Vibrational Coupled Cluster Theory

Ove Christiansen
University of Aarhus

Molecular Quantum Mechanics

$$
H \Psi=E \Psi
$$

Born-Oppenheimer approximation:

$$
\begin{gathered}
H_{e l} \Psi_{e l}=E_{e l} \Psi_{e l} \\
\left(T_{n}+E_{e l}\right) \Psi_{n}=E \Psi_{n} \\
\Psi=\Psi_{e l} \Psi_{n}
\end{gathered}
$$

Computational Scaling: Exponential $\stackrel{? ?}{=}$ Polynomial $\stackrel{? ?}{=}$ Linear

Coupled Cluster is the accurate approach for electronic correlation. Could it also be the case for nuclear motion? Can one automize the whole process?

If time allows

> The key-steps in solving the nuclear motion problem > PES
> WF
> Vibrational Coupled Cluster (VCC)
> Theory
> Benchmarks
> Implementation
> Response Theory
> Spectra
> The Lanzcos method for calculating response functions
> Summary

What are we looking at?

System
q_{m}
$\phi_{s_{m}}^{m}\left(q_{m}\right)$
$|\mathbf{s}\rangle=\prod_{m=1}^{M} \phi_{s_{m}}^{m}\left(q_{m}\right)$
$|\Psi\rangle=\sum_{\mathbf{s}} C_{\mathrm{s}}|\mathbf{s}\rangle$
H

M coupled distinguishable modes, index m
Coordinates (normal)
Orthonormal one-mode basis functions
Hartree-Products: M-mode basis

Total wave function

Hamiltonian operator depending on
$q_{m}, \frac{\partial}{\partial q_{m}}$

The Hamiltonian/Watsonian

$$
H=T+V\left(q_{1}, q_{2}, q_{3}, \ldots, q_{M}\right)
$$

Potential Coupling Expansion

$$
\boldsymbol{V}^{(1)}, \boldsymbol{V}^{(2)}, \boldsymbol{V}^{(3)}, \ldots, \boldsymbol{V}^{(\boldsymbol{M})}
$$

More generally

$$
V=\sum_{\substack{\mathbf{m}_{\mathbf{n}} \in \mathbf{M C R}\{\mathbf{V}\} \\ \mathbf{m}_{n}=\left(m_{1}, m_{2}, \ldots, m_{n}\right)}} \bar{V}^{\mathbf{m}_{\mathbf{n}}}\left(q_{m_{1}}, . ., q_{m_{n}}\right)
$$

The Hamiltonian/Watsonian

$$
H=T+V\left(q_{1}, q_{2}, q_{3}, \ldots, q_{M}\right)
$$

Potential Coupling Expansion

$$
\boldsymbol{V}^{(1)}, \boldsymbol{V}^{(2)}, \boldsymbol{V}^{(3)}, \ldots, \boldsymbol{V}^{(\boldsymbol{M})}
$$

More generally

$$
V=\sum_{\substack{\mathbf{m}_{\mathbf{n}} \in \mathbf{M C R}^{\prime}\{\mathbf{V}\} \\ \mathbf{m}_{n}=\left(m_{1}, m_{2}, \ldots, m_{n}\right)}} \bar{V}^{\mathbf{m}_{\mathbf{n}}}\left(q_{m_{1}}, . ., q_{m_{n}}\right)
$$

$$
N_{p p d}^{M}
$$

The Hamiltonian/Watsonian

$$
H=T+V\left(q_{1}, q_{2}, q_{3}, \ldots, q_{M}\right)
$$

Potential Coupling Expansion

$$
\boldsymbol{V}^{(1)}, \boldsymbol{V}^{(2)}, \boldsymbol{V}^{(3)}, \ldots, \boldsymbol{V}^{(\boldsymbol{M})}
$$

More generally

$$
V=\sum_{\substack{\mathbf{m}_{\mathbf{n}} \in \mathbf{M C R}\{\mathbf{V}\} \\ \mathbf{m}_{n}=\left(m_{1}, m_{2}, \ldots, m_{n}\right)}} \bar{V}^{\mathbf{m}_{\mathbf{n}}}\left(q_{m_{1}}, . ., q_{m_{n}}\right)
$$

$$
\sum_{n=1}^{N_{\operatorname{maxc}}}\binom{M}{n} N_{p p d}^{n}
$$

The Hamiltonian/Watsonian

$$
H=T+V\left(q_{1}, q_{2}, q_{3}, \ldots, q_{M}\right)
$$

Potential Coupling Expansion

$$
\boldsymbol{V}^{(1)}, \boldsymbol{V}^{(2)}, \boldsymbol{V}^{(3)}, \ldots, \boldsymbol{V}^{(\boldsymbol{M})}
$$

