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0.1. MOTIVATIONS 13

0.1 Motivations

Throughout the theoretical development of physics and engineering, it was of-
ten necessary to introduce some calculus tools out of the rigorous mathematical
framework of the time. One of the uncountable classic examples is the differen-
tial calculus introduced by Newton and Leibniz and then formalized by Cauchy.
Every time this happened, it encouraged some mathematical research, leading to
an expansion of this framework in order to incorporate the new tools. Examples
of such tools, in recent times, are the “Heaviside Calculus”, the so called “Dirac
Calculus” and Feynman’s path-integrals used in Quantum Mechanics. These
tools are formally contradictory and incompatible with modern mathematics.
However, the results of this informal methods have proved to be exceptionally
adequate in their fields of application. The mathematicians have thus engaged
a research for new concepts and structures, inside mathematics, in order to give
some rigorous support to the informal calculus used by physicists and engineers.
A fundamental step in this direction was made in the ’50 by Laurent Schwartz
with his Theory of Distributions. The Theory of Distributions gave a precise
mathematical meaning to the “generalized functions”, such as the well known
Dirac’s delta function, and so to the whole Heaviside calculus. One of the most
interesting points of this theory is that it somewhat justifies the procedures used
by the physicists and engineers without changing, in the substance, their mode
of operation.

However, in the last years, mathematical research has followed a different
path, mainly consisting in the application of methods taken from functional
analysis. This approach led to many results of great theoretical value but that
are of difficult practical application for physicists and engineers. The reasons of
these difficulties are essentially two:

• 1) the results are presented in a formal framework which is substantially
different from the one which physicists and engineers are accustomed to;

• 2) they hold only under several technical assumptions, which are often
extraneous to the essence of the problems.
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But the worst of it’s that these results are often less powerful than the non
rigorous methods used by physicists and engineers!

As a result the gap between the two languages is getting larger and larger.

The goal of the research introduced in this book is to make a step backward
and start again where Schwartz left. Following the spirit of the theory of dis-
tributions we’ll give a precise mathematical meaning and rigorous support to
many calculus methods of Quantum Mechanics, starting from Dirac Calculus,
under very few and general conditions. Moreover, not only this approach will
give a rigorous justification to the use of this tools substantially “as they are”,
but, by correct interpretation of these methods in terms of new mathematical
entities and concepts, it will help to reach a deeper comprehension of the physi-
cal structures studied in Quantum Mechanics. In particular, in this direction we
shall give a new definition of the states of a quantum system and of the environ-
ment in which they lie. This environment is, often erroneously, identified with a
Hilbert space, while, because the physicists need to consider so called “non nor-
malizable” states, it is often obviously something different. Some physicists call
it a “physical Hilbert space”, without giving a clear mathematical definition.
We shall show that the “physical Hilbert space” can smoothly be identified with
the space of tempered distributions on a suitable Euclidean space, depending
from the nature of the quantum system considered.
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0.2 Introduction

It was in 1930 that Paul Dirac published his Principles of Quantum Mechanics,
in this famous treatise Dirac introduced several “manipulation rules” for vectors
and operators in a linear space, which, in their complex, constitute the so called
“Dirac Calculus”. This Calculus is nothing more than a wide set of formal exten-
sions of the basic properties of the finite-dimensional Linear Algebra to the case
of infinite-dimensional vector spaces. The discourse is elegant and surprisingly
efficient, but it is far from being a rigorous mathematical argumentation.

The roots of the formal Linear Algebra introduced by Dirac can be found in
the symbolic calculus of the engineer Heaviside, and the Linear Algebra of Dirac
works good in Quantum Theory as the Analysis of Heaviside works good in the
Electromagnetic Theory. It is, then, not amazing that the complete justification
of the Dirac’s Algebra resides in the topological-vector structures of the spaces
of distributions as the complete justification of the Heaviside’s Analysis lies in
the meaningful analysis introduced by Laurent Schwartz in those spaces.

The operation of continuous-superposition is the right tool which allows us
to build - in a mathematically rigorous way - the extended Linear Algebra of
Dirac in the spaces of distributions, via their natural topological-linear struc-
tures. More precisely, the goal we reach is in the following direction: we shall
see that the natural algebraic-topological structure of those spaces allows us to
define a generalization of the finite linear combinations, when the sets indexing
the families of vectors are continuous sets, even in the case in which the systems
of coefficients has a continuous-infinity of terms different from zero. Moreover,
beside the reconstruction of the Dirac’s Calculus, we reread some classic theo-
rems of Functional Analysis in terms of the new extended linear algebra.
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Chapter 1

Preliminaries

In this book we shall use some notations. If k is a natural number, N≤k is the
set of positive integer less than or equal to k. The symbol µn shall denote the
Lebesgue measure on Rn; (.) = jR is the canonical immersion of the real line R
into the complex plane C; if X is a non-empty set, IX , of (.)X , or idX is the
identity map on X.

If X and Y are two topological vector spaces on K (one of the two fields R
or C), by Hom(X,Y ) we denote the set of all the linear operators from X to
Y , L(X,Y ) is the set of all the linear and continuous operators from X into Y ,
X∗ := Hom (X,K) is the algebraic dual of the topological vector space X and
X ′ = L (X,K) is the topological dual of X.

We shall use sometimes the following consequence of the Hahn-Banach the-
orem.

Proposition. Let E be a locally convex topological vector space, M a closed
subspace of the space E, and let z be a point of the space E which does not
belong to the subspace M . Then there exists a continuous linear form f on the
space E separating the point z and the subspace M . In other terms there is an
element f of the topological dual E′ such that f (z) = 1 and f (x) = 0 for any
point x of the subspace M . Or again, in a more geometric fashion, there is a
closed linear hyperplane containing the subspace and not containing the point.

17
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1.1 Topological homomorphisms

Definition (of topological isomorphism). A bijective continuous linear map
f from a topological vector space E onto a topological vector space F is called
a topological isomorphism if the inverse map f−1 is continuous (i.e., if f
is a homeomorphism).

In other terms, a mapping among two topological vector spaces is said a
topological isomorphism if and only if it is both a linear isomorphism and a
homeomorphism.

Two topological vector spaces E and F are said isomorphic if there exists
a topological isomorphism from E onto F . A topological isomorphism from E
onto itself is called a topological automorphism.

Definition (of strict injective morphism). An injective continuous map
f from a topological vector space E into a topological vector space F is called
a strict injective morphism (or topological monomorphism) if it is a
topological isomorphism from the topological vector space E onto the image f (E)
endowed with the topology induced by the topological vector space F .

Definition (of topological homomorphism). A continuous linear map
f from a topological vector space E into a topological vector space F is said a
strict morphism (or topological homomorphism) iff its associated injec-
tion

f : E/ ker (f)→ F : x+ ker f 7→ f(x)

is a strict injective morphism.

Theorem. Let f be a continuous linear map from a topological vector space
E into a topological vector space F . Then the following assertions are equivalent

1) the linear map f is a strict morphism;

2) the linear map f maps every neighborhood of the origin 0E of E onto
a neighborhood of the origin 0F in the image f (E) , with respect to the
topology induced on f(E) from that of F ;

3) the linear map f maps every open set of E onto an open set of the image
f (E), open with respect to the topology induced on the image f(E) from
the topology of F (the linear map is open from E to f(E)).

Note that, topological homomorphism does not mean that the linear map-
ping f is open (sending open sets of E onto open sets of F ) but that it is open
from E into its image f(E).
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1.2 Direct sums

Definition (of topological direct sum). Let E be a topological vector
space and (Mi)

n
i=1 be a finite family of subspaces of E such that the space is

algebraic direct sum of the family, i.e. such that

E = ⊕ni=1Mi.

We say that the space E is the topological direct sum of the family M if
the algebraic isomorphism

(xi)
n
i=1 7→

n∑
i=1

xi

is a homeomorphism from the product space
n∏
i=1

Mi

onto the space E (i.e., it is an isomorphism of the topological vector space
structures).

To understand that this definition is meaningful, let us observe that the map

x = (xi)
n
i=1 7→

n∑
i=1

xi

from the product
∏n
i=1Mi onto the space E is always continuous, by the Axiom

of continuity of the addition of topological vector spaces, but the inverse map
may fail to be continuous.

Proposition. Let E be a topological vector space and assume that E is
the algebraic direct sum of the finite family M = (Mi)

n
i=1 of subspaces. Then

the space E is the topological direct sum of the family M if and only if all the
projectors

pj : E →Mj : pj

(
n∑
i=1

xi

)
= xj

are continuous.

Proof. The inverse of bijection
n∏
i=1

Mi → E : (xi)
n
i=1 7→

n∑
i=1

xi

is given by the map

E →
n∏
i=1

Mi : y 7→ (pi (y))ni=1

which is continuous if and only if its component pi are continuous. �
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1.3 Topological supplements

Definition (of topological supplement). A linear subspace N of a topolog-
ical vector space E is said a topological supplement of a linear subspace
M iff E is the topological direct sum of M and N . In other terms, if the two
subspace are algebraic supplement and the two projectors

p1 : E →M : p1(m+ n) = m

and
p2 : E → N : p1(m+ n) = n

are continuous.

Theorem. Let M and N be two algebraic supplements in the topological
vector space E, and let q : E → N be the projector on N corresponding to the
decomposition (M,N). Then M and N are topological supplements if and only
if the injection

q : E/M → N : x+M 7→ q(x)

associated with q is continuous.

Proof. Indeed, consider the canonical injection jN : N → E of N into E and
the canonical surjection π : E → E/M of E onto the quotient space E/M , we
have

q = q ◦ π,
in fact

x 7→π x+M 7→q q(x),

and therefore q is continuous if and only if q is. �

Let us observe that the injection q is a bijective linear map (indeed q is
surjective) and its inverse q−1 = π ◦ jN is always continuous; hence if q is
continuous, it is an isomorphism.

It follows that

Theorem. If M and N are two closed subspace of a Banach space E
which are algebraic supplements of each other, then they are also topological
supplements.

Proof. Indeed the bijection q−1 : N → E/M is then a continuous bijective
linear map from the Banach space N onto the Banach space E/M , and therefore
by the Banach Inverse Operator Theorem its inverse q is also continuous. �

The above theorem still holds for a larger class of spaces (e.g., complete
metrizable spaces).
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1.4 Right and Left inverses

Proposition. Let E and F be two topological vector spaces and let A be a
continuous linear map from E into F . Then, there exists a continuous linear
map R from F into E such that A ◦R is the identity map IF of F if and only
if the linear operator A is a surjective strict morphism and its kernel ker (A)
has a topological supplement in E. Namely, if there exists a continuous right
inverse R of the surjection A, a topological supplement of the kernel of A is the
image of the right inverse R.

Proof. Indeed, if R is a continuous right inverse of A, the image R(F ) is a
topological supplement of ker(A). Conversely, if M is a topological supplement
of kerA, the restriction of A to the subspace M is an isomorphism of M onto
F whose inverse is a continuous right inverse of A. �

Proposition. Let E and F be two topological vector spaces and A a contin-
uous linear map from E into F . There exists a continuous linear map L from
F into E such that L ◦ A shall be the identity map IE of E if and only if A
is a injective strict morphism and its image A (E) has a topological supplement
in F .

1.5 Homomorphisms among Fréchet spaces

Theorem (Banach’s homomorphism theorem or the open-map theo-
rem). Let E and F be two metrizable complete topological vector spaces and f
a continuous surjective linear map from E onto F . Then f is a strict surjective
morphism.

Proposition. Let E and F be two metrizable and complete topological
vector spaces and f : E → F a continuous linear map. Then f is a strict
morphism if and only if its image f (E) is closed in F .

Proposition. Let E and F be two metrizable and complete topological
vector spaces. Then every continuous bijective linear map from E onto F is a
topological isomorphism.

Proposition. Let E be a metrizable and complete topological vector spaces.
If M and N are two closed subspace of E which are algebraic supplements of
each other, then they are also topological supplements.

Proof. The product space M ×N is metrizable and complete, and the map
(x, y) 7→ x+ y is continuous, bijective and linear from M ×N onto E, hence an
isomorphism by the open mapping theorem. �



22 CHAPTER 1. PRELIMINARIES

1.6 Dieudonné-Schwartz theorem

Theorem (Dieudonné-Schwartz). Let E and F be two Fréchet spaces with
topologies TE and TF respectively, E′ and F ′ their topological duals, and let
u : E → F be a linear and continuous map. Then the following conditions are
equivalent:

1) the operator u is a topological homomorphism for the topologies TE and
TF ;

2) the operator u is a weak topological homomorphism, that is a topological
homomorphism for the weak topologies σ (E,E′) and σ (F, F ′);

3) the image u (E) is closed in F ;

4) the transpose operator tu is a weakly* strict morphism, that is a topolog-
ical homomorphism for the weak* topologies σ (F ′, F ) and σ (E′, E);

5) the image tu (F ′) is closed in the dual E′ for the weak* topology σ (E′, E).

Corollary. Let E and F be two Fréchet spaces, E′ and F ′ their topological
duals, and u : E → F be a linear continuous map. Then,

1) the operator u is an injective strict morphism if and only if its transpose
operator is surjective, i.e. if and only if

tu (F ′) = E′;

2) the operator u is a surjective strict morphism if and only if the image
tu (F ′) is closed in E′ for the weak* topology σ (E′, E) and the transpose
tu is injective;

3) the operator u is a topological isomorphism if and only if its transpose
operator tu is an isomorphism for the weak* topologies σ (F ′, F ) and
σ (E′, E).

Another useful theorem for us is

Theorem. Let E and F be two Fréchet spaces, assume E be also a Schwartz
space and F be reflexive, let E′ and F ′ be their topological duals, and u : E → F
be a strict morphism. Then, the transpose of u is a strict morphism for the
strong* topologies, the β topologies.

Theorem (Dieudonné-Schwartz). Let E and F be two Fréchet spaces
with topologies TE and TF respectively, E′ and F ′ their topological duals, and
let u : E → F be a linear and continuous map. Assume that the transpose
operator tu is an injective strict morphism for the strong* topologies β (F ′, F )
and β (E′, E). Then the following conditions hold true and are equivalent:
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1) the operator u is a surjective strict morphism for the topologies TE and
TF ;

2) the operator u is a surjective strict morphism for the weak topologies
σ (E,E′) and σ (F, F ′);

3) the transpose operator tu is an injective strict morphism for the strong
topologies σ (F ′, F ) and σ (E′, E);

4) the image tu (F ′) is closed in the dual E′ for the weak* topology σ (E′, E).

5) the image tu (F ′) is closed in the dual E′ for the weak* topology β (E′, E).

1.7 Banach-Steinhaus in barreled spaces

Theorem. Let E be a barreled space, F a locally convex Hausdorff topological
vector space, and F a filter on L(E,F ) which converges pointwise in E to a
linear map u0 of E into F . Suppose that the filter F has either one of the
following two properties:

1) there is a subset H of L(E,F ), belonging to the filter F , which is bounded
for the topology of pointwise convergence;

2) the filter F has a countable basis.

Then the operator u0 is a continuous linear map of E into F and more-
over the filter F converges to u0 in the topological vector space Lc(E,F ) (i.e.,
uniformly on every compact subset of E).

Proof. Suppose that (1) holds. Then the subset H is an equicontinuous set
(since a bounded set for the pointwise topology in L(E,F ) is equicontinuous)
and the operator u0 belongs to the closure cls(H) of H in the space Fs(E,F ) of
functions from E into F endowed with the pointwise topology (indeed a limit
of a filter is also an adherent point of the filter). But the closure cls(H) is an
equicontinuous set of linear maps of E into F (since the closure of any equicon-
tinuous set is equicontinuous), hence u0 is continuous and the filter F converges
to u0 in the space Ls(E,F ). Now, on an equicontinuous set of linear maps
the topology of pointwise convergence coincides with the topology of compact
convergence, so the filter F converges to the operator u0 in the space Lc(E,F )
(as the set H belongs to the filter F , to say that F converges to u0 in the space
Lc(E,F ) or that the filter induced by F on the closure cls(H) converges to u0 in
cls(H) when this set carries the topology of compact convergence, is one and the
same thing). Next we suppose that (2) holds. Let B = (Bk)k∈N be a countable
(ordered) basis of the filter F . For each natural k we select an element uk of Bk.
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By hypothesis, for each point x of the space E, the sequence u(x) = (uk(x))k∈N
converges in the topological vector space F to the point u0(x). This implies
that the set of continuous mappings {uk}k∈N is bounded in the space Ls(E,F ).
Therefore, the filter associated with sequence u has property (1). From the
first part of the proof, it follows that u0 is continuous and that the sequence
u converges to the operator u0 in the space Lc(E,F ). We have now to prove
that the filter F converges to the map u0 in the space Lc(E,F ), i.e. that any
neighborhood of u0 in Lc(E,F ) should contain a base element. Let, then, U be
a neighborhood of the operator u0 in the space Lc(E,F ): suppose that none of
the base sets Bk is contained in the neighborhood U . Then we could find, for
each natural k, an element uk of Bk which is not contained in the neighborhood
U . But this would contradict the fact (just proved) that any such sequence u
converges to the linear map u0 in the space Lc(E,F ). Therefore, some set Bk
must be contained in the neighborhood U . �

1.8 Tempered distributions

1.8.1 Test functions

By Sn we shall denote the space S(Rn, K), the (n,K)-Schwartz space, that
is to say, the set of all the smooth functions (i.e., of class C∞) of Rn into K
rapidly decreasing at infinity with all their derivatives (these functions and all
their derivatives tend to 0 at ∓∞ faster than the reciprocal of any polynomial).

By S(n) we shall denote the standard Schwartz topology on Sn, and by (Sn)
the topological vector space on the set Sn with its standard topology. The
topology S(n) is induced by a metric, in fact (Sn is closed under differentiation
and multiplication by polynomials) it is induced by the denumerable family of
seminorms p = (pk)k∈N0 on Sn defined by

pk (f) = supx∈Rnmaxα,β∈Nn
0 (≤k)

∣∣xβDαf(x)
∣∣ ,

where Nn0 (≤ k) is the set of all n-dimensional multi-indices with length less or
equal to k, for every non-negative integer k. Each seminorm pk is indeed a
norm on the space Sn, and moreover the inequality pk (f) ≤ pk+1 (f), for all
f ∈ Sn, holds true. So the pair (Sn, p) is a countably complete normed space
and consequently the topological vector space (Sn) is a Fréchet space (see also
[Ho] and [Ba]). The topological vector space (Sn) is also reflexive, barreled and
a Montel space.
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1.8.2 Tempered distributions

By S ′n we shall denote the space of tempered distributions S ′(Rn,K) from Rn
to K, that is, the topological dual of the topological vector space (Sn), i.e.,
S ′n = (Sn)′. If x ∈ Rn, δx is the Dirac distribution of Sn centered at the point
x, i.e., the functional

δx : Sn → K : φ 7→ φ (x) .

If f belongs to the space OM (Rn,K), where

OM (Rn,K) = {g ∈ C∞(Rn,K) : ∀φ ∈ Sn, φg ∈ Sn} ,

then the functional

[f ] = [f ]n : Sn → K : φ 7→
∫
Rn

fφµn

is a tempered distribution, called the regular (tempered) distribution generated
by the function f (see [Ba] page 110). The space S ′n is reflexive, barreled and a
Montel space.

1.9 Fourier transforms on Sn

Let a, b ∈ R 6= be two non zero real numbers (by R 6= we mean the difference
R\{0}). By S(a,b) we denote the (a, b)-Fourier Schwartz transformation, i.e.,
the operator S(a,b) : Sn→Sn, defined, for all function f ∈ Sn and any point
y ∈ Rn, by

S(a,b)(f)(y) = (1/a)
n
∫
Rn

fe−ib(·|y) µn =
[
(1/a)

n
e−ib(·|y)

]
(f),

where (·|·) is the standard scalar product on Rn and µn is the Lebesgue measure
on Rn. Moreover, we recall that S(a,b) is a homeomorphism with respect to the
standard topology of (Sn) and, concerning its inverse, for every x ∈ Rn and
g ∈ Sn, we have

S−(a,b)(g)(x) =

(
|b| a
2π

)n ∫
Rn

geib(x|·) µn =

= S(2π/(|b|a),−b)(g)(x).



26 CHAPTER 1. PRELIMINARIES

1.10 Fourier transforms on S ′n

Let a, b ∈ R 6=, by F(a,b) we shall denote the (a, b)-Fourier transformation on the
space of tempered distributions, i.e., the operator F(a,b) : S ′n→S ′n, defined, for
all distribution u ∈ S ′n and for every test function φ ∈ Sn, by

F(a,b)(u)(φ) = u
(
S(a,b)(φ)

)
,

in other terms it is the transpose of the operator S(a,b):

F(a,b) = t
(
S(a,b)

)
.

Moreover, we recall that F(a,b) is a homeomorphism in the weak* topology σ(S ′n)
(even more it is a topological isomorphism). Moreover, we have

F−(a,b) = F(2π/(|b|a),−b).

Two properties that we shall use are the following ones: for all α ∈ Nn0 ,

F(a,b)(u
(α)) = (bi)α (IRn)

α F(a,b)(u);

and

F(a,b)((IRn)
α
u) =

(
i

b

)α (
F(a,b)(u)

)(α)
,

where, IRn is (as we said) the identity operator on Rn, and where (IRn)
α

is the
α-th power of the identity in multi-indexed notation.

Moreover, we have

F(a,b) (τhu) = e−ib(h|·)F(a,b)(u)

under Fourier transforms translations become multiplications by characters, and

F(a,b)

(
eib(h|·)u

)
= τh

(
F(a,b)(u)

)
under Fourier transforms multiplications by characters become translations.

For example we have

F(1,2π) (H0) =
1

2
(δ0 −

i

π
P(I−1

(R,C)),

which implies

F(1,2π) (Hx) =
1

2
(e−i2π(x|·)δ0 −

i

π
e−i2π(x|·)P(I−1

(R,C))) =

=
1

2
(δ0 −

i

π
e−i2π(x|·)P(I−1

(R,C))).
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Chapter 2

Summable families

2.1 Families of distributions

Let I be a non-empty set, we shall denote by (S ′n)I the space of all the families
in the space of tempered distributions S ′n indexed by the set I, i.e., the set of
all the surjective maps from the set I onto a subset of the space S ′n. Moreover,
as usual, if v is one of these families, for each index p ∈ I, the distribution v(p)
(corresponding to p in the map v) is denoted by vp, and the family v itself is
also denoted by the expressive notation (vp)p∈I .

The set (S ′n)I of all families in the space S ′n indexed by a non-empty set I is
a vector space with respect to the following two standard operations of addition

+ : (S ′n)I × (S ′n)I → (S ′n)I ,

defined pointwise by

v + w := (vp + wp)p∈I ,

for any two families v, w, and multiplication by scalars

· : K× (S ′n)I → (S ′n)I

29
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defined pointwise by
av := (avp)p∈I ,

for any family v and any scalar a. In other words, the family v + w is defined
by

(v + w)p = vp + wp,

for every index p in I, and the family av is defined by

(av)p = avp,

for every p in I.

The basic important consideration for our purposes is the observation that
a family of tempered distributions can act on test functions, as specifies the
following definition.

Definition (image of a test function by a family of distributions).
Let v be a family in the space S ′n indexed by a non-empty set I and let φ ∈ Sn
be any test function. The mapping

v(φ) : I → K

defined by
v(φ)(p) := vp(φ),

for each index p ∈ I, is called the image of the test function φ under the
family of tempered distributions v.

So, to any family v belonging to the space (S ′n)I we can associate a mapping
from the space of test functions Sn into the function space F(I,K). Equivalently,
for every test function φ, we have a “projection” πφ sending any family of (S ′n)I

to a scalar family of the product (K)I :

πφ(v) = (vp(φ))p∈I ,

for every family v of the space (S ′n)I .

2.2 SFamilies

In the Theory of Superpositions on the space of tempered distributions S ′n the
below class of S families plays a basic role.

Definition (family of tempered distributions of class S). Let v be
a family in the space S ′n indexed by the Euclidean space Rm. The family v is
called a family of class S or an Sfamily if, for each test function φ ∈ Sn, the
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image of the test function φ by the family v - that is the function v(φ) : Rm → K
defined by

v(φ)(p) := vp(φ),

for each index p ∈ Rm - belongs to the space of test functions Sm. We shall
denote the set of all S families by S(Rm,S ′n).

Example (the Dirac family in S ′n). The Dirac family in S ′n, i.e., the
family δ := (δx)x∈Rn , where δx is the Dirac (tempered) distribution centered at
the point x of Rn, is a family of class S.

Proof. Indeed, for each test function φ ∈ Sn and for each index (point) x in
Rn, we have

δ(φ)(x) = δx(φ) = φ(x),

and hence δ(φ) = φ. So the image of the test function φ under the family δ is
the function φ itself, which lies in Sn. �

It is clear that the space of S families in S ′n, indexed by some Euclidean space
I, is a subspace of the vector space (S ′n)I of all families in S ′n indexed by the
same index set I.

2.3 SFamily generated by an operator

In this section we introduce a wide class of S families. We will see later that this
class is indeed the entire class of S families. We recall that by σ(Sn) we shall
denote the weak topology σ(Sn,S ′n).

Theorem (on the Sfamily generated by a linear and continuous
operator). Let A : Sn → Sm be a linear and continuous operator with respect
to the natural topologies of Sn and Sm (or equivalently, continuous with respect
to the weak topologies σ(Sn) and σ(Sm)) and let δ be the Dirac family in S ′m.
Then, the family of functionals

A∨ := (δp ◦A)p∈Rm

is a family of distribution and it is an S family.

Proof. Let A : Sn → Sm be a linear and continuous operator with respect
to the natural topologies of Sn and Sm (since these topologies are Fréchet-
topologies, this is equivalent to assume the operator A be linear and continuous
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with respect to the weak topologies σ(Sn) and σ(Sm)). Let δ be the Dirac
family in S ′m and consider the family

A∨ := (δp ◦A)p∈Rm .

The family A∨ is a family in S ′n, since each functional A∨p is the composition of
two linear and continuous mappings. Moreover, the family A∨ is of class S, in
fact, for every test function φ in Sn and for every index p in Rm, we have

A∨(φ)(p) = A∨p (φ) =

= (δp ◦A)(φ) =

= δp(A(φ)) =

= A(φ)(p),

so that the image of the test function by the family A∨ is nothing but the image
of the test function under the operator A,

A∨(φ) = A(φ),

and this image belongs to the space Sm by the choice of the operator A itself.
�

Definition (of Sfamily generated by a linear and continuous oper-
ator). Let A : Sn → Sm be a linear and continuous operator with respect to
the natural topologies of Sn and Sm (or equivalently, continuous with respect
to the weak topologies σ(Sn) and σ(Sm)) and let δ be the Dirac family in S ′m.
The family

A∨ := (δp ◦A)p∈Rm

is called the S-family generated by the operator A.

Remark. We have so constructed the mapping

(·)∨ : L (Sn,Sm)→ S(Rm,S ′n) : A 7→ (δx ◦A)x∈Rm ,

which we shall call the canonical representation of the operator space L (Sn,Sm)
in the family space S(Rm,S ′n). It is quite simple to prove that this mapping
is a linear injection. We shall see, as we already said, that every S family has
the form considered above, or in other terms that the above linear mapping is
a linear isomorphism.

2.4 The operator generated by an Sfamily

Definition (operator generated by an Sfamily). Let v be a family of class
S belonging to the space S(Rm,S ′n). We call operator generated by the
family v (or associated with the family v) the operator

v̂ : Sn → Sm : φ 7→ v(φ),
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sending every test function φ of Sn into its image v(φ) under the family v.

Example (on the Dirac family). The operator (on Sn) generated by the
Dirac family, i.e., by the family δ = (δy)y∈Rn , is the identity operator on Sn.

Proof. In fact, for each y ∈ Rn, we have

δ̂(φ)(y) = δy(φ) =

= φ(y) =

= ISn(φ)(y),

for any test function φ in Sn. �

We recall that the set S(Rm,S ′n), of S families indexed by Rm, is a subspace
of the vector space (S ′n)R

m

. Moreover, we leave as an exercise to prove that

• for each family v ∈ S(Rm,S ′n), the operator v̂ associated with the family
v is linear and the map

S(Rm,S ′n)→ Hom (Sn,Sm) : v 7→ v̂

is an injective linear operator.

Example (on the family generated by an operator). The operator
associated with the family A∨ generated by a linear and continuous operator A
in L (Sn,Sm) is the operator A itself, as can be immediately proved. In other
terms we can write (A∨)∧ = A.

2.5 Characterizations of S families

In the following we shall denote by L(Sn,Sm) the set of all the linear and
continuous operators among the two topological vector spaces (Sn) and (Sm).

Moreover, let consider a linear operator A : Sn → Sm, we say that A is
(topologically) transposable if its algebraic transpose (adjoint) ∗A : S∗m → S∗n
(X∗ denotes the algebraic dual of a topological vector space X), defined by

∗A(a) = a ◦A,

maps the distribution space S ′m into the distribution space S ′n.

Theorem (basic properties of Sfamilies). Let v be a family of tempered
distributions of class S belonging to the space S(Rm,S ′n). Then, the following
assertions hold and are equivalent:
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1) for every tempered distribution a ∈ S ′m, the composition u = a ◦ v̂, i.e.,
the functional

u : Sn → K : φ 7→ a(v̂(φ)),

is a tempered distribution;

2) the operator v̂ is transposable;

3) the operator v̂ is weakly continuous, i.e. continuous from Sn to Sm with
respect to the pair of weak topologies (σ(Sn), σ(Sm));

4) the operator v̂ is continuous from the space (Sn) to the space (Sm).

Proof. We divide the proof in two parts, in the first one we prove the
validity of the property (1), in the second we prove that the four properties are
equivalent. Note that, after the proof of property (1), if we prove that the other
properties are equivalent to (1) then we have proved our theorem. Proof of
property (1). Let us prove (1). Let a ∈ S ′m and let δ be the Dirac family
in S ′m. Since the linear hull span(δ) of the Dirac family is σ(S ′m)-sequentially
dense in S ′m (see [Bo] page 205), there is a sequence of distributions α = (αk)k∈N
in the linear hull span(δ) converging to the distribution a with respect to the
weak* topology σ(S ′m), that is such that

σ(S′m) lim
k→+∞

αk = a.

Now, since for any natural k, the distribution αk belongs to the linear hull
span(δ), there exists a finite family (yi)

h
i=1 of points in Rm and there is a finite

family of points (λi)
h
i=1 in K such that

αk =

h∑
i=1

λiδyi ,

and consequently, by obvious calculations,

αk ◦ v̂ =

h∑
i=1

λi(δyi ◦ v̂) =

=

h∑
i=1

λivyi .

Hence, for every index k ∈ N, the linear functional αk ◦ v̂ belongs to the space
S ′n. Let s be the topology of the pointwise convergence in the algebraic dual
(Sn)∗, we claim that

s lim
k→+∞

(αk ◦ v̂) = a ◦ v̂.
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In fact, for every test function φ in Sn, we obtain

lim
k→+∞

(αk ◦ v̂) (φ) = lim
k→+∞

αk (v̂ (φ)) =

= a (v̂ (φ)) ,

so we proved that the sequence of continuous linear functionals (αk ◦ v̂)k∈N is
pointwise converging to the linear functional a ◦ v̂; so, by the Banach-Steinhaus
theorem (that is applicable since Sn is barreled), the linear functional a◦ v̂ must
be continuous too, i.e. a ◦ v̂ ∈ S ′n. So property (1) holds. Equivalence of the
four properties. The property (1) is equivalent to property (2) by definition
of transposable operator. Property (2) is equivalent to property (3) because the
space of linear continuous operators L((Sn)σ, (Sm)σ) is also the space of all the
transposable linear operators from the space (Sn) to (Sm) (see [Ho], chap. 3,
§ 12, Proposition 1, page 254). Property (3) is equivalent to property (4). In
fact, since the space (Sn) is an F-space (and then its topology coincides with
the Mackey topology τ(Sn,S ′n) ), the space L(Sn,Sm) contains the above space
L((Sn)σ, (Sm)σ), of all weakly linear and continuous operators from Sn to Sm
(i.e. with respect to the pair of topologies (σ(Sn), σ(Sm)), see for this result
[Die, Sch] page 91, Corollary or [Ho], page 258, Corollary). Moreover, the space
L(Sn,Sm) is contained in the space L((Sn)σ, (Sm)σ), since every continuous
linear operator among two Hausdorff locally convex topological vector spaces is
weakly continuous (see proposition 3, page 256 of [Ho]), so the two spaces must
coincide. �

Corollary (of isomorphism). The vector spaces S(Rm,S ′n) and L(Sn,Sm)
are isomorphic. Namely, the map (·)∧ from the space of family S(Rm,S ′n) into
the space of operators L (Sn,Sm), associating with each family v its operator v̂,
is a vector space isomorphism. Moreover, the inverse of the above isomorphism
is the linear mapping

(·)∨ : L (Sn,Sm)→ S(Rm,S ′n)

defined by

A 7→ A∨ := (δp ◦A)p∈Rm ,

i.e. the canonical representation of the operator space L (Sn,Sm) into the family
space S(Rm,S ′n), which, as a consequence, is an isomorphism too.

Definition (canonical representation of the space S( Rm,S ′n)). The
mapping

(·)∧ : S(Rm,S ′n)→ L (Sn,Sm) : v 7→ v̂

is called the canonical representation of the family space S(Rm,S ′n) onto
the operator space L (Sn,Sm).
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2.6 Characterization of transposability

A way to see that an operator is transposable is given by the following character-
ization. It is an immediate consequence of the characterization of the S families
but we want to prove it independently.

Theorem. Let A : Sn → Sm be a linear operator and let δ be the Dirac
family of the space S ′m. Then, the operator A is (topologically) transposable
if and only if, for every point p ∈ Rm, the composition δp ◦ A is a tempered
distribution in S ′n.

Proof. (⇒) The necessity of the condition is obvious. In fact, we have

δp ◦A = ∗A(δp),

and so if A is topologically transposable, the composition δp ◦ A is continuous.
(⇐) Let a ∈ S ′m be a tempered distribution; we should prove that the compo-
sition a ◦ A is continuous. Since the linear hull span(δ) is sequentially dense in
the space S ′m (see [Bo] page 205), there is a sequence of distributions (αk)k∈N
in the hull span(δ) such that

σ(S′m) lim
k→+∞

αk = a.

Now, since any distribution αk lives in the hull span(δ) there exist a finite family
(yi)

h
i=1 in Rm and a finite sequence (λi)

h
i=1 in K such that

αk =

h∑
i=1

λiδyi ,

thus we have

αk ◦A =
h∑
i=1

(λiδyi) ◦A =

=

h∑
i=1

λi(δyi ◦A);

hence, for every number k ∈ N, the composition αk ◦A belongs to S ′n. Let now
s be the topology of pointwise convergence in the algebraic dual S∗n, we have

s lim
k→+∞

(αk ◦A) = a ◦A,

in fact

lim
k→+∞

(αk ◦A) (φ) = lim
k→+∞

αk (A (φ)) =

= a (A (φ)) ,
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so we have that the sequence (in S ′n) of continuous linear form (αk ◦A)k∈N
converges pointwise to the linear form a ◦ A, then, by the Banach-Steinhaus
theorem, we conclude that the composition a ◦A is also in the space S ′n. �

2.7 Characterizations of D families (*)

As we proved the above theorem, in a perfectly analogous way, it can be proved
the following theorem. The Dfamilies in D′n can be defined analogously to the
S families in S ′n and the Corollary of page 91 of [Die, Sch] holds because D′n is
an LF-space.

Theorem (basic properties on Dfamilies). Let v ∈ D(Rm,D′n) be a
family of distributions. Then the following assertions hold and are equivalent:

1) for every a ∈ D′m the composition u = a ◦ v̂, i.e., the functional

u : Dn → K : φ 7→ a (v̂(φ)) ,

is a distribution;

2) the operator v̂ is transposable;

3) the operator v̂ is (σ(Dn), σ(Dm))-continuous from Dn to Dm;

4) the operator v̂ is a strongly continuous from (Dn) to (Dm).

2.8 EFamilies and Esummable families

Let us begin with a family which is not of class S.

Example (a family that is not of class S). Let u be a distribution in
S ′n and let v be the family in S ′n, indexed by the Euclidean space Rm, defined
by vy = u, for each point y ∈ Rm. Then, if the distribution u is different from
zero, v is not of class S. In fact, let φ ∈ S(Rn,K) be such that u(φ) 6= 0, for
every y ∈ Rm, we have

v(φ)(y) = vy(φ) =

= u(φ)1Rm(y),

where, 1Rm is the constant K-functional on Rm of value 1. Thus, the function
v(φ) is a constant K-functional on Rm different from zero, and so it cannot
live in the space Sm.
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The preceding example induces us to consider other classes of families in
addition to the S families, for this reason, we will give the following definitions.

We shall denote by Cm the space C0(Rm,K) of continuous functions defined
on the Euclidean space Rm and with values in the scalar field K.

Definition (algebraic Efamilies and E summuble families). Let E be
a subspace of the function space F(Rm,K) (without any topology) containing the
space Sm. If v is a family in the distribution space S ′n indexed by Rm, we say
that the family v is an Efamily if, for every test function φ in Sn, the image
v(φ) of the test function by the family v lies in the subspace E. An Efamily v
is said to be Esummable if, for every functional a in the algebraic dual E∗,
the functional ∫

Rm

av : φ 7→ a(v(φ))

is a tempered distribution in S ′n. More generally, if F is a part of E∗ we say
that the family is F summable if the above functional is a distribution for every
a in F .

With this new definition, the family of the above example is a Em family in
S ′n, where by Em we (in standard way) denote the space C∞(Rm,K) of smooth
function from Rm into K. Moreover, for every tempered distribution in E ′m, we
have

a(v(φ)) = a(u(φ)1Rm) =

= u(φ)a(1Rm) =

= u(φ)

∫
Rm

a,

where we recall that the compact support distributions are integrable and their
integral is defined as their value on the constant unit functional, so that∫

Rm

av =

(∫
Rm

a

)
u,

and the family v is E
′
msummable.

Remark. In the conditions of the above definition, let w be a Hausdorff
locally convex topology on the subspace E.

• If the topological vector space (Sm) is continuously imbedded in the space
Ew, then, the topological dual E′w is continuously imbedded in the space
S ′m. In this case, in Distribution Theory, we say that the dual E′w is a
space of tempered distribution on Rm.
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• Moreover, if the topological vector space Ew is continuously imbedded in
the space (Cm), then the dual C′m is contained in the dual E′w. In other
terms, every Radon measure with compact support is in the dual E′w and,
in particular, the Dirac family is contained in E′w; since the Dirac basis in
sequentially total in the space of tempered distributions S ′m and since the
space E′w is continuously imbedded in the space S ′m itself, the Dirac family
shall be sequentially total also in the topological vector space (E′w)σ, that
is with respect to the weak* topology σ(E′, E).

Now we can give two new definitions.

Definition (Efamilies and Esummuble families). Let E be a subspace
of the space F(Rm,K) containing the space Sm and endowed with a locally
convex linear topology. If v is a family in the distribution space S ′n indexed by
Rm. We say that the family v is an Efamily if, for every test function φ in
Sn, the image v(φ) of the test function by the family v lies in the subspace E.
An Efamily is said to be Esummable if for every tempered distribution a in
the topological dual E′ the functional φ 7→ a(v(φ)) is a tempered distribution in
S ′n.

Definition (of normal space of test function for S ′m). We will call a
locally convex topological vector space E a normal space of test functions
for the distribution space S ′m if it verifies the following properties

• the space E is an algebraic subspace of the space Cm;

• the space E contains the space Sm;

• the topological vector space (Sm) is continuously imbedded and dense in
the topological vector space E;

• the topological vector space E is continuously imbedded in the space (Cm).

In these conditions the dual E′ is called a normal space of tempered distri-
butions on Rm.

Theorem (on the Efamily generated by a linear and continuous
operator). Let E be a normal space of test function for the space S ′m, let
A : Sn → E be a linear and continuous operator of the space (Sn) into the space
E and let δ be the Dirac family in C′m. Then, the family of functionals

A∨ := (δp ◦A)p∈Rm

is a family of distribution in S ′n and it is an Efamily.

We can prove that:
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Theorem. Let E be a normal space of test functions for the distribution
space S ′m. Then, every Efamily in S ′n (obviously indexed by the m-dimensional
Euclidean space) is Esummable.



Chapter 3

Superpositions

3.1 Introduction

3.1.1 The wonderful Dirac basis

Often, in Quantum Mechanics treatises, we read

• it is possible to expand any ket |f〉 in the position basis, that is, for any
ket |f〉 the following expansion

|f〉 =

∫
R
f (x) |x〉 dx,

holds true.

In the above expression reside both the deepest essence and consequence of
the Dirac Superposition Principle of Quantum Mechanics:

• the space of states of a quantum system is stable under the continuous
(and then discrete) superposition of states;

• any state of a quantum system can be expanded as a continuous superpo-
sition of the most elementary states which can be conceived;

• there are systems of vectors capable to generate the entire state space of
a quantum system.

41
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3.1.2 A dangerous expression

But, what does the expansion

|f〉 =

∫
R
f (x) |x〉 dx,

actually mean from a mathematical point of view?

Quantum physicists justify this claim by recalling the following equality
taken from Distribution Theory:

f(y) =

∫
R
f (x) δ(x− y)dx,

which is valid for every real y. In the above equality, they consider the Dirac
distribution δ(x− y) as the “base ket” |x〉, for every real x.

But the above justification is not correct, because in the above equality, x
is not an index in the proper sense, in fact:

• the symbol δ(x− y) is an expression that rigorously represents the Dirac
distribution δy centered at the point y ∈ R (the notation δy does not show
abuse of notations);

• in the above equality the letter “x” in the expression δ(x− y) is an abuse
of notation, because the distribution δy is not defined on the real line R
but on the test function space D (R,C).

Consequently, in the equality

f(y) =

∫
R
f (x) δ(x− y)dx,

we cannot consider the distribution δ(x− y) as a vector |x〉 labeled by x.

More specifically, the vector |x〉 = δ(x − y) can be considered but, in this
hypotesis, the letter “y” becomes an abuse of notation and the letter x, on the
contrary, comes back to be a proper real number.

Concluding, as it is well known:

• when the distribution δ(x − y) appears in a mathematical relation, we
cannot consider both x and y as real numbers simultaneously;

• moreover the equality

f(y) =

∫
R
f (x) δ(x− y)dx,
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is true only when f is a function. On the contrary this equality does not
justifies the expansion

δ(y) =

∫
R
δ (x) δ(x− y)dx;

further in this latter case the letter y does not represent anything more;

• more generally, if u is a tempered distribution in S ′1, i.e., if u is a tempered
distribution on the real line (that is a possible state of quantum system
with one degree of freedom), we cannot justify the desired expansion

u(y) =

∫
R
u (x) δ(x− y)dx,

by means of the above classic equality of Distribution Theory.

3.1.3 Toward a possible solution

We can try to reconsider the desired expansion in another way, using the whole
of the Dirac family δ = (δy)y∈R, as it is natural in Quantum Mechanics. We
want reconstruct a function using the Dirac family, and indeed we have, for
every y ∈ R,

f(y) =

∫
R
fδy,

where the function f can live in the space C0 (R,C), fδy is the product of the
function f by the distribution δy, δy is the Dirac’s distribution centered at y
and the functional

u 7→
∫
R
u

is the integral (with respect to the Lebesgue measure) on the space of distribu-
tions with compact support E ′1 = E ′ (R,C), i.e. the functional:∫

R
(·)E′1 : E ′1 → C : u 7→ u(1R),

(we recall that a distribution with compact support acts on the constant func-
tional

1R : R→ C : x 7→ 1,

that is an element of the space E1 = C∞ (R,C)). So we can write

f =

∫
R
f(δy)y∈R := (

∫
R
fδyµ)y∈R,
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But this is not still exactly what is needed in Quantum Theories: we need
an operator ∫

R
: S ′1 × S1 → S ′1

such that

• S1 is some set of families in the space S ′1 indexed by the real line R;

• S1 contains exactly the “summable” families;

• the Dirac’s family (δx)x∈R (or (|x〉)x∈R) belong to the family space S1;

• every tempered distribution u ∈ S ′1 can be expanded as∫
R
u (|x〉)x∈R = u;

Hence we need an operator that to any S ′-system of coefficients a ∈ S ′1
and to any family of distributions u = (uk)k∈R in the space S1 (to be defined)
associates a distribution that can be considered the linear superposition of the
family u with respect to a in some physical sense.

