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Polycyclic Aromatic Hydrocarbon hypothesis in the interstellar medium

I Unidentified Infrared (UIR) bands:
− First observed by Gillet et al.
[Gillett et al., ApJ (1973)]

− High spectral resolution of UIR bands from ISO.
[Van Diedenhoven et al., ApJ (2004)]

I UIR features are generally attributed to (PAHs) or
PAH-related molecules.
[Allamandola et al., ApJ Supp. Ser. (1989)], [Puget & Léger, A&A (1989)]

I IR emission of molecules follows from a visible-UV
electronic excitation: molecular carriers are thus transitory
vibrationally excited.

I IR emission spectral characteristics: governed by
anharmonicities of the ground state PES.

Unidentified Infrared
Bands



Objectives

Challenge:
I unknown large molecular system (PAH-based

molecules; > 100 atoms of carbon)
I isolated, high vibrationally excited but rotationally

cold => difficult to reproduce in experiments
I IR emission spectral characteristics: governed by

anharmonicities of the ground state PES

Goal:
I Build an efficient IR spectral simulation code for

PAH or PAH-based molecules.
I Try to reproduce as good as possible anharmonic,

thermal and dynamical effects on the IR spectral
patterns

Methods:
I Semi-empirical tight-binding electronic structure

representation
I Semi-classical IR spectral simulations by classical

molecular dynamics with corrections

Project is supported by ANR GASPARIM 2010-2014

Polycyclic Aromatic
Hydrocarbons



Tight-Binding model
Total energy :

E = Tcore + E rep + ETB

Schrödinger equation :

HΨ` = ε`Ψ`

Molecular Orbitals Ψ` (LCAO) :

Ψ` =
X
iα

c`iα|iα〉

Secular equation :

HC = SCε

The hamiltonian matrix elements 〈iα|H|jβ〉 of H are computed analytically in the tight
binding framework.

ETB =
occX
`

n`ε` + Uδn`,2

Pairwise repulsive interaction potential :
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Tight-Binding Potential

H = T + Veff (1)

Veff is expressed as a sum of atom-centered contributions:

Veff(r) =
X

i

v (i)
eff (r− ri ) (2)

Intra-atomic matrix elements (i = j):

〈iα|H|iβ〉 = 〈iα|T |iβ〉+ 〈iα|v (i)
eff |iβ〉+ 〈iα|

X
j 6=i

v (j)
eff |iβ〉 (3)

= ε
(i)
α δαβ + 〈iα|

X
j 6=i

v (j)
eff |iβ〉 (4)

with ε(i)
α is the energy of the atomic orbital |iα〉.

Inter-atomic matrix elements (i 6= j):

〈iα|H|jβ〉 = 〈iα|T |jβ〉+ 〈iα|v (i)
eff |jβ〉+ 〈iα|v (j)

eff |jβ〉 (5)

= t(i,j)
α,β(ri − rj ) (6)

The three-center integrals are neglected.



Tight-Binding Potential

For CnHm in the present work:
I Minimal Slater atomic basis set :

I 2s, 2p for carbon
I 1s for hydrogen.

I Orthogonal basis set :
< iα|jβ >= δij δαβ (7)

I Tight-binding matrix size: N × N with N = 4n + m
I Tight-binding matrix elements:

〈iα|H|iβ〉 = ε
(i)
α δαβ (8)

〈iα|H|jβ〉 = t(i,j)
α,β (ri − rj ) (9)

[Van-Oanh et al. J PC A, 106 (2002) 10144]

[Van-Oanh et al. PCCP, 7 (2005) 1779]



Tight-Binding Potential

〈iα|H|jβ〉 = t(i,j)
α,β (ri − rj ) (10)

The hopping integrals are evaluated following the work of Slater and Koster.

rij = (ri − rj ) = rij (i cos θx + j cos θy + k cos θz ) (11)

with rij = |ri − rj |

t(i,j)
s,s (ri − rj ) = ssσ(rij )

t(i,j)
s,px (ri − rj ) = spσ(rij ) cos θx

t(i,j)
px,px (ri − rj ) = ppσ(rij ) cos2 θx

+ ppπ(rij )[1− cos2 θx ]

t(i,j)
px,py (ri − rj ) = cos θx cos θy [ppσ(rij )− ppπ(rij )]

Radial dependence of the hopping integrals t(i,j)
α,β(rij ) = {ssσ, spσ, ppσ, ppπ}

t(i,j)
α,β(rij ) = t(i,j)

α,β(r0)
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Tight Binding Molecular Dynamics
Atomic motions are driven by classical law:

Fi = mi
d2ri

dt2

I Hellmann-Feynman force:

F HF
xi

= −
∂

∂xi

X
`

n`〈Ψ`|H|Ψ`〉

I Repulsive force:

F rep
xi

= −
∂

∂xi
V (i,j)

core (rij )

Forces computed analytically.

Equations of motion are solved numerically using the Verlet velocity integration
algorithm.