More generally

$$
V=\sum_{\substack{\mathbf{m}_{\mathbf{n}} \in \mathbf{M C R}\{\mathbf{V}\} \\ \mathbf{m}_{n}=\left(m_{1}, m_{2}, \ldots, m_{n}\right)}} \bar{V}^{\mathbf{m}_{\mathbf{n}}}\left(q_{m_{1}}, . ., q_{m_{n}}\right)
$$

$$
N_{p p d}^{M}
$$

In practice: generate grid for each coupling (man-made or automatic). Then represent that in terms of a product of one-mode operators:
Product of polynomials.
We have automized that, adaptive density-guided approach (ADGA), using derivatives, etc.

Static and Adaptive PES construction

- Static: Define grid apriori
- Iterative: some error control and adaption
- Aim? V - or rather E, Ψ
- ADGA: adaptive density-guided approach

Use one-mode densities to determine:
Boundaries
Grid mesh

Average density (VSCF)

$\rho\left(q_{m}\right)_{a v}=\frac{\sum_{i^{m}}^{N}\left|\phi_{i^{m}}^{m}\left(q_{m}\right)\right|^{2}}{N}$

ADGA - test quantity

$$
\int_{I} \rho\left(q_{m}\right) V\left(q_{m}\right) d q_{m}
$$

Balances potential and wave function
Energy contribution from interval

ADGA

Boundaries

PAH example, 2M PES

Summary: PES

ADGA: Adaptive Density Guided Approach
\rightarrow Black box \& Adaptive
\rightarrow Reduced cost \& Scaling

We are addressing the scaling of the construction of the PES through a combination of:
\rightarrow ADGA: Adaptive Density Guided Approach
\rightarrow Derivative information
\rightarrow Multi-level approaches
\rightarrow automatic a priori neglect of mode combinations

Second Quantization

Hartree product represented by occupation number vector

OC, JCP, 2004.

Second Quantization

Hartree product represented by occupation number vector

Creation / annihilation operators

$$
\begin{aligned}
a_{r}^{m \dagger}|\ldots 0000 \ldots\rangle & =|\ldots 0010 \ldots\rangle \\
a_{r}^{m}|\ldots 0010 \ldots\rangle & =|\ldots 0000 \ldots\rangle
\end{aligned}
$$

OC, JCP, 2004.

Second Quantization

Reference state:

$$
\left|\begin{array}{c}
\substack{\uparrow \\
(0,0,0)}
\end{array}\right| \prod_{m} a_{i_{m}}^{m \dagger}|\mathrm{vac}\rangle
$$

$$
\bar{\equiv} \bar{\equiv}
$$

Second Quantization

Reference state:

$$
\left.\left|\begin{array}{c}
\substack{\mathbf{i} \\
(0,0,0)} \\
\mid \Phi_{m}
\end{array}=\prod_{m} a_{i_{m} \dagger}^{m \dagger}\right| \mathrm{vac}\right\rangle
$$

Excitation operators: $\tau_{\mu} \mathbf{m}=\prod_{m \in \mathbf{m}} a_{a_{m}}^{m \dagger} a_{i_{m}}^{m}$

Second Quantization

Reference state:

$$
\left.\left|\Phi_{\mathbf{i}}\right\rangle=\prod_{m}^{\uparrow} a_{i_{m}}{ }^{m \dagger} \mid \text { vac }\right\rangle
$$

Excitation operators: $\tau_{\mu} \mathbf{m}=\prod_{m \in \mathbf{m}} a_{a_{m}}^{m \dagger} a_{i_{m}}^{m}$
H assumed to be a sum of products, e.g.

$$
h^{1} h^{2} h^{3}=q_{1} q_{2} q_{3}^{2}
$$

Second Quantization

Reference state:

$$
\underset{\substack{\uparrow \\(0,0,0)}}{\left|\Phi_{\mathbf{i}}\right\rangle}=\prod_{m} a_{i_{m} \dagger}^{m^{\dagger}}|\mathrm{vac}\rangle
$$

Excitation operators: $\tau_{\mu} \mathbf{m}=\prod_{m \in \mathbf{m}} a_{a_{m}}^{m \dagger} a_{i_{m}}^{m}$

H assumed to be a sum of products, e.g.