3.1.4 Inadequacy of convolutions

The mathematical interpretations of the expression

u(y) =

∫
R
u (x) δ(x− y)dx,

by convolutions is in general inadequate for our purposes. Indeed, the above
superposition has the interpretation,

u = u ∗ δ0,

for every distribution u ∈ S ′n, where δ0 is the Dirac’s distribution centered
at 0. This interpretation does not solve the problem of superpositions in the
general case, indeed only the element δ0 of the family (δy)y∈R appears in the
definition of superposition, this depends on the fact that any Dirac distribution
δy is the translation τy (δ0) of the Dirac distribution centered at 0. In general, it
is impossible to define a linear superposition by convolutions because a family
of distributions v = (vy)y∈R not necessarily enjoys the property vy = τy (v0).
Concluding, the rigorous version of is not satisfactory for uor general purposes.
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3.1.5 Conclusions

Concluding we need an operator
∫
R, in some way enjoys the properties of the

finite combination in a vector space. We recall that, if E is a K-vector space,
then it is possible, for each integer m ∈ N, to define the linear combination
operator:

Σm : Km ×Xm → X : (λ, v) 7→
m∑
i=1

λivi.

We desire an analogous operator in the case in which the families are indexed
by R or Rm instead of the finite set N≤m (that is the set {k ∈ N : k ≤ m}).
The intention of this chapter is to show that this is possible in the space of
tempered distributions and that the operator of superposition enjoys in a quite
stitisfacotry manner the principal properties of the finite linear combination in
a vector space.

3.2 Superpositions of Sfamilies in S ′n

Now we can give a first generalization to the concept of linear combination.

Definition (linear superpositions of an S family). Let v be a family
of class S belonging to the space S(Rm,S ′n) and let a ∈ S ′m be a tempered
distribution. The distribution (in S ′n)

a ◦ v̂ = t(v̂)(a)

is called the S linear superposition of the family v with respect to the
coefficient distribution (the system of coefficients) a and we denote it
by ∫

Rm

av.

Moreover, if u is a tempered distribution in the space S ′n and there exists a
coefficient distribution a ∈ S ′m such that

u =

∫
Rm

av,

u is said an S linear superposition of the family v.

As a particular case, we can consider the linear superposition of a family v
with respect to the regular distribution generated by the K-constant functional
on Rm of value 1, the distribution [1Rm ], we denote this superposition simply
by
∫

Rm v, and then we have ∫
Rm

v :=

∫
Rm

[1Rm ] v,
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an we shall call this particular superposition of v simply the superposition of the
family v.

Example (the Dirac family). Let δ be the Dirac family in S ′n. Then, for
each tempered distribution u ∈ S ′n, we have∫

Rn

uδ = u ◦ δ̂ =

= u ◦ ISn =

= u.

Thus any tempered distribution is an S linear superposition of the Dirac family
and the coefficient system of this superposition is the distribution u itself: this
is a property typycal of the canonical basis of the Euclidean spaces Rn.

3.3 An alternative definition of superposition

An alternative definition of superposition can be obtained defining the super-
position of a family of scalars (real or complex numbers) with respect to a
distribution system of coefficients.

Definition (superposition of scalar Sfamilies). We say that a family
of real or complex numbers x = (xi)i∈Rm is a family of class S if the function
fx : Rm → K, defined by fx(i) = xi, for each i in Rm, is a function of class S.
We call fx the test function associated with the family x. In this conditions, we
put ∫

Rm

ax := a(fx),

for every tempered distribution a ∈ S ′m , and we call the number∫
Rm

ax

superposition of the family x with respect to the distribution coefficient a.

By introducing the canonical bilinear form of the pair (S ′n,Sn), the relation
between the two kind of superpositions is very natural.

Notation. Let 〈·, ·〉 be the canonical bilinear form on the product S ′n × Sn
and let v be an S family of tempered distributions in the space S ′n indexed by
Rm. For every test function φ ∈ Sn by the symbol 〈v, φ〉 we denote the family
of scalars defined by

〈v, φ〉i := 〈vi, φ〉 ,
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for every i in Rm.

Theorem. Let v be an S family of tempered distributions in S ′n indexed by
Rm, let a be a tempered distribution in S ′m and let 〈·, ·〉 be the canonical bilinear
form on S ′n × Sn. Then, for every test function φ ∈ Sn, we have〈∫

Rm

av, φ

〉
=

∫
Rm

a 〈v, φ〉 .

Proof. It’s a straightforward computation:〈∫
Rm

av, φ

〉
=

(∫
Rm

av

)
(φ) =

= a(v(φ)) =

=

∫
Rm

a (vi (φ))i∈Rm =

=

∫
Rm

a 〈v, φ〉 .

Note, indeed, that the test function associated with the family (vi (φ))i∈Rm , i.e.
the family 〈v, φ〉, is the image v (φ). �

We shall see that the preceding result can be restated saying that the canon-
ical bilinear form on the product S ′n × Sn is S linear in the first argument.

Definition (the superposition operators). The bilinear operator∫
Rm

(·, ·) : S ′m × S(Rm,S ′n)→ S ′n,

defined by

(a, v) 7→
∫
Rm

av,

is called the superposition operator in the space S ′n with coefficient sys-
tems in S ′m and the linear operator∫

Rm

(·, v) : S ′m → S ′n,

defined by

a 7→
∫
Rm

av

is called the superposition operator associated with (or of) the family
v.



48 CHAPTER 3. SUPERPOSITIONS

The bilinearity of the superposition operator on S ′m×S(Rm,S ′n) is immedi-
ate, since it is nothing but the operator

(a, v) 7→ t(v̂)(a),

and we leave the banal proof as an exercize. We shall see again the bilinearity
of the superposition operator in the language of superpositions later.

3.4 Superpositions of an E-family (*)

Definition (superpositions of an E-family). Let E be a normal space of
test functions for S ′m. Let v be an E-family in S ′n indexed by Rm. We define,
for every distribution a in the topological dual of E, the superposition of v with
respect to a as the distribution in S ′n defined by(∫

Rm

av

)
(φ) := a(v(φ)),

for every test function φ in Sn.

Remark. Note that, since the Dirac family of C0′(Rm,K) is sequentially
dense in the topological dual E′ with respect to the weak∗ topology σ(E′, E)
then, by the Banach-Steinhaus theorem, the superpositions of the above defini-
tion belongs indeed to the space S ′n.

Example (of C0-superposition). Consider a C0-family v in S ′n indexed
by Rm, and consider a distribution a in S ′m generated by a Radon measure µ
with compact support K. We can consider the superposition∫

Rm

av.

Since µ is the Radon measure generating the distribution a, then we have(∫
Rm

av

)
(φ) = a(v(φ)) =

= µ(v(φ)) =

=

∫
Rm

v (φ) µ =

=

∫
K

v (φ) µ,

for every test function φ in Sn.
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3.5 Algebraic properties of superpositions

3.5.1 Bilinearity of superposition operator

We already know that the superposition operators are bilinear operators. The
present subsection must be considered as nothing but an elementary exercize to
acquaint with the language of superpositions.

Proposition (bi-homogeneity). Let a ∈ S ′m be a tempered distribution,
λ ∈ K be a scalar and let v be a family of class S belonging to the space
S(Rm,S ′n). Then, ∫

Rm

(λa)v = λ

∫
Rm

av =

=

∫
Rm

a (λv) .

Proof. For any φ ∈ Sn,(∫
Rm

(λa)v

)
(φ) = (λa) (v̂ (φ)) =

= λa (v̂ (φ)) =

= λ

(∫
Rm

av

)
(φ) ,

and (∫
Rm

a (λv)

)
(φ) = a

(
λ̂v (φ)

)
=

= a (λv̂ (φ)) =

= λa (v̂ (φ)) =

= λ

(∫
Rm

av

)
(φ) ,

as we desired. �

Proposition (bi-additivity). Let k ∈ N, (v)
n
i=1 be a finite sequence of

families belonging to S(Rm,S ′n), a = (ai)
k
i=1 be a finite sequence in the space

S ′m and b ∈ S ′m a distribution. Then∫
Rm

(

k∑
i=1

ai)v =

k∑
i=1

∫
Rm

aiv,

∫
Rm

b

k∑
i=1

vi =

k∑
i=1

∫
Rm

bvi.
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Proof. It follows immediately by the basic properties of the transpose of a
linear operator, but we see it. For any φ ∈ Sn, we have∫

Rm

k∑
i=1

aiv =

(
k∑
i=1

ai

)
◦ v̂ =

=

k∑
i=1

ai ◦ v̂ =

=

k∑
i=1

∫
Rm

aiv (φ) .

For the second relation we have∫
Rm

b

k∑
i=1

vi = b ◦

(
k∑
i=1

vi

)∧
=

=

k∑
i=1

b ◦ v̂i =

=

k∑
i=1

∫
Rm

bvi,

as we desired. �

We shall prove a theorem that gives an infinite-continuous version of the
additivity expressed by the above proposition. But we first shall introduce the
concept of superposition of an S-family with respect to a family of distributions.

3.5.2 Selection property of the Dirac distributions

The aim of this section is to show that the basic properties of the superpositions
extend the basic ones of linear combinations. First we prove a property of the
superpositions analogous to the following property:

∑
δ(i,·)v =

k∑
j=1

δijvj = vi,

where δ : N×N→ R is the Kronecker’s delta and v is a finite family of vectors.

Theorem (selection property of Dirac distributions). Let v be a family
of class S belonging to the space S(Rm,S ′n). Then, for each p ∈ Rm,∫

Rm

δpv = vp.
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Proof. For every test function φ ∈ Sn and every index p,

δp (v̂ (φ)) = δp (v (φ)) =

= v (φ) (p) =

= vp (φ) ,

and consequently ∫
Rm

δpv = δp ◦ v̂ =

= vp.

as we desired. �

In the sense of the above theorem, the Dirac family is a continuous version
of the Kronecker delta.

3.5.3 Linear combination of an Sfamily

The following properties states that every finite linear combination of an S family
is an Ssuperposition of the family itself. We will improve considerably (in a
certian sense) the following result, proving that every finite linear combination
of tempered distributions is in fact a superposition of some S family.

Theorem (about finite linear combinations). Let v be a family of class
S belonging to the space S(Rm,S ′n) and let δ be the Dirac family in S ′m.
Then, a tempered distribution u belongs to the linear hull span(v) if and only if
there exists a distribution Λ in the linear hull span (δ) such that

u =

∫
Rm

Λv.

Consequently the superposition operator of the family v transforms the linear
hull span (δ) onto the linear hull span (v).

Proof. (⇐) If the condition holds true, the tempered distribution u is a
finite linear combination of the family v, by the selection property of Dirac
distributions and by linearity of the superposition operator. (⇒) Vice versa,
let u be a finite linear combination of the family v, then there exist an integer
k ∈ N, a finite sequence λ ∈ Kk of scalars and a finite family α ∈ (Rm)k of
indices of v such that

u =

k∑
i=1

λivαi
.
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Put

Λ =

k∑
i=1

λiδαi ,

then, we have ∫
Rm

Λv =

∫
Rm

(
k∑
i=1

λiδαi

)
v =

=

k∑
i=1

∫
Rm

λiδαiv =

=

k∑
i=1

λi

∫
Rm

δαi
v =

=

k∑
i=1

λivαi =

= u,

as we desired. �



Chapter 4

SLinearity

4.1 Continuity of superposition operators

Now we pass to properties of continuity.

Theorem. The bilinear operator of superposition∫
Rm

(·, ·) : S ′m × S(Rm,S ′n)→ S ′n,

with index set Rm, is continuous in the first argument, with respect to the
pair of strong* topologies (β(S ′m), β(S ′n)) and to the pair of weak* topologies
(σ(S ′m), σ(S ′n)).

Proof. Note that the operator of superposition with respect to an S family is
nothing but the transpose of a linear continuous operator, precisely we have∫

Rm

(·, v) = tv̂,

and the transpose operator of a linear continuous operator is continuous in
the first argument, with respect to the pairs of topologies (β(S ′m), β(S ′n)) and
(σ(S ′m), σ(S ′n)) (see [Ho] Corollary, page 256). �
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The continuity of the above operators has many good consequences, for
example we can state the following theorem.

Corollary (about denumerable linear combinations). Let v be a fam-
ily of class S belonging to the space S(Rm,S ′n). Let

∑
(ai)

∞
i=1 be a convergent

series of distributions in the space S ′m, with respect to the strong topology β(S ′m).
Then, the series of superpositions∑(∫

Rm

aiv

)∞
i=1

converges in S ′n, with respect to the strong* topology β(S ′n), and moreover

β′n

∞∑
i=1

∫
Rm

aiv =

∫
Rm

(
β′m

∞∑
i=1

ai

)
v.

In particular, if δ is the Dirac family of S ′m and the series∑
(ciδpi)

∞
i=1

is β(S′m)convergent in S ′m, for some selection p = (pi)
∞
i=1 in the index set Rm

and some scalar sequence c, then the series∑
(civpi)

∞
i=1

is β(S′n)convergent in the space S ′n and moreover

β′n

∞∑
i=1

civpi =

∫
Rm

(
β′m

∞∑
i=1

ciδpi

)
v.

4.2 Superposition operator of a distribution

We have already defined the superposition operator of an S family v, as the first
section of the superposition operator determined by the family v. Similarly, we
can define the superposition operator of a coefficient distribution, as we specify
in the following definition.

Definition (superposition operator of a coefficient distribution).
Fix a distribution a in S ′m. We call superposition operator determined by the
coefficient distribution a, the following linear operator∫

Rm

(a, .) : S(Rm,S ′n)→ S ′n : v 7→
∫
Rm

av,
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it is nothing but the second partial section of the superposition operator, with
index set Rm, determined by the term a, chosen in the Cartesian first factor of
its domain.

Pointwise topology in S(Rm,S ′n). We desire to study the properties
of continuity of this operator. To this purpose, we endow the vector space
S(Rm,S ′n) with the topology of pointwise convergence s and denote the corre-
sponding topological vector space by Ss(Rm,S ′n), namely, this topological vector
space is topologically isomorphic to the topological vector space Ls(Sn,Sm) and
to the topological vector space Ls(S ′m,S ′n).

Convergence in Ss(Rm,S ′n). To say that a filter F on the topological
vector space Ss(Rm,S ′n) converges to a family v is equivalent to say that, for
every test function g in Sn, the filter F(g) on the space Sm converges to the test
function v(g), with respect to the weak topology σ(Sm). If (I,≤) is a directed
set, a family of S families v = (v(i))i∈I converges to the family l in the space
Ss(Rm,S ′n), with respect to the filtering order ≤, if and only if the equality

(≤,σm) lim
i∈I

v(i)(g) = l(g)

holds true, for every test function g in Sn. Fixed a test function g, the last
equality means exactly that the scalar equality

≤ lim
i∈I

a(v(i)(g)) = a(l(g))

holds true, for every tempered distribution a in S ′m.

Concerning the continuity of the superposition operator determined by a
coefficient distribution we have the following useful theorem.

Theorem. The superposition operator of a coefficient distribution a in S ′n
is a continuous linear operator from the topological vector space Ss(Rm,S ′n) into
the topological vector space (S ′n, σ(S ′n)).

Proof. We must prove that for every directed set (I,≤) and for every family
of S families v = (v(i))i∈I in the space Ss(Rm,S ′n) which converges to some
family l in the space Ss(Rm,S ′n), with respect to the filtering order ≤, we have

(≤,σ′n) lim
i∈I

∫
Rm

av(i) =

∫
Rm

a (≤,s) lim
i∈I

v(i).

For every index i of the family v and for every test function g in Sn, we have,
by the very definition of superposition, that

(

∫
Rm

av(i))(g) = a(v(i)(g)).
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Moreover we have

≤ lim
i∈I

a(v(i)(g)) = a(l(g)) =

= (

∫
Rm

al)(g).

Since the equality
(≤,s) lim

i∈I
v(i) = l,

means that, for every test function g, the equality

(≤,σm) lim
i∈I

v(i)(g) = l(g),

holds too. The preceding equality means that, for every tempered distribution
b and for each test function g, the equality

≤ lim
i∈I

b(v(i)(g)) = b(l(g)),

holds, and since this is true for every test function g we deduce exactly

(≤,σ′n) lim
i∈I

∫
Rm

av(i) =

∫
Rm

a (≤,s) lim
i∈I

v(i),

as we claimed. �

4.3 SLinearity of superpositions

In this section we generalize the linearity of the operator of superposition, pre-
cisely the linearity with respect to the first argument. To this end we have to
introduce the concept of superposition of a family with respect to a family, this
latter concept will play an importan role in the following development.

Definition (superposition of a family with respect to a family). Let
v be a family in S ′m, indexed by the Euclidean space Rk, and let w ∈ S(Rm,S ′n)
be an Sfamily in S ′n. The family in S ′n defined by∫

Rm

vw :=

(∫
Rm

vpw

)
p∈Rk

,

is called the superposition of w with respect to the family v (note the
order in the roles of the two families).

Theorem (S linearity of the superposition bilinear operator in the
first argument). Let v be a family of class S belonging to the space S(Rk,S ′m)
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and let w be a family of class S belonging to the space S(Rm,S ′n). Then, the
superposition family ∫

Rm

vw

is an S family and its operator is the composition of the operators of the two
families, namely (∫

Rm

vw

)∧
= v̂ ◦ ŵ.

Moreover, the superposition bilinear operator is S linear in the first argument,
in the sense that the property∫

Rm

(∫
Rk

av

)
w =

∫
Rk

a

(∫
Rm

vw

)
holds true, for every coefficient distribution a in S ′k.

Proof. For every test function φ ∈ Sn and for every index q in Rk, we deduce(∫
Rm

vw

)
(φ)(q) =

(∫
Rm

vw

)
q

(φ) =

=

(∫
Rm

vqw

)
(φ) =

= vq (ŵ(φ)) =

= v̂ (ŵ(φ)) (q) =

= (v̂ ◦ ŵ)(φ)(q);

so the image of the function φ by the superposition family is the function
v(w(φ)), which is of class S since the two families are of class S, and then
the superposition

∫
Rm vw is an S family; and furthermore(∫

Rm

vw

)∧
= v̂ ◦ ŵ.

Moreover, for every φ ∈ Sn, we have(∫
Rm

(∫
Rk

av

)
w

)
(φ) =

(∫
Rm

av

)
(ŵ (φ)) =

= a(v̂ (ŵ(φ))) =

= a ((v̂ ◦ ŵ) (φ)) =

= a

((∫
Rm

vw

)∧
(φ)

)
=

=

∫
Rk

a

(∫
Rm

vw

)
(φ) ,

as we desired. �
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4.4 Generalized distributive laws (*)

In this section, we give a generalization of the two distributive laws in the space
S ′n.

Let u be in S ′n and let v be the family in S ′n defined by vy := u, for every
y in Rm. We have already seen that the family v is a smooth family (it sends
Stest functions into smooth test functions, and it is also bounded, in the sense
that it sends S function to smooth and bounded function). Then, we can con-
sider, for every tempered distribution a in S ′m with compact support (and more
generally, being v smooth and bounded, when a is a summable distribution) the
superposition ∫

Rm

av.

We shall generalize firstly the following distributive law

m∑
i=1

(aiu) =

(
m∑
i=1

ai

)
u.

Theorem (first Sdistributive law). Let a ∈ S ′m be a tempered distribution
with compact support (or, more generally, a summable tempered distribution).
Let u be a distribution of the space S ′n and let v be the constant family in S ′n
defined by vy := u, for every y in Rm. Then, we have∫

Rm

av =

(∫
Rm

a

)
u,

where
∫
Rm a is the Lebesgue measure (integral) of the distribution a (on the

whole space Rm).

Proof. In fact, under the above assumptions, we have(∫
Rm

av

)
(φ) = a(v(φ)) =

= a(u(φ)1Rm) =

= a(1Rm)u(φ) =

=

((∫
Rm

a

)
u

)
(φ),

for every test function φ in Sn, where 1Rm is the constant functional from Rm
to K of value 1. So we have proved that∫

Rm

av =

(∫
Rm

a

)
u,
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where the integral of a summable distribution is defined, as usual (see [Sch]),
by the equality ∫

Rm

a = a(1Rm),

and the proof is completed. �

Let us see the other distribution law:

m∑
i=1

avi = a

m∑
i=1

vi.

Let k be a real or complex number, with kRm we shall denote the constant
K-functional of value k on Rm (in this case, the constant distribution is that of
coefficients); consequently, the generated distribution is denoted (in the stan-
dard way) by [kRm ].

Theorem (second Sdistributive law). Let v be a smooth and bounded
family in S ′n indexed by Rm and let k be a scalar. Then, the equality∫

Rm

[kRm ] v = k

∫
Rm

v

holds true (we recall that the superposition of a family is its superposition with
respect to the unitary distribution coefficient).

Proof. We have,(∫
Rm

[kRm ] v

)
(φ) = [kRm ] (v(φ)) =

= k [1Rm ] (v(φ)) =

= k

(∫
Rm

v

)
(φ),

for every test function φ in Sn, i.e.,∫
Rm

[kRm ] v = k

∫
Rm

v,

as we desired. �
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Chapter 5

SFamilies in Sn

We give in this Chapter (very concisely) the bases of superpositions on test
function spaces.

5.1 Families in Sn

A family in Sn, indexed by an Euclidean space, can act on distributions in S ′n
and vice versa. As the following definition is going to specify.

Definition (action of a family of test functions on distributions).
Consider a family g of test functions in the space Sn, indexed by the m-
dimensional Euclidean space Rm. For every distribution u in S ′n, we call the
scalar family

u(g) := (u(gp))p∈Rm

image of the family g by the distribution u (note that the family u(g) is
a family in the field K). Moreover, the function g(u) : Rm → K, defined by

g(u)(p) = u(gp),

61
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for every point p in Rm, is call the image of the distribution u by the
family of test functions g.

Remark. The scalar family u(g) is said the family canonically associated
with the function g(u); from a purely Set Theory point of view, the family
u(g) is nothing but the codomain restriction of the function g(u) to its image
im(g(u)), i.e. the surjection canonically associated to the function g(u)).

A family g can act also on other objects. Indeed, we have the following
definitions:

• we define image of a point x of Rn by the family g, the function

g(x) := g(δx),

that is the scalar function on Rm defined by

g(x)(p) = gp(x),

for every p in Rm;

• to the family g we can also associate a scalar function of the product
Rm × Rn, that is the function defined by (p, x) 7→ gp(x), for every pair
(p, x) in Rm × Rn;

• and finally the mapping

gδ : Rn → F(Rm,K) : x 7→ g(x)

is called the function from Rn into F(Rm,K) canonically associated to the
family g;

• if v is a family in S ′n, indexed by Rn, we define image of the family g by
the family v, and we shall denote it by v(g), the family (〈vx, g〉)x∈Rn , in
the function space F(Rm,K).

Remark. We shall see - after the introduction of the Sbasis in the spaces of
tempered distributions S ′n - that, fixed an Sbasis e, indexed by Rn, of the space
S ′n, we can associate to every family g the function

ge : Rn → F(Rm,K) : x 7→ g(ex)

on Rn, precisely the function.
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5.2 SFamilies

Also for the superposition in the space Sn the S families play a central role.

Definition (of Sfamily). Consider a family g of test functions in the space
Sn, indexed by the m-dimensional Euclidean space Rm. We say that the family
g is of class S if, for every distribution u in S ′n the scalar family image of the
family g by the distribution u, that is the family

u(g) := (u(gp))p∈Rm

(u(g) is a family in the field K) is a family of class S. This is equivalent to
say that the function g(u) : Rm → K, defined by

g(u)(p) = u(gp),

for every point p in Rm, is a function of class S.

We can say that

• a family of test functions (of the space Sn) is an S family if it transforms
distributions (of the space S ′n) into test functions (of the space Sm, of the
index set of the family).

Example. Consider the family g in Sn, indexed by the Euclidean space Rm,
defined, for every index p in Rm and for every point x in Rn, by

gp(x) = k(p)h(x),

for some choice of a pair (k, h), of test functions, in the product Sm×Sn. Note
that the family g is associated with the tensor product k⊗h. We will prove that
the family g is an S family. For, we have to prove that g transforms distributions
into test functions. Let u be a tempered distribution in Sn, we must prove that
the function

g(u) : p 7→ u(gp)

lives in Sm. And indeed we have

g(u)(p) = u(gp) =

= u(k(p)h) =

= k(p)u(h),

so that the function g(u) is nothing but the test function k multiplied by the
scalar u(h). In particular, for example, consider the family g in Sn, indexed by
Rm, defined by

gp(x) = e−‖(x,p)‖
2

= e−‖p‖
2

e−‖x‖
2

,
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for every p in Rm and x in Rn. We thus have

g(u) = u
(
e−‖.‖

2
(n)

)
e−‖.‖

2
(m) ,

for every u in Sn.

5.3 Transpose of an SFamily

Theorem. Let g be an S family in the space Sn, indexed by the Euclidean space
Rm. Then, for every point x in Rn, the function g(x) : Rm → K defined by

g(x)(p) = gp(x),

for every p in Rm, is of class S. Consequently, the family tg = (g(x))x∈Rn is a
family in Sm.

Proof. If the family g is of class S, then for every tempered distribution u
the function g(u) is of class S. So, in particular, the function g(δx) is of class
S. The function g(δx) is the function g(x); indeed,

g(δx)(p) = δx(gp) =

= gp(x) =

= g(x)(p),

so g(x) is of class S. �

The vice versa is not true in general as the following example shows.

Example. Let g be an Stest function on Rn, with non-zero integral, and let
(τpg)p∈Rn be the family of its translations. Then, the value at p of the image of
the constant regular distribution u = [1Rn ] is

g(u)(p) = u(τpg) =

=

∫
Rn

τpg =

=

∫
Rn

g

= u(g),
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for every p in Rn, so that the function g(u) is a constant function and cannot be
of class S. At this point, it suffices to choose a function g such that the function

p 7→ τpg(x)

is of class S, for every x in Rn, and our counterexample is given. For example,
the function of S1, defined by

g(x) = e−x
2

,

for every x in Rn. Indeed

τpg(x) = e−(x−p)2 ,

and the function
p 7→ e−(x−p)2

is nothing but the translation τxg, which belongs to the space S1, for every x of
the real line.

Definition (of transpose). Let g be an S family in the space Sn, indexed
by the Euclidean space Rm and let, for every point x in Rn, the function g(x) :
Rm → K be defined by

g(x)(p) = gp(x),

for every p in Rm. The family tg = (g(x))x∈Rn is called the transpose family
of the family g.

5.4 Operator of an Sfamily

Definition (operator canonically associated to an Sfamily). With the
S family g we can associate the operator

ĝ : S ′n → Sm : u 7→ g(u).

We shall call this operator the operator canonically associated with the
family g.

Proposition. In the condition of the above definition. The operator ĝ is
linear.

Proof. Infact, for every u and v in S ′n, for any two scalars a and b, and for
every index p of the family, we have

g(au+ bv)(p) = 〈gp, au+ bv〉 =

= a〈gp, u〉+ b〈gp, v〉 =

= ag(u)(p) + bg(v)(p) =

= (ag(u) + bg(v))(p),

for every index p of the family in Rm. �
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5.5 Continuity of operators of Sfamilies

We have the following important result.

Theorem. The operator associated canonically with the family g, defined
by

ĝ : S ′n → Sm : u 7→ g(u),

is weakly continuous, that is continuous with respect to the pair of topologies
(σ′n, σm). Moreover, the topological transpose of the operator is the operator

tĝ : S ′m → S ′′n : a 7→ a ◦ ĝ.

Proof. We shall prove that the linear operator ĝ is topologically transposable,
i.e. that its algebraic transpose

∗ĝ : (Sm)∗ → (S ′n)∗ : a 7→ a ◦ ĝ

sends the topological dual (Sm)′σ into the topological dual (S ′n)′σ. In other terms,
we have to prove that, if a is a tempered distribution in S ′m, the linear functional
a◦ĝ is weakly continuous. In fact, the Dirac family of S ′m is sequentially weakly*
dense in S ′m itself, and the composition δp ◦ ĝ is nothing but the linear form
〈., gp〉, which lies in (S ′n)′σ. Indeed,

(δp ◦ ĝ) (u) = δp(ĝ(u)) =

= δp(g(u)) =

= g(u)(p) =

= u(gp) =

= 〈u, gp〉,

for every u in S ′n. Consequently, if d is a distribution in the linear hull of the
Dirac family, by linearity, the composition d ◦ ĝ is a continuous linear form too.
Now, in general, let a be a tempered distribution in S ′m. Since the linear hull
span(δ) of the Dirac family is σ(S ′m)-sequentially dense in S ′m (see [Bo] page
205), there is a sequence of distributions α = (αk)k∈N in the linear hull span(δ)
converging to the distribution a with respect to the weak* topology σ(S ′m), that
is such that

σ(S′m) lim
k→+∞

αk = a.

Now, since for any natural k, the distribution αk belongs to the linear hull
span(δ), there exists a finite family (yi)

h
i=1 of points in Rm and there is a finite

family of points (λi)
h
i=1 in K such that

αk =

h∑
i=1

λiδyi ,
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and consequently, by obvious calculations,

αk ◦ ĝ =

h∑
i=1

λi(δyi ◦ ĝ) =

=

h∑
i=1

λi〈., gyi〉.

Hence, for every index k ∈ N, the linear functional αk ◦ ĝ belongs to the space
(S ′n)′σ. Let s be the topology of the pointwise convergence in the algebraic dual
(S ′n)∗, we claim that

s lim
k→+∞

(αk ◦ ĝ) = a ◦ ĝ.

In fact, for every distribution u in S ′n, we obtain

lim
k→+∞

(αk ◦ ĝ) (u) = lim
k→+∞

αk (ĝ (u)) =

=

(
s lim
k→+∞

αk

)
(ĝ (u)) =

= a (ĝ (u)) ,

so we proved that the sequence of continuous linear functionals (αk ◦ ĝ)k∈N is
pointwise converging to the linear functional a ◦ ĝ; so, by the Banach-Steinhaus
theorem (that is applicable since S ′n is barreled), the linear functional a◦ ĝ must
be continuous too, i.e. a ◦ ĝ ∈ (S ′n)′σ, as we claimed. �
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Chapter 6

Superpositions in Sn

6.1 SLinear combinations

Definition (of superposition). If g is an S family in the space Sn, we de-
fine superposition of the family g under a coefficient distribution a,
distribution in S ′m, the function, denoted by∫

Rm

ag,

from Rn into the field K and defined by(∫
Rm

ag

)
(x) = a(g(δx)),

for every point x in Rn, where δx is the Dirac distribution of the space S ′n
centered at x.

Example. Consider the family g in Sn, indexed by the Euclidean space Rm,
defined, for every index p in Rm and for every point x in Rn, by

gp(x) = k(p)h(x),
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for some choice of a pair (k, h), of test functions, in the product Sm × Sn. We
have proved that the family g is an S family. If a is a distribution in S ′m, the
value of a at the function g(u) is

a(g(u)) = a(u(h)k) =

= u(h)a(k),

so that, in particular we have

a(g(x)) = a(g(δx)) =

= h(x)a(k),

so that the function
x 7→ a(g(x))

is the function h multiplied by the scalar a(k). In other terms, we have∫
Rm

ag = a(k)h,

for every a in S ′m.

6.2 Superposition operator of Sfamilies

Remark. Note that if, for every x in Rn, we denote by g(x) the scalar function
on Rm defined by

g(x)(p) = gp(x),

for every p in Rm, the function g(x) is nothing but the S function g(δx). In fact,
for every x in Rn and p in Rm, we have

g(δx)(p) = δx(gp) =

= gp(x) =

= g(x)(p).

So that, we conclude (∫
Rm

ag

)
(x) = a(g(δx)) =

= a(g(x)),

for every x in Rn. Or, using the transpose of the family g, we have(∫
Rm

ag

)
(x) = a(tgx),

for every x in Rn.
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6.3 Summability of Sfamilies

We have so constructed the topological traspose of ĝ, the operator

tĝ : S ′m → S ′′n : a 7→ a ◦ ĝ

Well we have the following result.

Theorem. The topological transpose of ĝ is the superposition operator of g
when we identify canonically the bidual S ′′n to the test function space Sn.

Proof. The weak dual (S ′n)′σ coincides with the strong dual S ′′n , since the
space (Sn) is reflexive. Then, for every linear form L of the dual (S ′n)′σ, there is
only one test function h(L) of Sn such that the functional L is the continuous
linear form induced by h on S ′n, i.e. the form

L = 〈., h(L)〉.

So we can define the operator

S ′m → S ′′n → Sn : a 7→ a ◦ ĝ 7→ h(a ◦ ĝ).

So, for every coefficient distribution a in S ′m, the superposition∫
Rm

ag

is a function belonging to Sn. Thus, the operator associated with the family g
is weakly transposable and we have can built the weak transpose

tĝ : S ′m → Sn : a 7→
∫
Rm

ag,

which is, as in the case of S families in S ′n, the superposition operator of the
family g. �

Proof. Indeed we have, by definition of weak transpose,

〈tĝ(a), u〉n = 〈a, g(u)〉m,

for every u in S ′n and every a in S ′m, since the two continuous linear functionals

a 7→ 〈tĝ(a), u〉n,

and
a 7→ 〈a, g(u)〉m,

coincide on the Dirac basis of S ′m, that is total in S ′m. �
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6.4 Transpose family

We then have defined the mapping from Rn into Sm defined by x 7→ g(x) starting
from the S family (gp)p∈Rm .

Equivalently, we have defined another S family, namely the family (g(x))x∈Rn ,
that is a family in Sm indexed by Rn, and which we call the transpose of the
family g and denote by tg.

Note that the operator canonically associated to the transpose family tg is
the operator

t̂g : S ′m → Sn : a 7→ tg(a).

So that

〈ĝ(u)|a〉m = a(ĝ(u)) =

= a(g(u)) =

= a(u(g)) =

= u(g)(a) =

= u(tg(a)) =

= 〈u|tg(a)〉n =

= 〈u|t̂g(a)〉n,

and consequently
wĝ = t̂g,

as we claimed. �

6.5 SLinear functional

Theorem. Let u be a distribution in S ′n and g an S family of test functions in
Sn. Then, we have

u

(∫
Rm

ag

)
=

∫
Rm

au(g),

for everu a in S ′m. note that the last superposition is the superposition of the
scalar S family u(g) under the system of coefficients a, the scalar family u(g) is
a family of class S, by the very definition of test family of class S, since u is a
distribution.

Proof. Consider the (strong) transpose

tĝ : S ′m → S ′′n : a 7→ a ◦ ĝ.
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The functional tĝ(a) is defined by

tĝ(a)(u) = a(g(u)).

Since the space Sn is reflexive there is one and only one function belonging to
Sn representing that functional, the function f such that

u(f) = a(g(u)),

for every u, which implies

f(x) = δx(f) =

= a(g(δx)) =

=

(∫
Rm

ag

)
(x),

for every point x of the Euclidean space Rn. So that we can conclude

u

(∫
Rm

ag

)
= u(f) =

= a(g(u)) =

=

∫
Rm

au(g),

as we claimed. �

Definition. A functional L : Sn → K is said an S functional if it sends
S families into S families. An S functional L is said an S linear functional if

L

(∫
Rm

ag

)
= a(g(L)) =

=

∫
Rm

aL(g),

for every integer m, for any distribution a in S ′m and for every S family of test
functions in Sn.

A distribution u in S ′n is an S functional and it is S linear since the above
proposition.

6.6 Superpositions of Sfamilies in S ′n

If v = (vq)q∈Rk is a family of families of S(Rm,S ′n), indexed by Rk, we want to
superpose v in order to obtain a family of S(Rm,S ′n).
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Definition (superposition of a family of families). Let v = (vq)q∈Rk be
a family of families of S(Rm,S ′n), indexed by Rk, and let a be a tempered distri-
bution in S ′k. We define superposition of the family v by the coefficient
distribution a (in a natural way) by(∫

Rk

av

)
p

=

∫
Rk

av(p),

for every index p in Rm; where the family

v(p) = (v(p)q)q∈Rk

is (just) defined by
v(p)q = vq(p),

for every q in Rk, and it is assumed of class S, for every index p in Rm.

Concerning its associated operator we have the following result.

Proposition. We have(∫
Rk

av

)
(g) =

∫
Rk

av(g),

where the superposition ∫
Rk

av

of the family of families v with respect to the coefficient distribution a is defined
in the previous definition, and the superposition∫

Rk

av(g)

is the superposition of the family of test functions v(g) = (v(p)(g))p∈Rm with
respect to the same distribution cvoefficient a.

Proof. We have, for every p in Rm,(∫
Rk

av

)∧
(g)(p) =

(∫
Rk

av

)
p

(g)

=

(∫
Rk

av(p)

)
(g) =

= (a ◦ v(p)∧)(g) =

= a(v(p)(g)) =

=

(∫
Rk

av(g)

)
(p),

as we claimed. �
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6.7 SLinear superpositions of operators

Definition. Let A = (Aq)q∈Rk be a family of linear continuous operators from
Sn into Sm. We say that the family A is of class S if, for every test function
g in Sn, the family

A(g) = (Aq(g))q∈Rk

is of class S. In this case we put(∫
Rk

aA

)
(g) =

∫
Rk

aA(g),

for every test function g.

Theorem. Let A = (Aq)q∈Rk be a family of linear continuous operators
from Sn into Sm. Then, the family A is of class S if and only if the family of
corresponding families A∨ = (A∨q )q∈Rk is of class S and in this case we have(∫

Rk

aA

)∨
=

∫
Rk

aA∨,

for every coefficient distribution a.

Proof. The family A is of class S if and only if the family A(g) is an S-family,
for every test function g in Sn; the family A(g) (it lies in the space S(Rk,Sm))
is the family of test functions (Aq(g))q∈Rk , the last family is of class S if and
only if, for every p in Rm, the function from Rk into K defined by

q 7→ Aq(g)(p)

is of class S. Let us pass to the family A∨ = (A∨q )q∈Rk . It is a family of class S
if and only if the family of distribution

A∨(p) = (A∨q (p))q∈Rk

is of class S, for every p in Rm, this last family if of class S if and only if, for
every test function g, the function A∨(p)(g) is of class S, but this last function
is defined exactly by q 7→ Aq(g)(p), so we conclude the first part. Let us now
see that (∫

Rk

aA

)∨
=

∫
Rk

aA∨,

for every coefficient distribution a. We have(∫
Rk

aA

)∨
p

(g) = (δp ◦
(∫

Rk

aA

)
)(g) =
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= (δp

(∫
Rk

aA

)
(g)) =

= δp

(∫
Rk

aA(g)

)
=

= a(A(g)(δp)) =

= a(A(g)(p)) =

=

(∫
Rk

aA∨
)

(g)(p),

for every coefficient distribution a and every point p, since the operator generate
by a family of families v is(∫

Rk

av

)∧
(g)(p) = a(v(p)(g)),

and then (∫
Rk

aA∨
)

(g)(p) =

(∫
Rk

aA∨
)∧

(g)(p) =

= a(A∨(p)(g)) =

= a(A∨∧(g)(p)) =

= a(A(g)(p)),

as we desired. �



Chapter 7

First applications

7.1 The Fourier expansion theorem

Definition (the (a, b)-Fourier family). Let a, b ∈ R 6= be two real non-zero
numbers. The (a, b)-Fourier family in the space of tempered distributions
S ′(Rn,C) is the following family of regular tempered distributions([

(1/a)ne−ib(p|·)
])

p∈Rn
.

Remark (the De Broglie family). In the particular case a = 1 and
b = −1/~ (with ~ the reduced Planck constant) we obtain what we call the De
Broglie family, i.e. the family ([

e(i/~)(p|·)
])

p∈Rn
.

Proposition (on the operators associated with the Fourier fami-
lies). Let a, b ∈ R 6= and ϕ be the (a, b)-Fourier family. Then, the family ϕ is
of class S and, more precisely, we have

ϕ(φ) = S(a,b)(φ),
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for each test function φ ∈ S(Rn,C). Thus the family ϕ generates the (a, b)
Fourier-Schwartz transformation on S(Rn,C), i.e., ϕ̂ = S(a,b).

Proof. For each test function φ ∈ S(Rn,C) and for each p in Rn, we have

ϕ(φ)(p) = ϕp(φ) =

=
[
(1/a)ne−ib(p|·)

]
(φ) =

=

∫
Rn

(1/a)ne−ib(p|·)φ µn =

= S(a,b)(φ)(p),

and thus ϕ(φ) = S(a,b)(φ). Now, since the (a, b) Fourier-Schwartz transform
sends S functions into S functions, the function ϕ(φ) lies in S(Rn,C). �

Example. We have, for any multi-index α ∈ Nn,

F(a,b)(u
(α)) = (bi)α (IRn)

α F(a,b)(u);

F(a,b)((IRn)
α
u) =

(
i

b

)α (
F(a,b)(u)

)(α)
,

where, IRn is the identity operator on Rn, and (IRn)
α

the α-th power of the
identity in multi-indexed notation, that is

(IRn)
α

=

n∏
j=1

pr
αj

j ,

where prj is the canonical projection of the Cartesian power Rn. These two
properties can be immediately translated in terms of superpositions. Let ϕ be
the (a, b)-Fourier family. We have, for all α ∈ Nn0 ,∫

Rn

u(α)ϕ = (bi)α (IRn)
α
∫
Rn

uϕ;∫
Rn

(IRn)
α
uϕ =

(
i

b

)α(∫
Rn

uϕ

)(α)

.

Example. Moreover, we have

F(a,b) (τh(u)) = e−ib(h|·)F(a,b)(u)

under Fourier transforms translations become multiplications by characters, and

F(a,b)

(
eib(h|·)u

)
= τh

(
F(a,b)(u)

)
under Fourier transforms multiplications by characters become translations.
This two properties become∫

Rn

τh(u)ϕ = e−ib(h|·)
∫
Rn

uϕ
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and ∫
Rn

eib(h|·)uϕ = τh

(∫
Rn

uϕ

)
.

The next theorem affirms that any tempered distribution is an S linear com-
bination of the (a, b)-Fourier family, without technical assumptions.

Theorem (Fourier expansion theorem). Let u ∈ S ′ (Rn,C) be a tem-
pered distribution and ϕ be the family of regular tempered distributions([

(1/a)ne−ib(p|·)
])

p∈Rn
.

Then, we have

u =

∫
Rn

F−(a,b)(u)ϕ.

In other words, u is the superposition of ϕ under the system of coefficients
F−(a,b)(u).

Proof. For every test function φ ∈ S(Rn, C), we have

u(φ) = u(S−(a,b)(S(a,b)(φ)) =

= F−(a,b)(u)(ϕ̂(φ)) =

=

(∫
Rn

F−(a,b)(u)ϕ

)
(φ),

as we desired. �

Application. Another consequence of the Fourier Sexpansion theorem is
the following pseudo-integral equality:∫

R
xe−iξxdx = 2πiδ′ (ξ) .

