rj|, γj = sTj rjβj). The initial step must be chosen as well and this will

be defined shortly.

Above we carried out a tridiagonalization of A. Clearly, the nature of the approximation

of this tri-diagonalization is controlled by the total chain length denoted k. We can write

the effect of the A (dimension N) on the N-dimension qj vectors combined in the N × k

matrix Qk
. We introduce

A(ω) = A− ω1N (36)

T k
(ω) = T (k) − ω1j (37)

We then have

A(ω)Q(k)
= Q(k)T (k)

(ω) +E(k)
(38)

where the truncation error is given in terms of the matrixE(k)
= βkqk+1

�
ek
k

�T
. Here ej

i is the

ith unit vector of dimension j. Neglecting the truncation error in the following derivations

we have

(A(ω))−1Q(k) ≈ Q(k)
(T (k)

(ω))−1
(39)

Now if we choose as initial guess in our Lanczos chain

q1 = v = Qek
1 (40)

then

uT
(A− ω1)−1v = uT

(A(ω))−1Q(k)ek
1 ≈ uTQ(k)

(T (k)
(ω))−1ek

1 (41)

In this approximation we can thus evaluate the requested contribution as

C(ω) = uvxTy(ω) (42)

where the components of the k-dimensional vector x is found as simple dot products between

the u and the Lanzcos chain vectors on the fly

xk = uTqk. (43)

10

The k-dimensional vector y(ω) is found by solving a set of linear equations

(T (k)
(ω))y(ω) = ek

1 (44)

The important aspect here is that the same Lanczos chain is used for all frequencies ω and

the y(ω) is found from a k-dimensional tri-diagonal problem.

Given the choice of q start vector there is still a choice of p starting vector to consider.

One possible choice is p1 = q1 which ensures that the initial vectors can be normalized to

each other. Consider now the case where we have chosen uTv = 1 as previously discussed.

Then another obvious option for start guess would be p1 = u also ensuring that pT
1 q1 = 1.

This maintains the asymmetric structure. In the case of a bi-orthonormalization ensuring

uTv = 1, we then have that

xj = uTqj = pT
1 qj = δj1 (45)

In the case of a symmetric matrix, AT
= A and therefore P (k)

= Q(k)
, the equations

reduce to standard symmetric Lanczos iteration.

IV. OBTAINING THE VCC RESPONSE FUNCTION FROM THE LANZCOS

CHAIN

In the VCC context we by default start the VCC algorithm using a normalized ξY vector

as start vector for the q1 and the ηY vector as p1 with the later bi-orthonormalized to q1.

In accord with this and Eqs.(23-24) we write

vY ξ̄
Y
= ξY (46)

uY η̄Y
= ηY

(47)

uY
=

ηY ξY

vY
(48)

and we similarly let t̄Y (ω) denote the response relative to the normalized vector.

We can now evaluate the VCC response function through

��Y ;Y ��γω =

�
uY vY η̄Y

(t̄Y (ωY + iγ) + t̄Y (−ωY − iγ))

+ (vY )2F t̄Y (−ωY − iγ)t̄Y (ωY + iγ)

�
. (49)

11

As for the complex conjugation due to the C±ω operator we write out explicitely the

response functions for real operators and real reference wave functions to illustrate the final

form

��X;Y ��γωY
=

1

2

�
ηXtY (ωY + iγ) + ηXtY (−ωY − iγ) + ηY tX(−ωY − iγ) + ηY tX(ωY + iγ)

+FtX(−ωY − iγ)tY (ωY + iγ) + FtX(ωY + iγ)tY (−ωY − iγ)

�
. (20)

In the case of two-identical operators we have

��Y ;Y ��γω =

�
ηY (tY (ωY + iγ) + tY (−ωY − iγ)) + FtY (−ωY − iγ)tY (ωY + iγ)

�
. (21)

III. SOLVING THE RESPONSE EQUATIONS BY A LANCZOS RECURSION

CHAIN

We can consider the response function as a function of the Jacobian matrix A. We can

evaluate functions of a matrix using the Lanzcos method. Below we summarize the algo-

rithm. The basic asymmetric Lanczos chain is described in the text book by Golub and Van

Loan, Dongarra et al, as well as we refer to recent relevant literature see Rocca et al. and

others...

We consider contributions to the response functions in the following matrix-vector nota-

tion

C(ω) = UT (A− ω1)−1V (22)

= uvuT (A− ω1)−1v

U = vu and V = vv.Different normalizations can be imposed where certain conditions

are required. 1) Choosing u = (UTU )
1
2 , v = (V TV )

1
2 we have two normalized vectors

1 = uTu = vTv. 2) In the present context bi-orthonormalization turns out to be illustrative

and useful. We require that 1 = uTv. In addition we can require that 1 = vTv. This is

fullfilled if

v = (V TV )
1
2 (23)

and

u =
(UTV )

v
. (24)
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Therefore uv = (UTV ). If (UTV ) = 0 then it is likely there are some symmetry reasons for

this that also enforces C(ω) to be zero. Otherwise one can revert back to option 1 above,

but we will continue our discussion taking option 2 as default.

We will assume that A is a real nonsymmetric matrix. Let us try to tridiagonalize A in

the sense that we seek non-singular Q and P T
= Q−1

such that

T = P TAQ (25)

where T is an asymmetric tri-diagonal matrix. That is,

AQ = QT (26)

ATP = PT T
(27)

P TQ = 1 (28)

Consider now the above equations as an iterative procedure. At the level of dimension k

the matrices and vectors are of dimension k. The tridiagonal T has the form

T (k)
=





α1 γ1 0 0 0 0 0

β1 α2 γ2 0 0 0 0

. . . . . . .

. . . . . . γk−1

0 . . . 0 βk−1 αk





(29)

Where we have introduced the superscript k to indicate the k-dimensional approximation.

Let us denote the columns of Q as q1, q2, ...qk We thus have

Aqj = γj−1qj−1 + αjqj + βjqj+1 (30)

ATpj = βj−1pj−1 + αjpj + γjpj+1 (31)

for j = 1, N − 1 and with the definitions γ0q1 = 0 and β0p1 = 0. From bi-orthogonality

follows

αj = pT
j Aqj (32)

We then obtain

βjqj+1 = rj = (A− αj)qj − γj−1qj−1 (33)

γjpj+1 = sj = (AT − αj)pj − βj−1pj−1 (34)

9

Therefore uv = (UTV ). If (UTV ) = 0 then it is likely there are some symmetry reasons for

this that also enforces C(ω) to be zero. Otherwise one can revert back to option 1 above,

but we will continue our discussion taking option 2 as default.

We will assume that A is a real nonsymmetric matrix. Let us try to tridiagonalize A in

the sense that we seek non-singular Q and P T
= Q−1

such that

T = P TAQ (25)

where T is an asymmetric tri-diagonal matrix. That is,

AQ = QT (26)

ATP = PT T
(27)

P TQ = 1 (28)

Consider now the above equations as an iterative procedure. At the level of dimension k

the matrices and vectors are of dimension k. The tridiagonal T has the form

T (k)
=





α1 γ1 0 0 0 0 0

β1 α2 γ2 0 0 0 0

. . . . . . .

. . . . . . γk−1

0 . . . 0 βk−1 αk





(29)

Where we have introduced the superscript k to indicate the k-dimensional approximation.