$$
h^{1} h^{2} h^{3}=q_{1} q_{2} q_{3}^{2}
$$

$$
H=\sum_{t}^{N_{t}} c_{t} \prod_{m \in \mathbf{m}^{t}} \sum_{p, q} h_{p q}^{m o} a_{p}^{m \dagger} a_{q}^{m}
$$

Vibrational Self Consistent Field

Ansatz: Wave function is a single Hartree-Product

$$
\left|\Phi_{\mathbf{i}}\left(q_{1}, q_{2}, \ldots q_{M}\right)\right\rangle=\prod_{m=1}^{M} \phi_{i_{m}}\left(q_{m}\right) \quad\left|\Phi_{\mathbf{i}}\right\rangle=\prod_{m=1}^{M} a_{i_{m}}^{\dagger}|\operatorname{vac}\rangle
$$

Variational principle

Self-Consistent-Field eqs.

VSCF can be fast!

CPU-time: log-log plot.

VSCF scaling per iteration per state and with nM coupling potential:

$$
\begin{gathered}
M^{n} \\
\hat{F}^{m} \phi^{m}=\epsilon \phi^{m} \\
\uparrow
\end{gathered}
$$

Build mean-field.
Watch out to include only terms really coupling something.

Vibrational Correlation

- VSCF: Mean field theory.
- Provides a reasonable set of one-mode functions
- Defines a correlation problem.
- VCI: Linear expansion in Hartree-Products
- FVCl: given basis, the exact solution.

Vibrational Coupled Cluster Theory

Exponential parameterization:

$$
|\mathrm{VCC}\rangle=\exp (T)\left|\Phi_{\mathbf{i}}\right\rangle
$$

TISE:

$$
\exp (-T) H \exp (T)\left|\Phi_{\mathbf{i}}\right\rangle=E\left|\Phi_{\mathbf{i}}\right\rangle
$$

Projection:

$$
\begin{aligned}
e_{\mu^{\mathbf{m}}} & =\left\langle\mu^{\mathbf{m}}\right| \exp (-T) H \exp (T)\left|\Phi_{\mathbf{i}}\right\rangle=0 \\
E & =\left\langle\Phi_{\mathbf{i}}\right| H \exp (T)\left|\Phi_{\mathbf{i}}\right\rangle
\end{aligned}
$$

VCC[n]
truncate at n -th level coupling

VCC response theory - first encounter

Ground state: solve non-linear t-eqs.
Excited states: Response theory

$$
\begin{gathered}
A_{\mu^{\mathbf{m}} \nu^{\mathbf{m}^{\prime}}}=\frac{\partial}{\partial t_{\nu_{\mathrm{m}^{\prime}}}}\left\langle\mu^{\mathbf{m}}\right| \exp (-T) H \exp (T)\left|\Phi_{i}\right\rangle \\
\mathbf{A} R=\omega R \quad \text { Asym VCC jacobian }
\end{gathered}
$$

All equations solved by iterative techniques:
Huge A matrix never constructed explicitly
Olsen (Davidson) algorithms ++
Doable, far from being generally easy!

Benchmark Calculations:

ΔE relative to FVCI for Fundamentals

Formaldehyde 4M potential
Ethylene 3M potential

The challenge of implementing VCC: One of 39 pages of equations for VCC[3] with H3

$-\quad \mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$+\quad \mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$+\quad \mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$-\quad \mathcal{D}_{m_{0} m_{1} m_{2}^{\prime} m_{2}^{\prime} m^{\prime}}^{m_{0}}$