Obviously the above formula must be read in the new sense of superposition,
i.e. like this ∫

R
jR(e−i(·|x))x∈R = 2πiδ′0,

where jR is the immersion of the real line into the complex plane, that is the
function defined by jR(x) = x. In fact taking into account that

F(a,b) (jαRu) = (i/b)α(F(a,b) (u))(α)

and that

F(1,1)(1R) = 2πδ0,
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we conclude ∫
R

[jR] (e−i(·|x))x∈R = tS(1,1) ([jR]) =

= F(1,1) ([jR]) =

=

(
i

1

)1 (
F(1,1) [1R]

)′
=

= i (2πδ0)
′

=

= 2πiδ′0,

as we claimed. �

7.2 Convolution as superpositions

In this section we shall see that the convolution is a particular case of superpo-
sition, restoring a common vision on the expression (0). Obviously, not all the
superpositions can be viewed as convolutions, only a particular class of them.

Note that, in the language of superpositions, if a ∈ S ′m and b ∈ S ′n are two
tempered distributions, the tensor product a ⊗ b is defined, for every function
f in the test function space Sm+n, by the following numerical superposition

(a⊗ b) (f) :=

∫
Rm

a (b(f(p, ·)))p∈Rm .

Recall now that the convolution a ∗ b, with a ∈ E ′n and b ∈ S ′n, is defined,
for every φ in Dn, by

(a ∗ b) (φ) = (a⊗ b) (φ ◦A),

where A is the standard addition in Rn, that is the bilinear operator A : Rn ×
Rn → Rn, defined by A(x, y) = x+ y, for any two points x, y of Rn.

Theorem (the convolution as superposition). Let a and b be two tem-
pered distributions, and assume a with compact support. Then, the family of
translations (τpb)p∈Rn is a smooth family, and moreover we have

a ∗ b =

∫
Rn

a(τpb)p∈Rn ,

that is the convolution of a and b is the superposition of the (ordered) family of
translations of the distribution b with respect to the distribution a.
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Proof. Put vp = τp (b), for every n-tuple p , we see that, for every test
function φ,

v (φ) (p) = vp (φ) =

= τp (b) (φ) =

= b (τ−p (φ)) .

Hence, setting f := φ ◦A, i.e.,

f(p, x) = τ−p (φ) (x)

= φ(x+ p),

for every pair (p, x) in Rn × Rn, we read

v (φ) (p) = b(f(p, ·)).

With standard technics, it can be proved that v(φ) is a smooth function (in
general not of class S), then v is an E-family. Being a a compact support
distribution, we can consider the superposition of the family v with respect to
the distribution a, obtaining(∫

Rn

av

)
(φ) = a (v (φ)) =

=

∫
Rn

a (b(f(p, ·)))p∈Rn =

= (a⊗ b) (f) =

= (a ∗ b) (φ) ,

as we desired. �

Remark. The family (τpb)p∈Rn is the image of the distribution b under the
one parameter group τ = (τp)p∈Rn .

Let us see the case in which one distribution is in the convolution operator
space O′C(n).

Theorem (the convolution as superposition). Let u and g be two
tempered distributions in S ′n, g belonging to the space O′C(n). Then, the family
of translations (τpg)p∈Rn is an S family, and moreover

u ∗ g =

∫
Rn

u(τpg)p∈Rn .

Proof. Put Gp = τp(g), for every n-tuple p. For every test function φ in Sn,
we see that

G (φ) (p) = Gp (φ) =

= τp(g) (φ) =

= g (τ−p (φ)) ,



82 CHAPTER 7. FIRST APPLICATIONS

so we can proceed as in the above proof, with u tempered distribution, as soon
as we prove that the family G = (Gp)p∈Rn is an S family. To prove that G is an
S family let us see that its transformation by the Fourier transform F(a,b) is an
S family, we can do so because the operator F(a.b) is a topological automorphism
of S ′n. Since the Fourier transform maps the space O′C(n) onto the space of
regular distributions [OM (n)], there exists a slowly increasing function f such
that

F(a,b)(g) = [f ] ,

so we have

F(a,b)(Gp) = F(a,b)(τpg) =

= e−ib(p|·)F(a,b)(g) =

= e−ib(p|·) [f ] .

We should notice, now, that the product e−ib(p|·) [f ] is equal to the product
f
[
e−ib(p|·)

]
. Note, first of all, that both product has a proper sense, being

products of OM (n) functions by tempered distributions. For every test function
φ, we have indeed

e−ib(p|·) [f ] (φ) = [f ] (e−ib(p|·)φ) =

=

∫
Rn

e−ib(p|·)fφµn =

=
[
e−ib(p|·)

]
(fφ) =

= f
[
e−ib(p|·)

]
(φ).

We have so, for each test function φ,

F(a,b)(Gp)(φ) = e−ib(p|·) [f ] (φ) =

= f
[
e−ib(p|·)

]
(φ) =

=
[
e−ib(p|·)

]
(fφ) =

= S(1,b)(fφ),

where S(1,b) is the (1, b)-Fourier-Schwartz transformation on the test function
Sn; thus the image of the test function φ under the family F(a,b)(Gp) is a test
function in Sn, and consequently the family F(a,b)(Gp) is an S family. �

7.3 Some expressions of Dirac Calculus

In this section we shall interpret some formulas, used frequently in Dirac Cal-
culus and in Quantum Mechanics, using the new concepts of SLinear Algebra
introduced up to now.
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7.3.1 The expansion of a vector in the Dirac basis

Let u be a tempered distribution on the n-Euclidean space, and let δ be the
Dirac family of the space S ′n. The superposition∫

Rn

uδ = u,

justifies completely the following formal expression used in Quantum Mechanics
(see [Di] page 78) ∫

Rn

δ(x− p)δ(y − x)dx = δ(y − p).

In fact, for u = δp, we deduce ∫
Rn

δpδ = δp.

Critical remark. A correct mathematical interpretation of the left hand
side of the formal equality is the convolution of the distribution δp with the
distribution δ0, but this interpretation works only because the operation of
convolution, which involves only two distributions and not an entire family of
distributions, can be viewied as a superposition. According to Dirac the above
expression is one of the case belonging to the large class of continuous expansions
of infinite-dimensional vectors in the “basis” δ.

So the correct interpretation of the above formal equality is the following
one:

• the vector δp is the linear superposition of the infinite continuous family
of vectors (δy)y∈ Rn with respect to the system of coefficients δp.

Hence, for instance, we can rigorously affirm that:

• the most general state of a quantum-particle in one dimension (i.e. a com-
plex tempered distribution on R) is a linear superposition of the “eigen-
states” of position operator

Q : S ′(R,C)→ S ′(R,C) : u 7→ jRu,

where jR is the immersion of R into C.
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7.3.2 Fourier expansions and the momentum operator

Let us see an expansion which is not a convolution. The Fourier expansion theo-
rem justifies completely another formal expression used in Quantum Mechanics
(see [Di] page 38 formula (10)), namely

δ(x− p) =

∫
R

1

2π
epiye−iyxdy.

In fact, a classic result on Fourier transform gives

F−(a,1)(δp) =
a

2π

[
epi(·)

]
,

and thus, from the Fourier expansion theorem, setting a = 1, we obtain

δp =

∫
R

1

2π

[
epi(·)

] ([
e−i(x|·)

])
x∈R

,

for every p in the real line.

So we can read the above expression as follows:

• the vector δp is the linear superposition of the infinite continuous family of
vectors

([
e−i(p|·)

])
p∈R with respect to the system of coefficients (1/2π)

[
epi(·)

]
.

Once more, we can affirm rigorously that

• the most general state of a quantum-particle in one dimension (i.e. a com-
plex tempered distribution on R) is a linear superposition of “eigenstates”
of the momentum operator

P : S ′(R,C)→ S ′(R,C) : u 7→ −i~u′.

Another interpretation of the Fourier expansion theorem is the following one:

• at every time t ∈ R a wave u : R→ S ′(Rn,C) is an Ssuperposition of the
family of the harmonic waves([

(1/a)ne−ib(p|·)
])

p∈Rn

with respect to the system of coefficients F−(a,b)(ut).

Note that, for p = 0, we have

2πδ0 =

∫
R

([
e−i(x|·)

])
x∈R

.

So that the Dirac distribution centered at 0 is the superposition of a Fourier
family.
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7.4 Some extensions

Consider a family v indexed by the m-Euclidean space. Consider a compact set
K of the m-space and the sub-family of v indexed by K, namely the family

v|K := (vp)p∈K .

We desire to give a meaning to the superpositions of the sub-family v|K .

Definition (S linear superpositions of compact sub-families). Let v
be an S family in S ′n indexed by the Euclidean real m-dimensional space, let K
be a compact subset of the Euclidean m-space and let v|K be the restriction of
the family v to the compact K, that is the family (vp)p∈K . If a is any tempered
distribution in S ′m, with compact support contained in K, we define superpo-
sition of the sub-family v|K with respect to the coefficient distribution
a the superposition ∫

K

av|K :=

∫
Rm

av.

We say also that such superposition is a superposition of the entire family v on
the compact K and we write ∫

K

av :=

∫
Rm

av.

Moreover, if S ′m(K) is the set of all tempered distributions in S ′m with compact
support contained in K, we shall define the S linear hull of the sub-family, and
we denote it by

Sspan(v|K),

as the set S ′n(K).v of all the superpositions∫
K

av,

with a in S ′n(K).

Example. Let p be a point of the m-Euclidean space and K = {p}. We
shall use the fact that every (tempered) distribution with compact support {p}
is an element of the linear hull of the denumerable family d = (δ

(q)
p )q∈Nm . For

every S family v, and for every tempered distribution a with compact support
K, we have ∫

K

av =

∫
K

av|K =

=

∫
Rm

av =
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=

h∑
i=1

ciδ
(qi)
p ◦ v̂ =

=

h∑
i=1

(−1)|qi|1civ
(qi)
p ,

where q = (qi)
h
i=1 is some finite family of m-multi-indexes and c = (ci)

h
i=1 some

finite family of scalars such that . So we have

Sspan(v|K) = span(w),

where w is the family (v
(q)
p )q∈Nm .

We have already given another natural definition for superpositions on com-
pact sets. We recall it.

Definition. Let consider a family v in S ′n indexed by a compact K of the
Euclidean m-space, the action of the family v on a test function g in Sn is a
function from K into the scalar field of S ′n. If v is a family of class C0(K),
we define, for every Radon measure µ on K, the superposition µ.v by

µ.v(g) := µ(v(g)),

for every test function g in Sn. We denote it by∫
K

µv,

note that the Radon measure µ is a functional on the space of continuos function
C0(K) and not on the space Sm.

Let us see the relation between the two definitions.

Theorem. Let v be an S family in S ′n indexed by the Euclidean m-space, let
K be a compact subset of the Euclidean m-space and let v|K be the restriction
of the family v to the compact K, that is the sub-family (vp)p∈K . Then, if µ is
any Radon measure on the compact K, we have∫

K

[µ]v =

∫
K

µv|K ,

where [µ] is the tempered distribution defined by

[µ](g) = µ(g|K),

for every test function g in the space S ′m.
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Proof. In the conditions of the first definition, we have that the image v(g)
is a function of class Sm and then a continuous function. The restriction of v
to K is a family indexed by K and clearly

v|K(g) = v(g)|K ,

and this restriction is continuous on the compact K; so we can consider the
superposition µ.v|K , with µ Radon measure on K, so that

µ.v|K(g) = µ(v(g)|K) =

=

∫
K

v(g)µ =

= (

∫
Rm

[µ]v)(g) =

= (

∫
K

([µ]v|K)(g),

where (as usual) [µ] is the tempered distribution generated by the Radon mea-
sure µ, defined by

[µ](g) =

∫
K

gµ =

= µ(g|K),

for every test function g in Sm. So that∫
K

[µ]v|K =

∫
K

µv|K ,

as we desired. �

Let cK be the characteristic function of the compact K. If a is a regular
C0-coefficient distribution generated by a function f , we have

(

∫
K

([fcK ]v|K)(g) = (

∫
Rm

[fcK ]v)(g) =

=

∫
Rm

fcKv(g)µm =

=

∫
K

fv(g)µm =

= (

∫
K

[f ]v)(g),

where the superposition ∫
K

[f ]v
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is the superposition of the C0-family v (if v is an S family it is in particular a
C0 family), with respect to the coefficient measure [f ], on the compact K. We
can write ∫

K

([fcK ]v|K =

∫
K

[f ]v,

since the family v is in S ′n.
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Chapter 8

SLinear hulls of S families

8.1 SLinear hulls

In this section we present the S-linear analogous of the concept of linear hull of
a finite ordered system of vectors.

Definition (of S linear hull). Let v ∈ S(Rm,S ′n) be an S family of tempered
distributions. The S linear hull of the family v is the set of all the S-linear
combinations of the family v. We shall denote it by Sspan (v), or simply by
S(v), and in symbols we have so

Sspan (v) := tv̂(S ′m),

or more explicitly

Sspan (v) := {u ∈ S ′n : ∃a ∈ S ′m : u =

∫
Rm

av}.

Example (on the Dirac and Fourier families). Let δ be the Dirac family
of S ′n, then we have

Sspan (δ) = S ′n.

91
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In fact, for any distribution u ∈ S ′n, we obtain

u = u ◦ ISn =

= u ◦ δ̂ =

=

∫
Rn

uδ.

Let

ϕ =
([

(1/a)ne−ib(p|·)
])

p∈Rn

be the Fourier family, we have again Sspan (ϕ) = S ′n, as it follows immediately
from the Fourier Sexpansion theorem.

8.2 Algebraic properties of Slinear hulls

Theorem (on the structure of Sspan). Let u ∈ S(Rm,S ′n) be a family
of tempered distributions. Then, the S -linear hull Sspan (u) of the family u is
a subspace of the space S ′n, it contains all the elements of the family u and,
consequently, it contains the linear hull of u, that is we have

span (u) ⊆ Sspan (u) .

Proof. The fact that the S linear hull of a family is a subspace derives im-
mediately from the circumstance that it is the image of a linear operator, but
we shall show the fact also in another more explicit way. Let λ ∈ K be a scalar
and let v, w be two vectors in the S-liner hull Sspan (u), then, there exist two
tempered distributions a, b ∈ S ′m such that

v =

∫
Rm

au, w =

∫
Rm

bu.

Now, we see

λv + w = λ

∫
Rm

au+

∫
Rm

bu =

=

∫
Rm

(λa+ b)u,

and so the linear combination λv + w belongs to the hull Sspan (u) too. On
the contrary, the fact that the S linear hull contains any element of u is a fact
depending more than the preceding one on the S linear properties, namely the
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selection property of Dirac distributions. So, let δ be the Dirac family of the
space of coefficient distributions S ′m, we have∫

Rm

δpu = up,

for any index p of the family u, and then any element up of the family u is an
element of the S linear hull Sspan (u) too. �

So, if the (algebraic) linear hull of an S family v is infinite dimensional then
the S linear hull of the family v is infinite dimensional too. But we can give
another sufficient condition.

Theorem. Let v be an S-family having an element whose derivatives span
(algebraically) an infinite dimensional subspace. Then the S linear hull of the
family v is infinite dimensional.

Proof. Consider the S family v in the space S(Rm,S ′n). The S linear hull
of the family v is the image of the space S ′m under the superposition operator
of the family v. The space S ′m contains, for every m-index p of v, the space
Mp of tempered distributions with compact support contained in the singleton
{p}, that is the (algebraic) linear hull of the family of derivatives of the Dirac
distribution centered at p. The space Mp is the linear hull of the denumerable

linearly independent family d = (δ
(q)
p )q∈Nm . Now, it is clear that the S linear

hull S ′m.v contains the S linear sub-hull Mp.v, for each m-index p. It is also clear
that this last sub-hull is infinite dimensional if and only if the (denumerable)

family of derivatives (v
(q)
p )q∈Nm generates (algebraically) an infinite dimensional

space. Indeed, more specifically, we have

Mp.v = span(δ(q)
p ◦ v̂)q∈Nm =

= span((−1)|q|1v(q)
p )q∈Nm =

= span(v(q)
p )q∈Nm .

So, if the family v has an element vp whose derivatives span an infinite dimen-
sional subspace, then the S linear hull of the family v is infinite dimensional.
�

The following example shows that there are families with finite dimensional
linear span and infinite dimensional S linear span.

Example. Consider a distribution u whose derivatives span an infinite
dimensional subspace (for instance the Dirac distribution centered at the origin)
and let g be a nonzero test function in Sm. Consider the family v = (g(p)u)p∈Rm .
It is clear that the linear hull of the family v is the mono-dimensional subspace
generated by the distribution u. On the contrary, if p0 is a point such that



94 CHAPTER 8. SLINEAR HULLS OF S FAMILIES

the scalar g(p0) is different from 0, we have that the subspace generated by the
derivatives of the distribution g(p0)u is infinite dimensional (it coincides exactly
with the subspace generated by the derivatives of u ), so that the S linear hull
of the family v is infinite dimensional.

8.3 Systems of Sgenerators

Definition (system of Sgenerators). Let v ∈ S(Rm,S ′n) be an S family of
tempered distributions. The family v is called a system of Sgenerators for
a subspace V of the space S ′n if and only if its S linear hull coincides with the
subspace V , in symbols if

Sspan(v) = V.

Example. The Dirac family and the Fourier families (in the complex case)
are systems of Sgenerators for the entire space S ′n.

8.3.1 Exercises

Exercise. Let V be the subspace of S ′1 formed by the distributions with com-
pact support contained in some non-degenerate compact interval K (of the real
line). Let g be a smooth functional defined on the real line with compact support
the interval K and everywhere different from 0 on of the interval K. Consider
the family v = (g(x)δx)x∈R in S ′1. The family v is of class S (even more, it is of
class D), indeed if h is a test function in S1 we have

v(h)(x) = vx(h) =

= g(x)δx(h) =

= (gh)(x),

for every real number x, so that the function v(h) is of class S (indeed it is
of class D) and the operator associated with the family v is the multiplication
operator by the function g. We know (in Functional Analysis) that the transpose
of the multiplication operator by a function on a the test function space S1 is the
multiplication operator by the same function on the distribution space S ′1. But
we desire to see this fact directly. Let us consider now a generic superposition
of the family v, if a is a coefficient distribution for the family v, we have

a.v(h) = a(v(h)) =

= a(gh) =

= ga(h),
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so that a.v = ga, as we already knew. The product of a function g of class D by
a distribution is a distribution with compact support contained in the support
of the function g, and consequently the S linear hull of the family v is included
into the space of distribution with compact support contained in the interval
K, the space S ′1(K), i.e. we have

Sspan(v) ⊆ V.

Open questions. Is the above inclusion strict, or the S linear hull of the
family v coincides with V ? In a less general fashion, is the Dirac delta centered
at an end point p of the interval K in the S linear hull of the family v or not?
Take into account that, if a is such that a.v = δp, we have ga = δp , so that
the distribution a must vanish on the co-level 0 of the function g, that is the
distribution amust vanish on the interior of the compactK (indeed from ga = δp
follows

g2a = g(p)δp = 0,

and the level 0 of g coincides with the level 0 of g2).

Example. Let V be the subspace of S ′1 formed by the distributions with
compact support contained in some non-degenerate bounded open interval I
(of the real line), let us denote by S ′1(I) this subspace. Let g be a smooth
functional defined on the real line with compact support the closure of I and
everywhere different from 0 on of the interval I. Consider the above family
v = (g(x)δx)x∈R in S ′1. The product of the function g by the distribution
generated by the constant unitary function 1R is the distribution generated by
g which has compact support not contained (is the support of the function g)
in the open interval I and consequently the S linear hull of the family v is not
included into the space of distribution with compact support contained in the
open interval I, the space S ′1(I). Vice versa, if u is a distribution in S ′1(I), we
have u = a.v, where a is the distribution in S ′1, such that ga = u, defined as
follows: let K be the convex envelope of the support of u, this convex envelope
is a compact interval contained in I, let f be a smooth function on the real line
equal to g on K and different from zero everywhere, we put a = (1/f)u have

a.v = ga =

= g(1/f)u =

= u,

since g(1/h) = 1 on the support of u (the distribution u is tempered and then
of finite order), and then

V ⊆ Sspan(v).
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8.4 Topological properties of Slinear hulls

Notation. In what follows we shall use the notation β(S ′n) for the strong
topology β(S ′n,Sn) and σ(S ′n) for the weak* topology σ(S ′n,Sn) on the space of
tempered distribution S ′n; analogously, we shall use the notation σ(Sn) for the
weak topology σ(Sn,S ′n) on the space of test functions Sn.

Let us see the relation among the S-linear hull of an S-family and the closed
linear hull of the same family with respect to the strong topology β(S ′n), or
equivalently the weak* one σ(S ′n), since the strong closed subspaces are the
weak* ones. Note indeed that, since the topological vector space Sn is reflexive,
it is in particular semi-reflexive and then the linear subspaces of S ′n are closed in
the strong topology β(S ′n) if and only if they are closed in the weak* topology
σ(S ′n), so the closed linear hull with respect to the strong topology β(S ′n) of a
subset coincides with the σ(S ′n)-closed hull of the same set.

Theorem. Let v ∈ S(Rm,S ′n) be a system of S-generators for the space
S ′n. Then, the family v is a system of topological generators for the space S ′n
with respect to the strong topology β(S ′n), that is we have

spanβ(S′n) (v) = S ′n.

Proof. To prove that the linear hull of the family v is dense in the space
S ′n, with respect to the strong topology β(S ′n), we shall prove that every linear
β(S ′n)-continuous form on S ′n which is zero on the family v, is zero on the whole
of the space S ′n. In fact, let L be such a form, since S ′n is reflexive, there
is a test function l in Sn such that L(u) = u(l), for every distribution u in S ′n.
Since the functional L is zero on each member of the family v, for every index
i of the family v, we have

0 = L(vi) =

= vi(l) =

= v(l)(i) =

= v̂(l)(i),

and hence the test function v̂(l) is the origin of the space Sm. Now, the family
v is a system of S generators for the entire space S ′n if and only if the transpose
operator tv̂ is surjective (indeed, this transpose operator is nothing but the
superposition operator

∫
Rm(., v) associated with the family v) and thus, applying

the Schwartz-Dieudonné theorem on Fréchet spaces, the operator v̂ is injective,
so that the test function l is the origin of the space Sn, and then the linear form
L is the origin of the bidual S ′′n . �

This result can be usefully generalized.
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Theorem. Let v ∈ S(Rm,S ′n) be an S family in S ′n. Then, the following
inclusion holds true

Sspan (v) ⊆ spanβ(S′n) (v) = spanσ(S′n) (v) .

Proof. We shall prove that every superposition of the family v is the β(S ′n)-
limit of a sequence of finite linear combinations of the family v. Let a be in
the coefficient space S ′m, then the coefficient distribution a is the β(S ′m)-limit
of a sequence d of finite combinations of the Dirac family of S ′m, since the Dirac
family is β(S ′m)-total in S ′m. We have∫

Rm

av =

∫
Rm

(
β(S′m) lim

k→∞
dk

)
v =

= β(S′n) lim
k→∞

∫
Rm

dkv,

by the (β(S ′m), β(S ′n))-continuity of the superposition operator tv̂. Moreover,
by the selection property of Dirac distributions, the superposition

∫
Rm dnv is a

finite linear combination of the family v, and this concludes the proof. �

8.5 Closedness of Slinear hulls

The following theorem shows when the S linear hull Sspan (v) of an S family v
is closed with respect to the weak* topology σ(S ′n). This result is one of the
main justification of the use of S linear hulls.

Theorem. Let v ∈ S(Rm,S ′n) be an S family in S ′n. Then, the following
conditions are equivalent:

• 1) the hull Sspan (v) is σ(S ′n)-closed in S ′n, i.e. it is β(S ′n) -closed;

• 2) the S linear hull Sspan (v) coincides with the σ(S ′n)-closed linear hull
spanσ(S′n) (v);

• 3) the superposition operator
∫
Rm(·, v) is a topological homomorphism for

the weak* topologies σ(S ′m) and σ(S ′n);

• 4) the image v̂ (Sn) is closed in the topological vector space (Sm);

• 5) the operator v̂ is a topological homomorphism with respect to the pair
of weak topologies (σ( Sn), σ(Sm));

• 6) the operator v̂ is a topological homomorphism from the topological vector
space (Sn) into the space (Sm).
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Proof. It is the Dieudonné-Schwartz theorem (see [Di;Sch]) reread in our
context (note that the two spaces (Sn) and (Sm) are two Fréchet spaces), taking
into account the preceding theorem. �

Theorem. Let the S linear hull Sspan (v) be σ(S′n)closed. Then, the super-
position operator

∫
Rm(·, v) is a topological homomorphism for the pair of

strong topologies β(S ′m) and β(S ′n).

Proof. It follows immediately by proposition 18, page 309 of [Ho]. �

Theorem. Let v ∈ S(Rm,S ′n) be an S family. Then the following assertions
are equivalent

• 1) the family v is a system of S generators for the entire S ′n;

• 2) the superposition operator
∫
Rm(·, v) is a surjective topological homo-

morphism for the weak* topologies σ(S ′m) and σ(S ′n);

• 3) the superposition operator
∫
Rm(·, v) is a surjective topological homo-

morphism for the strong topologies β(S ′m) and β(S ′n);

• 4) the operator v̂ is an injective topological homomorphism for the weak
topologies σ(Sn) and σ(Sm);

• 5) the operator v̂ is an injective topological homomorphism from the space
(Sn) into the space (Sm).

8.5.1 Examples of systems of S generators

Example (the family associated with the i-th component of the posi-
tion operator). The mapping Pi : S ′n → S ′n defined by Pi(u) = (.)iu (where
(.)i is the i-th canonical projection of the Euclidean space Rn) is called the i-th
component of the position operator on the space S ′n. The operator Pi is
a surjective strict morphism (see for example [Ho] page 352), so the associated
family

v := Pi(δ) = ((.)iδx)x∈Rn ,

is a system of S-generators for the entire space S ′n. Note that if n = 1 and

u =

∫
R
av =

∫
R
bv,

then the difference a − b belongs to the subspace ker(P1) that is the subspace
generated by the Dirac delta δ0, so that∫

R
av =

∫
R
bv
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if and only if b = a + zδ0, for some z in the field K. So, if we consider a
hyperplane H of S ′1 supplementary to the line span(δ0), we have that

H.v = S ′1,

and that the domain restriction of the operator P1 to the hyperplane H is a
bijection and more precisely a topological isomorphism of the hyperplane H
onto the space S ′1.

8.6 Kernel of an Sfamily

Now we see an infinite-dimensional version of a basic theorem of linear algebra,
more precisely the following classic result:

Theorem. Let v = (vi)
n
i=1 be a family of linear forms on a vector space

X and let w be a linear form vanishing on the kernel of every form vi of the
family. Then, the form w is a linear combination of the family v.

Note, first of all, that the theorem can be restated as follows.

Terminology and notation. We say kernel of a family v = (vi)i∈I of
linear forms on a vector space X the intersection of all the kernels of the forms
of the family v, in symbols

ker v :=
⋂
i∈I

ker vi.

Moreover, if Y is a subspace of a vector space X, by Y ⊥ we denote the
orthogonal of Y , i.e., the set of all the linear forms on the space X which vanish
on every vector of the subspace Y .

With these notations we can restate the preceding theorem.

Theorem. Let v = (vi)
n
i=1 be a finite family of linear forms on a vector

space X and let w be another linear form on the space. Then, the form w
vanishes on the kernel of the family v if and only if w is a linear combination
of the family v. In other words, the linear hull of the family v coincides with
the orthogonal of its kernel:

(ker v)
⊥

= span(v).

Finally, we state and prove the S linear version of the above result.
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Theorem. Let v = (vp)p∈Rm be an S family in the space S ′n. Then the
orthogonal of the kernel of the family coincides with the closed linear hull of the
family with respect to the weak* topology

(ker v)
⊥

= spanσ(S′n) (v) .

In particular, if v is topologically exhaustive - i.e., if the S linear hull Sspan (v)
is σ(S ′n)-closed - we have

(ker v)
⊥

= Sspan (v) .

Proof. A classic theorem on weak duality (see for instance [Die]) affirms
that

(kerA)
⊥

= (im(tA))σ(E′,E),

for every weakly continuous operator A : E → F . Now applying this theorem
to the operator v̂ generated by the family v, we have

(ker v̂)
⊥

= (im (tv̂))σ(S′n) =

= (Sspan (v))σ(S′n) =

= spanσ(S′n) (v) .

On the other hand, φ belongs to ker v̂ if and only if v(φ)(p) = 0, for everym-tuple
p, and this means that φ belongs to the kernel of each tempered distribution vp,
concluding ker v̂ = ker v. �

8.6.1 Application

Example. Let V be the subspace of S ′1 formed by the distributions with com-
pact support contained in some non-degenerate compact interval K = [c, d] (of
the real line). Let g be a smooth functional defined on the real line with com-
pact support the interval K and everywhere different from 0 on of the interval
K. Consider the family v = (g(x)δx)x∈R in S ′1. As we already know the family
v is of class S (even more, it is of class D). Let us study its kernel, the kernel of
v is the set of any test function k such that vx(k) is zero, for every real x, but
this means g(x)k(x) = 0 for x in the interior of K, and since g is nowhere 0 on
K, the kernel of the family is the set of test functions that are zero on K (since
a continuous function that is zero on an open interval is zero on its closure).
The orthogonal of the kernel of the family v is so the set of all distributions u
which vanish on the complement of K. Recalling the definition of support of a
distribution (the complement of the greatest open set on which the distribution
vanishes) we deduce that the support of an element u of the orthogonal of the
kernel is contained in K, so that by the preceding theorem we conclude

spanσ(S′n) (v) = (ker v)
⊥

= V.
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8.7 SLinear hull of a subset

We propose the following first generalization of the concept of S linear hull of a
family.

Definition (of S linear hull of a subset). Let X be a subset of the space
S ′n. The S linear hull of the subset X is the intersection of all the S linear
hulls of S families which contain the subset X.

Note that this linear hull is nonempty since the entire space S ′n is the S linear
hull of an S family which contains X. Moreover, the S linear hull of the subset
X contains X itself.

More precisely, since the intersection of subspaces is a subspace, the S linear
hull of a subset is a subspace. Since every linear hull (of family) containing a
subset X is a subspace (and then containing the subset X it must contain the
linear hull of X), the S linear hull of X contains the linear hull of X.

With this definition, the linear hull of an S family contains the S linear hull
of its trace.

Open problem. Find an S family whose S hull does not coincide with the
Shull of its trace.

Open problem. If an S family v is a bijection of its index set onto its trace,
is the Shull of the family equal to the Shull of its trace?

A less interesting generalization is the following.

Definition (of interior S linear hull of a subset). Let X be a subset of
the space S ′n. The interior S linear hull of the subset X is the sum of
all the S linear hulls (of S families) which are contained in the subset X.

The interior S linear hull of a subset can be empty, for example the interior
S linear hull of a nonzero singleton.
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Chapter 9

Bases

9.1 SLinear independence

Definition (of S linear independence). Let v ∈ S(Rm,S ′n) be an S family
of tempered distributions. The family v is said S linearly independent, if the
relations a ∈ S ′m and

∫
Rm av = 0S′n imply that a = 0S′m . In other terms the

family v is S linearly independent if and only if any zero S linear combination
of the family v has necessarily a zero coefficient system.

Example. The Dirac family in S ′n is S linearly independent. In fact, we
have ∫

Rn

uδ = u,

for all u ∈ S ′n, and then the relation
∫
Rn uδ = 0S′n implies u = 0S′n .

Example (the Fourier families). The Fourier families are S linearly in-
dependent. In fact, let ϕ be the (a, b)-Fourier family, and let

∫
Rn uϕ = 0S′n(C).

For every φ ∈ Sn(C), we have

0 =

(∫
Rn

uϕ

)
(φ)

= u (ϕ̂ (φ)) =

= u
(
S(a,b) (φ)

)
=

= F(a,b) (u) (φ) ,

103
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i.e.,

F(a,b) (u) = 0S′n(C),

and thus u = 0S′n(C), being F(a,b) injective.

Theorem. Let v ∈ S(Rm,S ′n) be an S linearly independent family. Then, v
is linearly independent. Consequently, the hull Sspan (v) is an infinite dimen-
sional subspace of S ′n.

Proof. Let k ∈ N be a positive integer, α ∈ (Rm)
k

be any k-sequence of
points in the m -dimensional Euclidean space, and let vα = (vαi

)ki=1 be the
k-sequence of distributions extracted by the family v by means of the index
selection α. By contradiction, let assume vα be a linearly dependent system of
S ′n, then there exists a non-zero k-tuple λ ∈ Kk such that

k∑
i=1

λivαi
= 0S′n .

Put Λ =
∑k
i=1 λiδαi , we have

∫
Rm

Λv =

∫
Rm

k∑
i=1

λiδαi
v =

=

k∑
i=1

λi

∫
Rm

δαi
v =

=

k∑
i=1

λivαi =

= 0S′n .

Now, since the distribution Λ is different from the zero distribution 0S′m , the
preceding equality contradicts the S linear independence of v, against the as-
sumptions. �

9.2 Topology and Slinear independence

The last theorem of the above section shows that, for the S families, the S linear
independence implies the usual linear independence. Actually, the S linear in-
dependence is more restrictive than the linear independence, as we shall see
later by a simple example. On the contrary it is less restrictive than the β(S ′n)-
topological independence, as it is shown below.
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Topological independence. We recall that a system of vectors v = (vi)i∈I
in the space S ′n is said β(S ′n)-topologically free (respectively, σ(S ′n)-topologically
free) if and only if there exists a family L = (Li)i∈I of β(S ′n) -continuous (re-
spectively, σ(S ′n)-continuous) linear forms on S ′n such that Li(vk) = δik, for any
pair (i, k) ∈ I2, where the family δ = (δik)(i,k)∈I2 is the Kronecker family on
the square I2. If the family v is not topologically free it is said topologically
bound. If the family v is topologically free, any family L satisfying the above
relations is said a dual family of the family v. Note that the above relation can
be written as L⊗ v = δ, where δ is the Kronecker family. So, to say that a fam-
ily v is topologically free is equivalent to say that v has a dual family of linear
continuous forms. Recalling that any continuous linear functional on the space
S ′n is canonically and univocally representable by a test function, to say that
the family v is topologically free is equivalent to say that the bi-orthonormality
condition

〈gi, vk〉 = δik,

is true, for any pair (i, k) ∈ I2, for some family g of test functions.

Theorem. Every S family in the space S ′n is β(S ′n)-topologically bound and,
thus, σ(S ′n)-topologically bound. Consequently, no S family has a dual family.

Proof. Let v be an S family in the space S ′n indexed by Rm. And let L be
an arbitrary family in the dual S ′′n indexed by the same index set. Being the
Schwartz space (Sn) reflexive, for every i, there is a test function gi in Sn such
that

Li = 〈., gi〉 ,

that is such that Li(u) = u(g), for every tempered distribution u in S ′n. Assume
the existence of an index i such that Li(vi) = 1, then we deduce

1 = Li(vi) = vi(gi) = v(gi) (i) ,

being v an S family, the function v(gi) is continuous, then there is a neighborhood
U of the point i in which the function v(gi) is strictly positive. Then, for every
point k in the neighborhood U , we have

Li(vk) = vk(gi) = v(gi) (k) > 0,

and then L cannot verify the condition of topological independence for v . �

Note. By the same proof, it is possible to prove that every C0-family is
strongly topologically bound. Consequently every smooth family is also strongly
topologically bound.
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9.3 Uniqueness of representation

It’s simple to prove the following property.

Property. An S family v in S ′n indexed by Rm is S linearly dependent if and
only if there a point index p in Rm and a tempered distribution a different from
the Dirac delta δp such that

vp =

∫
Rm

av.

Proof. Necessity. Indeed, if vp fulfills that property we have that the
S linear combination (a − δp).v is zero with a non-zero coefficient distribution
so that the family v is S linearly dependent. Sufficiency. Vice versa, let, for
every point p, the term vp of the family be representable in a unique way as
the superposition vp = δp.v. Assume v S linearly dependent, then there is a
different from zero such that a.v = 0, hence

vp = δp.v − 0 =

= δp.v − a.v =

= (δp − a).v,

since a is a non zero distribution, the sum δp − a is different form δp, and so vp
is representable in another different way, against the assumption. �

9.4 Characterizations of Slinear independence

By the Dieudonné-Schwartz theorem we immediately deduce two characteriza-
tions.

Theorem. Let v ∈ S(Rm,S ′n) be a topologically exhaustive family, that is
an S family whose S linear hull Sspan (v) is σ(S ′n)-closed. Then the following
assertions are equivalent

• 1) the family v is S linearly independent;

• 2) the superposition operator
∫
Rm(·, v) is an injective topological homo-

morphism for the weak* topologies σ(S ′m) and σ(S ′n);

• 3) the superposition operator
∫
Rm(·, v) is an injective topological homo-

morphism for the strong topologies β(S ′m) and β(S ′n);
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• 4) the operator v̂ is a surjective topological homomorphism for the weak
topologies σ(Sn) and σ(Sm);

• 5) the operator v̂ is an surjective topological homomorphism of the topo-
logical vector space (Sn) onto the space (Sm).

Theorem. Let v ∈ S(Rm,S ′n) be an S family. Then the following assertions
are equivalent

• 1) the family v is S linearly independent and the hull Sspan (v) is σ(S ′n)-
closed;

• 2) the superposition operator
∫
Rm(·, v) is an injective topological homo-

morphism for the weak* topologies σ(S ′m) and σ(S ′n);

• 3) the operator v̂ is a surjective topological homomorphism for the weak
topologies σ(Sn) and σ(Sm);

• 4) the operator v̂ is a surjective topological homomorphism from (Sn) onto
(Sm).

Remark (on the coordinate operator). In the conditions of the above
theorem, if the family v is S linearly independent, we can consider the algebraic
isomorphism from the space S ′m onto the S linear hull Sspan (v) that sends every
tempered distribution a ∈ S ′m to the superposition

∫
Rm av, that is the restriction

of the injection
∫
Rm(·, v) to the pair of sets (S ′m,S span (v)). We shall denote

the inverse of this isomorphism by the symbol [·|v]. It is a consequence of the
preceding theorem that

• the operator [·|v] :S span (v)→ S ′m is a topological isomorphism, with re-
spect to the topology induced by the weak* topology σ(S ′n) on the S linear
hull Sspan (v) and to the weak* topology σ(S ′m), if and only if the S linear
hull Sspan (v) is σ(S ′n)-closed, that is if the family v is topologically ex-
haustive.

9.5 SBases

Definition (of Sbasis). Let v ∈ S(Rm,S ′n) be an S family in S ′n and let V be
a subspace of the space S ′n. The family v is said an S basis of the subspace
V if it is S linearly independent and it Sgenerates V , that is if the superposition
operator of the family v is injective and Sspan(v) = V .
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The Dirac family δ in S ′n is an Sbasis of S ′n. We call δ the canonical S-basis
of S ′n or the Dirac basis of S ′n.

Moreover, the following complete version of the Fourier expansion-theorem,
allow us to call the Fourier families of S ′(Rn,C) by the name of Fourier bases
of S ′(Rn,C).

Theorem (geometric form of the Fourier expansion theorem). In the
space of complex tempered distributions S ′n(C) the Fourier families are S-bases
(of the entire space S ′n(C)).

9.6 Algebraic characterizations of S bases

The following is an elementary but meaningful generalization of the Fourier
expansion theorem.

Theorem (characterization of an Sbasis). Let v ∈ S(Rm,S ′n) be an
S family. Then,

• 1) the family v Sgenerates the space S ′n if and only if the superposition
operator t (v̂) is surjective;

• 2) the family v is S linearly independent if and only if the superposition
operator t (v̂) is injective;

• 3) the family v is an Sbasis of the space S ′n if and only if the superposition
operator t (v̂) is bijective.

Proof. First of all the operator t (v̂) is well defined because v is an S family.
Moreover, it is obvious, by the very definitions, that the family v S generates
the space S ′n if and only if the superposition operator t (v̂) is surjective, and
that v is S linearly independent if and only if the superposition operator t (v̂) is
injective. �

9.6.1 Example

Example (a system of linearly independent S generators that is not
an Sbasis). Let v = (δ′x)x∈R be the family in S ′1 of the first derivatives of the
Dirac distributions. The family v is of class S, in fact

v(φ)(x) = vx(φ) = δ′x(φ) = −φ′(x),



9.7. TOTALITY OF SBASES 109

and −φ′ is an S-function. Consequently, the operator associated with v is the
derivation in Sn up to the sign and, then, t (v̂) is the derivation in S ′n. This last
operator is a surjective operator (every tempered distribution has a primitive)
but it is not injective (every tempered distribution has many primitives), then
v is a system of S-generators for S ′1, but it is not S-linearly independent. More-
over, note that v is linearly independent. In fact, let P be a finite subset of the
real line R, and let, for every point p0 in P , fp0 be a function in S1 such that
f ′p0(p) = δp0p, for every index p in P . If a = (ap)p∈P is a finite family of scalars
such that ∑

p∈P
apvp = 0S′1 ,

then

0 =

∑
p∈P

apvp

 (fp0) =
∑
p∈P

apδp0p = ap0 ,

for every index p0 in P .

9.7 Totality of Sbases

Note that another way to express the preceding characterization.

Theorem (characterization of an Sbasis). Let v ∈ S(Rm,S ′n) be an
S family. Then,

• A family v is a system of S generators of the entire space if and only if
the family v is total in the space Sn, in the sense that if vp(g) = 0 for
every p implies g = 0.

• A family v is S linearly independent if and only it is total in the space S ′m,
in the sense that if a.v = 0 then a = 0.

• A family v is an Sbasis of the space if and only if the family v is total
both in the space Sn and S ′m.

Proof. Indeed, this means that the operator v is injective, and so v(g) = 0
implies a = 0. �
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9.8 Topological characterizations of S bases

By the Dieudonné-Schwartz theorem we immediately take a characterization.

Theorem. Let v ∈ S(Rm,S ′n) be a family of tempered distributions. Then
the following assertions are equivalent

• 1) the family v is an Sbasis of the space S ′n;

• 2) the superposition operator
∫
Rm(·, v) is a topological isomorphism for the

weak* topologies σ(S ′m) and σ(S ′n);

• 3) the superposition operator
∫
Rm(·, v) is a topological isomorphism for the

strong topologies β(S ′m) and β(S ′n);

• 4) the operator v̂ is a topological isomorphism for the weak topologies
σ(Sn) and σ(Sm);

• 5) the operator v̂ is a topological isomorphism of the topological vector
space (Sn) onto (Sm).

9.9 Equivalent Sfamilies

We say that to S families v and w with the same index set are equivalent if
there is a diffeomorphism h of the first index set into the second index set such
that vh = w, where vh is the family vh(p) = vh(p).

First, we have to consider a generalization of composition of a measure with
a function. Recall that

Definition (of composition in S ′m with diffeomorphisms). Let h be
a smooth diffeomorphism for the pair (Rm,Rm), that is h is a function from
Rm into Rm which is bijective and smooth with its inverse. Then, for every test
function g ∈ Sm, the function

gh =
(
g ◦ h−

)
|det Jh− |

belongs to the space Sm, moreover, for every distribution a ∈ S ′m, the functional

a ◦ h : Sm → K : g 7→ a
((
g ◦ h−

)
|det Jh− |

)
is a tempered distribution called the composition of u with the diffeomorphism
h.
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In the conditions of the preceding definition we have

(a ◦ h)(g) = a(gh) =

= |det Jh− | a(g ◦ h−).

Let v be an S family and let h be a diffeomorphism, we have

vh(g)(p) = vh(p)(g) =

= v(g)(h(p)) =

= (v(g) ◦ h)(p),

so that vh(g) is of class S and

vh(g) = v(g) ◦ h.

Let a be a coefficient distribution in S ′m. We have, for h with unitary deter-
minant,

(

∫
Rm

avh)(g) = a.vh(g)

= a(v(g) ◦ h) =

= (a ◦ h−)(v(g)) =

= (

∫
Rm

(a ◦ h−)v)(g),

so that ∫
Rm

avh =

∫
Rm

(a ◦ h−)v.