Let us denote the columns of Q as q1, q2, ...qk We thus have

Aqj = γj−1qj−1 + αjqj + βjqj+1 (30)

ATpj = βj−1pj−1 + αjpj + γjpj+1 (31)

for j = 1, N − 1 and with the definitions γ0q1 = 0 and β0p1 = 0. From bi-orthogonality

follows

αj = pT
j Aqj (32)

We then obtain

βjqj+1 = rj = (A− αj)qj − γj−1qj−1 (33)

γjpj+1 = sj = (AT − αj)pj − βj−1pj−1 (34)

9

While there is some flexibility in choosing βj and γj they are related through

1 = pT
j+1qj+1 = (

sj
γj
)(
rj

βj
) (35)

Different choices correspond to different ways of constructing the relative chains for pj and

qj. We follow many others in choosing βj =

�
|sTj rj|, γj = sTj rj/βj ((Golub and Van Loan

reports βj =

�
|rT

j rj|, γj = sTj rjβj). The initial step must be chosen as well and this will

be defined shortly.

Above we carried out a tridiagonalization of A. Clearly, the nature of the approximation

of this tri-diagonalization is controlled by the total chain length denoted k. We can write

the effect of the A (dimension N) on the N-dimension qj vectors combined in the N × k

matrix Qk
. We introduce

A(ω) = A− ω1N (36)

T k
(ω) = T (k) − ω1j (37)

We then have

A(ω)Q(k)
= Q(k)T (k)

(ω) +E(k)
(38)

where the truncation error is given in terms of the matrixE(k)
= βkqk+1

�
ek
k

�T
. Here ej

i is the

ith unit vector of dimension j. Neglecting the truncation error in the following derivations

we have

(A(ω))−1Q(k) ≈ Q(k)
(T (k)

(ω))−1
(39)

Now if we choose as initial guess in our Lanczos chain

q1 = v = Qek
1 (40)

then

uT
(A− ω1)−1v = uT

(A(ω))−1Q(k)ek
1 ≈ uTQ(k)

(T (k)
(ω))−1ek

1 (41)

In this approximation we can thus evaluate the requested contribution as

C(ω) = uvxTy(ω) (42)

where the components of the k-dimensional vector x is found as simple dot products between

the u and the Lanzcos chain vectors on the fly

xk = uTqk. (43)
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The moments of the spectra converges 
with increasing Lanczos iterations

! parameter is, in this work, chosen more or less arbitrarily
to regularize the spectrum rather than based on physical ar-
guments, the Lorentzian could, in principle, be substituted by
a more physically based line shape function. This could, for
instance, be used to simulate rotational structure. However,
we shall not pursue such ideas further in this work.

We now consider the zero lifetime limit !→0, in which
the Lorentzian is a representation of the Dirac delta function,

"X!#" = q2$##
i

$q1ui$2!%!#i − #" − %!#i + #"" , !47"

"X
!j"!#" = q2$##

i
$S1i

!j"$2!%!#i
!j" − #" − %!#i

!j" + #"" . !48"

We now discuss how these expressions are useful for under-
standing the benefits of the Lanczos method. Assuming that
#&0, the nth moment of the exact spectrum is given as

%"X!#"&n = '
0

'

"X!#"#nd# = q2$#
i

$q1ui$2#i
n+1, !49"

which we, from Eq. !17", recognize as the !n+1"th moment
of the matrix A with respect to q1. The corresponding mo-
ment of the spectrum obtained using the Lanczos method is

%"X
!j"!#"&n = '

0

'

"X
!j"!#"#nd# = q2$#

i
$S1i

!j"$2!#i
!j""n+1,

!50"

which we similarly recognize as the !n+1"th moment of the
A!j" matrix by comparison with Eq. !20". The catch is now
that by Eq. !16", the nth moments of A and A!j" are known to
be identical for n less than 2j−1 or 2j−2. Thus, we know
that the first 2j−2 or 2j−3 moments of the approximate
"X

!j"!#" spectrum are identical to the moments of the exact
spectrum

%"X!#"&n = %"X
!j"!#"&n for n ( 2j − 2

for n ( 2j − 3.
!51"

It is this feature which makes the Lanczos method so useful.
As will be illustrated by the example calculations in Sec. IV,
the lower moments describe the gross features of the absorp-
tion spectrum while the higher moments account for the finer
details. In other words, the global structure of the spectrum
can be obtained with relatively few Lanczos iterations and
much more efficiently than by calculating all eigenstates in-
dividually.

In continuation, we note a convergence feature shown by
Meyer and Pal. In Ref. 34, they compare the exact resolvent
I!#"= ()0$!#+ i!−A"−1$)0) to an approximate one, I!j"!#",
calculated using the Lanczos method. It is shown that

$I!#" − I!j"!#"$ *
*)0*2

!
exp+− 4!j − 1"+ !

#max − #min
,2,
!52"

for !&0 where #max and #min denotes the largest and small-
est eigenvalues of A. Though this error estimate, in practice,
turns out to largely overestimate the errors, it is nevertheless

remarkable since it shows exponential convergence with the
Lanczos chain length and the ! parameter.

F. Analysis of absorption spectra

For our orthogonalized Lanczos approach, the conver-
gence of the calculated spectrum in the interval #1 to #2 can
be monitored by calculating the relative change between two
chain lengths as

ej,j!!#1,#2" =
-#1

#2$"!j"!#" − "!j!"!#"$d#

-#1

#2"!j!"!#"d#
. !53"

It is, of course, essential to use j and j! values which are
sufficiently different such that the spectrum will change if it
is not converged. In Sec. IV, we use the ej,j! measure to
assess the required chain length in our test calculations.

Apart from the visual appearance of the spectrum, which
in itself may be useful as a fingerprint of the molecule, de-
tailed information about the nature of the peaks in the ab-
sorption spectrum is often desired. In standard VCI and VCI
response theory, the information is, in principle, easily ex-
tracted from the eigenvectors of the H and A matrices, re-
spectively. However, as molecules grow larger, the spectrum
of the eigenstates becomes increasingly dense and mixing
between the VSCF configurations becomes pronounced.
Thus, it may not be easy to digest the information directly
available from a large number of eigenstates and, as argued
in Sec. I, in the limit of a high density of states it is ques-
tionable what of all these information is relevant. To simplify
the situation, we propose here to divide the spectrum into
distinct intervals. For each interval, the weights of the con-
tributing configurations are calculated as

wk = #
i!I

#i$S1i
!j"$2Xki

2 , !54"

where k is a configuration index, X is defined in Eq. !12",
and I is the set of eigenstates with eigenvalues in the given
interval. In this way, the eigenstates in the interval are
weighted based on their contribution to the intensity. The
amount of information obtained can be varied by choosing
the size of the intervals. For instance, for a narrow intense
peak, a small interval including only a single eigenvalue may
be chosen. On the other hand, for a broad feature, one may
be more interested in an overview of the contributing con-
figurations than the detailed structure of each contributing
eigensolution.

A potential drawback of Eq. !54" is that all qi vectors are
required to construct X. For medium sized molecules and
low excitation levels, this is not a problem since the vectors
are saved on disk. For larger molecules where the amount of
data becomes prohibitive, one may choose to save only the
part of the qi vectors which contain configurations of inter-
est.

III. IMPLEMENTATION

The Lanczos method described in Sec. II for calculating
IR spectra in a VCI response framework has been imple-
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! parameter is, in this work, chosen more or less arbitrarily
to regularize the spectrum rather than based on physical ar-
guments, the Lorentzian could, in principle, be substituted by
a more physically based line shape function. This could, for
instance, be used to simulate rotational structure. However,
we shall not pursue such ideas further in this work.