- $\mathcal{D}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$m_{0} m_{1} m_{2}$
$+\quad \mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$-\quad \mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{i}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$+\quad \mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$-\quad \mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$+\frac{1}{6}\left[\left[\left[H_{3}, T_{2}\right], T_{2}\right], T_{2}\right]$
$+\quad \mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$-\quad \mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$+\quad \mathcal{D}_{m 0}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
- $\mathcal{D}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$+\quad \mathcal{D}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$+\quad \mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$-\quad \mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$+\quad \mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$+\mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
- $\mathcal{D}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$\mathrm{D}_{m_{0} m_{1} m_{2}}$
$+\quad \mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$-\quad \mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$+\left[\left[H_{3}, T_{2}\right], T_{3}\right]$
$-\quad \mathcal{D}_{m_{0} m_{1} m_{2}}^{m_{0}^{\prime} m_{1}^{\prime} m_{2}^{\prime}}$
$c_{m_{0} m_{1} m_{2}} \cdot t^{m_{0} m_{1}}$
${ }^{\left\{m_{2}\right\}}\left[c_{m_{1} m_{2} m_{3}}, t_{m_{3}}^{m_{2}}\right.$
$i_{m_{1} m_{2}} \cdot t_{m_{0}}^{m_{2}}$
$\left\{m_{1}\right\}\left[c_{m_{0} m_{1} m_{3}}, i_{m_{1} m_{3}}\right]_{\left\{m_{0}\right\}} \cdot t^{m_{0} m_{1}} \cdot t_{m_{0}}^{m_{2}}$
$M^{3} O^{3} N^{3}$
$\left\{m_{1}\right\}\left[\left\{m_{1}\right\}\left[c_{m_{1} m_{3} m_{4}}, i_{m_{1} m_{3}}\right]\left\{m_{4}\right\}, t_{m_{4}}^{m_{2}}\right]\left\{m_{2}\right\}$
$\left[c_{m_{1} m_{2} m_{3}}, i_{m_{3}}\right]_{\left\{m_{1} m_{2}\right\}} \cdot t^{m_{0} m_{1}} \cdot{ }^{m_{2}} t_{m_{1}}$
$M^{3} O^{2} N^{3}$
$M^{3} O N^{3}$
$M^{3} N^{3}$
$\left\{m_{2}\right\}\left[c_{m_{1} m_{2} m_{3}}, i_{m_{2} m_{3}}\right]_{\left\{m_{1}\right\}} \cdot t^{m_{0} m_{1}} \cdot t_{m_{1}}^{m_{2}}$
$M^{3} O^{2} N^{3}$
$\left[c_{m_{1} m_{3} m_{4}}, i_{m_{3} m_{4}}\right]_{\left\{m_{1}\right\}} \cdot t^{m_{0} m_{1}} \cdot t_{m_{1}}^{m_{2}}$
$M^{3} O N^{3}$
$c_{m_{0} m_{1} m_{2}} \cdot u^{m_{0}} \cdot t^{m_{1} m_{2}} \cdot t_{m_{1} m_{2}}$
$\left\{m_{2}\right\}\left[c_{m_{0} m_{2} m_{3}}, t_{m_{2} m_{3}}\right]_{\left\{m_{0}\right\}} \cdot u^{m_{0}} \cdot t^{m_{1} m_{2}}$
$\left[c_{m_{0} m_{1} m_{3}}, t_{m_{3}}^{m_{2}}\right]_{\left\{m_{0} m_{1}\right\}}^{\left\{m_{2}\right\}} \cdot t_{m_{1}}^{m_{0}} \cdot t_{m_{0}}^{m_{1}}$
$M^{3} O^{2} N^{3}$
$c_{m_{0} m_{1} m_{2}} \cdot t_{m_{1}}^{m_{0}} \cdot t_{m_{2}}^{m_{1}} \cdot t_{m_{0}}^{m_{2}}$
$M^{3} O^{3} N^{3}$
${ }^{\left\{m_{2}\right\}}\left[c_{m_{1} m_{2} m_{3}}, t_{m_{3}}^{m_{2}}\right]_{\left\{m_{1}\right\}} \cdot t_{m_{1}}^{m_{0}} \cdot t_{m_{2}}^{m_{1}}$
$M^{3} O^{2} N^{3}$
$\left.\left\{m_{1}\right\}\left[\left\{m_{1}\right\}\left[c_{m_{1} m_{3} m_{4}}, t_{m_{3}}^{m_{1}}\right]_{\left\{m_{4}\right\}}, t_{m_{4}}^{m_{2}}\right\} m_{2}\right\} \cdot t_{m_{1}}^{m_{0}}$
$M^{3} O N^{3}$
$\left[\left[\left[c_{m_{3} m_{4} m_{5}}, t_{m_{3}}^{m_{0}}\right]_{\left\{m_{4} m_{5}\right\}}^{\left\{m_{0}\right\}}, t_{m_{4}}^{m_{1}}\right]_{\left\{m_{5}\right\}}^{\left\{m_{0}\right\}\left\{m_{1}\right\}}, t_{m_{5}}^{m_{2}}\right]\left\{m_{0}\right\}\left\{m_{1}\right\}\left\{m_{2}\right\}$
$M^{3} N^{3}$
$\left[c_{m_{0} m_{1} m_{3}}, t_{m_{3}}^{m_{2}}\right]_{\left\{m_{0} m_{1}\right\}}^{\left\{m_{2}\right\}} \cdot t^{m_{0} m_{1}} \cdot t_{m_{0} m_{1}}$
$M^{3} O^{2} N^{3}$
$c_{m_{0} m_{1} m_{2}} \cdot t^{m_{0} m_{1}} \cdot t_{m_{1} m_{2}} \cdot t_{m_{0}}^{m_{2}}$
$M^{3} O^{3} N^{3}$
${ }^{\left\{m_{2}\right\}}\left[c_{m_{1} m_{2} m_{3}}, t_{m_{3}}^{m_{2}}\right]_{\left\{m_{1}\right\}} \cdot t^{m_{0} m_{1}} \cdot t_{m_{1} m_{2}}$
$M^{3} O^{2} N^{3}$
$\left\{m_{1}\right\}\left[c_{m_{0} m_{1} m_{3}}, t_{m_{1} m_{3}}\right]_{\left\{m_{0}\right\}} \cdot t^{m_{0} m_{1}} \cdot t_{m_{0}}^{m_{2}}$
$M^{3} O N^{3}$
$\left\{m_{1}\right\}\left[\left\{m_{1}\right\}\left[c_{m_{1} m_{3} m_{4}}, t_{m_{1} m_{3}}\right]_{\left\{m_{4}\right\}}, t_{m_{4}}^{m_{2}}\right]^{\left\{m_{2}\right\}} \cdot t^{m_{0} m_{1}}$
$M^{3} N^{3}$
${ }_{\left\{m_{2}\right\}}\left[c_{m_{1} m_{2} m_{3}}, t_{m_{2} m_{3}}\right]_{\left\{m_{1}\right\}} \cdot t^{m_{0} m_{1}} \cdot t_{m_{1}}^{m_{2}}$
$M^{3} O N^{3}$
$\left[c_{m_{1} m_{3} m_{4}}, t_{m_{3} m_{4}}\right]_{\left\{m_{1}\right\}} \cdot t^{m_{0} m_{1}} \cdot t_{m_{1}}^{m_{2}}$
$M^{3} O N^{3}$
$\left\{m_{1}\right\}\left[c_{m_{0} m_{1} m_{3}}, t_{m_{3}}^{m_{1} m_{2}}\right]_{\left\{m_{0}\right\}}^{\left\{m_{2}\right\}} \cdot{ }^{m_{0}} t_{m_{1}}$