Dipole moment :
µ(t) =

X
i

qi ri (13)

Partial charge :
qi =

X
`

X
iα

n`(c`iα)2 (14)



IR absorption cross-section

At a finite temperature T :

σ(ω,T ) =
π ω

3 ~ c ε0
[1− exp(−β~ω)] IQ(ω,T ). (15)

IQ(ω,T ): quantum IR absorption lineshape

I From quantum mechanics:

IQ(ω,T ) =
X

i

X
f

ρi 〈f |µ|i〉 δ(
Ef − Ei

2
− ω) (16)

I From quantum linear response theory: Fourier transform of the quantum time
autocorrelation function of the dipole moment µ

IQ(ω,T ) =
1

2π

Z ∞
−∞

e−iωt 〈[µ̂(0), µ̂(t)]〉 dt . (17)



Classical MD

In the classical limit:

σC(ω,T ) = lim
~→0

σ(ω,T ) =
π βω2

3 c ε0
IC(ω,T ). (18)

Classical absorption lineshape:

IC(ω,T ) =
1

2π

Z ∞
−∞

e−iωt 〈µ(0).µ(t)〉 dt . (19)

it is denoted as classical spectrum



Semi-classical MD

In a general semi-classical scheme:
Using the classical correlation function IC(ω,T ) :

IC(ω,T ) =
1

2π

Z ∞
−∞

e−iωt 〈µ(0).µ(t)〉 dt . (20)

Introducing a correction factor D(ω,T ) into the IR absorption cross section :

σ(ω,T ) =
π ω

3 c ε0
[1− exp(−β~ω)] D(ω,T ) IC(ω,T ). (21)

Usual expressions of D(ω,T ):

1. Symmetrization of time correlation function, leads to:

DS(ω,T ) =
2

1 + exp(−β~ω)
, (22)

2. Double harmonic approximation:

DH(ω,T ) =
β~ω

1− exp(−β~ω)
. (23)

These correction factors allow the detailed balance to be satisfied, i.e.
Icorr(−ω,T ) = exp(−β~ω) Icorr(ω,T ).
The latter is widely used in the literature.



Semi-classical MD
The semi-classical expression used in the present work:

σ(ω,T ) =
π ω

3 c ε0
[1− exp(−β~ω)] D(ω,T ) IC(ω,T ). (24)

with
IC(ω,T ) =

1
2π

Z ∞
−∞

e−iωt 〈µ(0).µ(t)〉 dt . (25)

Two corrections:

1. Symmetrization of time correlation function:

DS(ω,T ) =
2

1 + exp(−β~ω)
(26)

2. Initial condition preparation following the semi-classical quantization theory in
order to bring the system into its corresponding quantum energy level :

Qi =

»
(2 〈ni 〉+ 1) ~

ωi

–1/2
sinϕi (27)

Pi = [(2 〈ni 〉+ 1) ~ωi ]
1/2 cosϕi (28)

with
〈ni 〉 =

1
exp(β~ωi )− 1



Simulation Details

I Naphthalene C10H8

I 48 vibrational modes (170 - 3000 cm−1)
I 22 IR active modes
I 8 very closed frequency C-H stretching modes
I Degenerated modes at 1150, 1664, 3125 and 3136

cm−1

I MD simulations performed in microcanonical
ensemble

I Data collected from 100 samplings (i.e. 100 initial
conditions)

I MD simulation duration for each sampling = 300 ps



Double Harmonic Approximation

Within the uncoupled harmonic approximation framework, the exact quantum
correlation function is known:

IQ(ω,T ) =

3N−6X
i

~
2ω [1− exp(−β~ω)]

˛̨̨̨
∂µ

∂Qi

˛̨̨̨2
δ(ω − ω0,i ) (29)

It is referred to as static spectrum:

σ(ω) =
π

6 c ε0

3N−6X
i

˛̨̨̨
∂µ

∂Qi

˛̨̨̨2
δ(ω − ω0,i ) (30)

The 3N − 6 harmonic frequencies ω0 can be obtained by diagonalizing the
mass-weighted Hessian matrix at the equilibrium R0 i.e.:

∂2V
∂ξi∂ξj

I Hessian matrix computed analytically

I
∂µ

∂Qi
computed analytically



Semi-classical MD: validation in the harmonic PES region

Imposing a set of "empirical" quantum numbers so that the KE of each mode is
proportional to its frequency and the mean KE is equal to 10 K
Spectrum of 100 semi-classical MD samplings will be compared to the static and to the
classical spectra. A very good agreement is observed for the semi-classical method.
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Semi-classical MD: validation in the harmonic PES region
Imposing a set of "empirical" quantum numbers so that the KE of each mode is
proportional to its frequency and the mean KE is equal to 10 K
The system is indeed in the harmonic potential energy surface region and in the nearly
absence of mode couplings.