We now consider the zero lifetime limit !→0, in which
the Lorentzian is a representation of the Dirac delta function,

"X!#" = q2$##
i

$q1ui$2!%!#i − #" − %!#i + #"" , !47"

"X
!j"!#" = q2$##

i
$S1i

!j"$2!%!#i
!j" − #" − %!#i

!j" + #"" . !48"

We now discuss how these expressions are useful for under-
standing the benefits of the Lanczos method. Assuming that
#&0, the nth moment of the exact spectrum is given as

%"X!#"&n = '
0

'

"X!#"#nd# = q2$#
i

$q1ui$2#i
n+1, !49"

which we, from Eq. !17", recognize as the !n+1"th moment
of the matrix A with respect to q1. The corresponding mo-
ment of the spectrum obtained using the Lanczos method is

%"X
!j"!#"&n = '

0

'

"X
!j"!#"#nd# = q2$#

i
$S1i

!j"$2!#i
!j""n+1,

!50"

which we similarly recognize as the !n+1"th moment of the
A!j" matrix by comparison with Eq. !20". The catch is now
that by Eq. !16", the nth moments of A and A!j" are known to
be identical for n less than 2j−1 or 2j−2. Thus, we know
that the first 2j−2 or 2j−3 moments of the approximate
"X

!j"!#" spectrum are identical to the moments of the exact
spectrum

%"X!#"&n = %"X
!j"!#"&n for n ( 2j − 2

for n ( 2j − 3.
!51"

It is this feature which makes the Lanczos method so useful.
As will be illustrated by the example calculations in Sec. IV,
the lower moments describe the gross features of the absorp-
tion spectrum while the higher moments account for the finer
details. In other words, the global structure of the spectrum
can be obtained with relatively few Lanczos iterations and
much more efficiently than by calculating all eigenstates in-
dividually.

In continuation, we note a convergence feature shown by
Meyer and Pal. In Ref. 34, they compare the exact resolvent
I!#"= ()0$!#+ i!−A"−1$)0) to an approximate one, I!j"!#",
calculated using the Lanczos method. It is shown that

$I!#" − I!j"!#"$ *
*)0*2

!
exp+− 4!j − 1"+ !

#max − #min
,2,
!52"

for !&0 where #max and #min denotes the largest and small-
est eigenvalues of A. Though this error estimate, in practice,
turns out to largely overestimate the errors, it is nevertheless

remarkable since it shows exponential convergence with the
Lanczos chain length and the ! parameter.

F. Analysis of absorption spectra

For our orthogonalized Lanczos approach, the conver-
gence of the calculated spectrum in the interval #1 to #2 can
be monitored by calculating the relative change between two
chain lengths as

ej,j!!#1,#2" =
-#1

#2$"!j"!#" − "!j!"!#"$d#

-#1

#2"!j!"!#"d#
. !53"

It is, of course, essential to use j and j! values which are
sufficiently different such that the spectrum will change if it
is not converged. In Sec. IV, we use the ej,j! measure to
assess the required chain length in our test calculations.

Apart from the visual appearance of the spectrum, which
in itself may be useful as a fingerprint of the molecule, de-
tailed information about the nature of the peaks in the ab-
sorption spectrum is often desired. In standard VCI and VCI
response theory, the information is, in principle, easily ex-
tracted from the eigenvectors of the H and A matrices, re-
spectively. However, as molecules grow larger, the spectrum
of the eigenstates becomes increasingly dense and mixing
between the VSCF configurations becomes pronounced.
Thus, it may not be easy to digest the information directly
available from a large number of eigenstates and, as argued
in Sec. I, in the limit of a high density of states it is ques-
tionable what of all these information is relevant. To simplify
the situation, we propose here to divide the spectrum into
distinct intervals. For each interval, the weights of the con-
tributing configurations are calculated as

wk = #
i!I

#i$S1i
!j"$2Xki

2 , !54"

where k is a configuration index, X is defined in Eq. !12",
and I is the set of eigenstates with eigenvalues in the given
interval. In this way, the eigenstates in the interval are
weighted based on their contribution to the intensity. The
amount of information obtained can be varied by choosing
the size of the intervals. For instance, for a narrow intense
peak, a small interval including only a single eigenvalue may
be chosen. On the other hand, for a broad feature, one may
be more interested in an overview of the contributing con-
figurations than the detailed structure of each contributing
eigensolution.

A potential drawback of Eq. !54" is that all qi vectors are
required to construct X. For medium sized molecules and
low excitation levels, this is not a problem since the vectors
are saved on disk. For larger molecules where the amount of
data becomes prohibitive, one may choose to save only the
part of the qi vectors which contain configurations of inter-
est.

III. IMPLEMENTATION

The Lanczos method described in Sec. II for calculating
IR spectra in a VCI response framework has been imple-
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! parameter is, in this work, chosen more or less arbitrarily
to regularize the spectrum rather than based on physical ar-
guments, the Lorentzian could, in principle, be substituted by
a more physically based line shape function. This could, for
instance, be used to simulate rotational structure. However,
we shall not pursue such ideas further in this work.

We now consider the zero lifetime limit !→0, in which
the Lorentzian is a representation of the Dirac delta function,

"X!#" = q2$##
i

$q1ui$2!%!#i − #" − %!#i + #"" , !47"

"X
!j"!#" = q2$##

i
$S1i

!j"$2!%!#i
!j" − #" − %!#i

!j" + #"" . !48"

We now discuss how these expressions are useful for under-
standing the benefits of the Lanczos method. Assuming that
#&0, the nth moment of the exact spectrum is given as

%"X!#"&n = '
0

'

"X!#"#nd# = q2$#
i

$q1ui$2#i
n+1, !49"

which we, from Eq. !17", recognize as the !n+1"th moment
of the matrix A with respect to q1. The corresponding mo-
ment of the spectrum obtained using the Lanczos method is

%"X
!j"!#"&n = '

0

'

"X
!j"!#"#nd# = q2$#

i
$S1i

!j"$2!#i
!j""n+1,

!50"

which we similarly recognize as the !n+1"th moment of the
A!j" matrix by comparison with Eq. !20". The catch is now
that by Eq. !16", the nth moments of A and A!j" are known to
be identical for n less than 2j−1 or 2j−2. Thus, we know
that the first 2j−2 or 2j−3 moments of the approximate
"X

!j"!#" spectrum are identical to the moments of the exact
spectrum

%"X!#"&n = %"X
!j"!#"&n for n ( 2j − 2

for n ( 2j − 3.
!51"

It is this feature which makes the Lanczos method so useful.
As will be illustrated by the example calculations in Sec. IV,
the lower moments describe the gross features of the absorp-
tion spectrum while the higher moments account for the finer
details. In other words, the global structure of the spectrum
can be obtained with relatively few Lanczos iterations and
much more efficiently than by calculating all eigenstates in-
dividually.

In continuation, we note a convergence feature shown by
Meyer and Pal. In Ref. 34, they compare the exact resolvent
I!#"= ()0$!#+ i!−A"−1$)0) to an approximate one, I!j"!#",
calculated using the Lanczos method. It is shown that

$I!#" − I!j"!#"$ *
*)0*2

!
exp+− 4!j − 1"+ !

#max − #min
,2,
!52"

for !&0 where #max and #min denotes the largest and small-
est eigenvalues of A. Though this error estimate, in practice,
turns out to largely overestimate the errors, it is nevertheless

remarkable since it shows exponential convergence with the
Lanczos chain length and the ! parameter.

F. Analysis of absorption spectra

For our orthogonalized Lanczos approach, the conver-
gence of the calculated spectrum in the interval #1 to #2 can
be monitored by calculating the relative change between two
chain lengths as

ej,j!!#1,#2" =
-#1

#2$"!j"!#" − "!j!"!#"$d#

-#1

#2"!j!"!#"d#
. !53"

It is, of course, essential to use j and j! values which are
sufficiently different such that the spectrum will change if it
is not converged. In Sec. IV, we use the ej,j! measure to
assess the required chain length in our test calculations.