Automatic Derivation of VCC

1. Computer derives detailed equations

BCH Commutator expansion, SQ algebra, long lists involving contractions between integrals and amplitudes
2. Identify computational convenient form

Find intermediates. Rearrange for minimal operation count.
3. Process the resulting lists of terms and intermediates

Computational scaling: VCI and VCC similar scaling

	$\mathrm{VCC}[2]$	$\mathrm{VCC[3]}$	$\mathrm{VCC[4]}$	$\mathrm{VCC[5]}$	$\mathrm{VCC[6]}$
$H 2$	M^{3}	M^{4}	M^{5}	M^{6}	M^{7}
$H 3$	M^{3}	M^{4}	M^{5}	M^{6}	M^{7}
$H 4$	M^{4}	M^{5}	M^{6}	M^{7}	M^{8}
$H 5$	M^{5}	M^{6}	M^{6}	M^{7}	M^{8}

P Seidler and O Christiansen J. Chem. Phys. 131, 234109 (2009)

VCC scaling illustrations

VCC[2]s
2M PES
PAHs

Noninteracting fragments

VCC cost reductions

(Now: General and "fast" - difficult to develop but now we have a general framework.
(O) Shown only a glimse of the theory and details
(0) Further avenues to explore
\Rightarrow Parrallelization is in progress
\Rightarrow Exploit sparsity
\Rightarrow Define other models and reduction tricks

Additional Members:VCC[2pt3]

Full 2M, approximate 3M

$$
H=F^{(0)}+U_{2}^{(1)}+U_{3}^{(2)}
$$

$$
\begin{aligned}
& F^{(0)}=H_{1}+F_{2}+F_{3} \\
& U_{2}^{(1)}=H_{2}-F_{2} \\
& U_{3}^{(2)}=H_{3}-F_{3}
\end{aligned}
$$

Tildes: T1 similarity transf.