Note that the mapping a 7→ a ◦ h− is a bijection of S ′m onto S ′m. So that

S ′m.v = S ′m.vh.

Moreover, let v S linearly independent. If a.vh = 0 then

(a ◦ h−).v = 0

and hence a ◦ h− is zero but this implies that a = 0.

Recalling the preceding we have that an S family is an Sbasis if and only if
it is equivalent to an Sbasis.
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Chapter 10

SClosedness

10.1 SClosed subsets

A natural kind of stability for subsets of the space S ′n arises with the definition
of S linear combinations. As usual we say that a family is contained in a certain
subset if its trace is contained in that set.

Definition (of Sclosedness in S ′n). Let X be a subset of S ′n. The part X
is said Sclosed or Sstable in the space S ′n if it contains all the superpositions
of the S families contained in X . In other words, X is said S closed if, for

113
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each positive integer m ∈ N, for each family v ∈ S(Rm,S ′n) contained in the
part X and for each tempered distribution a ∈ S ′m, the superposition

∫
Rm av lies

in the set X.

Example (trivial Sclosed subsets). The empty set and the entire space
S ′n are Sclosed. The first one does not contain S families the second contains all
the possible S linear combinations.

Example (Sclosed subsets which are not subspaces). Note that a
subset X formed by a unique nonzero distribution is not a subspace, but it is
Sstable. Indeed, there are no S families in X, since the unique family in X is a
constant one and the constant families are not of class S. Consequently, the part
X is Sstable by definition. A subset formed by only two different nonzero points
is not a subspace but it is Sstable. Indeed, there are no S families contained in
X; since a family v in X must have at most two distinct points, so the images
v(g), of a test function g belonging to the co-level 0 of at least one of the
distributions of the family, is a nonzero function having at most two values,
and hence it cannot be an S function (a non zero S function must have infinite
values).

So an Sclosed set may be not a subspace. We will see later that every subset
both Sclosed and star-shaped at the origin is a subspace.

10.2 SClosed hulls

The starting point is the following result.

Theorem. Let F be a family of Sclosed subsets of the space S ′n. Then, the
intersection ∩F of the family F is Sclosed.

Proof. Let F = (Fi)i∈I be our family of Sclosed subsets and let v be an
S family contained in the intersection ∩F of the family. Then, v is an S family
in the subset Fi, for every index i ∈ I of the family (indeed, the family v is a
family in the intersection ∩F if and only if vp ∈ Fi, for every index p ∈ Rm and
for every i ∈ I). Since the subset Fi is Sclosed, the superposition

∫
Rm av must

belong to Fi, for every tempered distribution a ∈ S ′m and every index i ∈ I,
therefore the superposition

∫
Rm av must belong to the intersection ∩F of the

family F . �

The above stability property allows us to define the concept of Sclosed hull
and Sclosed linear hull of a subset of the space.
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Definition (of Sclosed hull). Let X be a subset of S ′n. The Sclosed hull
of X is the intersection of all the Sclosed subsets containing X. It is denoted
by Scl(X) or simply by SX.

It is clear that the Sclosed hull of a subset X must contain X itself and that
Scl(X) is the smallest (with respect to the inclusion) Sclosed subset containing
X.

It is equally clear that the Sclosed hull of an Sclosed subset is the Sclosed
subset itself; in particular the Sclosed hull of the Sclosed hull of X is the Sclosed
hull of X.

Definition (of Sclosed linear hull). Let X be a subset of S ′n. The
Sclosed linear hull of X is the intersection of all the Sclosed subspaces of
the space containing X. It is denoted by the symbol Sspan(X).

It is clear that the Sclosed linear hull of a subset X must contain X and that
it is the smallest (with respect to the inclusion) Sclosed linear subset containing
X. Indeed, the intersection of a family of Sclosed subspaces is an Sclosed
subspace.

It is equally clear that the Sclosed linear hull of an Sclosed subspace is the
Sclosed subspace itself; in particular the Sclosed linear hull of the S closed linear
hull of X is the Sclosed linear hull of X.

Concerning the relationship among the two hulls we have the following ob-
vious result.

Proposition. Let X be a subset of the space S ′n. Then the inclusion

Scl(X) ⊆ Sspan(X)

holds true.

Proof. The collection of all Sclosed subsets containing X contains the col-
lection of all Sclosed subspace containing X. �

10.3 Relationships among different hulls

Given a subset X of the space S ′n, we have some different hulls of the set:
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1. the linear hull of X, denoted by span(X), set of all finite linear combina-
tions of elements of X, and also intersections of all subspaces containing
X;

2. the S linear hull of X, denoted by Sspan(X), intersection of all the
S linear hulls of S family which contain the subset X;

3. the Sclosed hull of X, denoted by Scl(X), intersection of all Sclosed
subsets containing X;

4. the Sclosed linear hull of X, denoted by Sspan(X), intersection of all
the Sclosed subspaces containing X.

Our aim in this section is to understand the relationships among these hulls.

10.3.1 Relationships among linear hulls

Proposition. Let X be a subset of S ′n. Then, the following inclusions

span(X) ⊆ Sspan(X) and span(X) ⊆ Sspan(X)

hold true.

Proof. For the first inclusion, note that the collection of all subspaces con-
taining X contains the collection of all subspaces of the form Sspan(v), with v
S family, containing X. The second inclusion holds for analogous reasons. �

Open problems. We meet two problems:

• does the inclusion
Sspan(X) ⊆ S span(X)

hold?

• Is it true that every Sclosed subspace of the space S ′n is a subspace of the
form Sspan(v), with v S family in S ′n?



10.3. RELATIONSHIPS AMONG DIFFERENT HULLS 117

10.3.2 SClosure of subspaces

We have the following open problem:

Open problem. Is the Sclosed hull of a subspace E still a subspace?

Note. Let u and v be any two points of the Sclosed hull of E. If we find
an S family w contained in Scl(E) and passing through u and v then any linear
combination au + bv must stay in the Sclosed hull of the subspace E, since
any linear combination of two elements of an S family is a superposition of the
S family. But when such a family does exist?

Question. Is the linear hull of an S closed subset still an Sclosed subspace?

Answer. The answer is in general negative. Indeed, fixed a point x of
the Euclidean n-space, let X be the singleton of the space formed by the Dirac
distribution δx. As we already have seen X is an Sclosed subset; on the contrary
its linear hull does not. In fact the linear hull of X is the straight line l generated
by that Dirac distribution. Let g be a test function on the real line (in S1) such
that g(0) = 1. The family v = (g(y)δx)y∈R is a family in the linear hull l and
it is of class S (the image of a test function h in Sn by the family v is the test
function h(x)g in S1). The superposition δ′0.v (δ′0 is the derivative of the Dirac
distribution on the real line centered at 0) is the distribution δ′x (the derivative
of the Dirac distribution on the Euclidean n-space centered at the point x)
which does not belong to the straight line l. �

10.3.3 Relationships among linear and S closed hulls

We have the following questions.

Question. Is the S linear hull of a subset X contained in the Sclosed hull of
that subset? That is, the following inclusion

Sspan(X) ⊆ Scl(X),

does hold?

Answer. The answer, in general, is negative. Indeed, let X be an Sclosed
subset of S ′n which is not a subspace. Then the Sclosure of X is X itself and
this cannot contain neither its linear hull. �
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Question. Is the Sclosed hull of a subset X contained in the S linear hull of
the subset? That is, does the following inclusion

Scl(X) ⊆ Sspan(X),

hold?

Answer. The answer is negative. Indeed, consider a subset X such that its
S linear hull S is not Sclosed. First of all it is clear that the S linear hull of S is S
itself (see later). Then consider the Sclosure C of S: it is clear that C contains
properly S, indeed the part C is the Sclosure of S and S cannot coincide with
C since S is not Sclosed. �

Concerning the last problem we have the following result.

Proposition. Let X be a subset of the space S ′n which is the trace of an
S family. Then the S linear hull of the subset X is contained in the Sclosed hull
of the subset X itself. That is, the following inclusion

Sspan(X) ⊆ Scl(X),

holds. As a consequence, in this special case, the linear hull of X is contained
in the Sclosed hull of the part X.

Proof. When a subset X of the space S ′n is the trace of an S family v, any
finite family of vectors in X is a subfamily of some S family in X (just the family
v ), and then we have

span(X) ⊆ Scl(X),

but we shall obtain this result as a consequence of what follows. We know that
the S linear hull of the trace of a family v is contained in the S linear hull of the
family (in fact the family v is a family whose S linear hull contains the trace).
Let v a family having X as its trace, we shall prove that the Sclosed hull of
X contains the S linear span of v. Let now u be an element of the S linear hull
of v, we must prove that u belongs to every Sclosed subset containing X. The
family v is a family in X and then in every Sclosed subset C containing X,
consequently (by the very definition of Sclosed subset) every superposition a.v
of v must stay in every Sclosed subset containing X and then also in the smallest
one, as we claimed. �

We will find again this result in a slightly different form.

Remark. Let us go back again to the above problem: if the inclusion

Scl(X) ⊆ Sspan(X),
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was true, then, by the preceding result, if v is an S family, we should have

Scl(v) = Sspan(v),

and this implies that the S linear hull of an S family is always Sclosed, and this
seems to be not true: but we need a counter-example.

10.4 Unions of Sclosed sets

In this section we study the union of two Sclosed sets.

Remark (on the union of two Sclosed sets). The union of two Sclosed
sets need not necessarily to be Sclosed, neither in the case in which the two S

closed subsets are subspaces. In fact, consider in the space S ′2 the two S linear
hulls

F1 = Sspan(δ(.,0)) and F2 = Sspan(δ(0,.)),

and their union F = F1 ∪ F2. The subset F is obviously not a subspace, but it
is star-shaped at the origin; in fact, if u is in the union F , then u lies in F1 or
in F2, and then the segment joining u and the origin is contained in F . Now, a
star-shaped Sclosed set is necessarily a subspace (see later), then F cannot be
Sclosed.

Open problems. Some problems arise:

• If two Sclosed sets are disjoints, then is their union Sclosed?

• If v is an S family in the union of two disjoint Sclosed sets, must v be
contained in one and only one of the two component sets?

The last question arises naturally, since the image of the family v is a path-
connected subset of S ′n in the topology weak* topology σ(S ′n,Sn).

10.5 SClosed linear hull of families

Obviously, the Sclosed linear hull of a family contains the S linear hull of that
family, but we can say more.

Theorem. Let v be an S family in the space S ′n and let Fv be the collection
of all the Sclosed subsets of S ′n containing the family v. Then the S linear hull
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Sspan(v) is contained in the intersection ∩Fv. In other terms, the S linear hull
of a family is contained in the Sclosed hull of the family, that is

Sspan(v) ⊆ Scl(v).

Consequently, the S linear hull Sspan(v) is Sclosed if and only if it coincides
with the intersection of the collection Fv, that is if and only if

Sspan(v) = ∩Fv,

that is if and only if
Sspan(v) = Scl(v).

Proof. Let us index the collection Fv by a set I and denote this family by
the symbol F . Since any member Fi of the family F is Sclosed and contains the
family v, we have that the hull Sspan(v) must be contained in Fi, for every index
i ∈ I, and consequently the hull Sspan(v) must be contained in the intersection
∩F . If, moreover the hull Sspan(v) is Sclosed, since it contains the family v, we
conclude that Sspan(v) is one of the members of the family F , and hence that
the intersection ∩F must be in the hull Sspan(v). �

Remark. Note that, in the conditions of the preceding theorem, in general
it is not true that the intersection ∩F is a subspace, however, if Sspan(v) is
Sclosed then ∩F is necessarily a subspace, since every S linear hull is a subspace.

10.6 SClosedness and topology

In this section we study the relation between Sclosedness and the closedness
with respect to the strong and weak* topologies on the space of tempered dis-
tributions.

Theorem. Let F be a β(S ′n)-closed subspace of S ′n . Then F is Sclosed.

Proof. Let δ be the Dirac family of the space S ′m and let v be an S family
in F , then, for every index p of the family, the superposition

∫
Rm δpv belongs

to F , being equal to vp. Now, let a ∈ S ′m, since the space (Sm) is reflexive, we
know that the closed linear hull of the Dirac family with respect to the strong
topology β(S ′m) is the entire space S ′m, i.e.

spanβ(S′m) (δ) = S ′m;

therefore there exists a sequence ∆ = (∆k)k∈N in the linear hull span (δ) con-
verging to the distribution a in the strong topology β(S ′m). We have, by the
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selection property of the Dirac family, that any superposition
∫
Rm ∆kv must be-

long to the linear hull span (v), which is set-included in F since F is a subspace
of S ′n. Moreover, being the superposition operator

∫
Rm (·, v) continuous with

respect to the strong topologies β(S ′m) and β(S ′n), it follows that, for every a in
the space S ′m, we have∫

Rm

av =

∫
Rm

(
β(S′m) lim

k→∞
∆k

)
v =

= β(S′n) lim
k→∞

∫
Rm

∆kv;

and the last limit belongs to the subspace F for β(S ′n)-closedness. And conse-
quently, F is S closed. �

Remark. Since the space (Sn) is semireflexive, a part F of the dual S ′n is
σ(S ′n)-closed if and only if it is β(S ′n)-closed.

Corollary. Let X be a part of the space S ′n. Then, we have

Sspan (X) ⊆ spanβ(S′n) (X) .
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Chapter 11

SConnectedness

11.1 SConnected and D connected sets

It is interesting to note that every tempered distribution u in S ′n belongs to
many S families and to many Dfamilies.

123
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11.1.1 SFamilies in S ′
n containing a given distribution

Theorem. For every u in S ′n and for every not-identically zero test function
f belonging to Sm (respectively, to Dm), there is an S family (respectively, a
Dfamily) v in S ′n containing u and such that the associated operator v̂ is
proportional to the operator 〈u, ·〉 f , where 〈·, ·〉 is the canonical bilinear form
on S ′n × Sn.

Proof. Let f be an S function (respectively Dfunction) in Sm (respectively
Dm) not identically 0, and let p0 be an m-vector such that f(p0) 6= 0. The
family defined by

vp =
f(p)

f(p0)
u,

for every m-vector p, is an S family (D family) containing u. Indeed, we have
vp0 = u, and moreover, for every m-index p and any test function φ, we obtain

v(φ)(p) = vp(φ) =

=

(
f(p)

f(p0)
u

)
(φ) =

=
f(p)

f(p0)
u(φ)

=

(
u(φ)

f(p0)
f

)
(p),

hence we deduce

v(φ) = (u(φ)/f(p0)) f,

and so the function v(φ) is an S function (Dfunction) in Sm (respectively Dm).
�

11.1.2 SFamilies in starshaped subsets of S ′
n

By the preceding result we immediately deduce a natural sufficient condition
in order that a set contains at least one Dfamily, or S family, through every its
point.

Recall that a subset S of a vector space V is said to be star-shaped at the
origin if it contains, for every s in S, the closed segment joining s with the
origin of V . On the other hand, if S contains, for every s, the segment joining
s with the origin but not the origin, S is said to be a blunt star-shaped set at
the origin.
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Theorem. Let S be a (blunt) star-shaped set at the origin of the space S ′n.
Then, for every u in S, there is a Dfamily ( S family) contained in S and passing
through u.

Proof. It is sufficient to choose a smooth function f defined on Rm, with
compact support, real, non-negative, with values lower or equal than 1, and such
that f(0m) = 1. Then, for every u in S, the family of distributions indexed by
Rm, defined, for every m -index p, by vp = f(p)u, is a Dfamily contained in S (v
describes the segment joining u with the origin of S ′n) and containing u. In the
blunt case it is necessary to consider a function f of class S, real, non-negative,
with values lower or equal than 1, everywhere different from 0 and such that
f(0m) = 1. �

We can see more, as the following result will show.

Theorem. Every finite linear combinations of distributions can be always
viewed as superposition of an S family.

Proof. Let u0 and u1 two tempered distributions in S ′n and f0, f1 two S

functions in S1, such that fi(j) = δij , for every choice of the indexes i, j in
{0, 1}. Define a family v in S ′n as follows

vp = f0(p)u0 + f1(p)u1,

for every real number p. We have

v0 = f0(0)u0 + f1(0)u1 = u0,

and, analogously, v1 = u1, hence v contains both vectors u0 and u1. Moreover,
for every index p and any test function φ, we obtain

v(φ)(p) = vp(φ) =

= (f0(p)u0 + f1(p)u1) (φ) =

= f0(p)u0(φ) + f1(p)u1(φ) =

= (u0(φ)f0 + u1(φ)f1) (p),

so the function v(φ) is a linear combination of f0 and f1, and so the function v(φ)
is in S1. In general, every finite sequence u = (ui)

k
i=1 of tempered distributions

is a subfamily of many S families in S ′n. It is enough to consider a system
f = (fi)

k
i=1 of functions in S1 such that fi(j) = δij for every choice of the two

indexes i, j in {1, ..., k}, and define a family v in S ′n as follows

vp =

k∑
i=1

fi(p)ui,



126 CHAPTER 11. SCONNECTEDNESS

for every real number p. In this case, for any test function φ, we obtain

v(φ) =

k∑
i=1

ui(φ)fi,

which is a linear combination of the family f . Note that the image of the
operator associated with the family v is a subspace of the linear hull of the
family f . �

11.1.3 SConnected subsets of S ′
n

We can go beyond. But first we give the following definition.

Definition (of Sconnected pair in a subset of S ′n and S connected
subset of S ′n). Let X be a subset of S ′n and let x, y ∈ X. The pair (x, y) is said
to be an Sconnected (Dconnected) pair of the subset X if and only if there
is an S family (Dfamily) v indexed by Rm, for some integer m, containing x
and y and contained in X. The part X is said Sconnected (Dconnected) if,
for every x, y ∈ X, the pair (x, y) is an Sconnected (Dconnected) pair in X.

Theorem. Let S be a star-shaped set at the origin of the space S ′n. Then,
S is Dconnected and, consequently, S connected.

Proof. Every finite sequence (ui)
k
i=1 of tempered distributions in S ′n is a

subfamily of a particular kind of Dfamily. Consider a finite sequence (fi)
k
i=1

of functions in the space D1 such that any function fi of the sequence is the
i-translation of a certain function f0 fi = τi(f0), for every index i, with f0 a
smooth function fulfilling the following properties:

• f0(0) = 1;

• f0(x) ∈ [0, 1], for every real x;

• suppf0 = B(0, 1/2).

Consequently, the functions fi fullfil the following:

• fi(i) = 1, for every i;

• fi(x) ∈ [0, 1], for every real x;

• suppfi = B(i, 1/2).
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Define the family v in S ′n as

vp =

k∑
i=1

fi(p)ui,

for every real number p. It is simple to see that v is a D family contained in S
and passing through every ui. �

As a consequence, if we say Sclosed a part F of S ′n such that every super-
position of each S family in F lies in F , we conclude the following corollary.

Corollary. Every Sclosed star-shaped subset of S ′n is a subspace of S ′n.

11.2 DL1Closed sets (*)

Following Schwartz, if p ∈ [1,+∞], we shall denote by DLp the vector space
of the smooth complex functions defined on Rn whose derivatives belong to
Lp(Rn,C). The natural topology on this space is, by definition, the topology
generated by the family of seminorms (qk)k∈Nn

0
, where, for multi-index k, qk is

defined on DLp by

qk (f) =
∥∥∥f (k)

∥∥∥
Lp
.

When DLp is endowed with its natural topology, the associated topological
vector space is denoted simply by (DLp). It is a complete locally convex topo-
logical vector space with a denumerable fundamental system of neighborhood of
the origin, it is then metrizable and so a Fréchet space. A sequence f = (fi)i∈N
converges to the zero-function in (DLp) if and only if it converges to 0 in the
topological vector space (Lp) with all its derivatives.

11.2.1 Preliminaries on the space DL1

Lemma. Let f be a real C1-function defined on the non-negative real line R≥
and of class L1 with its derivative. Then, the series

∑
(f(k))∞k=1 is absolutely

convergent, and moreover we have the following inequality for its sum

∞∑
k=1

|f(k)| ≤ ‖f‖L1 + ‖f ′‖L1 .
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Proof. Let k be a positive integer, and let mk be the minimum point of |f |
on the interval [k − 1, k]. For every k, denoted by l the Lebesgue measure on
R, we have

|f(mk)| l([k − 1, k]) ≤
∫ k

k−1

|f | dl.

Hence, for every n ≥ 1,

n∑
k=1

|f(mk)| ≤
n∑
k=1

∫ k

k−1

|f | dl =

∫ n

0

|f | dl.

This implies that the series ∑
(|f(mk)|)∞k=1

is convergent, and that

∞∑
k=1

|f(mk)| ≤ lim
n→∞

∫ n

0

|f | dl =

=

∫ +∞

0

|f | dl =

= ‖f‖L1 .

On the other hand, by the Torricelli-Barrow theorem, for every k,

f(k)− f(mk) =

∫ k

mk

f ′dl,

and so

|f(k)| =

∣∣∣∣∣f(mk) +

∫ k

mk

f ′dl

∣∣∣∣∣ ≤
≤ |f(mk)|+

∣∣∣∣∣
∫ k

mk

f ′dl

∣∣∣∣∣ ≤
≤ |f(mk)|+

∫ k

k−1

|f ′| dl,

by this inequality, the series
∑

(|f(k)|)∞k=1 converges, and moreover

∞∑
k=1

|f(k)| ≤
∞∑
k=1

|f(mk)|+
∞∑
k=1

∫ k

k−1

|f ′| dl

≤ ‖f‖L1 + ‖f ′‖L1 ,

that is the conclusion. �



11.3. SUMS OF SERIES AS SUPERPOSITIONS 129

Lemma. The distribution
∑∞
i=1 δi belongs to the space (DL1)′.

Proof. We have to prove that the distribution
∑∞
i=1 δi it is a continuous

form on the space (DL1). Let f = (fj)j∈J be a sequence convergent to the
zero-function in (DL1), then f converges to the zero-function in the topological
vector space (L1) with all its derivatives. We have to prove that the sequence(( ∞∑

i=1

δi

)
(fj)

)
j∈J

is convergent to 0. By the above lemma we have

∞∑
k=1

|fj(k)| ≤ ‖fj‖L1 +
∥∥f ′j∥∥L1 ,

and, since f converges to the zero-function in (DL1), the right hand converges
to 0, implying the claim. �

Remark. Let us see an alternative proof of the second lemma. It is simple
to see that every delta-distribution belongs to (DL1), and thus every finite linear
combination of delta-distributions. So the distribution

∑∞
i=1 δi is the punctual

limit of a sequence of continuous linear forms on the space (DL1). Since (DL1)
is barreled (it is a Fréchet space) the Banach-Steinhaus theorem holds true, and
we conclude, once more, that

∑∞
i=1 δi is a continuous linear form on (DL1).

When p = +∞ the space DLp is denoted also by Bn. Since a continuous
function belonging to L∞ is bounded, Bn is the vector space of the smooth
functions that are bounded with all their derivatives. Moreover, Bon denotes
the subspace of Bn containing the function vanishing at infinite with all their
derivatives; (Bon) shall be the associated topological vector space endowed with
the topology induced by (Bn). It is clear that Sn is included in Bon, and it is
also evident that the topological vector space (Sn) is continuously imbedded in
the space (Bon), consequently (Bon)′ ⊂ S ′n.

11.3 Sums of series as superpositions

Let us see the sum of a convergent series of tempered distribution as a super-
position.

Theorem. Let
∑

(uk)
∞
k=1 be a weakly∗ convergent series in S ′n. Then,

there is a B
o
n family, more precisely a DL1 family, which contains the series as

sub-family.
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Proof. Let
∑

(uk)
∞
k=1 be such series and assume it is weakly∗ convergent to

a tempered distribution u∗. Consider a sequence f = (fi)
∞
i=1 of functions in D1

such that fi = τi(f0), for every i, where f0 a smooth function in D1 with the
following properties:

• f0(0) = 1;

• f0(x) ∈ [0, 1], for every real x;

• suppf0 = B(0, 1/2).

Define the family v in S ′n as follows

vp := σ(S′n)
∞∑
i=1

fi(p)ui,

for every real number p. Note that the sequence of partial sums of the series∑
(fi(p)ui)

∞
i=1 is definitely constant, and then the series is σ(S ′n)-convergent.

Moreover, vj = uj , for every natural j. We have to prove that, if g is a test
function of class Sn, then v(g) is of class Bon. Let g be a test function in Sn,
then for any multi-index p there is an integer j in the closed ball B(p, 1/2) such
that

v(g)(p) = vp(g) =

=

∞∑
i=1

fi(p)ui(g) =

= uj(g)fj(p).

So the function

v(g) =

∞∑
i=1

ui(g)fi

is smooth and vanishing at infinity with all its derivatives. In fact, being the
numerical series

∑
(ui(g))∞i=1 convergent, for every test function g, we have

lim
i→∞

|ui(g)| = 0,

hence

lim
p→∞

|v(g)(p)| = lim
j→∞

|uj(g)fj | ≤

≤ max f0 · lim
i→∞

|ui(g)| =

= 0.

Analogously, for every natural k, we have

lim
p→∞

∣∣∣v(g)(k)(p)
∣∣∣ = lim

j→∞

∣∣∣uj(g)f
(k)
j

∣∣∣ ≤
≤ max f

(k)
0 · lim

i→∞
|ui(g)| =

= 0.
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Hence v(g) belongs to Bo1. To prove that v is of class DL1 , note that, for every
integer k ≥ 0, ∣∣∣∣∫

R
v(g)(k)dl

∣∣∣∣ =

∣∣∣∣∣
∫
R

∞∑
i=1

ui(g)f
(k)
i dl

∣∣∣∣∣ =

=

∣∣∣∣∣
∞∑
i=1

ui(g)

∫
R
f

(k)
i dl

∣∣∣∣∣ =

=

∣∣∣∣∣
∞∑
i=1

ui(g)

∣∣∣∣∣
∣∣∣∣∫

R
f

(k)
0 dl

∣∣∣∣ ,
thus v(g) is smooth and of class L1 with all its derivatives, then, following
Schwartz, v(g) belongs to the space DL1 . �

Corollary. Let
∑

(uk)
∞
k=1 be a weakly* convergent series in S ′n to a

tempered distribution u∗. Then u∗ is a superposition of a DL1-family. As a
consequence, each DL1-closed subset of S ′n is sequentially weakly∗ closed.

Proof. Consider the series of distributions
∑

(δi)
∞
i=1 in (DL1)′ ; it is conver-

gent in (DL1)′. In fact, for every s in DL1 , the series
∑

(s(i))ni=1 is convergent,
and we have

∞∑
i=1

δi(s) =

∞∑
i=1

s(i).

Let v be the family of class DL1 built in the proof of the above theorem, we
obtain (∫

R

∞∑
i=1

δiv

)
(g) =

( ∞∑
i=1

δi

)
(v(g)) =

=

∞∑
i=1

vi(g) =

=

∞∑
i=1

∞∑
j=1

uj(g)fj(i) =

=

∞∑
i=1

ui(g) =

= u∗(g).

Hence u∗ is a DL1-superposition of v. Now, a set F is sequentially weakly∗

closed if and only if contains the sum of every series in F sequentially weakly∗

convergent, and this concludes the proof. �

Corollary. A subset of the space S ′n is DL1-closed if and only if it is se-
quentially weakly∗ closed.
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Proof. To prove that every weakly* closed subset F of S ′n is DL1 closed it
is sufficient to note that the linear hull of the Dirac family is weakly* dense in
D′L1 , indeed the space (DL1) is continuously imbedded in (Sn) and so the linear
hull of the Dirac family is dense in (DL1)′ that is a subspace of (S ′n). At this
point applying (as usual) the Banach-Steinhaus theorem we conclude that every
superposition of a DL1 -family is in F . �

• Let us prove that there are sequences whose associated series are weakly*
convergent but which are not rapidly decreasing at infinity.

Proof. Let u be a tempered distribution and let consider the sequence

v = ((1/i2)u)∞i=1.

The sequence v has a series weakly* convergent but v is not of class S. Indeed, let
g be a test function, then the image v(g) is the sequence ((1/i2)u(g))∞i=1 that is
not rapidly decreasing at infinity. Now this sequence cannot be a subsequence of
an S family, since every subsequence of S families is a rapidly decreasing sequence.
�
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Chapter 12

SLinear operators

12.1 Introduction

Let X and Y be two vector spaces on the field K (the real field R or the complex
one C). A function f from X into Y is called linear if, for any two points x, y
of the space X and for each scalar λ ∈ K, the equality

f(λx+ y) = λf (x) + f(y),

holds true. Equivalently, a mapping f from X into Y is linear if and only if
for every integer k ∈ N, for any k-tuple x = (xi)

k
i=1 of points of X and for any

k-tuple of scalars λ = (λi)
k
i=1 of K, setting

∑
kλx :=

k∑
i=1

λixi

and f (x) := (f (xi))
k
i=1, we have

f
(∑

kλx
)

=
∑

kλf (x) ,

135
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i.e., the image of the λ-linear combination of a family x is the λ-linear combina-
tion of the image f(x) of the family x under the function f ; in indexed notation,
we have

f

(
k∑
i=1

λixi

)
=

k∑
i=1

λif (xi) .

The aim of this chapter is to extend the last definition to the class of S families of
tempered distributions indexed by the Euclidean space Rk, using, as coefficient
systems, locally integrable maps from Rk to K and, more generally, Schwartz
tempered distributions from Rk to K (which, as we already have seen, are so
viewed as “non-locally defined” families in K indexed by Rk). If v = (vi)i∈Rk is
an S family in S ′n, i.e. if for every test function φ ∈ Sn, the function

v (φ) : Rk → K : i 7→ vi (φ) ,

belongs to Sk, and if λ ∈ S ′k is a tempered distribution defined on the index set
of the family v, we put ∫

Rk

λv := λ ◦ v̂ = t (v̂) (λ) ,

where t (v̂) is the transpose of the operator

v̂ : Sn → Sk : φ 7→ v (φ) .

The idea is very natural:

• an operator L : S ′n → S ′m is said S linear if, for every integer k ∈ N, for
every distribution λ ∈ S ′k and for every v ∈ S

(
Rk,S ′n

)
, the image of the

S family v is an S family and the equality

L

(∫
Rk

λv

)
=

∫
Rk

λL (v) ,

holds true.

12.2 SOperators

First of all we have to act on a family of tempered distribution by means of
operators defined on spaces of tempered distribution, the definition is absolutely
straightforward.

Definition (image of a family of distributions). Let W be a subset of
the space S ′n, let A : W → S ′m be an operator (not necessarily linear) and let
v = (vp)p∈Rk be a family of tempered distributions in the subset W , i.e. a family
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with trace set {vp}p∈Rk contained in the subset W . The image of the family
v under the operator A is by definition the family A(v) in S ′m defined
by

A(v) = (A(vp))p∈Rk ,

i.e., the family A(v) such that, for all index p ∈ Rk, we have A(v)p = A(vp).

We can read the above definition saying that:

• the image under an operator of a family of vectors is the family of the
images of vectors.

Definition (operator of class S). Let W be a subset of the space S ′n and
let L : W → S ′m be an operator (not necessarily linear). The operator L is
said an Soperator or operator of class S if, for each natural k and for each
family v ∈ S( Rk,S ′n) such that the trace set {vp}p∈Rk is contained in W , the
image family L(v) is an S family (that is belonging to the space S(Rk,S ′m)).

We can read the above definition as follows:

• An operator L is of class S if the image by L of an S family is an S family
too.

12.3 SOperators defined on S ′n

The following property proves that the class of linear S operators defined on
the entire space of tempered distribution contains the class of weakly* contin-
uous linear operators on that space, indeed we shall see that the two class are
coincident.

Theorem (the transpose of an operator). The transpose of a weakly
continuous linear operator defined among two spaces of Schwartz test functions
is an Soperator. Consequently, every weakly* continuous linear operator defined
among two spaces of tempered distributions is an Soperator.

Proof. Let A : Sn → Sm be a continuous linear operator with respect to the
pair of weak topologies (σ (Sn) , σ (Sm)). Then, the operator A is transposable
(i.e., for every tempered distribution a ∈ S ′m, the functional a ◦ A lies in the
space S ′n) and its transpose is (by definition) the operator

tA : S ′m → S ′n : a 7→ a ◦A.
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Let v ∈ S(Rk,S ′n) be an S family, we have, by definition of image of a family,

tA (v)p = tA(vp),

and hence we deduce

tA (v) (φ) (p) = tA (v)p (φ)

= tA(vp) (φ)

= vp (A (φ))

= v (A (φ)) (p),

so, taking into account that v is an S family, we deduce that the image

tA (v) (φ) = v̂ (A (φ))

belongs to the space Sk. Concluding, the image family tA (v) is a family of class
S belonging to the space S(Rk,S ′n), and thus the operator tA, sending S families
into S families, is an S-operator. �

Application. Let L : S ′n → S ′n be a differential operator with constant
coefficients and let v be an S family in the space S ′n. Then L(v) is an S family,
in fact L is the transpose of some differential operator on the space Sn . For
instance, the Dirac family (δx)x∈Rn is obviously an S family, and so the family

of i-th derivatives (δ
(i)
x )x∈Rn is an S family, for every multi-index i.

12.4 Characterization of Soperators on S ′n

The following property proves that the class of linear S operators defined on
the entire space of tempered distribution coincides with the class of weakly*
continuous linear operators.

Theorem (characterization of Soperators). A linear operator defined
among two spaces of tempered distributions is an Soperator if and only if it is
weakly* continuous.

Proof. We have already proved that every continuous linear operator defined
on a space of tempered distribution is an Soperator. Vice versa, if L : S ′n → S ′m
is a linear Soperator, then the image of the Dirac family L(δ) is a family of class
S. So for every test function h in S ′m, the image of the function h by the family
L(δ) is a family of class S (belonging to the space S ′n), namely the function

L(δ)(h) : x 7→ L(δx)(h),
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so the operator L is weakly topologically transposable, and its transpose is
defined by

tL : Sm → Sn : h 7→ L(δ)(h),

or, equivalently, defined by the classic transpose definition〈
u,t L(h)

〉
n

= 〈L(u), h〉m ,

for every tempered distribution u in the space S ′n and for every test function h
in the space Sm. Since every weak topologically transposable operator is weakly
continuous we conclude that every linear Soperator is weakly continuous. �

12.5 SLinear operators on S ′n

In this section we shall introduce the main concept of the chapter.

Definition (S linear operators on the entire S ′n). Let L : S ′n → S ′m
be an Soperator (not necessarily linear). The operator L is called S linear
operator if, for each positive integer k, for each family v ∈ S(Rk,S ′n) and for
every tempered distribution a in S ′k, the equality

L

(∫
Rk

av

)
=

∫
Rk

aL(v)

holds true.

Property (linearity of the S linear operators). An S linear operator is
linear.

Proof. Indeed, in the conditions of the above definition, for each couple of
scalars b, c and any couple of tempered distributions in the space S ′n, if δ is the
Dirac basis of the space S ′n, we have

L(au+ bw) = L

(∫
Rk

(au+ bw)δ

)
=

=

∫
Rk

(au+ bw)L(δ) =

= a

∫
Rk

uL(δ) + b

∫
Rk

wL(δ) =

= aL

(∫
Rk

uδ

)
+ bL

(∫
Rk

wδ

)
=

= aL(u) + bL(w),

as we desired. �

But we will see more than this preliminary remark about S linear operators.



140 CHAPTER 12. SLINEAR OPERATORS

12.6 Examples of Slinear operators

In this section we propose two important examples of S linear operators. We
note that the first is a particular case of the second one, and indeed we shall see
that every S linear operator defined on the entire S ′n is of the type presented in
the second example.

12.6.1 The superposition operator of an Sfamily

Recall that if v ∈ s(Rk,S ′m) is any family of tempered distributions indexed
by an Euclidean space Rk and if w ∈ S(Rm,S ′n) is any S family of tempered
distributions, the family in S ′n indexed by Rk and defined by∫

Rm

vw :=

(∫
Rm

vpw

)
p∈Rk

,

is called the superposition of the S family w with respect to the family v.

We have already proved that, if the family v belongs to the space S(Rk,S ′m)
then the superposition

∫
Rm vw belongs to the space S(Rk, S ′n) and the op-

erator associated with this superposition is the composition of the operators
associated with the two families v and w , precisely we have(∫

Rm

vw

)∧
= v̂ ◦ ŵ.

In this case, sometimes, it is also convenient to denote the superposition∫
Rm

vw

by the product notation v.w and we call it also the S product of the family v
by the family w.

Proposition. Let w ∈ S(Rm,S ′n) be an S family of distributions and let
L : S ′m → S ′n be the superposition operator of the family w, defined by

L(a) =

∫
Rm

aw,

for all tempered distribution a ∈ S ′m. Then, the operator L is an S linear
operator.

Proof. The operator L is an Soperator, indeed we know that L is the trans-
pose of the continuous linear operator associated with v and then it is weakly*
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continuous. But we want to see this fact directly. If v ∈ S(Rk,S ′m) is an S family
then its image by the operator L is L (v) = v.w and the product of two S families
is an S family. Let a ∈ S ′k be a tempered distribution and let v ∈ S(Rk,S ′m) be
an S family, we have

L

(∫
Rk

av

)
=

∫
Rm

(∫
Rk

av

)
w =

=

∫
Rk

a

(∫
Rm

vw

)
=

=

∫
Rk

aL(v).

Note in fact that, for each index p ∈ Rk, we have

L(v)p = L(vp) =

=

∫
Rm

vpw =

=

(∫
Rm

vw

)
p

,

and the proof is completed. �

12.6.2 Transpose operators

Lemma (the image under a transpose operator). Let B ∈ L (Sn,Sm) be
a linear continuous operator and let v ∈ S(Rk,S ′m) be an S family. Then, the
image of the family v by the transpose operator tB is the product of the family
v by the family generated by the operator B, in symbol we have

tB(v) =

∫
Rk

vB∨,

so in particular, the transpose operator tB is an Soperator.

Proof. For each index p ∈ Rk, we have(∫
Rm

vB∨
)
p

=

∫
Rm

vpB
∨ =

= vp ◦ (B∨)∧ =

= vp ◦B =

= tB(vp) =

= tB(v)(p),
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and hence ∫
Rm

vB∨ = tB(v),

as we desired. �

Theorem (S linearity of a transpose operator). Let B ∈ L(Sn,Sm) be
a linear and continuous operator and let v ∈ S(Rk,S ′m) be an S family. Then,
for each tempered coefficient system a ∈ S ′k, we have

tB

(∫
Rk

av

)
=

∫
Rk

a tB(v).

Proof. We have

tB

(∫
Rk

av

)
=

(∫
Rk

av

)
◦B =

= (a ◦ v̂) ◦B =

= a ◦ (v̂ ◦B) =

=

∫
Rk

a(v̂ ◦B)∨ =

=

∫
Rk

a(

∫
Rm

vB∨) =

=

∫
Rk

a tB(v),

as we desired. �

Application (derivatives of a distribution). As a simple application,
we prove the formula

u′ =

∫
R
uδ′,

where δ′ is the S family in S ′1 defined by δ′ = (δ′p)p∈R. Let δ be the Dirac family
of the space S ′1, then for each tempered distribution u ∈ S ′1, we have

u =

∫
R
uδ,

and consequently

u′ = ∂

(∫
R
uδ

)
=

=

∫
R
u∂(δ) =

=

∫
R
uδ′.
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More generally, in the space S ′n, we have

L(u) =

∫
R
uL(δ),

for every differential operator L, and every tempered distribution u.

12.7 Characterization of Slinear operators

Now, we can show the true nature of the S linear operators defined on S ′n.

Theorem (characterization of S linearity). Let L : S ′n → S ′m be an
operator. Then, L is S-linear if and only if there exists a linear and continuous
operator B ∈ L (Sm,Sn) such that L = t (B).

Proof. Sufficiency. Follows from the above theorem. Necessity. Let δ be
the Dirac family in the space S ′n, we have

L (u) = L

(∫
Rn

uδ

)
=

=

∫
Rn

uL (δ) =

= t
(
L (δ)

∧)
(u) ,

so
L = t

(
L (δ)

∧)
,

as we desire. �

Before to give the last complete characterization of S linear operators, we
recall the following classical definition from Linear Functional Analysis.

Definition (of transposable operator). A linear operator L : S ′n → S ′m
is said to be transposable with respect to the canonical pairings (Sn,S ′n)
and (Sm,S ′m) if and only if there exists a linear continuous operator B ∈
L(Sm,Sn) such that L = t (B).

Recalling that the operator L is weakly continuous if and only if it is strongly
continuous if and only if it is transposable, we derive the following definitive
characterization.

Theorem (characterization of S linearity). Let L : S ′n → S ′m be a
operator. Then, the following assertions are equivalent

1) the operator L is S -linear;
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2) there exists an operator B ∈ L (Sm,Sn) such that L = t (B);

3) the operator L is linear and weakly continuous;

4) the operator L is linear and strongly continuous;

5) the operator L is linear and transposable;

6) the operator L is linear and of class S.



Chapter 13

Applications of Slinear
operators

13.1 SBases of subspaces

The preceding theorem allow us to state and prove some definitive results about
the existence of Sbases for a subspace of S ′n.

Theorem. Let V be a subspace of S ′n. Then

1) the subspace V has a system of Sgenerators if and only if there is an
S linear operator A : S ′m → S ′n, for some integer m, such that

A(S ′m) = V ;

2) the subspace V has an Sbasis if and only if there is an injective S linear
operator A : S ′m → S ′n, for some integer m, such that

A(S ′m) = V.

145
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Proof. 1) It’s obvious, because every S family v univocally determines a
transposable operator v̂ : Sn → Sm that is univocally determined by the S linear
operator tv̂ : S ′m → S ′n, and vice versa. Moreover, for every S family v, we have

Sspan (v) = tv̂(S ′m).

2) Remember that

tv̂(a) =

∫
Rm

av.

Then the conclusion follows immediately from the definition of S linear indepen-
dence. �

The preceding result can be reread in the following way.

Theorem. Let V be a subspace of S ′n. Then

1) the subspace V has a system of Sgenerators if and only if there is a
continuous linear operator A : Sn → Sm, for some integer m, such that

tA(S ′m) = V ;

2) the subspace V has an Sbasis if and only if there is a continuous linear
operator A : Sn → Sm, for some integer m, such that its image imA is
dense in Sm and

tA(S ′m) = V.

13.2 SBases of closed subspaces

By the preceding and by the Dieudonné-Schwartz theorem (see later), it follows

Theorem. Let V be a weakly* closed subspace of S ′n. Then

1) the subspace V has a system of Sgenerators if and only if there is a strict
morphism A : S ′m → S ′n, for some m, such that

A(S ′m) = V ;

2) the subspace V has an Sbasis if and only if there is an injective strict
morphism A : S ′m → S ′n, for some m, such that

A(S ′m) = V.

Corollary. Let V be a weakly* closed subspace of S ′n. Then
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1) the subspace V has a system of Sgenerators if and only if there is a
surjective strict morphism L : S ′m → V , for some integer m;

2) the subspace V has an Sbasis if and only if it is topologically isomorph
with some space S ′m; that is if and only if there a topological isomorphism
L : S ′m → V , for some integer m.

We recall the classical results we have used.

Theorem (Dieudonné-Schwartz). Let E and F be two Fréchet spaces
with topologies TE and TF respectively, E′ and F ′ their topological duals, and
let u : E → F be a linear and continuous map. Then the following conditions
are equivalent:

1) the operator u is a strict morphism for the topologies TE and TF ;

2) the operator u is a strict morphism for the weak topologies σ (E,E′) and
σ (F, F ′);

3) the image u (E) is closed in F ;

4) the transpose operator tu is a strict morphism for the weak* topologies
σ (F ′, F ) and σ (E′, E);

5) the image tu (F ′) is closed in the dual E′ for the weak* topology
σ (E′, E).