Apart from the visual appearance of the spectrum, which
in itself may be useful as a fingerprint of the molecule, de-
tailed information about the nature of the peaks in the ab-
sorption spectrum is often desired. In standard VCI and VCI
response theory, the information is, in principle, easily ex-
tracted from the eigenvectors of the H and A matrices, re-
spectively. However, as molecules grow larger, the spectrum
of the eigenstates becomes increasingly dense and mixing
between the VSCF configurations becomes pronounced.
Thus, it may not be easy to digest the information directly
available from a large number of eigenstates and, as argued
in Sec. I, in the limit of a high density of states it is ques-
tionable what of all these information is relevant. To simplify
the situation, we propose here to divide the spectrum into
distinct intervals. For each interval, the weights of the con-
tributing configurations are calculated as

wk = #
i!I

#i$S1i
!j"$2Xki

2 , !54"

where k is a configuration index, X is defined in Eq. !12",
and I is the set of eigenstates with eigenvalues in the given
interval. In this way, the eigenstates in the interval are
weighted based on their contribution to the intensity. The
amount of information obtained can be varied by choosing
the size of the intervals. For instance, for a narrow intense
peak, a small interval including only a single eigenvalue may
be chosen. On the other hand, for a broad feature, one may
be more interested in an overview of the contributing con-
figurations than the detailed structure of each contributing
eigensolution.

A potential drawback of Eq. !54" is that all qi vectors are
required to construct X. For medium sized molecules and
low excitation levels, this is not a problem since the vectors
are saved on disk. For larger molecules where the amount of
data becomes prohibitive, one may choose to save only the
part of the qi vectors which contain configurations of inter-
est.

III. IMPLEMENTATION

The Lanczos method described in Sec. II for calculating
IR spectra in a VCI response framework has been imple-
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Tekljæljkst

The Lanzcos spectrum truncated at j-th step.

“Exact” spectrum
The n’th moment of the full tridiagonalized A matrix turns out to be

�
σ(N)
Y (ω)approx

�

n
=

� ∞

0

σ(N)
Y (ω)approx ω

ndω = q2π
�

i

|Li1R1iω
n+1
i (68)

Where it should be noted that the L and R of this expression are the true eigenvectors

of A.

It can be shown, using the derivation from Appendix A, that these two expression are

equal for 0 ≤ n ≤ 2j − 2 for j odd and 0 ≤ n ≤ 2j − 3 for j even.

B. Analysis of the absorption spectrum

The Lanczos theory presented so far is able to generate a spectral plot for the given

molecule which needs to be studied. However more information might be needed for a

better analysis of the spectra, namely the configurations contributing to the peaks. These

can also to some degree be obtained from the information provided from the Lanczos chain,

with some approximations though.

Comparing our expression for the absorption (63) with the exact expression (11). We see

a similarity between the exact response and the first part of our expression , this similarity

can be used to calculate the weights of contributing configurations. This means however

that the term involving F will be neglected in the analysis. This should however not be a

huge effect as the coupling of modes through F is usually a rather weak contribution to the

spectrum.

This leaves us with the expression for the weights given as

wk =
�

i∈I

ωiLi1R1i(QR)2ki. (69)

Only the right set of approximate eigenvectors are included as these vectors are required

for the calculation of the total response, while the left ones are not. Therefore to avoid the

computation time needed to calculate these vectors, only the right ones are used. This is

however consistent with the fact that usually only the right eigenvectors are considered in

VCC, while the left eigenvectors are not analysed.

The possibility of complex weights will not be a concern, as the complex eigenvalues

appear in pairs. When the eigenvalue pairs enter the expression above the pairs imaginary
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Convergence of spectra with 
Lanzcos iterations:Cyclopropene

For each interval and chain length, the relative change in the
spectrum with respect to the previous chain length is re-
ported by using the measure of Eq. !53".

Consider first Fig. 2, which shows the convergence for
!=25 cm−1. It is seen that the spectrum is practically con-
verged up to 3600 cm−1 at a chain length of 250. The higher
part of the spectrum requires higher j values. However, at
j=1000, the entire spectrum is nearly converged. Figure 3,

which is obtained using !=10 cm−1, displays a similar pat-
tern though the convergence is slower. This is, however, ex-
pected based on Eq. !52".

A remarkable feature of the Lanczos method is the ap-
pearance of the spectra for small chain lengths. As discussed
in Sec. II E, the larger features of the spectrum are expected
to converge first. This is evident from, e.g., Fig. 2. Even for
a chain length of 10, the most apparent features of the spec-
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FIG. 2. Convergence with chain length j of the IR spectrum of cyclopropene for !=25 cm−1. Above 3600 cm−1, the absorption has been magnified by a
factor of 10 to clarify details. Each spectrum is divided into five intervals marked by vertical lines. Within each interval, the percentage change relative to the
previous spectrum as calculated by Eq. !53" is shown.
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FIG. 3. Convergence with chain length of the IR spectrum of cyclopropene for !=10 cm−1. See caption of Fig. 2 for details.
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mented in the Molecular Interactions, Dynamics, and Simu-
lations Chemistry Program Package57 !MidasCpp".

In summary, a calculation of an IR absorption spectrum
proceeds as follows, based on existing potential and property
surfaces and a ground state VSCF calculation defining the
one-mode basis:

1. Optimization of the VCI ground state using a Davidson
or Olsen algorithm.

2. For each of the dipole operators, X=!x ,!y ,!z,

!a" Construct the bX vector of Eq. !32".
!b" Construct the T!j" matrix of specified dimension

j. Optionally, the columns of the Q!j" matrix may
be saved for use in a later analysis of the spec-
trum.

!c" Construct the response function using Eq. !43"
for all requested frequencies and " values.

3. Calculate the IR spectrum using Eq. !44". The full
spectrum is obtained by adding the results for each
Cartesian component of the dipole operator.

The time-demanding step is !2b", which involves trans-
formations of a q j vector with the A matrix #see Eq. !6"$.
This job is performed by a general direct transformer7,15 also
employed in other contexts, e.g., the optimization of the
ground state !1". A possible improvement of the above
scheme would be to use a block Lanczos algorithm.

We note that MidasCpp contains a module for calculat-
ing potential energy and property surfaces expressed in terms

of the normal coordinates of a given molecule. Thus, the
program is self-contained except for the dependence on an
external electronic structure program.

IV. EXAMPLE CALCULATIONS

In this section, we benchmark the Lanczos method by
calculating IR absorption spectra for cyclopropene and
uracil. For each molecule, the convergence of the absorption
spectrum as a function of chain length is investigated fol-
lowed by an analysis of the most prominent absorption
bands. For cyclopropene, the convergence with respect to
coupling level in the potential and property surfaces as well
as the VCI wave function is also examined.

A. Cyclopropene

Cyclopropene is shown in Fig. 1. Each of the 15 vibra-
tional modes is described in Table I. Furthermore, graphical
representations are provided as supplementary information.58

Potential energy and dipole surfaces are generated using the
grid-based method of MidasCpp.57,59 The electronic calcula-
tions have been performed using CFOUR !Ref. 60" at the
coupled cluster singles and doubles with perturbative triples
#CCSD!T"$ level of theory using Dunning’s cc-pVTZ basis
sets. The PES and dipole surfaces are limited to three-mode
couplings and the coarse grid is defined as !321 ,163/4 ,81/2",
see Ref. 59 for details. The polynomial fitted to these points
is limited to 12th order in the one-mode part, eighth order in
the two-mode part, and sixth order in the three-mode part. In
all calculations, six VSCF modals have been used for each
mode.

1. Convergence with respect to chain length

Figures 2 and 3 show the convergence of the calculated
IR spectrum with chain length for "=25 cm−1 and
"=10 cm−1. The spectra have been divided into five inter-
vals: 0–1300, 1300–2400, 2400–3600, 3600–5100, and
5100–7000 cm−1. In the last two intervals, the absorption
has been magnified by a factor of 10 for the sake of clarity.
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FIG. 1. Cyclopropene with atomic numbering used in Table I.