Additional Members:VCC[2pt3]

Full 2M, approximate 3M

$$
H=F^{(0)}+U_{2}^{(1)}+U_{3}^{(2)} \quad \begin{array}{ll}
F^{(0)} & =H_{1}+F_{2}+F_{3} \\
U_{2}^{(1)} & =H_{2}-F_{2} \\
U_{3}^{(2)} & =H_{3}-F_{3}
\end{array}
$$

Tildes: T1 similarity transf.
3M equations

$$
\begin{aligned}
e_{\mu_{3}}= & \left\langle\mu_{3} 3\left[F, T_{3}\right]^{(2)}+\tilde{U}_{3}^{(2)}+\left[\tilde{U}_{2}^{(1)}, T_{2}{ }^{(2)}+\left[\tilde{U}_{3}^{(2)}, T_{2}\right]^{(3)}+\left[\tilde{U}_{2}^{(1)}, T_{3}\right]^{(3)}+\left[\tilde{U}_{3}^{(2)}, T_{3}\right]^{(4)}\right.\right. \\
& \left.\left.+\frac{1}{2}\left[\tilde{U}_{2}^{(1)}, T_{2}\right], T_{2}\right]^{(3)}+\frac{1}{2}\left[\tilde{U}_{3}^{(2)}, T_{2}\right], T_{2}\right]^{(4)}+\left[\left[\tilde{U}_{2}^{(1)}, T_{2}\right], T_{3}\right]^{(4)} \\
& \left.+\left[\tilde{U}_{3}^{(2)}, T_{2}\right], T_{3}\right]^{(5)}+\frac{1}{2}\left[\left[\tilde{U}_{3}^{(2)}, T_{3}\right], T_{3}\right]^{(6)}+\frac{1}{6}\left[\left[\left[\tilde{U}_{3}^{(2)}, T_{2}\right], T_{2}\right], T_{2}\right]^{(5)}\left|\Phi_{\mathbf{i}}\right\rangle
\end{aligned}
$$

VCC[2pt3]/H3 M^{3} scaling as compared to VCC[3]/H3 M ${ }^{4}$

$\mathrm{VCC}[2 \mathrm{pt} 3]$

Benchmarks: $\mathrm{H}_{2} \mathrm{CO}, \mathrm{SOCl}_{2}, \mathrm{HFCO}, \mathrm{CCl}_{2} \mathrm{O}$
Fundamentals

Another newcomer:VCC[3pt4] NB: Poster Alberto Zoccante

		Deviation from VCC[4].	
The new hierarchy	VCC4]	VCI[4]	
VCC[2]	M^{4}	M^{5}	
VCC3]	3.8	12.0	
VCC[3]	-1.5	31.9	
VCC4]	0.2	1.9	
\ldots	0.2	1.7	
	0.1	2.3	

Ethylene-oxide. 3M PES.
5 fundamentals of B1 symmetry.

Spectra and states

- Challenge: The number of states increases wildly with the number of degrees of freedom.
- Calculating all the states explicitely becomes impossible
- The stable determination of specific states in dense regions is problematic.
- Can we work around this?

Excited state Calcs.: Response Theory

$$
\begin{aligned}
H_{0} & \rightarrow H_{0}+V^{t} \\
\Psi & \rightarrow \Psi(t) \\
\langle\Psi(t)| X|\Psi(t)\rangle & =\langle\Psi| X|\Psi\rangle+\text { response }
\end{aligned}
$$

general operators
Linear response function (exact)

$$
\langle\langle X, Y\rangle\rangle_{\omega_{Y}}^{\gamma}=\sum_{k}\left[\frac{\langle 0| X|k\rangle\langle k| Y|0\rangle}{\omega_{Y}+i \gamma_{-}-\omega_{k}}-\frac{\langle 0| Y|k\rangle\langle k| X|0\rangle}{\omega_{Y}+i \gamma+\omega_{k}}\right]
$$

Excitation frequency
Studying the response of the ground state can be used to study excited states:
From Linear response function: One-Photon Spectra From quadratic response function: Two-photon spectra

From response functions to spectra

Linear response function (exact)

$$
\langle\langle X, Y\rangle\rangle_{\omega_{Y}}^{\gamma}=\sum_{k}\left[\frac{\langle 0| X|k\rangle\langle k| Y|0\rangle}{\omega_{Y}+i \gamma-\omega_{k}}-\frac{\langle 0| Y|k\rangle\langle k| X|0\rangle}{\omega_{Y}+i \gamma+\omega_{k}}\right]
$$

$$
\begin{aligned}
& \Psi_{\text {exact }}(t) \Rightarrow\langle\langle X, Y\rangle\rangle_{\omega_{y}}^{\text {exact }} \Rightarrow \text { spectra } \\
& \Psi_{\text {approx }}(t) \Rightarrow\langle\langle X, Y\rangle\rangle_{\omega_{y}}^{\text {approx }} \Rightarrow \text { approx. spectra }
\end{aligned}
$$