Corollary. Let E and F be two Fréchet spaces, E′ and F ′ their topological
duals, and u : E → F be a linear continuous map. Then,

1) the operator u is an injective strict morphism if and only if its transpose
operator is surjective, i.e. if and only if

tu (F ′) = E′;

2) the operator u is a surjective strict morphism if and only if the image
tu (F ′) is closed in E′ for the weak* topology σ (E′, E) and the transpose
tu is injective;

3) the operator u is an isomorphism if and only if its transpose operator tu
is an isomorphism for the weak* topologies σ (F ′, F ) and σ (E′, E).
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13.3 SBases of barreled subspaces

The Pták open mapping theorem allows us to state and prove some definitive
results about the existence of Sbases for a barreled subspace of S ′n.

Theorem. Let V be a barreled subspace of S ′n. Then

1) the subspace V has a system of Sgenerators if and only if there is a
surjective strict morphism L : S ′m → V , for some integer m;

2) the subspace V has an Sbasis if and only if it is topologically isomorph
with some space S ′m; that is if and only if there a topological isomorphism
L : S ′m → V , for some integer m.

Proof. Indeed, the Pták open mapping theorem affirms that if E is a Pták
space and F a barreled space, then every surjective continuous linear operator
of E onto F is a topological homomorphism. Now, every space S ′m is a Pták
space, since it is the dual of a Fréchet space and the subspace V is barreled
by assumption. Let v be a system of Sgenerators of the subspace V , then the
corresponding superposition operator A is a linear continuous operator of S ′m
into S ′n whose image is V . Let L be the codomain restriction of the operator A
to the subspace V , it is a surjective continuous linear operator of the space S ′m
onto V ; applying the Pták theorem, we conclude that L is a surjective strict
morphism. The second assertion is an obvious consequence of the first one. �

13.4 Superpositions of Slinear operators

In this section we desire to define the superposition of a continuous family
of continuous linear operators among two distribution spaces. Let us start
immediately with the action of a family of operators on a distribution.

Definition (image of a distribution under a family of operators).
Let A be a family of weakly* continuous linear operators from the space S ′n into
the space S ′m indexed by the k-dimensional real Euclidean space Rk. For
every tempered distribution u in S ′n, we define the action of the family A on
the distribution u as the family

A(u) := (Aq(u))q∈Rk

of tempered distributions in S ′m. In other terms, the image of a tempered dis-
tribution by a family of operators if the family of the images of the distribution
by any single operator of the family.



13.4. SUPERPOSITIONS OF SLINEAR OPERATORS 149

Definition (family of operators of class S). We say that the family A
of operators is a family of class S if the family of distribution A(u) is of class
S, for any u in S ′n.

Definition (superpositions of an Sfamily of operators). If A is a
family of operators in the space L(S ′n,S ′m) indexed by Rk and of class S, we
can consider the superposition in S ′m∫

Rk

aA(u),

for every distribution u in S ′n and every distribution a in S ′k, this superposition,
we repeat, is a distribution belonging to the space S ′m. So we have constructed
an operator, denoted by ∫

Rk

aA,

from the space S ′n into S ′m - that we say the superposition of the family A
by the system of coefficients a - defined by(∫

Rk

aA

)
(u) =

∫
Rk

aA(u),

for any distribution u in S ′n.

Is this operator a linear continuous operator? Let us see that it is indeed an
S linear operator.

Theorem. Let A be a family of operators in the space L(S ′n,S ′m) indexed
by Rk and of class S, and let a be a distribution in S ′k. Then, the superposition∫

Rk

aA

is a linear continuous operator and (equivalently) an S linear operator.

Proof. Let δ be the Dirac basis of the space S ′k and let u be a vector of S ′n.
For any index q in Rk, we have

(

∫
Rk

δqA)(u) =

∫
Rk

δqA(u) =

= A(u)q =

= Aq(u),

so the superposition
∫
Rk δqA is the operator Aq (as was already clear), which

is a continuous operator. Now it is also clear that the superposition
∫
Rk aA of

the family A with respect to a coefficient distribution in the linear hull span(δ)
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is an operator in the linear hull span(A), hence a linear operator. Since every
distribution a in the space S ′k, is the weak* limit (and then a strong limit too)
of a sequence d in span(δ), we have that, for any u in S ′n , we have

(β(S′n),β(S′m)) lim
k→∞

(

∫
Rk

dnA)(u) = (β(S′n),β(S′m)) lim
k→∞

∫
Rk

dnA(u) =

=

∫
Rk

β(S′k) lim
k→∞

dn A(u) =

=

∫
Rk

aA(u),

so that the linear operator
∫
Rk aA is a pointwise limit (with respect to the pair of

strong topologies (β(S ′n), β(S ′m))) of a sequence of continuous linear operators,
applying the Banach-Steinhaus theorem (we can since it works when the first
space of the operators is barreled, taking into account that strong duals of
Montel spaces are Montel spaces, that Montel spaces are barreled and that the
Schwartz space Sn is a Montel space) we conclude that this operator must be
continuous. �

13.5 SLinear operators and Sbases

Proposition. Let A : S ′n → S ′m be an S linear operator. Then A sends
S linearly dependent families into S linearly dependent families. Consequently, if
the image of an S family is S linearly independent the S family must be S linearly
independent too.

Proof. Let v be an S linearly dependent family indexed by Rk, then there
exists a nonzero distribution a such that∫

Rk

av = 0S′n ,

applying the linear operator A we have

0S′m = A(0S′n) =

= A(

∫
Rk

av) =

=

∫
Rk

aA(v),

so the family A(v) is S linearly dependent too. �

Theorem (basic properties of S linear operators). We have the follow-
ing results:
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1) a surjective S linear operator transforms Sgenerating systems of its do-
main space into Sgenerating systems of its codomain space;

2) an injective S linear operator sends S linearly independent family into
S linearly independent family;

3) a bijective S linear operator transforms Sbases into Sbases;

4) if two S linear operators defined among the same pair of spaces coincides
on an S basis, of their common domain, then they coincide on the
entire domain space;

5) if v is an Sbasis of a space S ′n and w is an S family of a space S ′m indexed
on the same index-set of the family v, then there exists and it is unique
an S linear operator sending v into w.

13.6 Invertibility of Slinear operators

Theorem (invertibility of S linear operators). We have the following re-
sults:

1) the inverse of a bijective S linear operator is an S linear operator too;

2) an S linear operator A has an S linear left inverse if and only if A is
injective, its image A (E) is weakly* closed and A(E) has a topological
supplement;

3) an S linear operator L has an S linear right inverse if and only if it is
surjective and its kernel ker (L) has a topological supplement. Namely, if
there exists a continuous right inverse R of the surjection L, a topological
supplement of the kernel of L is the image of R.

Proof. (1) Let us prove this one. If A : S ′n → S ′m is such bijective linear con-
tinuous operator then its transpose tA is a bijective continuous operator from
the Fréchet space (Sm) onto the Fréchet space (Sn), by the Banach homomor-
phism theorem for Fréchet spaces this transpose is a topological isomorphism
and then also A will be a topological homomorphism, so the inverse of A is
continuous and then an S linear operator. �
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13.7 SLinear operators on subspaces

We recall that an Soperator is a not necessarily linear nor continuous operator
sending any S family in its domain into another S family (of its image obviously).

Definition (of S linear operator on subspaces). Let V be an Sclosed
subspace of the space S ′n and let L : V → S ′m be an Soperator. We say that
the operator L is an S linear operator if, for each positive integer k, for any
tempered distribution a ∈ S ′k and for each S family v ∈ S(Rk,S ′n) in V ,
i.e. whose image imv is contained in the subspace V , the equality

L

(∫
Rk

av

)
=

∫
Rk

aL(v),

holds.

As in the case of S linear operators defined on the entire space of tempered
distribution, the S linear operators defined on subspaces are linear, but the proof
is of another nature and requires the Sconnectedness of the subspaces of the
space of tempered distributions.

Theorem (linearity of S linear operators on subspaces). An S linear
operator defined on a subspace V of the space S ′n is linear, as in the case of
S linear operators defined on the entire space S ′n.

Proof. Indeed, note that a subspace of S ′n is star-shaped at the origin and
so it is Sconnected. Then, let x, y be any two points of the subspace V and a, b
two scalars. Let v be an S family indexed by the real line such that v0 = x and
v1 = y (it exists by Sconnectedness), we have

L(ax+ by) = L

(
a

∫
R
δ0v + b

∫
R
δ1v

)
=

= L

(∫
R
(aδ0 + bδ1)v

)
=

=

∫
R

(aδ0 + bδ1)L(v) =

= aL(v0) + bL(v1),

so L is linear, as we desired. �



13.8. COMPOSITIONS OF SLINEAR OPERATORS 153

13.8 Compositions of Slinear operators

The composition of two S linear operators (when it exists is S linear).

Theorem. Consider two Sclosed subspace V and W of S ′n and S ′m respec-
tively and two S linear operators A : V → S ′m and B : W → S ′k such that A(V )
is contained in W . Then the composition BA is an S linear operator.

Proof. Indeed, if v is an S family in V , since A is an Soperator, then the image
family A(v) is an S family in W ; since B is an Soperator the image B(A(v)) is an
S family and consequently the composition operator BA is an Soperator. Now
we have

BA

(∫
Rh

av

)
= B

(
A

(∫
Rh

av

))
=

= B

(∫
Rh

aA(v)

)
=

=

∫
Rh

aB(A(v)) =

=

∫
Rh

aBA(v),

so that the composition BA is also an S linear operator, as we claimed. �
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Chapter 14

SHomomorphisms

In this chapter we study a condition sufficient to guarantee that the S linear
hull of an S family is S closed, and consequently that this S linear hull is the
smallest Sclosed subspace containing the family, i.e., the Sclosed linear hull of
the family. However, the concept of Shomomorphism is interesting per se and
it is necessary to study the S linearity of the coordinate operator and for the
existence of Green’s families of an operator.

155
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14.1 SHomomorphisms

We recall that:

• if V andW are two subspaces of the two spaces S ′n and S ′m, respectively, for
every positive integer k and for every family v = (vi)i∈Rk in the subspace
V , the image of the family v under an operator A : V → W is the family
(in the subspace W ) defined by

A(v) := (A(vi))i∈Rk .

• an Soperator is an operator (not necessarily linear nor continuous), defined
among two subspaces of spaces of tempered distributions, which sends
S families into S families;

• we proved that a linear Soperator defined on an entire space of tem-
pered distributions is a weakly* continuous operator and (equivalently)
and S linear operator.

Consider an Soperator A. If v is an S family in the domain of A, then its
image A(v) is an S family in the image of A; but, if we consider an S family w
in the image of the operator A, the question is:

• is it possible to find an S family v in the domain of A whose image is the
family w?

This problem is a problem of smooth choice (in the sense of the Choice
Axiom); let us explain. If w is a family in the image of A , indexed by some
Euclidean space I, then, for every index p in I, there is a maximal (with respect
to the inclusion) subset Vp of the domain of A whose image is the singleton
{wp}, namely the anti-image A−(wp) of the element wp. We so find an ordered
family of subsets of the domain of the operator A indexed by the set I, precisely
the family V = (Vp)p∈I . We know that, by the axiom of choice, there exists
a family v indexed by I such that vp belongs to Vp, for every index p in I -
sometimes such families are called choice families of the family V , or simple
choice of the family V - the question is:

• is it possible to find an Schoice of the family V ?

As we shall see later, the answer in general is negative, therefore we need
the following definition.

Definition (of Shomomorphism). Let A : S ′m → S ′n be an Soperator.
We say the operator A an Shomomorphism if, for every family u, indexed
by some Euclidean space, in the image A(S ′m) there exists an S family a in the
space S ′m such that its image under the operator A is the family u. Analogous
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definition we give for an operator defined among two subspaces of spaces of
tempered distributions.

Motivation. A first motivation for introducing this concept is that, as we
shall see, any Shomomorphism is S closed (i.e., the operator A sends Sclosed
subsets into Sclosed subsets).

Remark. Every Shomomorphism is an S operator and then, if it is linear
and defined on the whole of a space of tempered distributions, it is a weakly*
continuous operator.

14.2 Injective linear Shomomorphisms

Let us see a characterization of injective linear S homomorphism.

Theorem. Let A : S ′n → S ′m be a linear operator. Then, the following two
conditions are equivalent:

• the operator A is an injective linear Shomomorphism;

• for every family v in the space S ′n, indexed by some Euclidean space, the
image of the family v under the operator A is an S family if and only if v
is an S family.

Proof. (⇒) Since the operator A is injective, then for every family w in
the image of the operator, indexed by an Euclidean space I, there is only one
family v in the domain of the operator such that A(v) = w. By definition
of Shomomorphism, this family v must be an S family, since there is at least
one S choice for the family of anti-image (A−(wp))p∈I . (⇐ ) Assume that the
linear operator A is not injective. It follows that there is a nonzero distribution
u belonging to the kernel of A. Let now v the constant family with unique
element u, the family v is not an S family but its image is the zero family, which
is an S family, and this goes against our assumption that every family having an
S image must be an S family. �

Theorem. Let A : S ′n → S ′m be an S linear operator. Assume that the
operator A has a (surjective) linear continuous left inverse, that is assume that
there exists a continuous linear operator L : S ′m → S ′n such that

L ◦A = (.)S′n .

Then, the operator A is an injective linear Shomomorphism.
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Proof. Let L be a continuous left inverse of the S linear operator A. The
operator A is injective since it has a right inverse. Using the above characteri-
zation, we have only to prove that, if v is any family in the domain of A, and
if its image A(v) is of class S, then v is of class S too. Indeed, let v be such a
family with image A(v) of class S. Since L is a continuous operator defined on
the whole of the space S ′m, it is an Soperator and hence the image L(A(v)) is
a family of class S; but the image L(A(v)) is exactly the family v and so the
condition of Shomomorphism is verified. �

14.3 Surjective linear Shomomorphisms

Let us see a characterization of surjective linear S homomorphism.

Theorem. Let A : S ′n → S ′m be an S linear operator. Then, the following
two conditions are equivalent:

• the operator A is a surjective linear Shomomorphism;

• the operator A has a (injective) linear continuous right inverse, that is
there is a continuous linear operator R : S ′m → S ′n such that

A ◦R = (.)S′m .

Proof. (⇒) Since the operator A is surjective, the Dirac family µ of S ′m is in
the image of A. Since the operator A is an Shomomorphism there is an S family
G in S ′n (indexed by Rm since µ is indexed by Rm) such that A(G) = µ. Consider
the superposition operator R of the family G, for every tempered distribution
a in S ′m, we have

A ◦
∫
Rk

(., G)(a) = A

(∫
Rk

aG

)
=

=

∫
Rk

aA(G) =

=

∫
Rk

aµ =

= a,

and this means exactly that
AR = (.)S′m .

(⇐) Vice versa. Let R be a continuous right inverse of the operator A. The
operator A is surjective since it has a right inverse. We have only to prove
that, if w is any S family in the image of A, there exists a reciprocal image of w
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which is of class S. Indeed, let w be such a family and let R(w) be its image
by the inverse R. Since R is a continuous operator defined on the whole of the
space S ′m, it is an Soperator and hence the image R(w) in a family of class S;
moreover, the image A(R(w)) is w and so the condition of Shomomorphism is
verified. �

14.4 SStable families

Definition (of Sstable family). We say that an S family v, indexed by some
Rm and in the space S ′n, is Sstable if, for every family w, indexed by some

Euclidean space Rk and in the S linear hull of v, there is an S family a = (ai)i∈Rk

in S ′m such that

w =

∫
Rm

av.

In other terms, the family v is said S stable if and only if its superposition
operator

∫
Rm(·, v) is an Shomomorphism.

Remark (on the S linearly independent Sstable families). An S family
v in the space S ′n and indexed by Rm is an S linearly independent Sstable family
if and only if, for every family a = (ai)i∈Rk in the space S ′m, the superposition∫

Rm

av

(which is necessarily a family indexed by Rk and in the S linear hull of v) is an
S family if and only if the family a is an S family. In other terms, the family
v is an S linearly independent Sstable family if and only if the corresponding
superposition operator ∫

Rm

(·, v)

is an injective Shomomorphism.

Theorem. Let v be an Sstable family in the space S ′n. Then, the S linear
hull Sspan(v) is Sclosed and hence it coincides with the S linear closed hull of
the family v and with the Sclosed hull of the family, i.e.,

Sspan(v) = Sspan(v) = Scl(v).

Proof. Let the family v be indexed by Rm and let w be an S family in the
S linear hull of v, indexed by Rk. Then, by definition of Sstable family, there is
an S family a such that ∫

Rm

av = w.
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Applying the S linearity of the superposition operator of the family v, for every
coefficient distribution b in S ′k, we have∫

Rk

bw =

∫
Rk

b

(∫
Rm

av

)
=

=

∫
Rm

(∫
Rk

ba

)
v,

and hence any superposition of the family w must belong to the S linear hull of
v. �

Corollary. Let v be an S stable family in the space S ′n. Then the S linear
hull Sspan(v) is the intersection of all the Sclosed subset of S ′n containing the
family v, in particular it is Sclosed.

Question. If the S linear hull of an S family is Sclosed, then is the S family
an S linearly independent Sstable family?

Answer. The Answer is in general negative. Indeed, consider a family v such
that its superposition operator is surjective but not injective, for instance the
derivative of the Dirac family in S ′1. Then the S linear hull of the family v is
S closed (it is the entire space S ′1) but the superposition operator of v is not
injective and consequently it cannot be an injective Shomomorphism. �

Question. If the S linear hull of a family is Sclosed, then is the family
Sstable?

Answer. We will see that if A is a surjective linear Shomomorphism, then it
is necessarily a surjective topological homomorphism with the kernel admitting a
topological supplement. Consider a surjective topological homomorphism A (or
equivalently, since its image is topologically closed, a surjective linear continuous
operator) which doesn’t have a kernel with a topological supplement. Then, the
associated family v = A(δ) is an family whose S linear hull is Sclosed (the entire
space) but that is not Sstable (since its superposition operator A is not an
Shomomorphism). �

14.5 SLinear operators and Sclosedness

Proposition. Let A : S ′n → S ′m be an S linear operator. Then the kernel of
the operator A is Sclosed.
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Proof. Let v be an S family in the kernel kerA of the operator A, indexed
by Rk. The image A(v) of the family v is the 0-family in S ′m, so, for any
Sdistribution of coefficients a feasible for the family v, we have

A

(∫
Rk

av

)
=

∫
Rk

aA(v) =

=

∫
Rk

a0 =

= 0S′m ,

consequently the S linear combination∫
Rk

av

lives in the kernel kerA of the operator A. �

More generally, is the preimage of an Sclosed subspace an Sclosed subspace?

Proposition. Let A : S ′n → S ′m be an S linear operator. Then the preimage
of an Sclosed set under the operator A is Sclosed.

Proof. Let C be an Sclosed subset of the space S ′m. Let v be an S family in-
dexed by Rk in the preimage A−(C) of the Sclosed C and let a be any coefficient
distribution for the family v. We must prove that the superposition∫

Rk

av

is in the preimage A−(C). We have that the image A(v) is an S family in the
subset C, so the superposition ∫

Rk

aA(v)

lives in the subset C too (since C is Sclosed) but the above superposition a.A(v)
is equal to the image A(a.v) (by S linearity) so that the image A(a.v) belongs
to C and this means that the superposition a.v is in the preimage of C by the
operator A. �

Open problem. Is the image of an S closed subspace, by an S linear oper-
ator, an Sclosed subspace too?
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Note. Let A be an S linear operator from S ′n into S ′m. If C is an Sclosed
subspace of the domain of A, consider an S family w in the image A(C). By
definition of image of a subset, there exists a family v in C such that A(v) = w.
But, can we affirm that this family v is an S family? In general an S linear
operator transforms S families into S families; but, if the image w of a family v
is an S family, we cannot conclude nothing about the family v. For this reason,
we shall assume the operator A an Shomomorphism, which is such that any
S family in its image is the image of at least an S family. So the answer to above
question seems to be negative, but we need a counterexample.

14.6 SHomomorphism and S closedness

We conclude the following result.

Proposition. Let A : S ′n → S ′m be an S linear operator which is also an
Shomomorphism. Then the image of an Sclosed subset of S ′n is an Sclosed
subset of S ′m. In other terms, we can say that any linear Shomomorphism is
an Sclosed operator.

Proof. If C is an Sclosed subset of the domain of the operator A, consider an
S family w indexed by Rk in the image A(C). By definition of Shomomorphism,
there exists an S family v in C such that A(v) = w. For any distribution a in
S ′k, we have ∫

Rk

aw =

∫
Rk

aA(v) =

= A

(∫
Rk

av

)
.

The above superposition a.v lies in C (since the subset C is Sclosed), thus the
superposition a.w lies in A(C) and we can conclude that A(C) is Sclosed. �

14.7 Invertibility of linear S homomorphism

We we consider an Shomomorphism among Sclosed subspaces, the linearity of
the operator (in general) does not imply the S linearity. We shall call the S linear

Shomomorphism, simply, S linear homomorphism.
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Theorem. Let V and W be two Sclosed subspaces of the spaces S ′n and
S ′m respectively and let A : V →W be a bijective S linear homomorphism. Then
the inverse A− is a bijective S linear homomorphism.

Proof. The operator A− is obviously a linear S homomorphism. We have
only to prove that it is an S linear operator. Let w be an S family in the subspace
W , indexed by some k-dimensional Euclidean space. Since A is a bijective
Shomomorphism, there is an S family v in V such that A(v) = w, or equivalently
such that v = A−(w). We have, for every a in S ′k,

A−
(∫

Rk

aw

)
= A−

(∫
Rk

aA(v)

)
=

= A−
(
A

(∫
Rk

av

))
=

=

∫
Rk

av =

=

∫
Rk

aA−(w),

as we claimed (note that all the above superpositions live in the domains of the
operators by Sclosedness of the domains themselves). �

14.8 Left inverse of linear S homomorphisms

Let us see a characterization of injective S linear operator with a continuous left
inverse. We recall that a projector of a set onto one of its subsets is a surjective
and idempotent mapping.

Theorem. Let A : S ′n → S ′m be an S linear operator. Then, the following
two conditions are equivalent:

1) the operator A is an injective linear Shomomorphism and there is an S

linear projector

p : S ′m → A(S ′n)

of the space S ′m onto the image A(S ′m);

2) the operator A has a (surjective) linear continuous left inverse L, that is
there is a continuous linear operator L : S ′m → S ′n such that

L ◦A = (.)S′m .
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Proof. Let the assumption 1) be satisfied. Since A is an Shomomorphism, its
image W is Sclosed. Consider the codomain restriction R of the operator A to
the image W , i.e. the bijective operator R : S ′n → W , defined by R(u) = A(u),
for every distribution u in S ′n. The inverse operator R− : W → S ′n is defined on
an Sclosed subset of S ′m, is an Soperator since A is an Shomomorphism and is
S linear since it is the inverse of an S linear operator. Consider the composition

L = R− ◦ p,

this is a mapping of S ′m into S ′n, composition of two surjective S linear operator,
consequently it is a surjective S linear operator from S ′m onto S ′n (and hence also
continuous). We have only to prove that the composition L ◦ A is the identity
operator of S ′n. For, let u in S ′n, we have

L(A(u)) = R−(p(A(u))) =

= R−(A(u)) =

= R−(R(u)) =

= u,

as we claimed. �

Corollary (characterization of bijective S linear homomorphism).
An S linear operator A : S ′n → S ′m is a bijective linear Shomomorphism if and
only if it is a topological isomorphism.



Chapter 15

SGreen’s families

15.1 Introduction

This Chapter is devoted to the concept of Green’s family of a linear contin-
uous endomorphism on the space of tempered distributions S ′n. The concept
of Green’s family is an operative and rigorous version of the formal Green’s
function used in physics and engineering. The relationship with the modern
approach by fundamental solutions is showed, to solve inhomogeneous linear
equations.

15.1.1 Green’s functions

In this section we give a definition of a Green’s function of a linear continuous
operator that stays between the classic one (definition which very often in the
applications is far from being a rigorous one) and our new definition of SGreen’s
family of a linear endomorphism on the space S ′n.

Definition (semi-classic definition of Green’s function). Let O be
an open subset of the Euclidean space Rn and let L : D′(O) → D′(O) be a

165
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linear operator, acting on the space of distributions over the open subset O.
Any function G : O2 → K, such that the section G(., s) is Lebesgue measurable
and locally summable, for every point s of the open subset O, is said a Green’s
function of the linear operator L if it satisfies the following equality

L([G(., s)]) = δs,

for any point s of the open subset O, where δs is the Dirac delta distribution
of D′(O) centered at the point s and the distribution [G(., s)] is the regular
distribution canonically associated with the locally summable function G(., s).

Remark (fundamental solutions at a point). Let O be an open subset
of the n-dimensional Euclidean space Rn and let L : D′(O)→ D′(O) be a linear
operator. When the equality L(u) = δs is satisfied for some point s of O and
some distribution u in D′(O), we say that the distribution u is a fundamental
solution of the operator L at the point s. So, in the conditions of the above
definition, we can say that the function G is a Green’s function for L if the
(distribution associated with the) section G(., s) is a fundamental solution of L
at the point s, for every point s of the open subset O.

15.1.2 Motivations for Green’s families

We are going to introduce the Green’s families because the requirement that
the “object” G, such that L(Gs) = δs, must be a function is too strict in order
to give to the concept itself reasonable manageability and effectiveness in the
applications. A way to extend the classic definition can be to consider the
Green’s function G as a distribution on the product O × O, but this choice
gives some problem to the definition itself, since we could no longer consider the
parameter s as a “true” parameter.

Classically, the definition property of a Green’s function can be exploited to
solve differential equations of the form

L(u) = a,

where a is a given regular distribution on the open set O. To solve such equations
we need to find a Green’s family and in general, an operator L does not need
to have a Green’s function and if L has a Green’s function it can have many
Green’s functions.

In this chapter:

• we shall define the concepts of SGreen’s family and EGreen’s family;

• we show how to solve a linear equation (not necessarily a linear differential
one) via superpositions, precisely a linear equation L(.) = a, when L has
an SGreen’s family when L is an endomorphism on S ′n;
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• we study the existence of SGreen’s families;

• we shall study the special case of linear operators commuting with the
translations.

15.2 Green’s families in S ′n

In this section we introduce the main concept of the chapter. Let us start with
the classic definition of fundamental solution in our context.

Definition (of fundamental solution for a linear operator). Let L be
a linear endomorphism on the space of tempered distributions S ′n. When the
equality L(u) = δs is verified for some point s and some distribution u, we say
that the tempered distribution u is a fundamental solution of the operator
L at the point s.

Now we can define Green’s families for linear operators.

Definition (Green’s families of tempered distributions). Let L be
a linear endomorphism on the space of tempered distributions S ′n. Any family
G = (Gs)s∈Rn of tempered distributions is said a Green’s family of the linear
operator L if it satisfies the equality

L(Gs) = δs,

for any point s of the space Rn, where δs is the Dirac distribution centered at
the point s. In other terms, a family G = (Gs)s∈Rn of tempered distributions
is said a Green’s family of the linear operator L if the distribution Gs is a
fundamental solution for the linear operator L at the point s, for every index p
of the family.

Note that our definition is not bounded to linear differential operators.

The Green’s family of an endomorphism L of S ′n is the (ordered) family of
fundamental solutions, at each point p in Rn, of the operator L.

Theorem (on the existence of Green’s families). Let L be a linear
endomorphism on the space of tempered distributions S ′n. We have

• if L is a surjective endomorphism on the space S ′n, then L admits a
Green’s family;

• if L is a strict (topological) endomorphism on the space S ′n, then L admits
an Green family if and only if L is surjective.
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Proof. The first assertion is evident, since L is surjective, every element of
the Dirac basis must have at least an anti-image. For the second one it is enough
to prove that the existence of a Green family implies the surjectivity. Indeed,
by the Dieudonné-Schwartz theorem, the image of L must be closed and, by
definition of Green family, it must contain the Dirac basis; consequently (since
the Dirac basis is dense in S ′n) the image must coincide with the entire S ′n. �

15.3 SGreen’s families

The SLinear Algebra is necessary for the next step development.

Definition (SGreen’s families). Let L : S ′n → S ′n be a linear operator,
acting on the space of tempered distributions. An SGreen’s family (respec-
tively, a Green’s family of class E) of the linear operator L is a Green’s
family of the operator L which is of class S (respectively of class E).

Sometimes we will call SGreen operators the S linear operators with an
SGreen family.

Theorem (surjectivity of the SGreen operators). Let L be a contin-
uous endomorphism on the space S ′n admitting an SGreen family, that is an
SGreen operator. Then

1. the operator L is surjective;

2. any SGreen family of the operator L is S linearly independent.

Proof. Surjectivity. Indeed, if L admits a Green family G then L(G) = δ.
Now, for every u in the space S ′n, we have

L(

∫
Rn

uG) =

∫
Rn

uL(G) =

=

∫
Rn

uδ =

= u,

so that any u is the image of some distribution (namely the superposition u.G).
SLinear independence. Let G be any SGreen family of the operator L. The
image of the family G is an Sbasis, which is necessarily S linearly independent,
consequently the family G is S linearly independent too, because the image of an
S linearly dependent family by an S linear operator is S linearly dependent too.
�
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15.4 Application to linear equations

In this section we study the linear equation

E : L(.) = a

associated with a linear continuous endomorphism L, on the topological vec-
tor space (S ′n)σ, and with a tempered distribution a belonging to that space.
Observe that the set of all solutions of the equation E is simply the reciprocal
image

L−(a),

but this is far from explain us how to determine this set of solutions or even one
particular solution of the equation E. We will show that,

• if G is an SGreen’s family of the operator L, then we can find explicitly
a distribution u that is a solution of the linear equation E, namely, this
particular solution will be the superposition∫

Rn

aG,

that is the superposition of the family G with respect to the coefficient
distribution a.

Indeed the above result follows immediately by the theorem on SGreen op-
erators of the preceding section and by its proof, but we state and prove again
in the more explicit way.

Theorem (solution of a linear equation). Let L : S ′n → S ′n be a contin-
uous endomorphism on the space of tempered distributions S ′n and let assume
there exists an S Green’s family G = (Gs)s∈Rn of the operator L. Then, for
every tempered distribution a in S ′n, a (particular) solution u of the equation

E : L(.) = a

can be determined by the following superposition

u =

∫
Rn

aG.

Moreover, the datum a is the coordinate system of the particular solution u in
the S linearly independent family G.
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Proof. To see that the superposition
∫
Rn aG is a solution of the above equa-

tion is straightforward. Indeed, applying S linearity of the operator L, we have

L(

∫
Rn

aG) =

∫
Rn

aL(G) =

=

∫
Rn

aδ =

= a,

as we desired. �

Remark. Note that any solution u of the above equation E verifies the
relation

L(u) = L(

∫
Rn

aG).

Indeed, since G is an SGreen’s family for the operator L, then we have

L(G) = δ,

from the very definition of Green’s family; by superposition, from the preceding
equality, we obtain ∫

Rn

aL(G) =

∫
Rn

aδ = a;

thus, if u is distribution such that L(u) = a, we have

L(u) =

∫
Rn

aL(G);

since the operator L is a linear continuous operator, we can use its S linearity,
obtaining

L(u) = L(

∫
Rn

aG).

In the condition of the above theorem the particular solution u = a.G is said
the Green solution of the equation E with respect to the Green family
G.

Note that the S linear hull of the family G is exactly the set of all Green
solutions obtainable from the family G.

15.5 Interpretation of the solution

Consider the linear continuous equation L(.) = a. To find a particular solution
of E, we can proceed by steps:
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1. we expand the datum a in the Dirac basis δ, obtaining the same equation
in a slightly different form

L(.) =

∫
Rn

aδ;

2. then (if possible) we find a solution Gx of the linear equation

Ex : L(.) = δx,

for every index x in Rn (this is possible, for instance, when L is surjective);

3. choice the system G = (Gx)x∈Rn of particular solutions in such a way that
it should be an S family (this is possible, for instance, when the operator
L is surjective and an Shomomorphism);

4. at last, make the superposition ∫
Rn

aG

of the Ssystem G of particular solutions by the weight system a.

Thus, we can obtain a solution u of the equation L(.) = a through knowledge
of an SGreen’s family G for the operator L and the source term a. This process
results from the S linearity of the operator L.

If the operator L is injective the solution is unique.

Let us formalize a first existence result.

Theorem (on the existence of an SGreen’s family). Let L : S ′n → S ′n
be a surjective continuous endomorphism on the space of tempered distributions
S ′n and let assume the operator is an Shomomorphism. Then, there exists an
SGreen’s family G of the operator L.

Proof. Since L is surjective its image contains the Dirac family. Since L is a
weak Shomomorphism and the Dirac family is an S family, there is an S family
G whose image is the Dirac family, and this implies that G is an SGreen family
of the operator L. �
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15.6 Characterization of Green’s families

The problem now lies in finding an SGreen’s family G for an operator L, that
is an S family G satisfying the equality

L(G) = δ.

Not every linear and continuous operator L admits an S Green’s family, as we
shall see later. More precisely, in this section, we shall obtain a characterization
of those S linear operators admitting an SGreen’s family.

The key observation to determine the existence of SGreen’s family is the
following one:

• an SGreen’s family determines a continuous right inverse of the operator
L and vice versa.

Theorem. Let G be an SGreen’s family (necessarily of class S) of a linear
continuous operator L ∈ L(S ′n). Then,

1) the superposition operator of the family G is a continuous right inverse of
L. In other terms, we have

L ◦ tĜ = (.)S′n ,

or equivalently

L ◦
∫
Rn

(., G) = (.)S′n .

2) Vice versa, if R : S ′n → S ′n is a (not necessarily linear nor continuous)
right inverse of a linear operator L then the family G = R(δ) is a Green’s
family of the operator L.

3) Moreover, let R be an S operator (not necessarily linear nor continuous)
which is a right inverse of a linear operator L, then the image family
G = R(δ) is an SGreen’s family of the operator L.

Proof. 1) For every a in S ′n, we have

L ◦
∫
Rn

(., G)(a) = L(

∫
Rn

aG)

=

∫
Rn

aL(G) =

=

∫
Rn

aδ =

= a,
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as we claimed. 2) Vice versa, if R is a right inverse of the operator L we have

L(R(δp)) = δp,

for every index p of the Dirac family, and this means exactly (by the very
definition of Green’s family) that the family R(δ) is a Green’s family of the
operator L. 3) Moreover, if R is an S operator, the image R(δ) of the Dirac
S family δ is an S family too. �

15.7 Existence of Green’s families

In this section we solve the problem of existence of SGreen’s family for a linear
and continuous endomorphism on the space S ′n. We start with some elementary
considerations.

Proposition. Let L be a bijective endomorphism of the space S ′n. Then the
reciprocal image L−1(δ) is the unique Green’s family of L.

Theorem. Let L be a continuous and bijective endomorphism of S ′n. Then
the inverse image L−1(δ) is (not only the unique Green’s family of the operator
L but also) an SGreen’s family of the operator L.

Proof. By the Banach theorem on the inverse of a continuous operator among
dual of Fréchet spaces, the inverse operator L−1 is linear and continuous too
and so the inverse image L−1(δ) is an S family. �

From the characterization of the preceding section, using the following the-
orem, we can deduce the conclusive existence theorem for S Green’s family of
an operator.

Theorem. Let E and F be two topological vector spaces and let L be a
continuous linear map from E into F . Then, there exists a continuous linear
map R from F into E such that L ◦R is the identity map IF from F into itself
if and only if the linear operator L is a surjective topological homomorphism
and the kernel ker (L) of the operator L has a topological supplement in E.
Precisely, if there exists a continuous right inverse R of the surjection L, a
topological supplement of the kernel of the operator L is the image of R.

Theorem (characterization of the existence of SGreen’s family).
A continuous endomorphism L on the space S ′n has an SGreen family if and
only if it is a surjective topological homomorphism and its kernel ker (L) has a
topological supplement in S ′n.
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Corollary (characterization of the existence of SGreen’s family).
Let L be a continuous endomorphism L on the space S ′n. The following asser-
tions are equivalent:

• the operator L is a linear surjective Shomomorphism on the space S ′n;

• the operator L has an SGreen family;

• the operator L is a surjective topological homomorphism and its kernel
ker (L) has a topological supplement in S ′n;

• there exists a continuous linear right inverse of L.

15.8 Translation invariance and convolutions

Theorem. Let the linear operator L : S ′n → S ′n be translation invariant (in the
physical sense), i.e., let the operator L commute with any translations operator
τp, which it means that

τpL(u) = L(τpu),

for any p in Rn. Then,

• 1) if the operator L admits a fundamental solution, a Green’s family there
exists and can be constructed by that solution (by translations), further-
more this Green family is of class E ;

• 2) if the operator L admits a Green’s family, a Green’s family can be
generated by only one distribution (by translations);

• 3) if the operator L admits a fundamental solution in the space O′C , an S

Green’s family there exists and it can be constructed by that fundamental
solution (by translations).

In any of the above cases the superposition operators of the Green’s families
are convolution operators.

Proof. 1) Let the operator L commute with translations and assume g ∈ S ′n
be a fundamental solution of the operator L at 0, that is L(g) = δ0. We put
Gp = τpg, for each p, so that

L(Gp) = L(τpg) =

= τpL(g) =

= τpδ0 =

= δp,
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hence G is a Green’s family of the operator L. We already have noted that this
family is a smooth family, so we can consider its superposition operator∫

Rn

(., G) : E ′n → S ′n,

we have ∫
Rn

aG =

∫
Rn

a(τpg)p∈Rn =

= a ∗ g,

for every distribution a in E ′n, so that∫
Rn

(., G) = (.)E′n ∗ g,

as we claimed. (2) follows immediately by (1), indeed, if L has a Green family
then it has a fundamental solution. (3) the proof is exactly as for (1), not-
ing that, if the fundamental solution g is in the space O′C(n), then the family
(τpg)p∈Rn is a family of class S. Moreover in this case the superposition operator
of the Green family is defined on the entire space S ′n. �

15.8.1 Example: the Laplacian

We know that the smooth function

− 1

4π ‖.‖
: R3
6= → R

defined on the Euclidean 3-dimensional R3 minus the origin is a locally summable
function. Moreover, for any test function φ in S ′n, we have

µ(− ∇φ
4π ‖.‖

) = φ(0),

where µ is the Lebesgue-Radon measure on R3. The above equality can be
immediately reread as

∇
[
− 1

4π ‖.‖

]
= δ0,

so that the regular distribution [
− 1

4π ‖.‖

]
is a fundamental solution of the Laplacian operator ∇ at 0. The Laplacian ∇
commutes with any translation, so we can write

∇
[
−1

4πd(x, .)

]
= δx,
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for every point x of the Euclidean space R3, where (clearly) d denotes the
Euclidean distance of the 3-space . Thus we have found a smooth Green’s
family of the Laplacian ∇ and the distribution defined by the superposition∫

R3

ρ

([
−1

4πd(x, .)

])
x∈R3

,

is a solution of the Laplace equation

∇(.) = ρ,

for any distribution ρ with compact support.

15.9 SGreen’s families relative to Sbases

In this section we introduce a generalization of SGreen’s family.

Definition (Green’s families with respect to a basis). Let L : S ′n → S ′n
be a linear operator, acting on the space of tempered distributions and let v be
an Sbasis of the space S ′n. Any family G = (Gs)s∈Rn of tempered distributions
is said a Green’s family of the linear operator L with respect to the
Sbasis v if it satisfy the following equality

L(Gs) = vs,

for any point s of the space Rn.

Definition (SGreen’s families). Let L : S ′n → S ′n be a linear operator,
acting on the space of tempered distributions. An SGreen’s family of L with
respect to a basis is a Green’s family for L with respect to that basis of class S.

Theorem (solution of a linear equation). Let L : S ′n → S ′n be a linear
continuous operator acting on the space of tempered distributions S ′n and
let assume there exists an SGreen’s family G = (Gs)s∈Rn for the operator L
with respect to an Sbasis v. Then, for every tempered distribution a in S ′n, a
solution of the equation

E : L(.) = a

can be determined by the following superposition

u =

∫
Rn

(a)vG,

where (a)v is the unique coefficient distribution such that (a)v.v = a.
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Proof. To see that the superposition
∫
Rn(a)vG is a solution is straightfor-

ward. Indeed, applying S linearity of the operator L, we have

L(

∫
Rn

(a)vG) =

∫
Rn

(a)vL(G) =

=

∫
Rn

(a)vv =

= a,

as we desired. �
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Chapter 16

SCoordinates

16.1 Systems of coordinates

The elementary base remark is the following.

Remark. If an S family v of the space S ′n, indexed by some m -dimensional
Euclidean space, is S linearly independent and if u is a vector of the S linear hull
Sspan (v), then there exists a unique system of coefficients a ∈ S ′m such that

u =

∫
Rm

av.

Proof. Indeed the superposition operator of the family v is injective. �

So, we can give the following definition.

Definition (system of coordinates). Let v ∈ S(Rm,S ′n) be an S linearly
independent family and let u be a vector of the S linear hull Sspan(v). The only
tempered distribution a ∈ S ′m such that

u =

∫
Rm

av

181
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is denoted by [u|v] or by (u)v and is called the coordinate system of u in
the family v.

So, in the conditions of the preceding definition, the coordinate system [u|v]
of any distribution u in the S linear hull V of v is the unique distribution in S ′m
such that

u =

∫
Rm

[u|v] v.

It is also clear that, for any a in the coefficient space S ′m, we have

a = [

∫
Rm

av|v].

16.2 Coordinate operators

Definition (of coordinate operator of an S linearly independent fam-
ily). Let w ∈ S(Rm,S ′n) be an S linearly independent family. The coordinate
operator of the family w is the operator

[· | w] : Sspan(w)→ S ′m : u 7→ [u | w] ,

which we will denote also by (.)w.

Example (on the Dirac family and the (a, b)-Fourier family). Let
δ be the Dirac family in S ′n. For any tempered distribution u ∈ S ′n, we have
[u | δ] = u (since u = u.δ), and hence the coordinate operator of the Dirac basis
is the identity operator on S ′n, i.e. [· | δ] = (·)S′n . Now, let ϕ be the (a, b)-Fourier
family in the space S ′n(C). For each u ∈ S ′n, by the Fourier expansion theorem,
we have

[u | ϕ] = F−1
(a,b)(u),

and hence the coordinate operator of the Fourier family is the inverse Fourier
transform, i.e.

[· | ϕ] = F−1
(a,b).
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16.3 Basic properties of coordinate operators

16.3.1 Linear properties

Theorem. Let w ∈ S(Rm,S ′n) be an S linearly independent family in the space
S ′n. Then, the coordinate operator [·|w] of the family w is a bijective linear
operator (an algebraic isomorphism) of the S linear hull Sspan(w) onto S ′m.
Moreover, in this conditions, the reciprocal algebraic isomorphism of the coor-
dinate operator is the codomain restriction of the superposition operator of the
family to the S linear hull of the family itself.

Proof. Let λ ∈ K be a scalar and u, v be two vectors of the S linear hull
Sspan(w), then we have

u+ λv =

∫
Rm

[u|w]w + λ

∫
Rm

[v|w]w =

=

∫
Rm

([u|w] + λ[v|w])w,

and thus, we deduce
[u+ λv|w] = [u|w] + λ[v|w],

as we desired. The coordinate operator is surjective because, if a is in S ′m, then
the superposition a.w is in the S linear hull Sspan(w) and moreover

(a.w)w = a.