TABLE I. Normal mode descriptions and harmonic frequencies for cyclopropene.

Normal mode Symmetry
Frequency
!cm−1" Description

#1 A1 3310.74 H4,H5 sym. stretch.
#2 A1 3071.83 H6,H7 sym. stretch.
#3 A1 1682.96 C1–C2 stretch.
#4 A1 1524.78 C2–H6, C2–H7 scissor.
#5 A1 1158.17 C1–C3, C2–C3 sym. stretch.
#6 A1 927.46 H4,H5 sym. in-plane bend.
#7 A2 1020.60 H6,H7 twist.
#8 A2 824.75 H4,H5 asym. out-of-plane bend.
#9 B1 3264.56 H4,H5 asym. stretch.
#10 B1 1074.23 H6,H7 wag.
#11 B1 1042.08 H4,H5 asym. in-plane bend.
#12 B1 791.69 C1–C3, C2–C3 asym. stretch.
#13 B2 3143.00 H6–H7 asym. stretch.
#14 B2 1108.97 H6,H7 rock.
#15 B2 575.70 H4,H5 sym. out-of-plane bend.
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Convergence of spectra with 
Lanzcos iterations:Cyclopropene

mented in the Molecular Interactions, Dynamics, and Simu-
lations Chemistry Program Package57 !MidasCpp".

In summary, a calculation of an IR absorption spectrum
proceeds as follows, based on existing potential and property
surfaces and a ground state VSCF calculation defining the
one-mode basis:

1. Optimization of the VCI ground state using a Davidson
or Olsen algorithm.

2. For each of the dipole operators, X=!x ,!y ,!z,

!a" Construct the bX vector of Eq. !32".
!b" Construct the T!j" matrix of specified dimension

j. Optionally, the columns of the Q!j" matrix may
be saved for use in a later analysis of the spec-
trum.

!c" Construct the response function using Eq. !43"
for all requested frequencies and " values.

3. Calculate the IR spectrum using Eq. !44". The full
spectrum is obtained by adding the results for each
Cartesian component of the dipole operator.

The time-demanding step is !2b", which involves trans-
formations of a q j vector with the A matrix #see Eq. !6"$.
This job is performed by a general direct transformer7,15 also
employed in other contexts, e.g., the optimization of the
ground state !1". A possible improvement of the above
scheme would be to use a block Lanczos algorithm.

We note that MidasCpp contains a module for calculat-
ing potential energy and property surfaces expressed in terms

of the normal coordinates of a given molecule. Thus, the
program is self-contained except for the dependence on an
external electronic structure program.

IV. EXAMPLE CALCULATIONS

In this section, we benchmark the Lanczos method by
calculating IR absorption spectra for cyclopropene and
uracil. For each molecule, the convergence of the absorption
spectrum as a function of chain length is investigated fol-
lowed by an analysis of the most prominent absorption
bands. For cyclopropene, the convergence with respect to
coupling level in the potential and property surfaces as well
as the VCI wave function is also examined.

A. Cyclopropene

Cyclopropene is shown in Fig. 1. Each of the 15 vibra-
tional modes is described in Table I. Furthermore, graphical
representations are provided as supplementary information.58

Potential energy and dipole surfaces are generated using the
grid-based method of MidasCpp.57,59 The electronic calcula-
tions have been performed using CFOUR !Ref. 60" at the
coupled cluster singles and doubles with perturbative triples
#CCSD!T"$ level of theory using Dunning’s cc-pVTZ basis
sets. The PES and dipole surfaces are limited to three-mode
couplings and the coarse grid is defined as !321 ,163/4 ,81/2",
see Ref. 59 for details. The polynomial fitted to these points
is limited to 12th order in the one-mode part, eighth order in
the two-mode part, and sixth order in the three-mode part. In
all calculations, six VSCF modals have been used for each
mode.

1. Convergence with respect to chain length

Figures 2 and 3 show the convergence of the calculated
IR spectrum with chain length for "=25 cm−1 and
"=10 cm−1. The spectra have been divided into five inter-
vals: 0–1300, 1300–2400, 2400–3600, 3600–5100, and
5100–7000 cm−1. In the last two intervals, the absorption
has been magnified by a factor of 10 for the sake of clarity.
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FIG. 1. Cyclopropene with atomic numbering used in Table I.

TABLE I. Normal mode descriptions and harmonic frequencies for cyclopropene.

Normal mode Symmetry
Frequency
!cm−1" Description

#1 A1 3310.74 H4,H5 sym. stretch.
#2 A1 3071.83 H6,H7 sym. stretch.
#3 A1 1682.96 C1–C2 stretch.
#4 A1 1524.78 C2–H6, C2–H7 scissor.
#5 A1 1158.17 C1–C3, C2–C3 sym. stretch.
#6 A1 927.46 H4,H5 sym. in-plane bend.
#7 A2 1020.60 H6,H7 twist.
#8 A2 824.75 H4,H5 asym. out-of-plane bend.
#9 B1 3264.56 H4,H5 asym. stretch.
#10 B1 1074.23 H6,H7 wag.
#11 B1 1042.08 H4,H5 asym. in-plane bend.
#12 B1 791.69 C1–C3, C2–C3 asym. stretch.
#13 B2 3143.00 H6–H7 asym. stretch.
#14 B2 1108.97 H6,H7 rock.
#15 B2 575.70 H4,H5 sym. out-of-plane bend.
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trum, i.e., the peaks below 3600 cm−1, are present though
somewhat displaced. At j=50, all features below 3600 cm−1

are clearly present while the coarse structure of the spectrum
above this energy starts to form. We remind here that the
higher part of the spectrum is magnified. Thus, these features
of the spectrum are in reality quite small.

2. Analysis and comparison with experimental
spectra

A few experimental IR spectra have been recorded for
cyclopropene.61–63 In the following discussion, these papers
are referred to as Mitchell, Eggers, and Yum for simplicity.
Figure 4 compares spectra obtained using the Lanczos
method and the standard double harmonic approximation
!DHA" to the experimental spectrum reported by Mitchell.
To illustrate the density of states, the eigenvalues of the T!j"

matrix for the x-component of the dipole operator are de-
picted below the spectra.

At a first glance, the Lanczos and DHA spectra seem
very similar. However, two differences are immediately ap-
parent. First, a quite strong peak around 1380 cm−1 is miss-
ing in the DHA spectrum. Second, the bands around
3000 cm−1 are displaced by almost 150 cm−1. As we shall
see below, the Lanczos spectrum furthermore provides much
additional information on the individual peaks. The DHA
spectrum will not be discussed further.

We now proceed with a quite detailed account of the
analysis results obtained using Eq. !54" for the intervals de-
picted in Fig. 4. This includes comparison with the assign-
ments made in the experimental studies of Mitchell, Eggers,
and Yum. Note that the fundamentals of A2 symmetry, i.e., !7
and !8 are IR inactive.

• Intervals 1–5: The peaks in the first five intervals in Fig.
4 are centered at 552, 765, 897, 1003, and 1039 cm−1.
They correspond to the fundamentals !15, !12, !6, !11,
and !10 with a weight above 90% for the corresponding
contributions. This agrees well with the assignments in
Mitchell where the reported positions are 570, 769, 905,
1011, and 1054 cm−1. Eggers and Yum report values
within a range of 2 cm−1 from these.

• Interval 6 !1075–1128 cm−1": This peak centered at
1084 cm−1 is identified by our analysis to be 86% !14,
while the weights of all other contributions are below
7%. This fundamental is not identified in the IR spec-
trum of Mitchell but Eggers and Yum report values of
1046 and 1088 cm−1, respectively, the latter being in
good agreement with our calculation.