0 400 800 1200 1600
0

5

10

15

20
K

in
et

ic
 E

ne
rg

y 
(K

)
initial
IR inactive 
IR active

0 100 200 300
Time (ps)

0

10

20

30

40

50

K
in

et
ic

 e
ne

rg
y 

(K
)

0 100 200 300
Time (ps)

0

20

40

60

80

100

3100 3200
0

10

20

30

40

16641603 1707 3125 3136

Wavernumber (cm
-1

)

For the degenerated modes, small couplings will cause significant energy transfers



0K anharmonic IR spectrum

The system is initially localized in the vibrational ground state Ei = ~ωi,0/2
The IR spectrum is shifted towards smaller wavenumbers due to the anharmonicity.
The band intensities change too much compared to the harmonic spectrum.
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Intramolecular Vibrational Energy Redistribution (IVR)

The system is initially localized in the vibrational ground state Ei = ~ωi,0/2
Strong mode couplings => IVR => energy equipartition => E = 〈Ei 〉 ∀i
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Temperature effects on the IR spectrum

Classical and semi-classical MDs don’t lead to the same results both for the
frequencies and for the intensities of the bands
Intensities behave quite differently in the semi-classical MD depending on the
frequency region.
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Comparison to Path-Integral MD

Ring-Polymer MD and Centroid MD account for quantum effects on nuclear motion,
based on the path integral representation of quantum statistical mechanics.
[Calvo at al. JCP, 132 (2010) 124308; 133 (2010), 074303]

semi-classical results are in good agreement with the centroid MD
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Comparison to second order perturbation method

[Basire et al., JCP (2008), JPCA (2009) and (2010)]

Energy level computed by second order perturbation theory through third and fourth
derivatives of the potential function (Dunham expansion):

E({n}) =

3N−6X
i=1

~ω0,i

„
ni +

1
2

«
+
X

ij

χij

„
ni +

1
2

«„
nj +

1
2

«

∆Ek calculated randomly in quanta space {n} driven by Metropolis rule at a fixed
density of states Ω(E):

∆Ek = [~ω0,k + 2χkk +
1
2

X
i 6=k

χik ] + [2χkk nk +
X
i 6=k

χik ni ]

Absorption cross-sections: harmonic approximation

σ
(k)
nk→nk +1 = (nk + 1) σ

(k)
0→1

Energy resolved spectrum σ(ω,E) obtained by accumulating intensity σ(k)
nk→nk±1 at

transition energy ∆Ek .
Canonical absorption spectrum obtained through Laplace transformation from σ(ω,E).



Comparison to second order perturbation method

semi-classical red shifts are overestimated/underestimated for low/high frequencies
compared to Dunham perturbation method due to energy relaxation

I Strong red shift: ~ω < 〈E〉T
I Weak red shift : ~ω > 〈E〉T
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0K anharmonic C-H stretching frequency
Vibrational energy relaxation time of the mode Qi initially localized in a particular state
ni can be measured by:

τ(ni ) =

Z ∞
0
〈Q̇i (0).Q̇i (t)〉dt

Spectral information at a specific quantum energy level (before relaxation) can also be
obtained in a very short time simulation

τchar(Qi ) << Tsim << τ(ni )

Example:

n(CHstretchings) = 1

Energy relaxation induces a blue shift to
the C-H stretching modes.

Comparison:
−− Dunham perturbation value at 0 K
−− semi-classical MD value at 0 K

As a consequence, red shifts are
observed for low frequency modes (data
not shown)
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Comparison to experimental data

semi-classical temperature-dependent intensity ratio matches well the experimental
trend but classical cannot.

0 200 400 600 800 1000
T (K)

0

0.5

1

1.5

2

2.5

3

In
te

ns
ity

 r
at

io

semi classical MD
classical MD

Int (3065 cm
-1

)

Int (785 cm
-1

)

0 250 500 750 1000
T (K)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
te

ns
ity

 r
at

io

Exp : gas phase
Exp :  in Ar matrix
semi classical MD
scaled (0.73)

Int (3065 cm
-1

)

Int (785 cm
-1

)

Exp in Ar matrix: [Hudgins et al. (1994), Szczepanski et al. (1992)]

Exp in gas phase: : [Robinson et al. (1995)]



Application to coronene
semi-classical MD reproduce also well the experimental temperature-dependent
intensity trend of the individual vibrational mode.

C24H12
Exp in solid phase:
[Colangeli et al. (1992)]
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Summary and Outlook

Summary:

I semi-classical MD is capable to describer the well-known non linear red shift trend
on the frequencies with temperature due to anharmonicities of the potential
energy surface.

I semi-classical MD provokes an extra blue shift to high frequencies and red shift to
low frequencies due to energy relaxation. This effect is expected to be less
important at high temperature.

I semi-classical MD provides a very good description of the intensity band evolution
as a function of temperature observed by experiments: Intensity increases for high
frequencies and decreases for low frequencies.

Presently:

I Article in preparation :-)

Outlook:
I Inclusion of the mechanical and electrical anharmonic intensities and the IVR

effects to the second order perturbation method
I Examining the transferability of the tight-binding potential using ab initio electronic

structure information
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