The coordinate operator is injective since from the equality of two systems of
coordinates (u)w = (v)w we deduce

(u)w.w = (v)w.w,

which is equivalent to u = v. The assertion that the codomain restriction

M : S ′m → V

of the superposition operator of the family w, to the S linear hull V of the
family itself, is the reciprocal isomorphism of the coordinate operator follows
immediately from the two relations:

u =

∫
Rm

[u|w]w

and,

a = [

∫
Rm

aw|w].
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for any u in the S linear hull V and for any a in the coefficient space S ′m. �

Diagrams. Let v be an S linearly independent family indexed by the Eu-
clidean m-space. Denoted by V the S linear hull of the family v, the relation
among the coordinate operator of v and its superposition operator tv̂ can be
expressed by the following commutative diagram

S ′n
jV← V

↑tv̂↙(.)v

S ′m
,

where jV is the immersion of V in S ′n. On the other hand, the invertibility of
the coordinate operator (.)v can be expressed by the following two commutative
diagrams

V
(.)V← V

↑M↙(.)v

S ′m
,
S ′m

M→ V
↓(.)↙(.)v

S ′m
,

where M is the codomain restriction of the superposition operator of the family
v to the subspace V , (.)V is the identity mapping of the subspace V and (.) is
the identity operator of S ′m.

16.3.2 SLinear properties

Reminder. An S linear operator A : V → W , where V and W are Sclosed
subspaces, is said an S linear isomorphism if and only if it is bijective and its
inverse operator is S linear too. We proved that an S linear operator A : S ′n → S ′m
is a continuous linear operator (with respect to the pairs of weak* and strong
topologies) so that, by the Banach inverse operator theorem for Fréchet spaces,
if the operator A is bijective then the operator is a topological isomorphism,
and consequently an S linear isomorphism.

Theorem. Let w ∈ S(Rk,S ′n) be an S family of tempered distributions and
let A : S ′n → S ′m be a bijective S linear operator (and consequently an S linear
isomorphism). Then, the following assertions hold true

1) the family w is S linearly independent if and only if the image family
A(w) is S linearly independent;

2) the S linear hull of the A-image of the family w is the A-image of the
S linear hull of the family w, that is

Sspan(A(w)) = A(Sspan(w));
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3) if the family w is S linearly independent, for each vector u of the image
A(Sspan(w)), the system of coordinates of the vector u in the image family
A(w) is the coordinate system of the reciprocal image A−1(u) of the vector
in the family w:

[u | A(w)] = [A−1(u) | w].

Proof. Proof of 1). Let w be S linearly independent and let a belong to S ′k
and such that ∫

Rk

aA(w) = 0S′m .

Applying A−1, we obtain

0S′n = A−1(0S′m) =

= A−1(

∫
Rk

aA(w)) =

=

∫
Rk

aA−1(A(w)) =

=

∫
Rk

aw.

Since the family w is S linearly independent, we deduce a = 0S′k , and then

the image family A(w) is S linearly independent too. Proof of 2). Let u ∈
A(Sspan(w)). Then, there exists an a ∈ S ′k such that

u = A

(∫
Rk

aw

)
.

Thus, by S linearity, we have

u =

∫
Rk

aA(w),

so that the vector u belongs to the S linear hull Sspan(Aw), and hence we have
the first inclusion

A(Sspan(w)) ⊆ Sspan(Aw).

Vice versa, let u be a point of the S linear hull Sspan(Aw). Then, there exists
an a ∈ S ′k such that

u =

∫
Rk

aA(w),

which equivalently means

u = A

(∫
Rk

aw

)
,
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and hence the vector u belongs to the image A(Sspan(w)), thus we have the
second inclusion

Sspan(Aw) ⊆ A(Sspan(w)).

Concluding the two S linear spans must coincide:

Sspan(Aw) = A(Sspan(λw)).

Proof of 3). For every vector u in Sspan(A−1w), we have

u =

∫
Rm

[u | A−1w]A−1w,

applying the operator A, we obtain

A(u) =

∫
Rm

[u | A−1w]AA−1w =

=

∫
Rm

[u | A−1w]w,

so, the image vector A(u) belongs to Sspan(w) and

[A(u) | w] = [u | A−1w],

as we desired. �

16.3.3 Topological properties

By the Dieudonné-Schwartz theorem we immediately deduce a characterization
of those S linearly independent families having the S linear hull closed with re-
spect to the weak* topology.

Theorem. Let v ∈ S(Rm,S ′n) be an S linearly independent family of distri-
butions and let V be its S linear hull Sspan (v). Then the following assertions
are equivalent

1) the S linear hull V is closed with respect to the weak* topology σ(S ′n);

2) the superposition operator of the family v is an injective topological
homomorphism for the weak* topologies σ(S ′m) and σ(S ′n);

3) the coordinate operator [·|v] of the family v is a topological isomorphism of
the S linear hull V onto the space S ′m, with respect to the relative topology
σ(S ′n)|V and to the weak* topology σ(S ′m).
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Proof. The equivalence for 1) and 2) follows immediately by the fact that
a continuous linear operator defined among the duals of two Fréchet spaces is
a topological homomorphism if and only if its image is weakly* closed. We
have, then, to prove only the equivalence between 2) and 3). The superposition
operator of v is an injective weakly* topological homomorphism if and only if (by
definition of topological homomorphism) the inverse of its restriction to the pair
of sets (S ′m, V ), i.e., the coordinate operator [·|v], is a topological isomorphism,
with respect to the topology induced by σ(S ′n) on the S linear hull V and to the
topology σ(S ′m). So the claimed is proved. �

16.4 Coordinate operators of Sstable families

Theorem. Let w ∈ S(Rm,S ′n) be an S linearly independent family. Then the
following assertions are equivalent:

• 1) the coordinate operator [·|w] is an Soperator;

• 2) the coordinate operator [·|w] is an Shomomorphism;

• 3) the superposition operator
∫
Rm (·, w) is an Shomomorphism;

• 4) the family w is an Sstable family.

Proof. 1) implies 2). Let the coordinate operator of the family w be an
S linear operator. Let v be a family in the S linear hull Sspan (w) such that the
coordinate family [v|w] is of class S. We have

v =

∫
Rm

[v|w]w,

and, since the superposition operator
∫
Rm (·, w) is an Soperator, the family v

should be of class S. 2) implies 3). Let us assume that the coordinate operator
of the family w be an Shomomorphism. Let a be a family in S ′m such that the
superposition

v :=

∫
Rm

aw

is a family of class S, we have, by S linear independence of w, that the family a
must be the coordinate family [v|w] of v with respect to w. Since the coordinate
operator [·|w] is an Soperator, the family [v|w] is necessarily of class S. 3) im-
plies 1). Let the superposition operator of the family w be an Shomomorphism.
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Let v be an S family in the S linear hull Sspan (w), we have to prove that the
coordinate family [v|w] is of class S. But, we have again the expansion

v =

∫
Rm

[v|w]w,

and so, being the superposition operator
∫
Rm (·, w) an Shomomorphism, the

coordinate family [v|w] is of class S. 4) is equivalent to 1). Simply by
definition of Sstable family. �

16.5 Hulls of Sstable families

Theorem (Sclosedness of Sspan(w)). Let w ∈ S(Rm,S ′n) be an S linearly
independent family such that its coordinate operator [·|w] is an Soperator. Then,
the S linear hull Sspan (w) is Sclosed in S ′n .

Proof. To prove that the S linear hull Sspan(w) is Sclosed, let k be a natural
number, let v ∈ S(Rk,S ′n) be a family in the S linear hull Sspan(w) and let
a ∈ S ′k be a distribution. Then,

v =

∫
Rm

[v|w]w,

in fact

vp =

∫
Rm

[vp | w]w =

=

∫
Rm

[v | w]p w =

=

(∫
Rm

[v | w]w

)
p

,

for any index p ∈ Rk. Thanks to the S linearity of the S linear combinations, we
have ∫

Rk

av =

∫
Rk

a

(∫
Rm

[v | w]w

)
=

=

∫
Rm

(∫
Rk

a [v | w]

)
w,

and thus the superposition
∫
Rk av belongs the S linear hull Sspan(w). �

Open problem. We do not know if the Sclosedness of the S linear hull
Sspan (w) implies that the coordinate operator [·|w] is an Soperator.
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However, we have the following result.

Theorem. Let w ∈ S(Rm,S ′n) be an S linearly independent family such that
its S linear hull Sspan (w) is σ(S ′n)-closed. Then, the coordinate operator [·|w]
is an Soperator.

Proof. Note that, since the S linear hull Sspan (w) is σ(S′n) closed, the operator
ŵ is surjective. Consequently, for every S family v in the hull Sspan (w), holding
the equality

v̂(g) = [v|w] (ŵ(g)),

we have that the coordinate family [v|w] is an S family, and so the coordinate
operator [·|w] is an Soperator. �

Theorem. Let v be an S linearly independent family in S ′n, let its coordinate
operator [·|v] be an Soperator and let F be the collection of all the Sclosed
subsets of S ′n containing the family v. Then, we have the following equality

Sspan(v) = ∩F,

in other terms, the S linear hull of the family v is the smallest Sclosed subset of
the space S ′n containing the family v itself.

Proof. Let index the collection F by a set I and denote the corresponding
family by F itself. Since any member Fi of the family F is Sclosed and contains
v, the S span(v) is contained in Fi, for every i ∈ I. Consequently the S linear
hull Sspan(v) is contained in the intersection ∩F . Since the coordinate operator
[· | v] is an Soperator, the S linear hull Sspan(v) is Sclosed, moreover it contains
v, thus Sspan(v) is a member of the family F , and hence we have also the
inclusion ∩F ⊆ Sspan(v). �

16.6 SLinearity of the coordinate operator

Theorem (S linearity of the coordinate operator). Let w ∈ S(Rm,S ′n)
be an S linearly independent family such that its coordinate operator [·|w] is an
Soperator. Then, the coordinate operator [·|w] is also an S linear operator of the
S linear hull S span(w) into the space S ′m.

Proof. The coordinate operator [·|w] is of class S for our assumption. For
each natural number k, for any distribution a ∈ S ′k and for every family v ∈
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S(Rk,S ′n) in the S linear hull Sspan(w), we have∫
Rk

av =

∫
Rk

a

(∫
Rm

[v|w]w

)
=

=

∫
Rm

(∫
Rk

a [v|w]

)
w,

and thus, by the definition of system of coordinates, we conclude

[·|w]

(∫
Rk

av

)
=

[∫
Rk

av|w
]

=

=

∫
Rk

a [v|w] ,

as we desired. �

Corollary. Let v ∈ S(Rm,S ′n) be an S linearly independent family of distri-
butions and let V be its S linear hull Sspan (v). Then the following assertions
are equivalent

1) the family v is and Sstable;

2) the superposition operator of the family v is an injective S linear ho-
momorphism;

3) the coordinate operator [·|v] of the family v is an S linear isomorphism of
the S linear hull V onto the space S ′m.

Proof. 1) is equivalent to 2). The superposition operator is always S linear.
A family v is S linearly independent if and only if its superposition operator
is injective and v is Sstable if and only iff its superposition operator is an
Shomomorphism. 2) implies 3). We have only to prove that the coordinate op-
erator is S linear with its inverse (the coordinate operator is always an algebraic
isomorphism). Well, since the superposition operator of v is an Shomomorphism
the coordinate operator is an Soperator and then S linear by the above theo-
rem. Its inverse is the codomain restriction of the coordinate operator to the
S linear hull V , and it is so S linear. 3) implies 2). We already know that
the superposition operator of an S linearly independent S family is an (injective)
Shomomorphism if and only if its coordinate operator is an Soperator (and our
coordinate operator is S linear and then an Soperator). �



Chapter 17

Applications of
SCoordinates

17.1 Invertibility of Shomomorphism

Theorem. Let L : S ′n → S ′m be an S linear operator such that its image V has
an S stable basis v. Then, the operator L is a linear Shomomorphism if and
only if there is an S linear right inverse R of the surjection canonically associated
to L, that is of the operator M : S ′n → V defined, for any tempered distribution
in the space S ′n, by M(u) = L(u).

Proof. (⇒). Assume the basis v be indexed by the k -dimensional Euclidean
space Rk. Since the mapping L is an Shomomorphism there is an S family G
such that L(G) = v. Note that G must be S linearly independent since v is
S linearly independent. Define an operator R : V → S ′n by

R(a) =

∫
Rk

(a)vG,

for every a in V , where (a)v is the only distribution in S ′k such that∫
Rk

(a)vv = a.

191
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We have, for every element a of V ,

L(R(a)) = L

(∫
Rk

(a)vG

)
=

=

∫
Rk

(a)vL(G) =

=

∫
Rk

(a)vv =

= a,

soR is a right inverse or L. Let as prove that the right inverseR of L is an S linear
operator too. Let w be an S family in the subspace V , since the superposition
operator of the basis v is an Shomomorphism (the basis v is stable) the family
(w)v is an S family. We have

R(w) = (w)v.G,

and the product of two S families (or equivalently the superposition of an family
with respect to an family) is an S family. Moreover, we have

R = tĜ ◦ (.)v,

and the composition of two S linear operators is an S linear operator too. �

Another way to state the above theorem is the following.

Theorem. Let L : S ′n → S ′m be an S linear operator such that its image V
has an S stable basis v, indexed by some space Rk. Then, the operator L is a
linear Shomomorphism if and only if there is an S family G in S ′n, indexed by
the space Rk, such that the diagram

S ′n
M→ V

↑tĜ↙(.)v

S ′k
.

is commutative, where M is the surjection canonically associated to L, that is
of the operator M : S ′n → V defined, for any tempered distribution in the space

S ′n, by M(u) = L(u). In this conditions the composition tĜ ◦ (.)v is an S linear
right inverse of the surjection M .

17.2 Projectors

A linear projector on a subspace V of a vector space E is a linear function
p : E → V such
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• for every u in V , we have p(u) = u;

• for every u in E, we have p(p(u)) = u.

Theorem. Let V be a subspace of the space S ′n having an Sbasis e, indexed
by the m-dimensional real Euclidean space. Then, the following two assertions
are equivalent

• the family e is Sstable and there exists an S linear projector p : S ′n → V ;

• the subspace V is Sclosed and there exists an S linear extension h : S ′n →
S ′m of the coordinate operator [.|e] of the Sbasis e.

Proof. (⇒) Let p be an S linear projector of the space S ′n onto the subspace
V . Consider the operator h : S ′n → S ′m defined, for every distribution in S ′n, by

h(u) = [p(u)|e].

The operator h is the composition of the projector p and of the coordinate
operator of e. Since both the preceding operators are S linear (the projector by
assumption and coordinate operator since the basis e is Sstable), the operator
h is S linear. Moreover, it is evident that h is an extension of the coordinate
operator e, since, if u is in V then p(u) = u. (⇐) Let h be an S linear extension of
the coordinate operator of the Sbasis e. Since the subspace V is S closed and the
coordinate operator of the Sbasis e is the restriction of an S linear operator, the
coordinate operator itself must be S linear; moreover it is in particular S linear,
and consequently the family e is S stable. Consider the operator p : S ′n → V
defined, for every tempered distribution u in S ′n, by

p(u) =

∫
Rm

h(u)e.

First of all, note that the above distribution p(u) belongs to V , since it is an
S linear combination of the Sbasis e . The operator p is the composition of
the extension h and of the superposition operator of the Sbasis e. Both the
preceding operators are S linear, so the composition p is S linear too. We have
to prove that the operator p is a projector. Let u be in the sub space V , since
h is an extension of the coordinate operator, we have

p(u) =

∫
Rm

h(u)e =

=

∫
Rm

[u|e]e =

= u.
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Moreover, for every u in S ′n, we have

p(p(u)) = p

(∫
Rm

h(p(u))e

)
=

=

∫
Rm

h(p(u))p(e) =

=

∫
Rm

h(p(u))e =

= p(u),

and so the operator p is an S linear projector of S ′n onto V . �

17.3 Change of basis

Notation (the set of Sbases of a subspace). Let X be a subspace of S ′n.
In the following we shall use the notation B(Rm, X) for the set of all the Sbases
of the subspace X indexed by Rm, that is for the set

{v ∈ S(Rm,S ′n) : ker(tv̂) = 0 ∧ tv̂(S ′m) = X}.

Definition (the change family). Let v ∈ B(Rk,S ′n) and w ∈ B(Rm,S ′n)
be two Sbases of the space S ′n. We say change family from v to w the
following family

[w|v] := ([wp|v])p∈Rm .

Theorem (change of basis). Let v ∈ B(Rk,S ′n) and w ∈ B(Rm,S ′n) be
two Sbases of the space S ′n. Then, the change family from w to v is an Sbasis
too, more precisely we have

[v | w] ∈ B(Rk,S ′m).

Moreover, for every tempered distribution u ∈ S ′n, the following equality holds

[u | w] =

∫
Rk

[u | v] [v | w] .

Proof. Since

v =

∫
Rm

[v | w]w,

we have
v̂(φ) = [v | w] (ŵ(φ)) ,
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for every test function φ ∈ S ′n; so, being ŵ surjective (w is an Sbasis and thus
it is invertible), [v | w] is an S family. Moreover, the same equality shows that

v̂ ◦ (ŵ)−1 = [v | w]
∧
,

and then [v | w] is invertible, that is an S basis. Now, applying the S linearity
of the S linear combinations, we have

u =

∫
Rk

[u | v] v =

=

∫
Rk

[u | v]

(∫
Rm

[v | w]w

)
=

=

∫
Rm

(∫
Rk

[u | v] [v | w]

)
w,

and thus by definition of system of coordinates in an Sbasis

[u | w] =

∫
Rk

[u | v] [v | w] ,

as we desired. �

17.4 Superpositions respect to operators

Definition (superposition of a family with respect to an operator). Let
X ⊆ S ′n be a subset of S ′n, A : X → S ′m be an operator and v ∈ S(Rm,S ′n)
be a family of distributions. We define superposition of the family v with
respect to the operator A, the operator∫

Rm

Av : X → S ′n : u 7→
∫
Rm

A(u)v.

Proposition. Let X be a subspace of S ′n, let A : X → S ′m be an operator
and let v be an Sfamily in S ′n indexed by Rm. In these conditions,

1) if the operator A is a linear operator, the superposition∫
Rm

Av

of the family v with respect to the coefficient operator A is also a linear
operator;
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2) if the operator A is a continuous operator with respect to the pair of topolo-
gies (τ, αm), where τ is a topology on X and αm is the strong (respectively,
the weak* topology) on S ′m, then the superposition∫

Rm

Av

is continuous with respect to the pair of topologies (τ, αn), where τ is a
topology on X and where αn is the strong (respectively the weak* topology)
on S ′n;

3) if X is an Sclosed subspace and the operator A is S linear, then the su-
perposition ∫

Rm

Av

is also S linear.

Proof. 1-2) In fact, note that, for every tempered distribution u in the
domain of the operator A, we have

(

∫
Rm

A v)(u) =

∫
Rm

A (u) v =

= tv̂(A(u)),

so we have that the above superposition is nothing but the composition of the
superposition operator of the family v with the operator A, in symbols∫

Rm

A v =

∫
Rm

(·, v) ◦A.

Since the superposition operator
∫
Rm(·, v) is continuous (with respect to the

pairs of topologies strong-strong and weak*-weak*) and equivalently S linear, if
A is continuous then the superposition∫

Rm

Av

is also continuous. Let us prove that, if the subspace X is an Sclosed subspace
and A is S linear, then the superposition A.v is also S linear. Indeed

A.v

(∫
Rk

aw

)
=

(∫
Rm

Av

)(∫
Rk

aw

)
=

=

(∫
Rm

(·, v) ◦A
)(∫

Rk

aw

)
=

=

(∫
Rm

(·, v)

)(
A

(∫
Rk

aw

))
=
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=

∫
Rm

A

(∫
Rk

aw

)
v =

=

∫
Rm

(

∫
Rk

aA(w))v =

=

∫
Rk

a

∫
Rm

A(w)v =

=

∫
Rk

a(

∫
Rm

Av)(w) =

=

∫
Rk

a A.v(w),

as we desired. �

17.5 Resolution of the identity

This section is devoted to the resolution of the identity, that is to the expansion
of the identity operator of a subspace of the space of tempered distribution S ′n
as a superposition of a S linearly independent family of tempered distributions
with respect to its coordinate operator. This “resolution” is widely used in
Quantum Mechanics.

Theorem (resolution of the identity). Let X be a subspace of the space
S ′n and let v ∈ S(Rm,S ′n) be an S linearly independent family in X. Then, the
family v is an Sbasis of X, belonging to B(Rm, X), if and only if

jX =

∫
Rm

[· | v]v,

where jX is the canonical injection of the subspace X into S ′n.

Proof. (⇒) If v ∈ B(Rm, X), then, the subspace X is the S linear hull of the
family v and the coordinate operator is thus actually defined on the subspace
X. Moreover, for any distribution u ∈ X, we have

u =

∫
Rm

[u | v]v,

i.e.,

jX (u) =

(∫
Rm

[· | v]v

)
(u) ,

and thus

jX =

∫
Rm

[· | v]v.
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(⇐) If the immersion of X in S ′n is the superposition

jX =

∫
Rm

[· | v]v,

then this two operators must have the same domain, so the subspace X must
coincide with the S linear hull S(v). Moreover, for each point u ∈ X, we have

u = jX (u) =

=

(∫
Rm

[· | v]v

)
(u) =

=

∫
Rm

[u | v]v,

and we conclude. �



Chapter 18

SMatrices

This chapter is devoted to the interpretation of S-families as matrices associated
to linear and continuous operators. We are dealing with our standard pairings
of the type (Sn,S ′n), and we shall associate to every linear continuous operator
in the space L(Sn,Sm) and L(S ′n,S ′m) an S-family in order to represent those
monoids (with respect to the composition) into two different monoids having
the same set S(Rm,S ′n) as underlying set of the structures.

18.1 Introduction

An ordered basis of the vector space Rn is a n-tuple e = (ei)
n
i=1 of linearly

independent vectors. With any ordered basis we can associate a square matrix,
exactly the following one

E = ((ei)j)
n
i,j=1,

where Eij = (ei)j is the j-th component of the vector ei. This matrix is in-
vertible, in fact, its determinant is different from zero because its row vectors
e1, ..., en are linearly independent. Conversely, let A = (Aij)

n
i,j=1 be a matrix

in Rn,n, it is obvious that the n-tuple of the rows of A

(Ri)
n
i=1

199
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is an ordered basis if and only if A is invertible. Thus, there exists a bijective
correspondence among the family of the ordered bases of Rn and the set of the
square invertible matrices on Rn,n. In other words, let (Rn)n be the set of all
the n-tuples of vectors of Rn, for each n-tuple x ∈ (Rn)n we can associate the
square matrix

ψ(x) = ((xi)j)
n
i,j=1,

i.e., the matrix having the vector xi as i-th row. At this point:

• there exists an operation . on (Rn)n such that the pair ((Rn)n, .) is a
semigroup and moreover it is transformed by the bijection

ψ : (Rn)n → Rn,n

in the row-column multiplication on Rn,n? So, there exists an operation

. : (Rn)n × (Rn)n → (Rn)n,

such that for every x, y ∈ Rn,n we have ψ(x.y) = ψ(x)ψ(y)?

The answer is already known, we can put for every index i ∈ N≤n,

(x.y)i =

n∑
j=1

xijyj .

And it’s obvious that the collection of invertible elements with respect to . is
transformed by the bijection ψ in the group GL(R, n) of the invertible matrices
on Rn,n (those having determinant different from zero). The aim of this chapter
is to study in detail the multiplication in the space of all the S-families (which
first of all are ordered sets of distributions, i.e., ordered sets of “non-local de-
fined” systems of elements belonging to the field K. We can evict, that this
multiplication is a generalization of the operation . to the infinite dimensional
space S(Rn,S ′n). This is very interesting from the theoretical point of view and
also in the applications of the Theory of Distributions.

18.2 Product of families

Definition (product of two Sfamilies). Let v ∈ S(Rk,S ′m) and w ∈
S(Rm,S ′n) be two families of distributions. The product of the family v
by the family w is the family of superpositions (in S ′n) defined by

v.w = (

∫
Rm

vpw)p∈Rk .
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It is nothing but the superposition
∫
Rm vw of the family w with respect to the

family v. Hence, for each index p ∈ Rk, we have

(v.w)p = (

∫
Rm

vw)p =

∫
Rm

vpw.

Example. Let v be a family in S ′n indexed by Rm and kδ be the Dirac
family in S ′k. Then,

• if δ is the Dirac family in S ′m, we have

δ.v = (

∫
Rm

δpv)p∈Rm = v;

• if δ is the Dirac family in S ′n, we have

v.δ = (

∫
Rm

vpδ)p∈Rm = v;

• if, in particular, n = m and if δ is the Dirac family in S ′n, we have

δ2 := δ.δ = (

∫
Rn

δpδ)p∈Rn = δ.

We have already proved that the product of two S-families is an S-family
and that

(v · w)
∧

= v̂ ◦ ŵ,

Moreover the correspondence

S(Rm,S ′n)→ L(Sn,Sm) : v 7→ v̂

is bijective, and so, in the particular case m = n, it is a bijective representation
of the unitary semigroup (S(Rn,S ′n), ·) onto the unitary semigroup (L(Sn), ◦).

Definition. If A is an operator belonging to L(Sn,Sm) the family A∨ is
called the canonical S-matrix representation of the operator A.

The product among families is the natural product when we shall deal with
the families associated with linear continuous operators among spaces of test
functions.
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18.3 Transpose product of families

The transpose product among families will be the natural product when we
shall deal with the families associated with a linear continuous operator among
spaces of tempered distributions.

Definition (transpose product of two S- families). Let v ∈ S(Rk,S ′m)
and w ∈ S(Rm,S ′n) be two families of distributions. The transpose product
of the family w by the family v is the family (in S ′n) defined by

wv =

(∫
Rm

vpw

)
p∈Rk

.

This new product is nothing but the opposite or transpose of the product of two
families, indeed, for each p ∈ Rk, we have

(wv)p = (v.w)p =

∫
Rm

vpw.

The semigroup (S(Rm,S ′n), .) has a transpose (or opposite, see Bourbaki,
Algebra) semigroup, namely the semigroup (S(Rm,S ′n), t.), where the transpose
operation t. , denoted just by a juxtaposition, is defined by

vw = w.v,

for every pair of families.

Theorem. Let v ∈ S(Rk,S ′m) and w ∈ S(Rm,S ′n) be two families of distri-
butions. Then we have

t(wv)∧ = t(ŵ) ◦ t(v̂).

In particular the correspondence

S(Rn,S ′n)→ L(S ′n) : v 7→ tv̂

is a bijective representation of the semigroup (S(Rn,S ′n), t·) onto the semigroup
(L(S ′n), ◦).

Proof. We have

t(wv)∧ = t(v · w)∧ =

= t(v̂ ◦ ŵ) =

= t(ŵ) ◦ t(v̂),

and the remaining part is evident. �
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Definition (the canonical representation of linear continuous op-
erators). The correspondence S(Rm,S ′n) → L(S ′m,S ′n) defined by v 7→ tv̂
is a linear isomorphism and is called the canonical representation of the
space S(Rm,S ′n) onto the space L(S ′m,S ′n), its inverse is called the canonical
representation of the space L(S ′m,S ′n) onto the space S(Rm,S ′n).

18.4 Invertible families

Definition (of invertible Sfamily). Let a ∈ S(Rn,S ′n) be a square family of
tempered distribution. The family a is called invertible if it is an invertible ele-
ment of the semigroup (S(Rn,S ′n), .), i.e. if there exists a family b ∈ S(Rn,S ′n)
such that a · b = b · a = δ.

Remark. We have to note that:

• To say that a square family v is invertible with respect to the product of
families it’s one and the same thing to say that it is invertible with respect
to the transpose product of families.

• Moreover, if b is the inverse of a with respect to one of the two product it
is the inverse of a with respect to the other one.

• It’s easy to prove that, for each invertible family a ∈ S(Rn,S ′n), there
exists only a square family b ∈ S(Rn,S ′n) such that a · b = b · a = δ, this
is a simple fact of semigroups. This family is denoted by a−. It derives
also immediately from the fact that the semigroup of square families is
isomorphic to the semigroup of linear continuous endomorphisms on the
space S ′n (or Sn) with respect to the composition.

• Moreover, it can be proved that the operator generated by a is invertible
and (a−)

∧
= (â)−. And this depends again on the above isomorphism.

We can prove it directly as an exercise. In fact, for each test function
φ ∈ Sn, we have

(a−)∧ ◦ â =
(
a− · a

)∧
(φ)

= δ∧ =

= (·)Sn
Analogously we have â ◦ (a−)

∧
= (·)Sn , and hence â is invertible and

(a−)
∧

= (â)−.

Theorem. Let v, w ∈ S(Rn,S ′n) be two S-linearly independent family.
Then, their product v · w is S -linearly independent. Moreover, if w is in-
vertible (i.e. an S-basis) we have

[u|w.v] =

∫
Rn

[u|v]w− = [u|v].w−.
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Proof. Let a ∈ S ′n be such that
∫
Rn a(v · w) = 0S′

n
, we have

0S′
n

=

∫
Rn

a(v · w) =

= a ◦ (v · w)
∧

=

= a ◦ (v̂ ◦ ŵ) =

= (a ◦ v̂) ◦ ŵ =

=

∫
Rn

(

∫
Rn

av)w.

Since w is S-linearly independent, we have
∫
Rn av = 0S′

n
. And because v is S

-linearly independent, we have a = 0S′
n

. So v · w is S-linearly independent. If
w is invertible then ŵ is invertible and we have

u =

∫
Rn

[u|v]v =

= [u|v] ◦ v̂ =

= [u|v] ◦ ŵ− ◦ ŵ ◦ v̂
=

(
[u|v] ◦ ŵ−

)
◦ (ŵ ◦ v̂) =

= ([u|v] ◦ ŵ−) ◦ (w · v)∧ =

=

∫
Rn

(
[u|v] ◦ ŵ−

)
(w · v) ,

and hence

[u|w.v] = [u|v] ◦ ŵ− =

= [u|v] ◦
(
w−
)∧

=

=

∫
Rn

[u|v]w−,

as we desired. �

Example. Let w ∈ S(Rm,S ′n) be an S-linearly independent family and let
v ∈ s(Rk,S ′n) be such that vp ∈ Sspan (w), for each p ∈ Rk. Then, for each
p ∈ Rk, we have

vp =

∫
Rm

[vp | w]w,

i.e.,

v =

∫
Rm

[v|w]w = [v|w].w,

where [v|w] is the family in S ′m defined by

[v|w] := ([vp|w])p∈Rk .
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In fact

(

∫
Rm

[v|w]w)(p) =

∫
Rm

[v|w]pw

=

∫
Rm

[vp|w]w

= vp.

Remark. Obviously, in the conditions of the above definition, if v ∈
S(Rk,S ′m), we have ∫

Rm

vw = v · w,

and thus
∫
Rm vw ∈ S(Rk,S ′n).

18.5 Coordinates and invertible families

Definition (of representation of a family in an S-linearly independent
family). Let w ∈ S(Rm,S ′n) be an S-linearly independent family and let v be
a family in Sspan(w) indexed by the set I. The family in S ′m

[v|w] : =([vp|w])p∈I

is called the representation of the family v in the family w.

If the family w is invertible we have [v|w] = v.w−, indeed v = [v|w].w.
In general, if w is linearly independent and the coordinate representation is of
class S we have from the same expansion equality the following equality for
superposition operators

tv̂ = tŵ ◦ t[v|w]∧.

If L is a left inverse of the superposition operator of the family w we have

L ◦ tv̂ =t [v|w]∧,

and if L is continuous (if we assume the S-hull of w closed in the weak* topology
we have both the conditions satisfied) there is a right inverse with respect to
the product of families of w, say l, and we have

[v|w] = v.l = lv.

Example. Let δ be the Dirac basis in S ′n and v be a family in S ′n, we have
[v | δ] = v.



206 CHAPTER 18. SMATRICES

Remark. More generally, if v is a family in S ′m indexed by a set I and
A : S ′m → S ′n is an operator, we denote by A(v) the family (A(vp))p∈I . Now,
let w ∈ S(Rh,S ′m) be a family in Sspan(w). One has

[v|w]p = [vp|w] = [.|w](vp) = [.|w](v)(p),

and hence [v|w] = [.|w](v).

Theorem (invertible version of the “change of basis theorem”).
Let v ∈ S(Rn,S ′n) be an S-basis and let w ∈ S(Rn,S ′n) be an invertible square
family. Then, the family [v | w] is an S-family and we have

[· | w] =

∫
Rn

[· | v][v | w].

Proof. First of all we prove that [v | w] is of class S. Recalling the definition
of superposition of a family with respect to a family, we have

v =

∫
Rn

[v | w]w

in fact, for each p ∈ Rn, we have

vp =

∫
Rn

[vp | w]w =

=

∫
Rn

[v | w]pw =

=

(∫
Rn

[v | w]w

)
(p).

And hence, for all φ ∈ Sn, we have

v̂(φ)(p) = vp(φ) =

=

(∫
Rn

[vp | w]w

)
(φ) =

= [vp | w](ŵ(φ)),

now, for all ψ ∈ Sn, because ŵ is surjective, there exists a φ ∈ Sn such that
ψ = ŵ(φ), so

[v|w](ψ)(p) = [vp|w](ψ) =

= [vp|w](ŵ(φ)) =

= v̂(φ)(p)

i.e. [v|w](ψ) = v̂(φ) ∈ Sn, and concluding [v|w] is a family of class S. Moreover

v̂(φ) = [v|w](ŵ(φ)) =

= [v|w]∧(ŵ(φ)) =

= ([v|w]∧ ◦ ŵ)(φ)
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and so v̂ = [v|w]∧ ◦ ŵ, applying to both sides (ŵ)−, we have [v|w]∧ = v̂ ◦ (ŵ)−,
and hence [v|w]∧ is a continuous operator, so [v|w] is of class S. The “change
of basis theorem” completes the proof. �

Remark (important). Thanks to the Dieudonné-Schwartz theorem, we
proved that every invertible family is an S-basis and vice versa.. Then, the
preceding result can be stated in a more elegant way, assuming both v and w be
S-bases. Nevertheless, in the form in which we gave the statement and proof,
we need no resort to the characterization of invertible families.

Corollary Let v ∈ B (Rn,S ′n) . Then, we have [v| v−] = v2 and

[u| v−] =

∫
Rn

[u| v]v2.

Proof. We have
[v|v−] = v.v = v2;

and, from the change of basis theorem, we deduce

[u| v−] =

∫
Rn

[u|v][v|v−] =

=

∫
Rn

[u|v]v2,

as we desired. �

Theorem. Let v ∈ B(Rn,S ′n) be an invertible family. Then, the coordinate
operator [.|v] is invertible and moreover we have

[· | v]− = [· | v−].

Proof. Let u ∈ S ′n, we have(
[· | v] ◦ [· | v−]

)
(u) = [· | v]([· | v−](u)) =

= [· | v]([u | v−]) =

= [[u|v−]|v].

Now, we have already seen that,

[u|w−] =

∫
Rn

uw,

and thus

([·| v−] ◦ [·| v−](u)) = [[u | v−] | v] =

=

∫
Rn

[u | v−]v− =

= u.
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Analogously, we have(
[·| v−] ◦ [·| v]

)
(u) = [·| v−]([·| v](u)) =

= [·| v−]([u| v]) =

= [[u| v] | v−] =

=

∫
Rn

[u| v]v =

= u.

So, the operator [· | v] is invertible and [· | v]− = [·| v−]. �

Theorem. Let v ∈ S(Rn,S ′n) be an Sbasis such that the family [δ| v] is of
class S and the operator [· | v] is invertible. Then, v is invertible, we have
v− = [δ| v]. Moreover

t(v̂) = [· | v]−.

Proof. First of all we see that v is invertible. For each p ∈ Rn, we have

δp =

∫
Rn

[δ | v]pv = ([δ | v] · v)(p),

and hence [δ | v] · v = δ. On the other hand, by the “change of basis theorem”
we have

(v · [δ| v])(p) =

∫
Rn

vp [δ| v]

=

∫
Rn

[vp| δ] [δ| v]

= [vp| v]

= δp

and thus v · [δ | v] = δ, so v has a left and a right inverse and then v ∈ B(Rn,S ′n)
and moreover

v− = [δ | v].

Now, because v is invertible, the operator [·| v] is invertible. We shall prove that

[·| v]− = t(v̂).

For each u ∈ S ′n,

u =

∫
Rn

[u | v]v,

i.e.

u = [u | v] ◦ v̂
= t(v̂)([u | v])

= (t(v̂) ◦ [· | v])(u),
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i.e., (·)S′n = t(v̂) ◦ [· | v], and hence t(v̂) = [· | v]−. �
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Chapter 19

Representations in QM

In the present section we give a rigorous and greatly enriched version of the
representation theory introduced by Dirac in [Di] (page 66). A pure state σ of
a quantum system is a mono-dimensional subspace of the space S ′n, each ψ ∈ σ
is a vector-state representing σ.

19.1 Representation of Sendomorphisms

Let ψ = (ψp)p∈Rn be an S-basis of the space S ′n and let A ∈ L(S ′n) be an S-
linear endomorphism of S ′n. For every index p ∈ Rn of the S -basis, by definition
of coordinate operator, we have

A(ψp) =

∫
Rn

[A(ψp) | ψ]ψ.

Following Dirac, we call the family of coordinate distributions

(A)ψ = ([A(ψp) | ψ])p∈Rn ,

the matrix representation of the operator A in the Sbasis ψ.

211
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Interpretation. The S-family (A)ψ must be interpreted as the S-matrix
having for columns the systems of coordinates of the images of the elements of
the S-basis in the S-basis itself. Of course, we shall have

(A)ψ(u)ψ = (A(u))ψ,

as soon as we define suitably the representation of a vector in an S-basis and
the product of an S-matrix by a vector, and we will see this in early.

Concerning the matrix representation of the product of two operators we
have the following result.

Theorem. The family representing the product of two S-endomorphism on
S ′n is the transpose product of the families representing the two operators.

We recall that the transpose product is defined as follows.

Let v and w be two families in S(Rn,S ′n). The transpose product of v by
w is the family vw (note: there is no dot) defined as the superposition of the
family v with respect to the family w, i.e. by

vw := w.v =

∫
Rn

wv,

where w.v is the product of the family w by the family v.

Proof. Let A,B be two S-linear operators on S ′n, we have

A(B(ψp)) = A(

∫
Rn

[B(ψp) | ψ]ψ) =

=

∫
Rn

(B)
p
ψ A (ψ) =

=

∫
Rn

(B)
p
ψ

∫
Rn

(A)ψ ψ =

=

∫
Rn

(∫
Rn

(B)
p
ψ (A)ψ

)
ψ,

so it follows
(AB)ψ = (A)ψ (B)ψ ,

as we claimed. �

Interpretation. The family representing an operator A ∈ L(S ′n) takes the
place of the matrix representing a linear operator among two finite dimensional
vector spaces. For this reason we shall call the S-families also with the name S
-matrices.
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19.2 Representation of vector states

For any tempered distribution u in the space S ′n, we have, moreover, that

u =

∫
Rn

[u | ψ]ψ.

We call the non-locally defined family (tempered distribution)

(u)ψ := [u | ψ] ,

the representation of the vector u in the basis ψ.

We have

A (u) =

∫
Rn

(u)ψ A (ψ) =

=

∫
Rn

(u)ψ

∫
Rn

(A)ψ ψ =

=

∫
Rn

(∫
Rn

(u)ψ (A)ψ

)
ψ,

thus we proved that

(A (u))ψ =

∫
Rn

(u)ψ (A)ψ .

19.2.1 First examples

A simple kind of observables often used in Quantum Mechanics is that of the so
called “multiplication operators by a scalar”, let us see in the following example
their definition and their matrix representation.

Example (the multiplication by a scalar). If we regard, following Dirac,
the multiplication by a scalar c as the observable (endomorphism) Mc defined
by Mc (u) = cu, for any distribution u in S ′n, we have

Mc (u) = cu =

= c

∫
Rn

(u)ψ ψ =

=

∫
Rn

(u)ψ (cψ) =

=

∫
Rn

c (u)ψ ψ.



214 CHAPTER 19. REPRESENTATIONS IN QM

Then we have

Mc(ψp) =

∫
Rn

c(ψp)ψψ =

=

∫
Rn

(cδp)ψ,

so the S-family representing the observable Mc is the diagonal family (cδp)p∈Rn ,
i.e., the family cδ.

More generally we can consider the observable “multiplication by a smooth
function” more precisely by an OM function.

Example (the multiplication by a smooth function). If we regard,
following Dirac, the multiplication by a scalar function f as the observable
(endomorphism) Mf defined by Mf (u) = fu, for any distribution u in S ′n, we
have

Mf (δp) = fδp =

=

∫
Rn

(fδp)δδ =

=

∫
Rn

(f(p)δp)δ,

so the S-family representing the observable Mf in the Dirac basis is the diagonal
family (f(p)δp)p∈Rn , i.e., the family fδ.

19.3 The representation correspondence

Theorem. The correspondence that sends every S-endomorphism to its corre-
sponding S-matrix, that is the representation

(·)ψ : L(S ′n)→ S(Rn,S ′n),

is bijective.

Proof. In fact, (A)ψ = (B)ψ implies, for every u in S ′n,

(A (u))ψ = (A)ψ (u)ψ =

=

∫
Rn

(u)ψ (A)ψ =

=

∫
Rn

(u)ψ (B)ψ =

= (B)ψ (u)ψ =

= (B (u))ψ ,
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and thus Au = Bu, for every u in S ′n, i.e. A = B, so the representation is
injective. �

Theorem. The representation (·)ψ is also surjective.

Proof. In fact, if v = (vp)p∈Rn is an S -family, we put

A (u) =

∫
Rn

(u)ψ (

∫
Rn

vψ),

we have

A(ψp) =

∫
Rn

(ψp)ψ

(∫
Rn

vψ

)
=

=

∫
Rn

δp

(∫
Rn

vψ

)
=

=

(∫
Rn

vψ

)
p

=

=

∫
Rn

vpψ,

and thus (A)ψ = v. �

Let (·)−ψ the inverse of (·)ψ. In the above proof we have deduced that

(v)
−
ψ (u) =

∫
Rn

(u)ψ

(∫
Rn

vψ

)
.

If we choose the canonical basis δ, we have (as we already know)

(v)
−
δ (u) =

∫
Rn

(u)δ

(∫
Rn

vδ

)
=

=

∫
Rn

uv.

If we put (as in the finite-dimensional case)

vu := (v)
−
δ (u) =

∫
Rn

uv,

(vu is called the image of the vector u under the matrix v, or the transpose
product of v by u) we obtain

(A (u))ψ =

∫
Rn

(u)ψ (A)ψ =

= (A)ψ (u)ψ ,

as we claimed in the first section.
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19.4 Representation of S-linear operators

The generalization to the case A ∈ L(S ′n,S ′m) is, at this point, very natural.

Let ψ an S-basis of S ′n and ϕ be an S basis of S ′m. We define Smatrix
associated with A in the pair of basis (ψ,ϕ) the S-family (A)(ψ,ϕ) in S(Rn,S ′m)
defined by

(A (u))ϕ =

∫
Rn

(u)ψ (A)(ψ,ϕ) .

We have
(A)(ψ,ϕ) = (A(ψ))ϕ := ((A(ψq))ϕ)q∈Rn ,

indeed ∫
Rn

(ψq′)ψ(A(ψ))ϕ =

∫
Rn

δq′(A(ψ))ϕ =

= (A(ψq′))ϕ,

and, using S-linearity, if it is true for a basis its is true for every vector.

Or, equivalently using the transpose product, the S-matrix such that

(A (u))ϕ = (A)(ψ,ϕ) (u)ψ .

Remark. Note that on the contrary the family associated to and endomor-
phism A ∈ L(Sn,Sm) is the family

(A)(ψ,ϕ) = (ϕp ◦A ◦ ψ̂−)p∈Rm .