• Interval 7 !1128–1274 cm−1": The analysis reveals this
small peak at 1147 cm−1 to be 56% 2!15 and 35% !5
with other individual configurations contributing less
than 3%. Only one eigenstate is found within this inter-
val and the peak thus originates from a single state. In
the Mitchell paper, no !5 peak is identified and a peak at
1140 cm−1 is assigned to 2!15 which is consistent with
our findings, except that our analysis reveals that the
peak is not purely 2!15. Eggers assigns a peak at 1154
to the 2!15 overtone which seems reasonable. However,
another peak at 1391 cm−1 is assigned to !5 which does
not agree with our analysis.

• Interval 8 !1274–1442 cm−1": This quite intense peak
centered at 1381 cm−1 is predicted as 88% !8!15 by the
Lanczos method. Other individual configurations con-
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FIG. 4. Comparison of IR absorption spectra for cyclopropene obtained using the Lanczos method !black line" and the DHA !gray dots" to experiment !Ref.
61" Both spectra are broadened by setting "=10 cm−1. The Lanczos spectrum is based on a VCI#4$ calculation with three-mode coupling surfaces. The
horizontal lines indicate the sections of the spectrum which are individually analyzed using Eq. !54". Below the spectrum, all eigenvalues of the T!j" matrix
for the x-component of the dipole operator are indicated.
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PES: 3M, CCSD(T)/cc-pVTZ

mented in the Molecular Interactions, Dynamics, and Simu-
lations Chemistry Program Package57 !MidasCpp".

In summary, a calculation of an IR absorption spectrum
proceeds as follows, based on existing potential and property
surfaces and a ground state VSCF calculation defining the
one-mode basis:

1. Optimization of the VCI ground state using a Davidson
or Olsen algorithm.

2. For each of the dipole operators, X=!x ,!y ,!z,

!a" Construct the bX vector of Eq. !32".
!b" Construct the T!j" matrix of specified dimension

j. Optionally, the columns of the Q!j" matrix may
be saved for use in a later analysis of the spec-
trum.

!c" Construct the response function using Eq. !43"
for all requested frequencies and " values.

3. Calculate the IR spectrum using Eq. !44". The full
spectrum is obtained by adding the results for each
Cartesian component of the dipole operator.

The time-demanding step is !2b", which involves trans-
formations of a q j vector with the A matrix #see Eq. !6"$.
This job is performed by a general direct transformer7,15 also
employed in other contexts, e.g., the optimization of the
ground state !1". A possible improvement of the above
scheme would be to use a block Lanczos algorithm.

We note that MidasCpp contains a module for calculat-
ing potential energy and property surfaces expressed in terms

of the normal coordinates of a given molecule. Thus, the
program is self-contained except for the dependence on an
external electronic structure program.

IV. EXAMPLE CALCULATIONS

In this section, we benchmark the Lanczos method by
calculating IR absorption spectra for cyclopropene and
uracil. For each molecule, the convergence of the absorption
spectrum as a function of chain length is investigated fol-
lowed by an analysis of the most prominent absorption
bands. For cyclopropene, the convergence with respect to
coupling level in the potential and property surfaces as well
as the VCI wave function is also examined.

A. Cyclopropene

Cyclopropene is shown in Fig. 1. Each of the 15 vibra-
tional modes is described in Table I. Furthermore, graphical
representations are provided as supplementary information.58

Potential energy and dipole surfaces are generated using the
grid-based method of MidasCpp.57,59 The electronic calcula-
tions have been performed using CFOUR !Ref. 60" at the
coupled cluster singles and doubles with perturbative triples
#CCSD!T"$ level of theory using Dunning’s cc-pVTZ basis
sets. The PES and dipole surfaces are limited to three-mode
couplings and the coarse grid is defined as !321 ,163/4 ,81/2",
see Ref. 59 for details. The polynomial fitted to these points
is limited to 12th order in the one-mode part, eighth order in
the two-mode part, and sixth order in the three-mode part. In
all calculations, six VSCF modals have been used for each
mode.

1. Convergence with respect to chain length

Figures 2 and 3 show the convergence of the calculated
IR spectrum with chain length for "=25 cm−1 and
"=10 cm−1. The spectra have been divided into five inter-
vals: 0–1300, 1300–2400, 2400–3600, 3600–5100, and
5100–7000 cm−1. In the last two intervals, the absorption
has been magnified by a factor of 10 for the sake of clarity.
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FIG. 1. Cyclopropene with atomic numbering used in Table I.

TABLE I. Normal mode descriptions and harmonic frequencies for cyclopropene.

Normal mode Symmetry
Frequency
!cm−1" Description

#1 A1 3310.74 H4,H5 sym. stretch.
#2 A1 3071.83 H6,H7 sym. stretch.
#3 A1 1682.96 C1–C2 stretch.
#4 A1 1524.78 C2–H6, C2–H7 scissor.
#5 A1 1158.17 C1–C3, C2–C3 sym. stretch.
#6 A1 927.46 H4,H5 sym. in-plane bend.
#7 A2 1020.60 H6,H7 twist.
#8 A2 824.75 H4,H5 asym. out-of-plane bend.
#9 B1 3264.56 H4,H5 asym. stretch.
#10 B1 1074.23 H6,H7 wag.
#11 B1 1042.08 H4,H5 asym. in-plane bend.
#12 B1 791.69 C1–C3, C2–C3 asym. stretch.
#13 B2 3143.00 H6–H7 asym. stretch.
#14 B2 1108.97 H6,H7 rock.
#15 B2 575.70 H4,H5 sym. out-of-plane bend.
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PES: 3M, CCSD(T)/cc-pVTZ

mented in the Molecular Interactions, Dynamics, and Simu-
lations Chemistry Program Package57 !MidasCpp".

In summary, a calculation of an IR absorption spectrum
proceeds as follows, based on existing potential and property
surfaces and a ground state VSCF calculation defining the
one-mode basis:

1. Optimization of the VCI ground state using a Davidson
or Olsen algorithm.

2. For each of the dipole operators, X=!x ,!y ,!z,

!a" Construct the bX vector of Eq. !32".
!b" Construct the T!j" matrix of specified dimension

j. Optionally, the columns of the Q!j" matrix may
be saved for use in a later analysis of the spec-
trum.

!c" Construct the response function using Eq. !43"
for all requested frequencies and " values.

3. Calculate the IR spectrum using Eq. !44". The full
spectrum is obtained by adding the results for each
Cartesian component of the dipole operator.

The time-demanding step is !2b", which involves trans-
formations of a q j vector with the A matrix #see Eq. !6"$.
This job is performed by a general direct transformer7,15 also
employed in other contexts, e.g., the optimization of the
ground state !1". A possible improvement of the above
scheme would be to use a block Lanczos algorithm.

We note that MidasCpp contains a module for calculat-
ing potential energy and property surfaces expressed in terms

of the normal coordinates of a given molecule. Thus, the
program is self-contained except for the dependence on an
external electronic structure program.

IV. EXAMPLE CALCULATIONS

In this section, we benchmark the Lanczos method by
calculating IR absorption spectra for cyclopropene and
uracil. For each molecule, the convergence of the absorption
spectrum as a function of chain length is investigated fol-
lowed by an analysis of the most prominent absorption
bands. For cyclopropene, the convergence with respect to
coupling level in the potential and property surfaces as well
as the VCI wave function is also examined.

A. Cyclopropene

Cyclopropene is shown in Fig. 1. Each of the 15 vibra-
tional modes is described in Table I. Furthermore, graphical
representations are provided as supplementary information.58

Potential energy and dipole surfaces are generated using the
grid-based method of MidasCpp.57,59 The electronic calcula-
tions have been performed using CFOUR !Ref. 60" at the
coupled cluster singles and doubles with perturbative triples
#CCSD!T"$ level of theory using Dunning’s cc-pVTZ basis
sets. The PES and dipole surfaces are limited to three-mode
couplings and the coarse grid is defined as !321 ,163/4 ,81/2",
see Ref. 59 for details. The polynomial fitted to these points
is limited to 12th order in the one-mode part, eighth order in
the two-mode part, and sixth order in the three-mode part. In
all calculations, six VSCF modals have been used for each
mode.