1. Let $\gamma \rightarrow 0$. Note that there are poles at $\omega_{\mathrm{y}} \rightarrow \omega_{\mathrm{k}}$

Poles and residues determines excitation energies and transition probabilities
Leads to response eigenvalue equations - that is what was used before

$$
\mathbf{A} R=\omega R
$$

2. Consider a finite γ :

A Lorentzian broadened spectrum occur

$$
\left.\operatorname{Im}\left\{\langle\langle Y, Y\rangle\rangle_{\omega_{y}}^{\gamma}\right\}=\sum_{k \neq 0}\left|\left\langle\Psi_{o}\right| Y\right| \Psi_{k}\right\rangle\left.\right|^{2}\left(\frac{\gamma}{\left(\omega_{y}-\omega_{k}\right)^{2}+\gamma^{2}}-\frac{\gamma}{\left(\omega_{y}+\omega_{k}\right)^{2}+\gamma^{2}}\right)
$$

Idea now: use directly damped response functions to determine absorption spectra

Linear response functions determine the absorption spectrum defined as

$$
\sigma_{X}^{\gamma}(\omega)=-\omega \operatorname{Im}\langle\langle X ; X\rangle\rangle_{\omega}^{\gamma}
$$

VCI wave function $->$ VCI response function $->\mathrm{VCI}$ spectrum
VCC wave function $->$ VCC response function $->$ VCC spectrum
VCI \& VCC response functions have been derived and implemented in our group.

VCI relatively simple.
VCC significantly more complicated structure. General VCC algorithm provides framework for implementing the additional vector and matrix contractions.

How solved in practice? Lanczos iteration

$$
\begin{aligned}
C(\omega) & =\boldsymbol{U}^{T}(\boldsymbol{A}-\omega \mathbf{1})^{-1} \boldsymbol{V} \\
& =u v \boldsymbol{u}^{T}(\boldsymbol{A}-\omega \mathbf{1})^{-1} \boldsymbol{v}
\end{aligned}
$$

Contribution to response functions for VCI / VCC

Asymmetric matrix Lanzcos iteration on response A matrix:

$$
\begin{aligned}
& \boldsymbol{q}_{1}=\boldsymbol{v} \quad \boldsymbol{p}_{1}=\boldsymbol{u} \\
& \beta_{j} \boldsymbol{q}_{j+1}=\boldsymbol{r}_{j}=\left(\boldsymbol{A}-\alpha_{j}\right) \boldsymbol{q}_{j}-\gamma_{j-1} \boldsymbol{q}_{j-1} \\
& \gamma_{j} \boldsymbol{p}_{j+1}=\boldsymbol{s}_{j}=\left(\boldsymbol{A}^{T}-\alpha_{j}\right) \boldsymbol{p}_{j}-\beta_{j-1} \boldsymbol{p}_{j-1} \\
& \alpha_{j}=\boldsymbol{p}_{j}^{T} \boldsymbol{A} \boldsymbol{q}_{j} \\
& 1=\boldsymbol{p}_{j+1}^{T} \boldsymbol{q}_{j+1}=\left(\frac{\boldsymbol{s}_{j}}{\gamma_{j}}\right)\left(\frac{\boldsymbol{r}_{j}}{\beta_{j}}\right)
\end{aligned}
$$

$$
\boldsymbol{T}^{(k)}=\left(\begin{array}{ccccccc}
\alpha_{1} & \gamma_{1} & 0 & 0 & 0 & 0 & 0 \\
\beta_{1} & \alpha_{2} & \gamma_{2} & 0 & 0 & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & . & . & . \\
\cdot & \cdot & \cdot & . & . & . & \gamma_{k-1} \\
0 & \cdot & . & . & 0 & \beta_{k-1} & \alpha_{k}
\end{array}\right)
$$

NB Focus is not on Lanzcos as eigensolver, but on accurate calculation of matrix functions. Note start guess.

The moments of the spectra converges with increasing Lanczos iterations

$$
\begin{aligned}
& {\left[\sigma_{X}(\omega)\right]_{n}=\int_{0}^{\infty} \sigma_{X}(\omega) \omega^{n} d \omega} \\
& {\left[\sigma_{X}^{(j)}(\omega)\right]_{n}=\int_{0}^{\infty} \sigma_{X}^{(j)}(\omega) \omega^{n} d \omega} \\
& \\
& \quad \text { The Lanzcos spectrum truncated at j-th step. } \\
& \quad\left[\sigma_{X}(\omega)\right]_{n}=\left[\sigma_{X}^{(j)}(\omega)\right]_{n} \quad 0 \leq n \leq 2 j-3
\end{aligned}
$$

Convergence of spectra with Lanzcos iterations:Cyclopropene

VCI[4]

Convergence of spectra with Lanzcos iterations:Cyclopropene

VCC[3]

PES: 3M, CCSD(T)/cc-pVTZ

Exp.