And we have
(B ◦A)(α,γ) = (B)(β,γ) · (A)(α,β) ,

where · is the product of two families (and no the transpose product!).

It’s simple to prove that ψ is an S-basis of the entire space if and only if tψ̂
is bijective. In this case we have

uψ = t(ψ̂)−(u) = t(ψ̂−)(u).

And moreover, denoted by ψ− the families associated with the operator ψ̂−, the
following decomposition holds

(A)
p
ψ =

∫
Rn

Aψpψ
−.

This relations will be used in the following classic examples.



19.5. CLASSIC EXAMPLES IN QM 217

19.5 Classic examples in QM

19.5.1 SMatrix representations

Example (the representation of the position operator in the momen-
tum basis). Let

X : S ′1 → S ′1 : u 7→ (·)u

be the position operator and let ϕ be the (1,−1/~)-Fourier family, then we have

(X)
p
ϕ =

∫
R
Xϕpϕ

− =

=

∫
R
IRϕpϕ− =

=

(
i

1/~

)1(∫
R
ϕpϕ

−
)′

=

= i~ (ϕp)
′
ϕ =

= i~δ′p.

Example (the representation of the momentum operator in the
momentum basis). Let

P : S ′1 → S ′1 : u 7→ −i~u′

be the momentum operator of a particle. We have

(P )
p
ϕ =

∫
R
Pϕpϕ

− =

=

∫
R
pϕpϕ

− =

= p(ϕp)ϕ =

= pδp.

and hence (P )ϕ = IRδ.

Example (the representation of the kinetic energy operator in the
momentum basis). Let

T : S ′1 → S ′1 : u 7→
(
~2/2m

)
u′′ = (1/2m)P 2(u)

be the kinetic energy operator of a nonrelativistic particle, we have

(T )
p
ϕ =

∫
R
Tϕpϕ

− =
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=

∫
R

1

2m
P 2ϕpϕ

− =

=
1

2m

∫
R
p2ϕpϕ

− =

=
1

2m
p2 (ϕp)ϕ =

=
1

2m
p2δp.

19.5.2 Operator representation

Definition (of representation of an operator in an invertible family).
Let A : S ′n → S ′n be an operator and v ∈ B(Rn,S ′n). We define (operator)
representation of the operator A in the basis v the following operator

[A]v := [A | v] ◦ [· | v−].

Example (a representation of the momentum operator). Let v be
the family in S ′1 defined by

vp =
1√
2π~

[
e(i/~)p(·)

]
,

for every p ∈ R, i.e., the (
√

2π~,−1/~)-Fourier family. Let u ∈ S ′1, from the
Fourier expansion theorem we have

u =

∫
R
F−(a,b)(u)v,

where a =
√

2π~ and b = −1/~, we have

F−(a,b) = F(2π/|b|a,−b) =

= F(2π/(|−1/~|
√

2π~),1/~) =

= F(
√

2π~,1/~) =

= F(a,−b),

and hence

[u | v] = F(
√

2π~,1/~)(u).

Moreover, let

P : S ′1 → S ′1 : u 7→ −i~u′
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be the momentum operator, we have

[P (u)| v] = [−i~∂(u) | v] =

= F(
√

2π~,1/~)(−i~∂(u)) =

= −i~F(
√

2π~,1/~)(∂(u)) =

= −i~(i/~)1 (·)1 F(a,−b)(u) =

= (·)F(a,−b)(u),

now let
X : S ′1 → S ′1 : u 7→ (·)u

be the position operator, we have

[P ]v = [P | v] ◦ [· | v−] =

= (·)F(a,−b) ◦ F(a,b) =

=
(
X ◦ F(a,−b)

)
◦ F(a,b) =

= X ◦
(
F(a,−b) ◦ F(a,b)

)
=

= X.

Example (the representation of the position operator in a Fourier
basis). Let

X : S ′1 → S ′1 : u 7→ (·)u

be the position operator, we have

[X]v = [X | v] ◦ [· | v−];

now

[X(u)| v] = F(
√

2π~,1/~)(X(u)) =

= F(
√

2π~,1/~)((·)u) =

=

(
i

1/~

)1 (
F(
√

2π~,1/~)(u)
)′

=

= −P
(
F(
√

2π~,1/~)(u)
)
.

Hence,

[X]v = −
(
P ◦ F(a,−b)

)
◦ F(a,b) =

= −P ◦
(
F(a,−b) ◦ F(a,b)

)
=

= −P =

= −(−i~D) =

= i~D.



220 CHAPTER 19. REPRESENTATIONS IN QM

Concluding
[X]v = −P = i~D.

Example (a representation of the kinetic energy operator). Let

T : S ′1 → S ′1 : u 7→ − ~2

2m
u′′

be the kinetic energy operator of a nonrelativistic quantum particle. And let v
the (

√
2π~,−1/~)-Fourier family. One has

[T (u)| v] = F(
√

2π~,1/~)(T (u)) = F(
√

2π~,1/~)

(
− ~2

2m
u
′′
)

=

= − ~2

2m
(1/~)2i2(·)2F(

√
2π~,1/~)(u) =

=
(·)2

2m
F(
√

2π~,1/~)(u) =

=
X2

2m
◦ F(

√
2π~,1/~)(u).

Hence, we have

[T | v] ◦ [·| v−] =

(
X2

2m
◦ F(

√
2π~,1/~)

)
◦ F(

√
2π~,−1/~) =

=
X2

2m
◦
(
F(
√

2π~,1/~) ◦ F(
√

2π~,−1/~)

)
=

=
X2

2m
◦ (·)S′1 =

=
X2

2m
.

Concluding

[T ]v =
X2

2m
.
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Chapter 20

Multiplicative operators in
S(Rm,S ′n)

20.1 Introduction

In the Spectral Theory of S linear operators, the eigenvalues corresponding to the
elements of certain S families have fundamental importance. If L is an S linear
operator and v is an S family, the family v is defined an eigenfamily of the
operator L if there exists a real or complex function l - defined on the set of
indices of the family v - such that the relation

L(vp) = l(p)vp,

holds for every index p of the family v. As we already have seen, in the context
of S linear operators, it is important how the operator L acts on the entire family
v. Taking into account the above definition, it is natural to consider the image
family L(v) as the product - in pointwise sense - of the family v by the function
l, but:

• is this pointwise product a binary operation in the space of S families?

• what kind of properties are satisfied by this product?

In this chapter we define and study the properties of such product.

223
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20.2 OMFunctions

We recall, for convenience of the reader, some basic notions from theory of
distributions.

Definition (of slowly increasing smooth function). We denote by

OM (Rn,K), or more simply by O(n)
M , the subspace of all smooth functions f

belonging to the space C∞(Rn,K) such that, for every test function φ ∈ Sn
the product φf lives in Sn. The space OM (Rn,K) is said to be the space of
smooth functions from Rn into the field K slowly increasing at infinity
with all their derivatives.

In other terms, the functions f in the space O(n)
M are the only smooth func-

tions which can be generate a multiplication operator

Mf : Sn → Sn
of the space Sn into the space Sn itself, (obviously) by the relation Mf (g) = fg.
This is the motivation of the importance of these functions, and the symbol
itself OM depends on this fact.

Proposition. Let f ∈ En be a smooth function. Then the following condi-
tions are equivalent:

1) for all multi-index p ∈ Nn0 there is a polynomial Pp such that, for any
point x ∈ Rn, the following inequality holds

|∂pf(x)| ≤ |Pp(x)| ;

2) for all test function φ ∈ Sn the product φf lies in Sn;

3) for every multi-index p ∈ Nn0 and for every test function φ ∈ Sn the
product (∂pf)φ is bounded in Rn.

20.2.1 Topology

The standard topology of the space O(n)
M is the locally convex topology defined

by the family of seminorms

γφ,p(φ) = sup
x∈Rn

|φ(x)∂pf(x)|

with φ ∈ Sn and p ∈ Nn0 . This topology does not have a countable basis. Also,

it can be shown that the space O(n)
M is a complete space. A sequence (or filter)

(fj)j∈N converges to zero in O(n)
M if and only if for every φ ∈ Sn and for every

p ∈ Nn0 , the sequence of functions (φ∂pfj)j∈ N converges to zero uniformly on
Rn; or, equivalently, if, for every test function φ ∈ Sn, the sequence (φfj)j∈N
converges to zero in Sn.
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20.2.2 Bounded sets in O(n)
M

A subset B of O(n)
M is bounded (in the topological vector space O(n)

M ) if and
only if, for all multi-index p ∈ Nn0 , there is a polynomial Pp such that, for any
function f ∈ B, the following inequality holds true

|∂pf(x)| ≤ Pp(x),

for any point x ∈ Rn.

20.2.3 Multiplications by O(n)
M functions

The bilinear map

Φ : O(n)
M × Sn → Sn : (φ, f) 7→ φf

is separately continuous with respect to the usual topologies of the spaces O(n)
M

and Sn. It follows immediately that the multiplication operator Mf , associated
with an OM function f , is continuous (with respect to the standard topology on
Sn). Moreover, the transpose of the operator Mf is the operator

tMf : S ′n → S ′n

defined by

tMf (u)(g) = u(Mf (g)) =

= u(fg) =

= fu(g),

for every u in S ′n and for every g in Sn; so that, the transpose of the multiplica-
tion Mf is the multiplication on S ′n by the function f . Indeed, the multiplication
of a tempered distribution by an OM function is defined by the transpose of Mf ,
since this last operator is self-adjoint with respect to the canonical bilinear form
on Sn × Sn; in fact, obviously, we have

〈Mf (g), h〉 = 〈g,Mf (h)〉,

for every pair (g, h) in that Cartesian product.



226 CHAPTER 20. MULTIPLICATIVE OPERATORS IN S(RM ,S ′N )

20.2.4 SFamily of the multiplication operator Mf

We can associate to the operator Mf : Sn → Sn an S family v, in the canonical
way, we have

vp = (M∨f )p =

= δp ◦Mf =

= tMf (δp) =

= fδp =

= f(p)δp,

for every p in Rn.

20.3 Product in L(Sn,Sm) by OM functions

The basic remark is the following.

Proposition. Let A ∈ L(Sn,Sm) be a continuous linear operator and let f

be a function of class O(m)
M . Then, the mapping

fA : Sn → Sm : φ 7→ fA(φ)

is a linear and continuous operator too, it is indeed the composition

Mf ◦A,

where Mf is the multiplication operator by the function f .

Proof. It is absolutely straightforward. First of all we note that the product
fA is well defined. In fact, we have

(fA)(φ) = fA(φ),

and the right-hand function lies in the space Sm because the function f lies in

the space O(m)
M and the function A(φ) in the space Sm. Moreover, the bilinear

application

Φ : O(m)
M × Sm → Sm : (f, ψ) 7→ fψ

is separately continuous and since we have

(fA)(φ) = fA(φ) =

= Φ(f,A(φ)) =

= Mf (A(φ)),
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i.e.,

fA = Φ(f, ·) ◦A =

= Mf ◦A,

hence the operator fA is the composition of two linear continuous maps and
then is a linear and continuous operator. �

Definition. Let A ∈ L(Sn,Sm) and f ∈ O(m)
M . The operator

fA : Sn → Sm : φ 7→ fA(φ)

is called the product of the operator A by the function f .

Proposition. Let A,B ∈ L(Sn,Sm) be two continuous linear operators and

f, g be two functions in O(m)
M . Then, we have

1) (f + g)A = fA + gA; f(A + B) = fA + fB; 1RmA = A, where the
function 1Rm is the constant function of Rm into K with value 1;

2) the map

Φ : O(m)
M ×L(Sn,Sm)→ L(Sn,Sm) : (f,A) 7→ fA

is a bilinear map.

Proof. It’s a straightforward computation. �

The above bilinear application is called multiplication of operators by OM
functions.

20.3.1 The ring O(m)
M

It’s easy to see that the algebraic structure (O(m)
M ,+, ·) is a commutative ring

with identity, with respect to the usual pointwise addition and multiplications.
For instance, the multiplication is the operation

· : O(m)
M ×O(m)

M →O(m)
M : (f, g) 7→ fg,

where, obviously, if f, g ∈ O(m)
M , then the pointwise product fg still lies in O(m)

M .
The identity of the ring is the function 1OM

:= 1Rm . Moreover, we have that

subspace Sm of the space O(m)
M is an ideal of the ring O(m)

M . The subring of

O(m)
M formed by the invertible elements of O(m)

M is exactly the multiplicative
subgroup of those elements f such that the multiplicative inverse f−1 belongs

to the space O(m)
M too.
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20.3.2 The module L(Sn,Sm)

Proposition. Let · be the product operation defined in the above theorem.
Then, the algebraic structure (L(Sn,Sm),+, ·) is a left module over the ring

(O(m)
M ,+, ·).

Proof. Recall the preceding theorem, we have to prove only the pseudo-

associative law, i.e. we have to prove that for every f, g ∈ O(m)
M , for every

A ∈ L(Sn,Sm), we have
(fg)A = f(gA).

In fact, for each φ ∈ Sn, we have

[(fg)A](φ) = (fg)A(φ) =

= f(gA(φ)) =

= f(gA)(φ)) =

= [f(gA)](φ),

as we desired. �

20.4 Product of Sfamilies by OM functions

The central definition of the chapter is the following.

Definition (product of families by smooth functions). Let v ∈
S(Rm,S ′n) be an S family of distributions and let f ∈ C∞(Rm,K) be a smooth
function. The product of the family v by the function f is the family

fv := (f(p)vp)p∈Rm .

Theorem. Let v ∈ S(Rm,S ′n) be an S family and f ∈ O(m)
M . Then, the

family fv lies in S(Rm,S ′n). Moreover, we have

(fv)∧ = fv̂.

Consequently, concerning the superposition operator of the family fv, since
fv̂ = Mf ◦ v̂, we have

t(fv)∧ = tv̂ ◦ tMf ,

or, equivalently, ∫
Rm

a(fv) =

∫
Rm

(fa)v,

for every coefficient distribution a in S ′m.
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Proof. Let φ ∈ Sn, we have

(fv)(φ)(p) = (fv)p(φ) =

= (f(p)vp)(φ) =

= f(p)vp(φ) =

= f(p)v̂(φ)(p)

and hence the function (fv)(φ) equals fv̂(φ) which lies in Sm. Thus, the product
fv lies in the space S(Rm,S ′n). For any test function φ ∈ Sn, by the above
consideration, we deduce

(fv)∧(φ) = fv̂(φ),

that is,
(fv)∧ = fv̂,

where fv̂, is the product of the operator v̂ by the function f , which belongs to
L(Sm,Sn) . Moreover, concerning the superposition operator of the family fv,∫

Rm

a(fv) = t(fv)∧(a) =

= (tv̂ ◦ tMf )(a) =

= tv̂(tMf (a)) =

= tv̂(fa) =

=

∫
Rm

(fa)v,

for every a in S ′m. �

Theorem. Let f, g two functions in the space O(m)
M and v, w two families

in the space S(Rm,S ′n). Then, we have

1) (f + g)v = fv + gv, f(v + w) = fv + fw and 1OM
v = v.

2) The map

Φ : O(m)
M × S(Rm,S ′n)→ S(Rm,S ′n) : (f, v) 7→ fv

is a bilinear map.

Proof. 1) For all p ∈ Rm, we have

[(f + g) v] (p) = (f + g)(p)vp =

= (f(p) + g(p))vp =

= f(p)vp + g(p)vp =

= (fv)p + (gv)p,
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i.e. (f + g)v = fv + gv. For all p ∈ Rm, we have

[f (v + w)] (p) = f(p)(v + w)p =

= f(p)(vp + wp) =

= f(p)vp + f(p)wp =

= (fv)p + (fw)p,

i.e. f(v + w) = fv + fw. For all p ∈ Rm, we have

(1Rmv)(p) = 1Rm(p)vp = vp;

i.e. 1Rmv = v. 2) follows immediately by 1). �

The bilinear application of the point 2) of the preceding theorem is called
multiplication of families by OM functions.

Theorem (of structure). Let · the operation defined above. Then, the

algebraic structure (S(Rm,S ′n),+, ·) is a left module over the ring (O(m)
M ,+, ·).

Proof. It’s analogous to the proof of the corresponding proposition for op-
erators. �

Theorem (of isomorphism). The application

(·)∧ : S(Rm,S ′n)→ L(Sn,Sm)

is a module isomorphism.

Proof. It follows easily from the above theorem. �

20.5 OMFunctions and S basis

In this section we study some relations among a family w and its multiples fw.

Theorem. Let w ∈ S(Rm,S ′n) and let f ∈ O(m)
M . Then, the hull Sspan(w)

contains the hull Sspan(fw). Moreover, if a distribution a represent the distri-
bution u in the family fw then the distribution fa represent the distribution u
in the family w.

Proof. 1) Let u be a vector of the S linear hull Sspan(fw). Then, there exists
a coefficient distribution a ∈ S ′m such that

u =

∫
Rm

a(fw),
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and this is equivalent to the equality

u =

∫
Rm

(fa)w;

hence the vector u belongs also to the S linear hull Sspan(w). Hence the S linear
hull Sspan(fw) is contained in the S linear hull Sspan(w). �

Theorem. Let w ∈ S(Rm,S ′n) and let f ∈ O(m)
M be a function different

from 0 at every point. Then, the following assertions hold true:

1) if the family w is S linearly independent, the family fw is S linearly inde-
pendent too;

2) the hull Sspan(w) contains the hull Sspan(fw);

3) if the family w is S linearly independent, for each vector u in the hull
Sspan(fw), we have

[u | w] = f [u | fw];

4) if the family w is an Sbasis of a subspace V , then fw is an Sbasis of its
S linear hull Sspan(fw) (that in general is a proper subspace of Sspan(w)).

Proof. 1) Let a ∈ S ′m be such that∫
Rm

a(fw) = 0S′n ,

we have

0S′n =

∫
Rm

a(fw) =

=

∫
Rm

(fa)w,

thus, because the family w is S linearly independent we have fa = 0S′n . Since f
is different from 0 at every point we can conclude a = 0S′n .

2) Let u be a vector of the span Sspan(fw). Then, there exists a coefficient
distribution a ∈ S ′m such that

u =

∫
Rm

a(fw),

or equivalently

u =

∫
Rm

(fa)w,
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and hence the vector u belongs also to Sspan(w). Hence the span Sspan(fw) is
contained in the span Sspan(w).

3) If w is S linearly independent, from the above two equalities we deduce
(u)fw = a and (u)w = fa, from which

(u)w = fa =

= f(u)fw,

as we claimed. 4) is an obvious consequence of the preceding properties. �

20.6 OMInvertible functions and Sbasis

We recall that an invertible element of O(m)
M is any function f everywhere dif-

ferent from 0 and such that its multiplicative inverse f−1 lives in O(m)
M too. The

set of the invertible elements of the space O(m)
M is a group with respect to the

pointwise multiplication, and we will denote (sometimes) it by G(m)
M .

Theorem. Let w ∈ S(Rm,S ′n) and let f ∈ G(m)
M be an invertible element

of the ring O(m)
M (in particular, it must be a function different form 0 at every

point). Then, the following assertions hold true:

1) the family w is S linearly independent if and only if the family fw is
S linearly independent;

2) the hull Sspan(w) coincides with the hull Sspan(fw);

3) if the family w is S linearly independent, for each vector u in the hull
Sspan(w), we have

[u | fw] = (1/f) [u | w].

4) if the family w is an Sbasis of a subspace V if and only if its multiple
fw is an Sbasis of the S linear hull Sspan(fw) (that in this case coincides
with Sspan(w)).

Proof. 1) Let a ∈ S ′m be such that∫
Rm

aw = 0S′n ,

we have

0S′n =

∫
Rm

aw =

=

∫
Rm

(f−1a)(fw),
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thus, because fw is S linearly independent we have f−1a = 0S′n . Since f−1 is
different form 0 at every point we can conclude a = 0S′n .

2) Let u be in Sspan(w). Then, there exists an a ∈ S ′m such that

u =

∫
Rm

aw.

Now, we have

u =

∫
Rm

(f−1a) (fw) ,

so the distribution u lies in Sspan(fw), and hence Sspan(w) is contained in
Sspan(fw). Vice versa, let u be in Sspan(fw). Then, there exists an a ∈ S ′m
such that

u =

∫
Rm

a(fw).

Now, we have

u =

∫
Rm

(fa)w,

and hence u lies also in Sspan(w), hence Sspan(fw) is contained in Sspan(w).
Concluding

Sspan(w) = Sspan(fw).

3) For any u ∈ S ′n, we have

u =

∫
Rm

[u | w]w,

hence

u =

∫
Rm

(f−1[u|w]) (fw) ,

as we desired. 4) It follows immediately from the above properties. �

Theorem. Let e ∈ B(Rm,S ′n) be an Sbasis of the space S ′n and let f ∈ O(m)
M

. Then the multiple fe is an Sbasis of the space S ′n if and only if the factor f

is an invertible element of the ring O(m)
M .

Proof. We must prove that, if fe is an Sbasis of S ′n, then f is an invertible

element of the ring O(m)
M . First of all observe that, since fe is a basis, then fe

is S linearly independent and consequently linearly independent in the ordinary
algebraic sense; consequently every distribution f(p)ep must be a non zero dis-
tribution and this implies that any value f(p) must be different from 0, so we
can consider the multiplicative inverse f−1. We now have to prove that f−1

lives in O(m)
M , or equivalently that, for every g in Sm the product f−1g lives in

Sm. To do this, let g be in Sm, since fe is a basis, its associated operator from
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Sn into Sm is surjective, then there is a function h in Sn such that (fe)∧(h) = g,
the last equality is equivalent to

fe(h) = g,

that is
f−1g = e(h),

so that f−1g actually lives in the space Sm. �

Theorem. Let e ∈ B(Rm, V ) be an Sbasis of a (weakly*) closed subspace V

of the space S ′n and let f ∈ O(m)
M . Then the multiple family fe is an Sbasis of

the subspace V if and only if the factor f is an invertible element of the ring

O(m)
M .

Proof. We must prove that, if fe is an Sbasis of the subspace V , then f is an

invertible element of the ring O(m)
M . First of all observe that, since fe is a basis,

then fe is S linearly independent and consequently linearly independent in the
ordinary algebraic sense; consequently every distribution f(p)ep must be a non
zero distribution and this implies that any value f(p) must be different from 0.
So we can consider its multiplicative inverse f−1 . We now have to prove that

f−1 lives in O(m)
M , or equivalently that, for every g in Sm the product f−1g lives

in Sm. To do this, let g be in Sm, since fe is an S basis of a topologically closed
subspace, its associated operator from Sn into Sm is surjective, then there is a
function h in Sn such that (fe)∧(h) = g, the last equality is equivalent to

fe(h) = g,

that is
f−1g = e(h),

so that f−1g actually lives in the space Sm. �



Chapter 21

Spectral expansions

21.1 Spectral Sexpansions

In the following we shall use the notation L(S ′n) = L(S ′n,S ′n) for the space
of S linear endomorphisms on the space S ′n, it is just the space of continuous
linear endomorphisms with respect to the weak* topology (or with respect to
the strong* topology) on S ′n.

Let E,F be two vector spaces and let A be a linear operator of E into F . The
set of all the eigenvectors of the operator A is denoted by E(A). The set of all
the eigenvalues of the operator A is denoted by e(A); moreover the eigenspace
relative to an eigenvalue a ∈ K is denoted by |a〉A, or by Ea(A). For every
eigenvector u of A, there is only one eigenvalue a such that A(u) = au, so that we
can consider the projection p : E(A)→ e(A) associating with every eigenvector
u of the operator its eigenvalue. It is clear that the set E 6=a (A), the eigenspace
of A corresponding to the eigenvalue a without the zero vector, coincides with
the fiber p−(a). So that we have constructed a fiber space (E(A), e(A), p).

Definition (of eigenfamily). Let A ∈ L( S ′n) be an S linear endomor-

phism on the space S ′n, a ∈ O(m)
M and v ∈ S( Rm,S ′n) be an S family. We

say that the family v is an S eigenfamily of the operator A with respect
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to the system of eigenvalues a if, for each index p ∈ Rm, the vector vp is
an eigenvector of the operator A with respect to the eigenvalue a(p). In other
terms, the family v is an Seigenfamily of the operator A with respect to the
system of eigenvalues a if, for each index p ∈ Rm, we have

A(vp) = a(p)vp,

which, in terms of families can be written as A(v) = av.

Now we can state and prove the principal theorem of this chapter.

Theorem (of Sspectral expansion). Let A ∈ L(S ′n) be an S linear en-

domorphism, a ∈ O(m)
M and let v ∈ S(Rm,S ′n) be an S linearly independent

eigenfamily of the operator A with respect to the system of eigenvalues a. Then,
we have the spectral S expansion

A(u) =

∫
Rm

a[u|v]v.

for each u in the S linear hull Sspan(v).

Proof. For each distribution u in the S linear hull Sspan(v), we have

A(u) = A

(∫
Rm

[u|v]v

)
=

=

∫
Rm

[u|v]A (v) =

=

∫
Rm

[u|v] (av) =

=

∫
Rm

(a[u|v]) v.

In fact, the third equality holds because

A(v)p = A(vp) =

= a(p)vp =

= (av)(p),

as we already have noted; and the fourth equality holds because(∫
Rm

[u|v] (av)

)
(φ) = [u|v]((av)∧ (φ)) =

= [u|v] (av̂ (φ)) =

= (a [u|v])(v̂ (φ)) =

=

∫
Rm

(a [u|v])v,
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as we well know in the general case; this concludes the proof. �

Remind. Recall the definition of superposition of an S family with respect to
an operator. Let X be a subspace of the space S ′n, A ∈ Hom(X,S ′m) be a linear
operator and v ∈ S(Rm,S ′n) be an S family of distributions. The superposition
of the family v with respect to the operator A, is the operator∫

Rm

Av : X → S ′n : u 7→
∫
Rm

A(u)v.

Remark. So, in the conditions of the above theorem, we can write

A|X =

∫
Rn

a[.|v]v,

saying that the restriction of the operator A to the S linear hull of the family
v is a superposition of the family v with respect to the coordinate operator of
the family.

Remark. The above theorem generalizes the Resolution of Identity theo-
rem. Indeed, every Sbasis of the space S ′n is an Seigenfamily of the identity
operator with respect to the constant unitary system 1Rm , so that we have

(.)S′n =

∫
Rm

[.|v]v,

for every Sbasis v of the space S ′n . Moreover, if jX is the injection of the linear
hull X of an S linearly independent family v, we have

jX =

∫
Rm

[.|v]v,

since jX is just the restriction to X of the identity operator on the space S ′n.

Remark. The above theorem holds in the particular case in which there
exists a Sbasis of the space S ′n constituted by eigenvectors of the operator A.
This case is the theme of the following chapter.

21.2 SExpansions and S linear equations

Let A be an S linear operator on the space S ′n and let v be an Sbasis of the
space S ′n such that Av = av, with a function of class OM . We desire to solve
the S linear equation

E : A(.) = d,
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with d in S ′n.

Theorem. Let A be an S linear operator on the space S ′n and let v be an
Sbasis of the space S ′n, indexed by the m-dimensional Euclidean space, such that
Av = av, with a function of class OM . Then, the S linear equation

E : A(.) = d,

with d in S ′n, admits (at least) one solution if and only if the representation dv,
of the datum d in the Sbasis v, is divisible by the function a. In this case, a
solution of the equation E is the representation of any quotient q, of the division
of dv by a, in the inverse basis of v, that is the superposition∫

Rm

qv.

Proof. (⇒) Let u be a solution of the equation E. We have

A(u) =

∫
Rm

a[u|v]v,

by the spectral Sexpansion theorem and

d =

∫
Rm

[d|v]v,

by the definition of representation of d in the basis v. Since v is S linear inde-
pendent, we obtain the eigen-representation of the equality E(u), that is

a[u|v] = [d|v],

so that, if the distribution dv is divisible by the function a, that is there exists
a distribution q such that

aq = dv.

(⇐) It is also clear that, if the representation dv is divisible by the function a,
then any quotient q of the division of dv by a is a solution of E. Indeed,

A

(∫
Rm

qv

)
=

∫
Rm

qA(v) =

=

∫
Rm

q(av) =

=

∫
Rm

(aq)v =

=

∫
Rm

dvv =

= d,
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as we claimed. �

We can see an interesting application.

Application (the Malgrange-Ehrenpreis theorem). We obtain, as a
very particular case the Malgrange theorem, using the Hörmander division of a
distribution by polynomials. First of all consider that the partial derivative ∂i
has the Fourier basis as an S eigenfamily, indeed we have

∂i(e
−i(p|.)) = −ipie−i(p|.),

for every positive integer i less than n. Consequently we have

∂j(e−i(p|.)) = (−i)|j|pje−i(p|.),

for every multi-index j; thus a differential operator D with constant coefficients,
say

D = Σcj∂
j ,

has the Fourier basis v = (e−i(p|.))p∈Rm as an Seigenbasis. If q is the quotient
of the division of a distribution d by a polynomial Σ(−i)|j|cj(.)p, the S linear
equation

Du = q

has the solution ∫
Rm

qv,

by the above theorem, and this is exactly what the Malgrange theorem says.

21.3 Existence of Green families

Theorem. Let L ∈ L(S ′n) be an S linear operator. Let λ be an Seigenfamily of
the operator L with corresponding eigenvalue system l, i.e. let the equality

L(λp) = l(p)λp,

hold true, for every p in the index set, say I, of the family λ. Assume that

• there is another S family µ such that the Dirac family of the space S ′n can
be factorized as

µ.λ = δ,

in other terms assume that the family λ has an S left inverse with respect
to the product of families;

• the function l is an OM function and nowhere zero and its inverse l−1 is
of class OM , that is it is an element of the group of invertible elements of
the ring OM .
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Then, the operator L has an SGreen family, namely the family G defined
by

Gp =

∫
Rn

(1/l)µpλ,

for every index p in I.

Proof. Indeed, for every index p, we have

L(Gp) = L

(∫
Rn

(1/l)µpλ

)
=

=

∫
Rn

(1/l)µpLλ =

=

∫
Rn

(1/l)µpLλ =

=

∫
Rn

(1/l)µplλ =

=

∫
Rn

l(1/l)µpλ =

=

∫
Rn

µpλ =

= δp,

as we claimed. �

The above assumptions imply that the family λ is a system of Sgenerators
for S ′n and that the family µ is S linearly independent. In the particular case in
which µ.µ is the factorization of the Dirac basis we deduce that the family µ
must be a basis too.

Let us generalize the preceding result.

Theorem. Let L ∈ L(S ′n) be an S linear operator with an Seigenfamily λ
and corresponding eigenvalue system l. Assume that

• there is another S family µ such that

µ.λ = δ,

• any member of the family µ is divisible by the function l, that is there is
a family ν of distributions such that

lνp = µp,

for every index p of I ( νp is the quotient of the division of µp by l).
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Then,

• the operator L has a Green family, namely the family G defined by

Gp =

∫
Rn

νpλ,

for every index p.

• If, moreover, the family ν is of class S, the operator L has an SGreen
family, namely the family defined by the product of S families G = ν.λ.

Proof. Indeed, for every index p, we have

L(Gp) = L

(∫
Rn

νpλ

)
=

=

∫
Rn

νpLλ =

=

∫
Rn

νpLλ =

=

∫
Rn

νp(lλ) =

=

∫
Rn

(lνp)λ =

=

∫
Rn

µpλ =

= δp,

as we claimed. �

Open problem (the position operator). We know that, on the real line,
the product of the identity mapping (.) by the Dirac distribution δ0 is the zero
distribution, i.e.

(.)δ0 = 0S′1 ;

then, by derivation, we deduce

δ0 + (.)δ′0 = 0,

so the Dirac distribution centered at 0 is divisible by the identity mapping (.) on
the real line and the quotient of this division is the distribution −δ′0. Consider,
now, the position operator on the real line P : S ′1 → S ′1, defined by P (u) = (.)u.
We have

(.)νp = δp,
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where the distribution νp is

νp = p−1(δp − h(p)δ0),

h in D′1 with h(0) = 1 and h′(0) = 0, for every real p different from 0, and
ν0 = −δ′0. So we can apply the preceding result and deduce that there is a
Green family of P , namely the family ν itself, since

Gp =

∫
Rn

νpδ = νp.

Is the family ν of class S? Indeed, we have

ν(g)(p) = νp(g) = p−1(g(p)− h(p)g(0)),

for every p different from 0, and

ν(g)(0) = −δ′0(g) = g′(0).

Is the function ν(g) of class S? So that the family G is an SGreen family?

21.4 Superpositions in OM

Let f = (fq)q∈Rk be a family in the space O(n)
M , we say that f is an S family in

O(n)
M iff for every tempered distribution u in the product SnS ′n, the function

f(u) : Rk → K : f(u)(q) = u(fq),

is an S function. This is equivalent to say that the family

u(f) = (u(fq))q∈Rk

is a family of class.

In Particular, for every x in Rn, the scalar family

f(x) := (fq(x))q∈Rk = δx(f)

is a scalar family of class S, canonically identified with its test function f(δx).

Let c be a distribution in S ′k , we define(∫
Rk

cf

)
(x) =

∫
Rk

cf(x),

for every x in Rn.
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Let us see that the superposition lives in OM . It follows form the Banach
Steinhaus theorem. We have(∫

Rk

cf

)
g(x) =

(∫
Rn

cf(x)

)
g(x) =

= c(f(x))g(x) =

= c(g(x)f(x)) =

=

(∫
Rn

cgf

)
(x),

where the family of functions gf = (g(x)f(x))x∈Rn (a simple pointwise prod-
uct) is of class S, indeed it is a family of S functions and moreover for every
distribution c, the function

x 7→ c(g(x)f(x))

= g(x)c(f(x)) =

= gc(f)(x),

since the function c(f) is Sn.
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Chapter 22

SDiagonalizable operators

22.1 SDiagonalizable operators S ′n

Definition (of Sdiagonalizable operator). Let A ∈ L(S ′n) be an S linear
endomorphism of the space S ′n. The operator A is said Sdiagonalizable if

there are a function a ∈ O(m)
M and an Sbasis α ∈ B(Rm,S ′n) such that, for

every index p ∈ Rm, the vector αp is an eigenvector of the operator A with
respect to the eigenvalue a(p), that is if

A(αp) = a(p)αp.

In terms of families, we can also write A(α) = aα. Moreover, in these condi-
tions, the basis α is said an eigenbasis of the operator and the function a
is said the system of eigenvalues of the operator A associated with the
eigenbasis α.

Note that an Seigenbasis of an operator determines uniquely a system of
eigenvalues.

The origin of the preceding definition and nomenclature is naturally ex-
plained by the following proposition.
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Theorem. Let α be an S eigenbasis of an Sdiagonalizable operator A, and
let a be the system of eigenvalues of the operator A with respect to the Sbasis
α. Then, the Smatrix representation of the operator A in the Sbasis α is

(A)α = aδ,

where δ is the identity Smatrix, i.e. the Dirac family.

Proof. Recall that the Smatrix representation of an operator L in an Sbasis
v is the unique S family (L)v such that the transpose product of the S family
(L)v by the coefficient distribution (u)v, that is

(L)v(u)v = (L(u))v,

for every distribution u in S ′n. We have

(aδ)(u)α = aδ(u)α =

= a(u)α =

= (au)α =

= (Au)α,

for every distribution u, as we desired. �

Definition (of Sdiagonal matrix). We call an Smatrix (that is an S

family) Sdiagonal iff it is of the form aδ for some OM function a, where δ is the
Dirac basis.

In other words, we can give the definition of Sdiagonalizable operator as it
follows:

• an S linear operator is said Sdiagonalizable if and only if there exists an
Sbasis of the space S ′n in which the Smatrix representation of the operator
is Sdiagonal.

We note, moreover, that in the definition of Sdiagonalizable operator is not
necessary to assume the function a of any class.

Theorem. Let A be an S linear endomorphism of S ′n. Assume that there
are a function a and an Sbasis α such that A(α) = aα. Then the function a is
an OM function.

Proof. Indeed, we have, for any test function g,

A(αp)(g) = a(p)αp(g),
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that is

A(α)∧(g) = aα∧(g),

now, since the operator associated to an Sbasis is surjective, there is a test
function g such that the smooth function α∧(g) is nowhere zero, so that the
function a is a pointwise quotient of two smooth functions

a =
A(α)∧(g)

α∧(g)
,

and thus is a smooth function too. Moreover, since the operator α∧ is surjective
and since both the functions A(α)∧(g) and α∧(g) are of class S, any product
ah of the smooth function a by an S function is an S function, and hence a is a
function of class OM . �

Note that, by the Dieudonné-Schwartz theorem, the preceding proof works
also in the case in which the family of eigenvectors of the operator A is an Sbasis
of a weakly* closed (or equivalently strongly closed) subspace of the space S ′n.

22.2 SDiagonalizable operators on Sn

We now pass to another characterization of the S diagonalizable operators on
S ′. To give it in a more complete way, we define the Sdiagonalizable operators
on Sn.

Definition (of Sdiagonalizable operator in Sn). Let A be an operator
in L(Sn) we say A Sdiagonalizable if there is an invertible linear continuous
operator L in L(Sn) such that

LAL−1 = a(.)Sn ,

for some OM function a, where we denoted the composition by the multiplicative
notations.

Definition (of Sdiagonal operator in Sn). We say that an endomor-
phism A of the space Sn is Sdiagonal if it is of the type a(.)Sn for some OM
function a.

In other terms, recalling the definition of similitude among linear continu-
ous operators and the definition of Sdiagonal operator, we can reformulate the
definition saying that

• an operator is diagonalizable if it is similar with a diagonal operator.
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Now we present the characterization, whose proof is trivial.

Theorem. Let A be an operator in L(S ′n). Then the following assertions
are equivalent:

• the operator A is S diagonalizable;

• the operator tA is S diagonalizable;

• there are an Sbasis α and a smooth function a such that

α̂ ◦ tA ◦ α̂−1 = a(.)Sn ;

• there are an Sbasis α and a smooth function a such that

tα̂−1 ◦A ◦ tα̂ = a(.)S′n ;

• there are an Sbasis α and a smooth function a such that

A ◦ tα̂ = tα̂ ◦ a(.)S′n ;

• there are an Sbasis α and a smooth function a such that

[A, tα̂] = tα̂ ◦ (a(.)S′n −A);

• there are an Sbasis α and a smooth function a such that the following
commutation relation does hold

[A,

∫
Rn

(., α)] =

∫
Rn

(a(.)S′n −A)α;

• there are an invertible linear continuous operator L in L(S ′n) and a smooth
function a such that

LAL−1 = a(.)S′n .

22.3 Algebra of Sdiagonalizable operators

In this section we shall study the natural algebra in the space of Sdiagonalizable
operators. To understand better this algebra we introduce the notion of multi-
fiberspace.

Let E and B be two non-empty set and p : E → B be a surjective correspon-
dence (not necessarily univocal. The triple (E,B, p) is said a linear multifiber
space if, there is a vector space F such that there is a bijection

h : B × F → E
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such that
p(h(b, f)) = b,

for each for every b in B, and f in F . In other terms,

p ◦ h = pr1,

where pr1 is the first projection of the Cartesian product B×F . The non-empty
set E is said the underlying set of the fiber space; the non-empty set B is called
the base of the fiber space; the vector space F is said the linear space of the
fiber space.

Consider an Sdiagonalizable operator A, then there is a pair (α, a) in the

Cartesian product B(S ′n) × O(n)
M such that A(α) = aα . So we have a natural

projection

π : B(S ′n)×O(n)
M → D(S ′n)

associating with any pair (α, a) a unique diagonalizable operator A. This cor-
respondence is not bijective and the anti-image of the operator A = π(α, a) is
the set of all pairs (α′, a′) such that the relation

a[u|α] =

∫
Rn

a′[u|α′][α′|α]

holds true, for every tempered distribution u.

Proof.

is the set the set of basis for which there is a function satisfying that property.

Fix a basis e and consider the section

π(e, .) : O(n)
M → D(S ′n).

The image of the above section is the set De(S ′n) of all diagonalizable operators
having e as an eigenbasis.

This section is injective.

Proof. The system E of eigenvalues is univocally determined by e. �

So we have a bijection je of De(S ′n) onto O(n)
M .

Proposition. If A and B have the same eigenbasis e with eigenvalue sys-
tems a and b. Then

• the linear combination cA+ dB is in De(S ′n) and

(cA+ dB)(e) = (ca+ db)e;
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• the composition AB is in De(S ′n) and

ABe = BAe = (ab)e;

• the operator A is invertible if and only if eigenvalue system a is invertible

in O(n)
M and

A−1e = a−1e

• the power Ar is in De(S ′n), for every integer r, and

Are = are.

Let us see that the algebra De(S ′n) is indeed stable under S linear combina-
tions.

Reminder. If A is a family of S linear endomorphism of S ′n indexed by the
k-dimensional Euclidean space, we say that A is of class S if, for every tempered
distribution u in S ′n, the family A(u) image of u under the family A, that is the
family (Aq(u))q∈Rk , is of class S.

Moreover, if v = (vq)q∈Rk is a family, indexed by the k -dimensional Eu-
clidean space, of S families, each of one indexed by the m-dimensional Euclidean
space, we say that the family is of class S if the family v(p) = (vq(p))q∈Rk is of
class S, for every p in Rm, where vq(p) is the p-term of the family vq. In this
conditions, if a is a distribution in S ′k, we define the superposition∫

Rk

av

as the family (∫
Rk

av

)
p

=

∫
Rk

av(p),

for every index p in Rm.

Our aim is to prove that:

Theorem. If H = (Hq)q∈Rk is an S family in the algebra De(S ′n), then
every its superposition is still in De(S ′n). In other terms the algebra De(S ′n) is
Sstable. In particular, if c is a coefficient distribution in S ′n, we have(∫

Rk

cH

)
(ep) =

(∫
Rk

cE(p)

)
ep,

for every p in Rm, where the OM function Eq is the eigenvalue system of the
operator Hq, so that

Hq(e) = Eqe.
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In terms of families, we have(∫
Rk

cH

)
(e) =

(∫
Rk

cE

)
e,

where ∫
Rk

cE

is the OM function defined by(∫
Rk

cE

)
(p) =

∫
Rk

cE(p),

for every p in Rm.

Proof. Let c in S ′k. We have(∫
Rk

cH

)
(ep) =

∫
Rk

cH(ep) =

=

∫
Rk

c(E(p)ep) =

=

(∫
Rk

cE(p)

)
ep,

indeed observe that the family

H(ep) = (Hq(ep))q∈Rk ,

that is an S family in S ′n, is nothing but the family

E(p)ep = (Eq(p)ep)q∈Rk .

We have only to prove the last equality∫
Rk

c(E(p)ep) =

(∫
Rk

cE(p)

)
ep,

where the right-hand side is the product of the number∫
Rk

cE(p)

by the distribution ep; namely, the above complex number is the superposition
of the scalar family E(p) = (Eq(p))q∈Rk by the coefficient distribution c. In
fact, identifying canonically the family E(p) with its associated test function we
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have ∫
Rk

c(E(p)ep)(g) = c((E(p)ep)(g)) =

= c(E(p)ep(g)) =

= c(E(p))ep(g) =

=

((∫
Rk

cE(p)

)
ep

)
(g),

for every g in the test function g in Sn; note that

(E(p)ep)(g)(q) = (Eq(p)ep) (g) =

= Eq(p)ep(g) =

= (ep(g)E(p)) (q),

for every q in Rk, so that the proof is completely done. �

22.4 Building some observables of QM

22.4.1 The position operator in one dimension

A particle moving on the real line can be in a state in which its position is x ∈ R.
It’s natural to assume that this state can be represented by the distribution δx, so
if we denote by Q the observable “position” we have Qδx = xδx, i.e., Qδ = IRδ,
applying the above theorem we have

Q (u) =

∫
R
IR [u | δ] δ =

=

∫
R

(IRu) δ =

= IRu.