1. Convergence with respect to chain length

Figures 2 and 3 show the convergence of the calculated
IR spectrum with chain length for "=25 cm−1 and
"=10 cm−1. The spectra have been divided into five inter-
vals: 0–1300, 1300–2400, 2400–3600, 3600–5100, and
5100–7000 cm−1. In the last two intervals, the absorption
has been magnified by a factor of 10 for the sake of clarity.
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FIG. 1. Cyclopropene with atomic numbering used in Table I.

TABLE I. Normal mode descriptions and harmonic frequencies for cyclopropene.

Normal mode Symmetry
Frequency
!cm−1" Description

#1 A1 3310.74 H4,H5 sym. stretch.
#2 A1 3071.83 H6,H7 sym. stretch.
#3 A1 1682.96 C1–C2 stretch.
#4 A1 1524.78 C2–H6, C2–H7 scissor.
#5 A1 1158.17 C1–C3, C2–C3 sym. stretch.
#6 A1 927.46 H4,H5 sym. in-plane bend.
#7 A2 1020.60 H6,H7 twist.
#8 A2 824.75 H4,H5 asym. out-of-plane bend.
#9 B1 3264.56 H4,H5 asym. stretch.
#10 B1 1074.23 H6,H7 wag.
#11 B1 1042.08 H4,H5 asym. in-plane bend.
#12 B1 791.69 C1–C3, C2–C3 asym. stretch.
#13 B2 3143.00 H6–H7 asym. stretch.
#14 B2 1108.97 H6,H7 rock.
#15 B2 575.70 H4,H5 sym. out-of-plane bend.
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Convergence of spectra with 
Lanzcos iterations: Uracil VCC[2pt3] 

B. Uracil

Uracil is shown in Fig. 6. The 30 vibrational normal
modes are described in Table II. In addition, graphical rep-
resentations of all normal coordinates are provided in the
supplementary information to this article.58 For uracil, there
is a possible tautomerization resulting in an enol-tautomer.
However, it has been found experimentally that this tautomer
does not form in any appreciable amount.65 It is thus justified
to consider only the keto-tautomer.

The potential and dipole surfaces have been generated
using the recently proposed adaptive density-guided ap-
proach !ADGA" implemented in MidasCpp57 !see Ref. 66
for further details". The ADGA requires a few parameters to
be set related to !i" the deviation from unity of the one-mode
densities integrated within the one-mode grid boundaries; !ii"
the convergence of the test quantities used in the calculations
of the individual subintervals of the one-mode grids; and !iii"
the convergence threshold of the VSCF energy. The values,
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FIG. 6. Uracil with atomic numbering used in Table II.

TABLE II. Normal mode descriptions and harmonic frequencies for uracil.

Normal
mode

Energy
!cm−1" Description

"1 146.57 Out-of-plane ring deformation
"2 163.31 Out-of-plane ring deformation
"3 385.32 O7–C2–N3 bend+O8–C4–N3 bend
"4 394.72 H9+H10+H12 out-of-plane bend
"5 515.77 In-plane ring deformation
"6 537.97 In-plane ring deformation
"7 558.40 In-plane ring deformation
"8 563.13 H9 out-of-plane bend
"9 691.53 H10 out-of-plane bend
"10 731.48 Out-of-plane ring deformation
"11 757.99 Out-of-plane ring deformation
"12 774.73 Ring breathe
"13 811.56 H11+H12 sym. out-of-plane bend
"14 957.35 H11+H12 asym. out-of-plane bend
"15 977.77 Delocalized in-plane bending
"16 993.04 In-plane ring deformation
"17 1095.59 H9–N1–C6 bend+H11–C5–C6 bend
"18 1215.08 H9–N1–C6 bend+H12–C6–N1 bend
"19 1248.08 H11–C5–C6 bend
"20 1392.08 H10–N3–C4 bend
"21 1413.85 Delocalized in-plane bending
"22 1427.16 H9–N1–C2 bend+H12–C6–N1 bend
"23 1511.92 H9–N1–C2 bend
"24 1683.55 C5–C6 stretch
"25 1780.28 C4–O8 stretch !+H10–N4–C4+H11–C5–C4 bend"
"26 1817.18 C2–O7 stretch !+H9–N1–C2+H10–N3–C2 bend"
"27 3249.13 C6–H12 stretch !+small C5–H11 stretch"
"28 3292.07 C5–H11 stretch !+small C6–H12 stretch"
"29 3618.99 N3–H10 stretch
"30 3671.79 N1–H9 stretch
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Uracil
B. Uracil

Uracil is shown in Fig. 6. The 30 vibrational normal
modes are described in Table II. In addition, graphical rep-
resentations of all normal coordinates are provided in the
supplementary information to this article.58 For uracil, there
is a possible tautomerization resulting in an enol-tautomer.
However, it has been found experimentally that this tautomer
does not form in any appreciable amount.65 It is thus justified
to consider only the keto-tautomer.

The potential and dipole surfaces have been generated
using the recently proposed adaptive density-guided ap-
proach !ADGA" implemented in MidasCpp57 !see Ref. 66
for further details". The ADGA requires a few parameters to
be set related to !i" the deviation from unity of the one-mode
densities integrated within the one-mode grid boundaries; !ii"
the convergence of the test quantities used in the calculations
of the individual subintervals of the one-mode grids; and !iii"
the convergence threshold of the VSCF energy. The values,
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FIG. 5. Convergence with respect to mode coupling level in the potential and property surfaces and the excitation level in VCI. In each panel, the light gray
line represent a reference VCI#4$ calculation with three-mode surfaces. The black lines represent the model given in the panel. All spectra are based on
!=10 cm−1.
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FIG. 6. Uracil with atomic numbering used in Table II.

TABLE II. Normal mode descriptions and harmonic frequencies for uracil.

Normal
mode

Energy
!cm−1" Description

"1 146.57 Out-of-plane ring deformation
"2 163.31 Out-of-plane ring deformation
"3 385.32 O7–C2–N3 bend+O8–C4–N3 bend
"4 394.72 H9+H10+H12 out-of-plane bend
"5 515.77 In-plane ring deformation
"6 537.97 In-plane ring deformation
"7 558.40 In-plane ring deformation
"8 563.13 H9 out-of-plane bend
"9 691.53 H10 out-of-plane bend
"10 731.48 Out-of-plane ring deformation
"11 757.99 Out-of-plane ring deformation
"12 774.73 Ring breathe
"13 811.56 H11+H12 sym. out-of-plane bend
"14 957.35 H11+H12 asym. out-of-plane bend
"15 977.77 Delocalized in-plane bending
"16 993.04 In-plane ring deformation
"17 1095.59 H9–N1–C6 bend+H11–C5–C6 bend
"18 1215.08 H9–N1–C6 bend+H12–C6–N1 bend
"19 1248.08 H11–C5–C6 bend
"20 1392.08 H10–N3–C4 bend
"21 1413.85 Delocalized in-plane bending
"22 1427.16 H9–N1–C2 bend+H12–C6–N1 bend
"23 1511.92 H9–N1–C2 bend
"24 1683.55 C5–C6 stretch
"25 1780.28 C4–O8 stretch !+H10–N4–C4+H11–C5–C4 bend"
"26 1817.18 C2–O7 stretch !+H9–N1–C2+H10–N3–C2 bend"
"27 3249.13 C6–H12 stretch !+small C5–H11 stretch"
"28 3292.07 C5–H11 stretch !+small C6–H12 stretch"
"29 3618.99 N3–H10 stretch
"30 3671.79 N1–H9 stretch

164105-11 VCI linear response using Lanczos algorithm J. Chem. Phys. 132, 164105 !2010"
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Summary
 VCC the accurate choice at given excitation level
	

 → theoretically attractive (size-extensivity)
 → VCC can be made computationally competitive
 → Automatic derivation and implementation of equations

 → General VCC response theory now possible.
 → Approximate VCC models easily implemented
 → and tested.