Calc.

PES: 3M, CCSD(T)/cc-pVTZ

Convergence of spectra with Lanzcos iterations: UracilVCC[2pt3]

Seidler et al. JCP $2010+$ to be published

Summary

VCC the accurate choice at given excitation level
\rightarrow theoretically attractive (size-extensivity)
\rightarrow VCC can be made computationally competitive
\rightarrow Automatic derivation and implementation of equations
\rightarrow General VCC response theory now possible.
\rightarrow Approximate VCC models easily implemented and tested.

Direct calculation of spectra: Lanzcos-powered damped response functions.

Automatic PES construction.

MidasCpp

Molecular Interactions, Dynamics and Simulations Chemistry Program Package in C++

Wave functions:
VSCF, VMPn, VCI, VCC
+ Response Theory
+ Temperature
+ Properties

Potential energy and property surface generation:
Static and dynamic grids, ADGA (Adaptive Density-Guided Approach)
Derivative based/Interpolation etc., Interfaces to various electronic structure programs

"Release" expected 2010

Acknowledgement

Peter Seidler
Eduard Matito
Mikkel Bo Hansen
Werner Gyorffö

Manuel Sparta
Daniele Toffoli
Bo Thomsen
Ian Godtliebsen

Funding:
> The Lundbeck Foundation Center for Theoretical Chemistry.
$>$ European Young Investigator (EURYI) award.
$>$ The Danish National Research Foundation:
Center for Oxygen Microscopy and Imaging (COMI).
> Danish Center for Scientific Computing.

Thankyou for your attention

Summary: PES

ADGA: Adaptive Density Guided Approach
\rightarrow Black box \& Adaptive
\rightarrow Reduced cost \& Scaling

We are addressing the scaling of the construction of the PES through a combination of:
\rightarrow ADGA: Adaptive Density Guided Approach
\rightarrow Derivative information
\rightarrow Multi-level approaches
\rightarrow automatic a priori neglect of mode combinations

Other different CCs

Usual quantum chemistry CC, fermions
CC for bosons

Other exponential/non-linear parameterizations for anharmonic vibrations:
R.F. Bishop et al. (1D)
M.Durga-Prasad et al. Banik et al.

Starts from Harmonic Oscillator step up/down ops SQ algebra different, Gaussian reference

Our VCC: a natural CC for distinguishable d.o.f. (VSCF or not)

Wave Function approaches

MCTDH: Multi-configurational Time-dependent Hartree Meyer, Cederbaum, Manthe
VSCF: Vibrational Self Consistent Field
VCI:
Vibrational Configuration Interaction
Bowman and co-workers (1979), Rauthut..... many other ...
VMP:
Møller-Plesset perturbation theory

Gerber and co-workers (1996) OC (2003), general order and coupling
Quasi-degenerate perturbation theory, Configuration selection, Yagi, Hirata, Hirao

VCC: Vibrational coupled cluster theory
OC(2004), Seidler and OC (2007-...)
Second quantization \& Response theory

How solved in practice? Lanczos iteration

Asymmetric matrix Lanzcos iteration:

$$
\begin{aligned}
& A Q=Q T \\
& \boldsymbol{A}^{T} \boldsymbol{P}=\boldsymbol{P} \boldsymbol{T}^{T} \\
& \boldsymbol{P}^{T} \boldsymbol{Q}=1 \\
& \boldsymbol{T}^{(k)}=\left(\begin{array}{ccccccc}
\alpha_{1} & \gamma_{1} & 0 & 0 & 0 & 0 & 0 \\
\beta_{1} & \alpha_{2} & \gamma_{2} & 0 & 0 & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \gamma_{k-1} \\
0 & \cdot & \cdot & . & 0 & \beta_{k-1} & \alpha_{k}
\end{array}\right) \\
& \boldsymbol{q}_{1}=\boldsymbol{v} \quad \boldsymbol{p}_{1}=\boldsymbol{u}
\end{aligned}
$$

NB Focus is not on Lanzcos as eigensolver, but as a vehicle for accurate calculation of matrix functions.