Direct calculation of spectra: Lanzcos-powered damped response 
functions.

Automatic PES construction.
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MidasCpp
Molecular Interactions, Dynamics and Simulations

Chemistry Program Package in C++

 Potential energy and property surface generation:
 Static and dynamic grids,  ADGA (Adaptive Density-Guided Approach) 
 Derivative based/Interpolation etc., Interfaces to various electronic structure programs
 
 Wave functions:
 VSCF, VMPn, VCI, VCC
 + Response Theory 
 + Temperature
 + Properties 

“Release” expected 2010
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Summary: PES

We are addressing the scaling of the construction of the PES
through a combination of:

 → ADGA: Adaptive Density Guided Approach
 → Derivative information
 → Multi-level approaches
 → automatic a priori neglect of mode combinations

ADGA: Adaptive Density Guided Approach
 → Black box & Adaptive
 → Reduced cost & Scaling
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Other different CCs

Our VCC: a natural CC for distinguishable d.o.f. (VSCF or not)t

Usual quantum chemistry CC, fermions
CC for bosons

Other exponential/non-linear parameterizations for anharmonic 
vibrations:  
 R.F. Bishop et al. (1D) 
 M.Durga-Prasad et al.  Banik et al.

 Starts from Harmonic Oscillator step up/down ops
 SQ algebra different, Gaussian reference
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Wave Function approaches

MCTDH:	

 Multi-configurational Time-dependent Hartree
	

 	



VSCF:	

 Vibrational Self Consistent Field
VCI:	

 Vibrational Configuration Interaction	


 	

 Bowman and co-workers (1979), Rauthut..... many other .....

VMP:	

 Møller-Plesset perturbation theory

VCC:	

 Vibrational coupled cluster theory
	

 	

 	

 	

 OC(2004), Seidler and OC (2007-...)

	

 	

 	

 	

 Second quantization & Response theory

Gerber and co-workers (1996) OC (2003), general order and coupling
Quasi-degenerate perturbation theory, Configuration selection,  Yagi, Hirata, Hirao

Meyer, Cederbaum, Manthe
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How solved in practice?
Lanczos iteration

Asymmetric matrix Lanzcos iteration:

Therefore uv = (UTV ). If (UTV ) = 0 then it is likely there are some symmetry reasons for

this that also enforces C(ω) to be zero. Otherwise one can revert back to option 1 above,

but we will continue our discussion taking option 2 as default.

We will assume that A is a real nonsymmetric matrix. Let us try to tridiagonalize A in

the sense that we seek non-singular Q and P T
= Q−1

such that

T = P TAQ (25)

where T is an asymmetric tri-diagonal matrix. That is,

AQ = QT (26)

ATP = PT T
(27)

P TQ = 1 (28)

Consider now the above equations as an iterative procedure. At the level of dimension k

the matrices and vectors are of dimension k. The tridiagonal T has the form

T (k)
=





α1 γ1 0 0 0 0 0

β1 α2 γ2 0 0 0 0

. . . . . . .

. . . . . . γk−1

0 . . . 0 βk−1 αk





(29)

Where we have introduced the superscript k to indicate the k-dimensional approximation.

Let us denote the columns of Q as q1, q2, ...qk We thus have

Aqj = γj−1qj−1 + αjqj + βjqj+1 (30)

ATpj = βj−1pj−1 + αjpj + γjpj+1 (31)

for j = 1, N − 1 and with the definitions γ0q1 = 0 and β0p1 = 0. From bi-orthogonality

follows

αj = pT
j Aqj (32)

We then obtain

βjqj+1 = rj = (A− αj)qj − γj−1qj−1 (33)

γjpj+1 = sj = (AT − αj)pj − βj−1pj−1 (34)
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NB Focus is not on Lanzcos as eigensolver, but as a vehicle for 
accurate calculation of matrix functions.

While there is some flexibility in choosing βj and γj they are related through

1 = pT
j+1qj+1 = (

sj
γj
)(
rj

βj
) (35)

Different choices correspond to different ways of constructing the relative chains for pj and

qj. We follow many others in choosing βj =

�
|sTj rj|, γj = sTj rj/βj ((Golub and Van Loan

reports βj =

�
|rT

j rj|, γj = sTj rjβj). The initial step must be chosen as well and this will

be defined shortly.

Above we carried out a tridiagonalization of A. Clearly, the nature of the approximation

of this tri-diagonalization is controlled by the total chain length denoted k. We can write

the effect of the A (dimension N) on the N-dimension qj vectors combined in the N × k

matrix Qk
. We introduce

A(ω) = A− ω1N (36)

T k
(ω) = T (k) − ω1j (37)

We then have

A(ω)Q(k)
= Q(k)T (k)

(ω) +E(k)
(38)

where the truncation error is given in terms of the matrixE(k)
= βkqk+1

�
ek
k

�T
. Here ej

i is the

ith unit vector of dimension j. Neglecting the truncation error in the following derivations

we have

(A(ω))−1Q(k) ≈ Q(k)
(T (k)

(ω))−1
(39)

Now if we choose as initial guess in our Lanczos chain

q1 = v = Qek
1 (40)

then

uT
(A− ω1)−1v = uT

(A(ω))−1Q(k)ek
1 ≈ uTQ(k)

(T (k)
(ω))−1ek

1 (41)

In this approximation we can thus evaluate the requested contribution as

C(ω) = uvxTy(ω) (42)

where the components of the k-dimensional vector x is found as simple dot products between

the u and the Lanzcos chain vectors on the fly

xk = uTqk. (43)
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The k-dimensional vector y(ω) is found by solving a set of linear equations

(T (k)
(ω))y(ω) = ek

1 (44)

The important aspect here is that the same Lanczos chain is used for all frequencies ω and

the y(ω) is found from a k-dimensional tri-diagonal problem.

Given the choice of q start vector there is still a choice of p starting vector to consider.

One possible choice is p1 = q1 which ensures that the initial vectors can be normalized to

each other. Consider now the case where we have chosen uTv = 1 as previously discussed.

Then another obvious option for start guess would be p1 = u also ensuring that pT
1 q1 = 1.

This maintains the asymmetric structure. In the case of a bi-orthonormalization ensuring

uTv = 1, we then have that

xj = uTqj = pT
1 qj = δj1 (45)

In the case of a symmetric matrix, AT
= A and therefore P (k)

= Q(k)
, the equations

reduce to standard symmetric Lanczos iteration.

IV. OBTAINING THE VCC RESPONSE FUNCTION FROM THE LANZCOS

CHAIN

In the VCC context we by default start the VCC algorithm using a normalized ξY vector

as start vector for the q1 and the ηY vector as p1 with the later bi-orthonormalized to q1.

In accord with this and Eqs.(23-24) we write

vY ξ̄
Y
= ξY (46)

uY η̄Y
= ηY

(47)

uY
=

ηY ξY

vY
(48)

and we similarly let t̄Y (ω) denote the response relative to the normalized vector.

We can now evaluate the VCC response function through

��Y ;Y ��γω =

�
uY vY η̄Y

(t̄Y (ωY + iγ) + t̄Y (−ωY − iγ))

+ (vY )2F t̄Y (−ωY − iγ)t̄Y (ωY + iγ)

�
. (49)
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