This justifies the definition of the position operator, which is now possible to
define, more naturally, the only observable that in the state δx assume the value
x.

22.4.2 The position operator in three dimensions

A particle moving in the space can be in a state in which its position is the
vector x ∈ R3. It’s natural to assume that this state can be represented by the
distribution δx. In this state the position has the three components x1, x2, x3.
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Then, if we denote by Q = (Q1, Q2, Q3) the triple of operators representing the
observable “position” in three dimensions, we have Qδx = (x1δx, x2δx, x3δx),
i.e., Qδ = (I1δ, I2δ, I3δ). Let us apply the decomposition theorem to the i-th
component, we have

Qi (u) =

∫
R3

Ii [u | δ] δ =

=

∫
R3

(Iiu) δ =

= Iiu.

This justifies the definition of the position operator, which is now possible to
define, more naturally, the only observable that in the state δx assume the
vector-value x.

22.4.3 The momentum operator

Following De Broglie, we assume that the state of a particle moving on the
real line with momentum p ∈ R be represented by the regular distribution[
e(i/~)(p|·)]. If we denote by P the observable “momentum”, we have

P
[
e(i/~)(p|·)

]
= p

[
e(i/~)(p|·)

]
.

Putting f =
([
e(i/~)(p|·)])

p∈R, we have thus

Pf = IRf.

Applying the above theorem, we have

P (u) =

∫
R
IR [u | f ] f =

=

(
i

−1/~

)1(∫
R

[u | f ] f

)′
=

= −i~u′.

22.4.4 The kinetic energy in dimension 1

Following De Broglie, we assume that the state of a particle moving on the
real line with momentum p ∈ R be represented by the regular distribution
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[
e(i/~)(p|·)]. If we denote by T the observable “Hamiltonian of a classic free

particle in R”, we have

T
[
e(i/~)(p|·)

]
=

p2

2m

[
e(i/~)(p|·)

]
.

Putting f =
([
e(i/~)(p|·)])

p∈R, we have

Tf =
p2

2m
f.

Then, applying the above theorem, we have

T (u) =

∫
R

(IR)
2

2m
[u | f ] f =

=
1

2m

∫
R

(IR)
2

[u | f ] f =

=
1

2m

(
i

−1/~

)2(∫
R

[u | f ] f

)′′
=

= − ~2

2m
u′′.

Note that the spectrum of T is the set of non-negative real numbers and that
the dimension of every eigenspace is 2.

22.5 Observables

Actually, the spectral theory treated on this chapter requires only the concept of
S-diagonalizable operator, because the spectral decomposition concerns the S-
diagonalizable operators. Nevertheless, for completeness, we give the definition
of S -observable, that is a particular S-diagonalizable operator

Definition (of observable with a continuous range of fundamental
eigenstates). Let A ∈ L(S ′n). The operator A is said to be an observable
with a continuous range of fundamental eigenstates (or an observ-
able with an Seigenbasis or more simply an Sobservable) if it is S-
diagonalizable and it is the extension of an adjointable operator on Sn.

For adjointable operator on Sn, we give the following definition:

• a strongly continuous endomorphism A : Sn → Sn is said to be adjointable
if there is another strongly continuous endomorphism B : Sn → Sn such
that

〈Ax|y〉 = 〈x|By〉 ,
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for every x and y in Sn. In the above conditions the operator B is uniquely
determined and it is denoted by A†. Moreover, it is possible to prove that
an adjointable operator A is extendible to an S-linear operator on S ′n .

The most important kind of Sobservable is the following one. An adjointable
operator A : Sn → Sn is said to be symmetric or Hermitian if A† = A.

• If an S-observable A ∈ L(S ′n) is the extension of a symmetric operator it
is said a real S-observable.

22.5.1 Observables with a singular spectrum

If we regard the constant function of value c as an observable: Mc (u) = cu,
we have that Mc has c as unique eigenvalue. On the other hand, every S-basis
is an S -eigenbasis of Mc. So Mc is an observable with a continuous range of
fundamental eigenstates but with a pointwise spectrum. Now, let v an arbitrary
S-basis of the space, we have

Mc(u) = cu =

= c

∫
Rn

[u | v] v =

=

∫
Rn

c [u | v] v,

for every tempered distribution u. The spectral decomposition then holds, note
that the superposition is performed on the set indexing the S-basis and not on
the spectrum of the operator, moreover it is not an integral decomposition but
an expansion via superposition.

22.5.2 The relativistic energy

Let us consider the energy of a relativistic particle moving on the real line with
rest mass m0 and momentum p:

E(x, p) = m0c
2 + pc.

Consider its square
E2(x, p) = m2

0c
4 + p2c2,

and the corresponding operator on S ′1

H2 = Mm2
0c

4 + c2~2 (·)′′ .
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It’s simple to prove that the distribution

fp =
[
e

i(p|·)
~

]
is an eigenvector of H2 with corresponding eigenvalue m2

0c
4 + p2c2. Conse-

quently, being

f =
([
e

i(p|·)
~

])
p∈R

an S-basis, H2 is an Sobservable. Concerning its spectrum we have

eσ(H2) =
[
m2

0c
4,+∞

[
.

If we consider the operators on S ′1, defined by

H− (fp) =

(
−
√
m2

0c
4 + p2c2

)
fp,

and

H+ (fp) =

(√
m2

0c
4 + p2c2

)
fp,

we deduce simply that
eσ(H−) =

]
−∞,−m0c

2
]

and
eσ(H+) =

[
m0c

2,+∞
[
.

The operators H− and H+ are the Hamiltonian of a relativistic antiparticle and
particle respectively.

Recall that

• to define an S linear operator is enough to give an S image of an Sbasis.
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Spectrum

23.1 Supports and vanishing-laws

We recall that, a distribution u inD′n is said to vanish on an open setO contained
in Rn if, for every function φ in Dn with support contained in O, u(φ) = 0.

The set of all the functions in Dn with support contained in O is denoted
by DO, so, a distribution u on Rn vanishes on O if, for every function φ in DO,
u(φ) = 0.

The set DO is contained in Dn, and we shall denote by (DO) the associated
topological vector subspace of (Dn). A distribution on an open set O is, by
definition a continuous linear functional on (DO).

Let u be a distribution in D′n, then the restriction of u to DO is a distribution
on O; this restriction is denoted by u|O, and it is called the restriction of u to
O.

The topological dual of the space (DO), i.e., the space (DO)
′
, is denoted

simply by D′O; this dual has the usual natural vector space structure of duals.
It is clear that, a distribution u in D′n vanishes on the open O if and only if

its restriction to the open O is the zero-vector of the vector space D′O.

In this section we shall examine the equality fu = 0D′n , when f is a smooth
function and u is a distribution in D′n.

257



258 CHAPTER 23. SPECTRUM

Lemma. Let K be a compact subset of Rn and let g : K → C be a smooth
function on the compact K, in the sense that there is an open neighborhood O
of K and a complex smooth function gO defined on the open O such that the
restriction of gO to K is g. Then there is a function h in DO coinciding with
g on K.

Proof. Recall that for every compact K and every open neighborhood O of
K, there exists a function t belonging to DO equals 1 on K. With K and O as
in the assumptions, define the function h : Rn → K by

h(x) := t(x)gO(x),

for any x in O, and 0 elsewhere. It is clear that h is in DO (the support of h is
contained in the support of t) and it coincides with g on the compact K. �

Lemma. Let f be a smooth function, let O be the co-level 0 of f , and let
T the operator from DO to DO defined by T (φ) = fφ. Then T is surjective.

Proof. Let ψ be in DO, let K be the support of ψ. Let gO := 1/f|O and
let g be the restriction of gO to K. By the preceding lemma there is a smooth
function h defined on Rn, coinciding on K with 1/f and with support contained
in O . We have

T (ψh) = fψh =

{
f(x)ψ(x)(1/f(x)) for x ∈ K
f(x) · 0 · h(x) elsewhere

,

hence ψ = T (ψh), and T is surjective. �

Theorem. Let u ∈ D′n be a distribution and f be a smooth function.
Assume that

fu = 0D′n .

Then u vanishes on the complement of the zero-level set of f .

Proof. Let O be the co-level zero of f , and let ψ be in DO. We have to prove
that u(ψ) = 0. By the preceding lemma, there is a function φ in DO such that
ψ = fφ, now

u(ψ) = u(fφ) = (fu) (φ) = 0,

and the theorem is proved. �

Lemma. Let u ∈ S ′n be a distribution and f be a smooth function. Assume
that

fu = 0S′n .

Then u vanishes on the complement of the zero-level set of f .

Proof. Consider the complement of the zero-level of f

Ω = {p ∈ Rn : f(p) 6= 0} = Rn \ f←(0).
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We have to prove that for every test function φ ∈ D(Ω) is u (φ) = 0. Let
φ ∈ D(Ω), the restriction f|Ω does not vanish, so the quotient φ/f|Ω is defined
on Ω, it is smooth and it belongs to D(Ω). Now, by definition of multiplication
of a test function with a distribution, we have

u (φ) = u
(
fφ/f|Ω

)
=

= fu
(
φ/f|Ω

)
=

= 0,

as desired. So the distribution u must be vanish in the open set

{p ∈ Rn : f(p) 6= 0} ,

as we had to prove. �

23.2 Structure of the eigenspectrum

We have the following results:

Theorem (on the topological structure of the eigenspectrum of an
Sdiagonalizable operator). Let A be an Sdiagonalizable operator. Then, if
a is the ordered system of eigenvalues of A associated to an eigenbasis of A for
S ′n, we have

ima = eσ(A).

In particular the eigenspectrum of the operator A is a connected subset of C.

Proof of the theorem. Since the operator A is an S diagonalizable operator,
there exist a function a ∈ OM (n) and an Sbasis α ∈ B(Rn,S ′n) such that, for
every point p ∈ Rn, we have

A(αp) = a(p)αp,

i.e., such that A(α) = aα. We shall prove that the eigenspectrum of the operator
A is the image ima of the function a. Assume that e is an eigenvalue of A, then
there exists a non zero vector η such that A(η) = eη. We then have

A(η) = A

(∫
Rn

[η | α]α

)
=

=

∫
Rn

[η | α]A(α) =

=

∫
Rn

[η | α] (aα) =

=

∫
Rn

(a [η | α])α,
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but on the other hand

A(η) = eη =

= e

∫
Rn

[η | α]α =

=

∫
Rn

e [η | α]α.

from the S linearly independence of the Sbasis α we have

a [η | α] = e [η | α] ,

then
(a− e) [η | α] = 0.

so the distribution [η | α] must be vanish in the open set

Ωη = {p ∈ Rn : a(p) 6= e} =

= Rn \ a←(e).

Assume by contradiction that e /∈ ima, then there are no p such that a(p) = e,
and then

Ωη = Rn,
this implies

[η | α] = 0S′n ,

so we deduce that η is zero, and this is an absurd. We then have seen that
the eigenspectrum eσ(A) is contained in the image ima, the converse is true by
definition of eigenbasis. Concluding the eigenspectrum of the operator A is the
image of the function a:

eσ(A) = ima =

= a(Rn),

that is a connected set because a is continuous and Rn is connected. �

Corollary. If the eigenspectrum of an S diagonalizable operator is real then
it is an interval of the real line (eventually degenerate).

23.3 Structure of the spectrum

Only a question remains open:

What about the so called residual spectrum and continuous spectrum of an
Sdiagonalizable operator?

Recall that
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• 1) the eigenspectrum of the operator A is the set of all the complex numbers
z such that the z-characteristic operator of A, that is the operator

Cz = z(.)S′n −A,

is not injective;

• 2) the continuous spectrum is the set of all z such that the z-characteristic
operator Cz is algebraically invertible (injective and surjective) but with
inverse not continuous;

• 3) the residual spectrum is the set of z such that the z-characteristic
operator Cz is injective but its image is not dense in the space of tempered
distribution.

• 4) the spectrum of A is the union of the preceding ones or equivalently
the set of scalars z such that the z -characteristic operator Cz is not
topologically invertible.

Theorem. The spectrum of an S diagonalizable operator A coincides with
the union of its eigenspectrum and of its residual spectrum, since its continuous
spectrum is empty.

Proof. Since the operator A is an Sdiagonalizable operator, there exist a
function a ∈ OM (Rn,K) and an Sbasis α ∈ B(Rn,S ′n) such that, for every
p ∈ Rn, we have

A(αp) = a(p)αp.

Assume that z is not an eigenvalue of A, then the z-characteristic operator

Cz = z(.)S′n −A

is injective. Moreover

Cz(αp) = z(αp)S′n −A(αp) =

= zαp − a(p)αp =

= (z − a(p))αp.

Because z is not an eigenvalue of A, the function z − a never vanishes and is of
class OM , and then the family

β = (z − a)α

is yet an Sbasis of the space. Indeed,

u =

∫
Rn

(z − a)
−1
uβ(z − a)α,
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note that the function (z − a)−1 is smooth but in general not OM . Moreover
it is simple to prove that, if the image of an S family by an S linear operator is
anSbasis than the operator is surjective. Indeed, let u be in S ′n , then

u =

∫
Rn

uββ =

=

∫
Rn

uβCz(α) =

= Cz

(∫
Rn

uβα

)
,

Moreover, it’s simple to prove that if the image of an S linear operator contains
an Sbasis of its codomain, then the operator is surjective. Consequently, the
z-characteristic operator Cz is even surjective, and consequently the residual
spectrum is empty. Even more, the operator Cz is S linear and then it is the
transpose of a certain weakly (i.e., strongly) endomorphisms on the Fréchet
space Sn. This operator is bijective as the operator Cz is, so by the Banach
inverse operator theorem it is a topological isomorphism. And even more, by
the Dieudonné-Schwartz theorem, the operator Cz is a topological isomorphism
too. So the continuous spectrum of an Sdiagonalizable operator is always empty.
�
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Functional Calculus

The purpose of this section is to introduce a functional calculus for the S-
diagonalizable operators. Our goal is to state and prove a theorem that allow
us to define the action of a numerical function, defined on the spectrum of a
certain operator A, on A itself.

If A is a linear operator, by E(A) we denote the set of all the eigenvectors of
A, by eσ(A) the set of all the eigenvalues of A, by vA : E(A)→ C the mapping
sending every eigenvector u of A to its unique eigenvalue. In other words, vA(u)
is the unique number c such that Au = cu.

24.1 A vanishing lemma

First of all we need a lemma.

Lemma. Let M ∈ N0 be a non-negative integer, O be an open subset of the
field K, e ∈ O be a point of that open subset, r : O → K be a CM -function
with all derivatives vanishing at the point e, i.e., such that r(i)(e) = 0, for
every integer i ∈ N≤M . Then, for every CM -function a : Rn → K such that
a (Rn) ⊆ O we have

∂p(r ◦ a)(x) = 0,

263
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for every point x ∈ a−(e) and for every multi-index p ∈ Nn0 with |p|1 ≤M .

Proof. Note, first, that the composition r ◦ a is defined on Rn and is of class
CM , because it is the composition of two functions of class CM . We shall see
the proof in the case n = 1, the general case is wholly similar. Moreover, in this
case, we shall prove a more general equality, exactly we shall prove that(

r(j) ◦ a
)(i)

(x) = 0,

for every i, j ∈ N0(≤ M) such that i + j ≤ M , and for every x such that
a(x) = e (in the case j = 0 we obtain the statement). We shall proceed by
induction on the sum s = i+ j. If i+ j = 0 we have necessarily i = j = 0, and
we have to prove that r(a(x)) = 0, for every x ∈ a−(e), i.e., r(e) = 0, and this
is true by assumption. If i+ j = 1, we have to prove that r′(a(x)) = 0 and that
(r ◦ a)′(x) = 0. The first is equivalent to r′(e) = 0, that is true by assumption;
for the second we have

(r ◦ a)′(x) = r′(a(x))a′(x) =

= r′(e)a′(x) =

= 0,

that holds still by assumption (we know that r′(e) = 0). Now we assume (by
induction) that, fixed a positive integer k strictly less than M , the equality

(r(j) ◦ a)(i)(x) = 0

holds true, for every couple of indices i, j ∈ N0(≤M) such that i+ j ≤ k < M ,
and for every point x such that a(x) = e. We have to prove that the same
equality

(r(j) ◦ a)(i)(x) = 0

holds true, for every couple of indices i, j ∈ N0(≤M) such that i+j = k+1 ≤M ,
and for every point x such that a(x) = e. In fact, if i+ j = k + 1, we have two
possibilities: i = 0, in this case the equality becomes(

r(j) ◦ a
)(i)

(x) =
(
r(j) ◦ a

)
(x) =

= r(j) (a(x)) =

= r(j)(e) =

= 0,

and we have nothing to prove; i > 0, in this case- by applying the Leibniz
formula, first, and using, then, the inductive assumption - we have(

r(j) ◦ a
)(i)

(x) =

((
r(j) ◦ a

)′)(i−1)

(x) =
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=
((
r(j+1) ◦ a

)
a′
)(i−1)

(x) =

=

i−1∑
w=0

(
i− 1
w

)(
r(j+1) ◦ a

)(w)

(x) (a′)
(i−1−w)

(x) =

=

(
i− 1
i− 1

)(
r(j+1) ◦ a

)(i−1)

(x)a(i−i+1)(x) =

=
(
r(j+1) ◦ a

)(i−1)

(x)a′(x),

note that the chain of equalities

j + 1 + w = k + 1 = i+ j

is equivalent to w = i − 1. At this point, if i = 1 we can conclude; if, on the
contrary, i > 1, applying yet the previous result, we have(

r(j) ◦ a
)(i)

(x) =
(
r(j+2) ◦ a

)(i−2)

(x) (a′(x))
2
.

In general, if i ≥ q, for some positive integer q, applying q times the previous
result, we have (

r(j) ◦ a
)(i)

(x) =
(
r(j+q) ◦ a

)(i−q)
(x) (a′(x))

q
.

In particular, for q = i,(
r(j) ◦ a

)(i)

(x) =
(
r(j+i) ◦ a

)
(x) (a′(x))

i
=

= r(k+1)(e) (a′(x))
i

=

= 0,

as desired. �

24.2 Transformable Sdiagonalizable operators

Definition (transformable Sdiagonalizable operator). Let A : S ′n → S ′n be
an Sdiagonalizable operator, let f be a real or complex smooth function defined
on an open set of K containing the eigenspectrum eσ(A). The operator A is
said transformable by the function f if the composition f ◦vA ◦α is of class OM
for some eigenbasis α of A.

Theorem (basic lemma on the functions of an S diagonalizable
operator). Let A be an Sdiagonalizable operator on S ′n, let f be a real or
complex smooth function defined on an open set of the field K containing the
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eigenspectrum eσ(A) of A and such that such that the composition f ◦ vA ◦
α is of class OM for some eigenbasis α of A. Then, there is a unique S -
diagonalizable operator B on S ′n such that, for every eigenvector η of A, the
following relation holds

B(η) = f(vA(η))η.

In other words, the operator B is such that vB = f ◦ vA. Moreover, if α is
S -eigenbasis of A and a = vA ◦ α is the ordered family of the eigenvalues
associated with α, for every tempered distribution u we have

B(u) =

∫
Rn

(f ◦ a) [u|α]α.

Proof. Existence. Let α be an S eigenbasis of the operator A. Setting
a = vA ◦ α, consider the operator B on S ′n defined by

Bu =

∫
Rn

(f ◦ a) [u|α]α,

for every distribution u. The operator B is obviously S linear. Concerning its
Sdiagonalizability, we have

Bαp =

∫
Rn

(f ◦ a) [αp|α]α =

=

∫
Rn

[αp|α] (f ◦ a)α =

=

∫
Rn

δp (f ◦ a)α =

= (f ◦ a) (p)αp =

= f(a(p))αp =

= f(vA(αp))αp.

So α is an eigenbasis for B too, and then B is S diagonalizable. More, the
defined operator verifies the required property for the Sbasis α. Let us see that
the property holds for every eigenvector. If η is an eigenvector of A,

Aη = A

∫
Rn

[η|α]α =

=

∫
Rn

[η|α]Aα =

=

∫
Rn

[η|α]aα =

=

∫
Rn

a[η|α]α,
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but on the other hand

Aη = vA(η)η =

= vA(η)

∫
Rn

[η|α]α =

=

∫
Rn

vA(η)[η|α]α,

from the S independence of α we have

a[η|α] = vA(η)[η|α],

then, putting e = vA(η), we have

(a− e) [η|α] = 0S′n .

Since [η | α] is a tempered distribution, then it is of finite order, say of order
≤M . By the Taylor’s formula, there is a function r such that

r(i)(e) = 0,

for every 0 ≤ i ≤M , and such that

f(y) =

M∑
k=0

f (k)(e)

k!
(y − e)k + r(y),

for every y in the domain of f , and, particularly, for y in the spectrum of A.
Then, for every x ∈ Rn,

f(a(x)) =

M∑
k=0

f (k)(e)

k!
(a(x)− e)k + r(a(x)),

That is,

f ◦ a =

M∑
k=0

f (k)(e)

k!
(a− e)k + r ◦ a =

= f(e) +

M∑
k=1

f (k)(e)

k!
(a− e)k + r ◦ a.

Hence, multiplying by [η | α], and taking into account that, for k ≥ 1,

(a− e)k [η | α] = (a− e)k−1(a− e) [η | α] = 0S′n ,

we deduce

(f ◦ a) [η | α] = f(e) [η | α] +

M∑
k=1

f (k)(e)

k!
(a− e)k [η | α] + (r ◦ a) [η | α] =

= f(e) [η | α] + (r ◦ a) [η | α] .
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Note that (by the previous lemma) r ◦ a must be vanish with all its derivatives
of order ≤ M , in the closed set a−(e). Moreover, since [η | α] must vanish in
the complement of this set, we have

supp [η | α] ⊆ a−(e).

Thus r ◦ a vanishes on the support of [η | α] with all its derivatives of order
≤ M , and then, by a classic theorem on the distributions with finite order, we
have

(r ◦ a) [η | α] = 0S′n ,

and consequently,
(f ◦ a) [η | α] = f(e) [η | α] .

Finally, we can conclude

Bη = B

∫
Rn

[η | α]α =

=

∫
Rn

[η | α]Bα =

=

∫
Rn

[η | α] (f ◦ a)α =

=

∫
Rn

(f ◦ a) [η | α]α =

=

∫
Rn

f(e) [η | α]α =

= f(e)

∫
Rn

[η | α]α =

= f(e)η.

Uniqueness. Two linear operators coinciding on a same S basis are equals.
�

24.3 Functions of Sdiagonalizable operators

The preceding theorem allow us to give the following definition

Definition (the functions of an S diagonalizable operator). Let A
be an Sdiagonalizable operator, let E(A) be the set of all the eigenvectors of the
operator A, let eσ(A) be the set of all the eigenvalues of A and let vA : E(A)→
C be the mapping that sends every eigenvector u of A to its unique eigenvalue
vA(u) (the scalar vA(u) is the unique c such that Au = cu ). Let f be a real
or complex smooth function defined on an open set of the field K containing the
eigenspectrum eσ(A), such that the composition f ◦vA ◦α is smooth and of class



24.3. FUNCTIONS OF SDIAGONALIZABLE OPERATORS 269

OM , for some eigenbasis α of A. The unique S diagonalizable operator B such
that, for every eigenvector u of A is

Bu = f(vA(u))u,

that is, such that vB = f ◦ vA is called the image of the operator A under the
function f and it is denoted by f(A).

Remark. If A has a finite spectrum, since the spectrum is connected, there
is a unique eigenvalue of A, hence vA is a constant function, so g ◦ vA ◦ α is
constant too for every smooth function g defined in an open neighborhood of
the spectrum; therefore A is transformable for every such g. Moreover, for every
u, if a is the unique eigenvalue of A,

A(u) =

∫
Rn

a [u | α]α =

= a

∫
Rn

[u | α]α =

= a(0)u;

then, the multiples of the identity are the only S -diagonalizable operators with
finite spectrum, and, we have

f(A) = f(a)IS′n .

Example. Let t be a real number. Consider the function ft : R→ C defined
by

ft(x) = e−
it
~ x.

Let H be an S-diagonalizable operator, and let η be a basis such that

Hη = Eη,

for some smooth real function E. Let ψ0 ∈ S ′1 and let ψ (t) be the vector state
defined by

ψ (t) =

∫
R
e−

it
~ E [ψ0 | η] η.

Then we have

ψ (t) = e−
it
~ H(ψ0),

where with e−
it
~ H we denote the operator ft(H).
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24.4 Compatibility with the exponential

Theorem. Let A ∈ L(S ′n) be a continuous endomorphism on the space S ′n,
that is an S-linear operator on S ′n. For every tempered distribution u ∈ S ′n and
for each test function φ ∈ Sn, the numerical series∑(

Am (u) (φ)

m!

)
m∈N

is absolutely convergent. Moreover the series in S ′n∑(
Am (u)

m!

)
m∈N

is weakly* convergent.

Proof. Indeed, there are two positive real numbers cA and cu and a contin-
uous seminorm on the topological vector space (Sn) such that∣∣∣∣Am (u) (φ)

m!

∣∣∣∣ ≤ cmA cuq(φ)

m!
,

moreover the numerical series∑(
cmA cuq(φ)

m!

)
m∈N

,

is convergent (to the number cuq(φ)ecA). Consequently, from the Banach Stein-
haus theorem it follows that, for every tempered distribution u ∈ S ′n, there
exists an other distribution vu ∈ S ′n such that

vu =

∞∑
m=1

Am (u)

m!
,

as we desire. �

So we can define the operator

eA : S ′n → S ′n : u 7→
∞∑
m=1

Am (u)

m!
.

Example. If A = IS′n , we have

eIS′n (u) =

∞∑
m=1

u

m!
= eu. �



24.4. COMPATIBILITY WITH THE EXPONENTIAL 271

Example. Let A (u) = cu with c ∈ C, we have

A (A (u)) = cA (u) = c (cu) = c2u,

inductively we have

An (u) = An−1 (A (u)) = cn−1A (u) = cnu,

so
eA(u) = ecu.

Lemma. If A ∈ L(S ′n) is an S linear operator, the power operator Am is
S linear too, that is it belongs to the space L(S ′n), for every m ∈ N.

Proof. The proof follows immediately from the fact that the composition of
two continuous maps is still continuous. But we desire to prove the property
using the definition of S-linearity. Inductively, we have

Am
(∫

Rk

av

)
= Am−1

(
A

(∫
Rk

av

))
=

= Am−1

(∫
Rk

aA (v)

)
=

=

∫
Rk

aAm−1 (A (v)) =

=

∫
Rk

aAm (v) ,

for every tempered distribution in S ′k and every S family belonging to S(Rk,S ′n),
as we desired. �

Theorem. Let A ∈ L(S ′n) be an Sdiagonalizable operator with the fam-
ily α ∈ S(Rn,S ′n) as an S-eigenbasis of S ′n with respect to the family a of
eigenvalues. Then, for every distribution u ∈ S ′n, the series∑(

Am

m!
(u)

)
m∈N

is σ(S ′n)-convergent to the superposition∫
Rn

eλ [u | v] v.

In other terms, if eA is the operator
∑∞
m=1(1/m!)Am, we have

eA =

∫
Rn

eλ [· | v] v,
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in the usual (pointwise) sense, as equality among operators.

Proof. Let φ ∈ Sn, we have

Am (u) (φ)

m!
=

Am
(∫

Rn [u | v] v
)

(φ)

m!
=

=

(∫
Rn [u | v]Am (v)

)
(φ)

m!
=

=

(∫
Rn [u | v] (λmv)

)
(φ)

m!
=

=

(∫
Rn λ

m [u | v] v
)

(φ)

m!
=

=

(∫
Rn

(
λm

m!
[u | v]

)
v

)
(φ) ,

hence we have
∞∑
k=1

Ak (u) (φ)

k!
=

∞∑
k=1

(∫
Rn

(
λk

k!
[u | v]

)
v

)
(φ) =

=

(∫
Rn

( ∞∑
k=1

λk

k!
[u | v]

)
v

)
(φ) ,

and since the series ∑(
λk

k!
[u | v]

)
k∈ N

σ(S′n)→ eλ [u | v]

and since the superposition operator
∫
Rn (·, v) is σ(S ′n) continuous we deduce

that the series ∑(
Ak (u) (φ)

k!

)
k∈N

is convergent to the limit (∫
Rn

(
eλ [u | v]

)
v

)
(φ) ,

that is what we had to prove. �

Remark (continuous compositions). Let A = (Ap)p∈Rm be a family of
linear continuous endomorphism on S ′n and assume that there is another family
H = (Hp)p∈Rm of continuous operators on S ′n such that A = eHp . We can define
the composition of the (ordered!) family A as the linear continuous operator
◦A defined by

◦p∈RmAp := exp(

∫
Rm

H).
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Chapter 25

The Schrödinger equation

25.1 Introduction

In the present chapter we show the resolution of the Schrödinger’s equation
associated with an operator admitting an S eigenbasis, that is associated with
an Sdiagonalizable operator. We give, for such Schrödinger’s equation with
initial condition, a theorem of existence and uniqueness. In the first section we
present the result on differentiable curves in topological vector spaces we need
in the chapter. In the second one we shall prove some results for differentiable
curves in the spaces S ′n and OM (n). In the third one we shall prove results on
the differentiation of curves in the space of tempered distributions. In the forth
one we shall prove the main results of the chapter. In the fifth we shall discuss
about applications in Quantum Mechanics.

25.2 Differentiable curve

25.2.1 Differentiable curves in topological vector spaces

First of all we begin with some background material about the differentiability of
a curve in a topological vector space, this because our existence and uniqueness

275
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theorem concerns curves in the locally convex topological vector space of the
tempered distributions.

Definition (differentiable curve in a complex Hausdorff topological
vector space). Let (X, τ) be a complex Hausdorff topological vector space and
let γ : R → X be a curve in X. The curve γ is said to be τdifferentiable at
the point t ∈ R if and only if the map

rt : R 6= → X : h 7→ γ (t+ h)− γ (t)

h

has (R, τ)-limit at 0. In this case we put

(γ)
′
τ (t) := (R,τ) lim

h→0

γ (t+ h)− γ (t)

h
.

When no confusion is possible, we shall use the notation γ′ (t) that does not
emphasize the topology τ . The vector (γ)′τ (t) is called the τderivative of
the curve γ at t. If γ is τ differentiable at every t ∈ R, γ is said to be
τdifferentiable and the map

(γ)
′
τ : R→ X : t 7→ Dτ (γ)(t),

is called the τderivative of γ.

Theorem (continuity of differentiable curves). Let (X, τ) be a Haus-
dorff topological vector space and γ : R → X be a τdifferentiable curve. Then
γ is continuous with respect to the pair of topologies (τR, τ).

Proof. Let t ∈ R and h ∈ R 6=, we have

γ (t+ h)− γ (t) = h
γ (t+ h)− γ (t)

h
+ hγ′ (t)− hγ′ (t) =

= h

(
γ (t+ h)− γ (t)

h
− γ′ (t)

)
+ hγ′ (t) =

= hωt (h) + dγ (t) (h) ,

where we put

ωt (h) :=
γ (t+ h)− γ (t)

h
− γ′ (t) ,

and
dγ (t) (h) := hγ′ (t) .

Obviously we have
τ lim
h→0

ωt (h) = 0X ,

moreover the τdifferential of γ at t, that is the map

dγ (t) : R→ X : h 7→ hγ′ (t)
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is linear and τcontinuous for every t, in fact the multiplication by scalars of
the space X is a (C,τ)continuous map and dγ (t) is simply one of its sections,
concluding

τ lim
h→0

γ (t+ h) = τ lim
h→0

(hωt (h) + dγ (t) (h) + γ (t)) =

= γ(t),

as we desired. �

Theorem (on the constant curves). Let (X, τ) be a complex Hausdorff
locally convex topological vector space and γ : R→ X be a τdifferentiable curve.
Then γ is constant if and only if

γ′ (t) = 0X

for every t ∈ R.

Proof. It follows from the mean value theorem. �

25.2.2 Differentiable curves in S ′
n

Theorem. Let a : R → S ′m be a σ(S′m)differentiable curve and let v be an
S family in S(Rm,S ′n). Then the curve∫

Rm

av : R→S ′n : t 7→
∫
Rm

a (t) v

is σ(S′m)differentiable and we have(∫
Rm

av

)′
σ(S′n)

=

∫
Rm

(a)
′
σ(S′m) v.

Proof. Let t ∈ R and h ∈ R 6=, we have

1

h

(∫
Rm

a (t+ h) v −
∫
Rm

a (t) v

)
=

∫
Rm

a (t+ h)− a (t)

h
v,

so, since the superposition operator
∫
Rm (·, v) of the family v is continuous with

respect to the pair of topologies (σ(S ′m), σ(S ′n)), we can conclude. �

Consequently, we have the following corollary.
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Corollary. Every differential operator D : ∂1(R,S ′n) →R S ′n with constant
coefficients, defined on the space of all weakly* differentiable curves in the space
S ′n, of the form

D(u) =

k∑
i=1

ci∂
iu,

is such that

D

(∫
Rm

av

)
=

∫
Rm

D(a)v,

for every coefficient curve a in ∂1(R,S ′n) and every S family v in S ′n.

25.2.3 Differentiable curves in OM (*)

Theorem (a generalized Leibniz formula). Let f : R → OM (n) be a OM

differentiable curve and u : R → S ′n be a σ(S′n)differentiable curve. Then the
curve

fu : R→ S ′n : t 7→ f (t)u (t)

is σ(S′n)differentiable and

(fu)
′
σ(S′n) = (f)

′
OM

u+ f (u)
′
σ(S′n) .

Proof. Let t ∈ R and h ∈ R 6=, then we have

(fu) (t+ h)− (fu) (t)

h
=
f (t+ h)− f (t)

h
u (t+ h) + f (t)

u (t+ h)− u (t)

h
,

now, the function

h 7→ f (t+ h)− f (t)

h
u (t+ h)

converges to (f)
′
OM

u by hypocontinuity of the product of OM functions times
tempered distributions hence, by the continuity of u (it is differentiable) and by
the definition of derivative, we conclude. �

Corollary. Let f : R→ OM (n) be a OM differentiable curve and let u ∈ S ′n.
Then, the curve

fu : R→ S ′n : t 7→ f (t)u

is σ(S′n)differentiable and

(fu)
′
σ(S′n) = (f)

′
OM

u.

Proof. It follows from the Leibniz formula and because the derivative of a
constant curve is the null vector at every point. �



25.2. DIFFERENTIABLE CURVE 279

Corollary. Let f : R→ OM (n) be a OM -differentiable curve, a ∈ S ′m, and
let v ∈ S(Rm,S ′n). Then, the curve u : R→ S ′n defined by

t 7→
∫
Rm

f (t) av

is σ(S′n)differentiable and

(u)
′
σ(S′n) (t) =

∫
Rm

(f)
′
OM

(t) av,

or more simply

u′(t) =

∫
Rm

f ′ (t) av.

Proof. It follows from the above results and from the continuity of superpo-
sition operators. �

25.2.4 Pointwise differentiable curve in OM

We shall denote by OM (n) the space OM (Rn,K).

Lemma. Let I be a non-degenerate interval of the real line f : I → OM (n)
be a pointwise differentiable curve. Assume

• the derivative of the curve f at any point t of I be an OM function and
let f ′ : I → OM be the pointwise derivative of f , defined by

f ′(t)(x) = f(.)(x)′(t),

for every t in I and x in Rn;

• assume that there exists a real function M in OM (n) such that the deriva-
tive f ′(t) is absolutely dominated by M , i.e.

|f ′(t)| ≤M,

for every real t.

Then, for every tempered distribution a, the curve f ⊗ a in the space S ′n,
defined by

f ⊗ a : t 7→ f(t)a,

is weakly star differentiable (differentiable with respect to the topology σ(S ′n))
and its derivative is the curve

(f ⊗ a)′σ(S′n) = f ′ ⊗ a,
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that is the curve in the space S ′n defined by

f ′ ⊗ a : t 7→ f ′(t)a,

for every t in I.

Proof. We have to prove that the difference quotient

f(t+ h)− f(t)

h
a : R 6= → S ′n

converges in the weak* topology σ(S ′n) to the distribution f ′(t)a at 0. This is
equivalent to prove that the Fourier transform

F
(
f(t+ h)− f(t)

h
a

)
converges in the weak* topology σ(S ′n) to the Fourier transform

F(f ′(t)a),

that is

F(

[
f(t+ h)− f(t)

h

]
) ∗ F(a)→σ(S′n) F([f ′(t)]) ∗ F(a),

that is true if we prove that

F(

[
f(t+ h)− f(t)

h

]
)→σ(S′n) F([f ′(t)]),

pointwise (since the convolution is separately continuous). We have

F(

[
f(t+ h)− f(t)

h

]
)(g) =

[
f(t+ h)− f(t)

h

]
(Sg) =

=

∫
Rn

f(t+ h)− f(t)

h
Sg µ,

this last integral tends to∫
Rn

f ′(t)S(g) µ = [f ′(t)](Sg),

as h tends to 0, by the Lebesgue’s dominated convergence theorem. Indeed, let
h < 1, for every x in Rn, by the mean value theorem applied to the function
f(.)(x), there is a point tx in the unit interval [0, 1] such that

f(t+ h)(x)− f(t)(x)

h
S(g) = f ′(tx)(x)S(g),
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hence we have∣∣∣∣f(t+ h)(x)− f(t)(x)

h
S(g)

∣∣∣∣ = |f ′(tx)(x)S(g)| ≤

≤ |M(x)S(g)| ,

so that the family of test functions(
f(t+ h)− f(t)

h
S(g)

)
h∈[0,1]

is locally absolutely bounded at the index 0 by the summable function |MS(g)|.
The theorem is so proved. �

25.3 The Schrödinger’s equation in S ′n

25.3.1 Solutions of the eigen-representation

Theorem. Let a0 ∈ S ′n be a tempered distribution and let E ∈ OM (n) be a real
function. Then, the curve a : R→ S ′n in the space S ′n defined by

t 7→ e−(i/~)tEa0

is σ(S′n)differentiable and it is the only one verifying

• the differential equality
i~a′ = Ea;

• the initial condition a (0) = a0.

Proof. Existence. The curve a : R→ S ′n, defined by

t 7→ e−(i/~)tEu0,

is differentiable by the lemma on pointwise differentiable curves in the space
OM (n). Indeed it is immediate that the curve t 7→ e−(i/~)tE , in OM , verifies all
the requirements of the lemma. Consequently, the curve a is such that

a′ (t) = −(i/~)Ee−(i/~)tEa0 =

= −(i/~)Ea (t) ,

and hence it resolves the equation

i~x′ (t) = Ex (t) .
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Moreover, we have

a (0) = e−(i/~)0Ea0 =

= a0.

Uniqueness. Let x : R→ S ′n be a σ(S′n)differentiable curve such that

i~x′ = Ex,

and x (0) = a0. We have

i~e(i/~)tEx′ (t) = Ee(i/~)tEx (t) ,

that is
i~e(i/~)tEx′ (t)− Ee(i/~)tEx (t) = 0.

The above equality is equivalent to[
i~e(i/~)tEx

]′
(t) = 0,

and the preceding one holds true if and only if, there exists a c ∈ S ′1, such that,
for every t ∈ R, we have

i~e(i/~)tEx (t) = c.

Moreover, it’s obvious that

c = i~e(i/~)0Ex (0) =

= i~u0,

thus we have

e(i/~)tEx (t) =
c

i~

=
i~u0

i~
= u0,

and hence
x (t) = e−(i/~)tEu0,

as we desire. �

25.3.2 The Schrödinger’s equation in S ′
n

Recall the following definition.

Definition. Let A ∈ L(S ′n) be a continuous linear endomorphism on the
space S ′n. We say that the operator A has an Seigenbasis of the space
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indexed by Rm if there exists an Sbasis α ∈ B(Rm,S ′n) and a smooth function
a ∈ C∞ (Rm,K) such that A (α) = aα. In this case the smooth function a is
called the system of eigenvalues of the operator A in the eigenbasis α
and we say also that the operator A is S diagonalizable.

Theorem (on the abstract Schrödinger equation). Let H ∈ L(S ′n)
be an Sdiagonalizable operator with real eigenvalues. Then, for every vector
ψ0 ∈ S ′n, there exists a unique differentiable curve ψ : R → S ′n, verifying the
differential equality

i~ψ′ (t) = H (ψ (t)) ,

and the initial condition ψ (0) = ψ0. Explicitly, the unique solution is given by

ψ (t) = e−(i/~)tH(ψ0),

for every t.

Proof. Let η ∈ B(Rn,S ′n) be an Seigenbasis of the operator H for the space
S ′n and let E be the system of the eigenvalues of the operator H in the Sbasis
η, i.e., the smooth function such that

H (η) = Eη.

We recall that

e−(i/~)tH(ψ0) :=

∫
Rn

e−(i/~)tE [ψ0 | η] η.

Existence. Let ψ : R→ S ′1 be the curve defined by

ψ(t) =

∫
Rn

e−(i/~)tE [ψ0 | η] η.

We have by derivation

i~ψ′(t) =

∫
Rn

Ee−(i/~)tE [ψ0 | η] η =

=

∫
Rn

e−(i/~)tE [ψ0 | η] (Eη).

On the other hand

H (ψ (t)) = H(

∫
Rn

e−(i/~)tE [ψ0 | η] η) =

=

∫
Rn

e−(i/~)tE [ψ0 | η]H (η) =

=

∫
Rn

e−(i/~)tE [ψ0 | η] (Eη),
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and hence, recalling the expression of i~ψ′, we deduce

i~ψ′ (t) = H (ψ (t)) .

Uniqueness. Let ψ be a solution of the Schrödinger equation we have

0S′1 = i~ψ′ (t)−H (ψ (t)) =

= i~
∫
Rn

[ψ | η]
′
(t) η −H

(∫
Rn

[ψ (t) | η] η

)
=

=

∫
Rn

i~ [ψ | η]
′
η −

∫
Rn

[ψ | η]H (η) =

=

∫
Rn

(
i~ [ψ | η]

′ − E [ψ | η]
)
η,

now, because η is linearly independent we have

i~ [ψ | η]
′
(t) = E [ψ | η] (t) ,

i.e., set a = [ψ | η] we have

i~a′ (t) = Ea (t) .

Now, if ψ (0) = ψ0, then

a (0) = [ψ (0) | η] =

= [ψ0 | η] ,

so, applying the above result we have

a(t) = e−(i/~)tEa (0) ,

Concluding

ψ (t) =

∫
Rn

[ψ (t) | η] η =

=

∫
Rn

a (t) η =

=

∫
Rn

e−(i/~)tEa (0) η =

=

∫
Rn

e−(i/~)tE [ψ (0) | η] η,

as we desired. �
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25.3.3 The evolution group

Note that, for every tempered distribution ψ,

e−(i/~)tH(e−(i/~)hH(ψ)) = e−(i/~)tH

(∫
Rn

e−(i/~)hE [ψ|η] η

)
=

=

∫
Rn

e−(i/~)hE [ψ|η] e−(i/~)tH (η) =

=

∫
Rn

e−(i/~)hE [ψ|η] (e−(i/~)tEη) =

=

∫
Rn

(e−(i/~)tEe−(i/~)hE) [ψ (0) |η] η =

=

∫
Rn

e−(i/~)(t+h)E [ψ (0) |η] η =

= e−(i/~)(t+h)H(ψ).

So the curve U : R→ L(S ′n) defined by

U(t) = e−(i/~)tH ,

for every real t, is a one-parameter group of endomorphisms.

25.3.4 The abstract Heat equation on S ′
n

Theorem (the Heat equation). Let A ∈ L(S ′n) be an S diagonalizable oper-
ator with real and positive eigenvalues. Then, for every ψ0 ∈ S ′n, there exists a
unique differentiable curve ψ : R≥ → S ′n, such that

ψ′ (t) = −A (ψ (t)) ,

and ψ (0) = ψ0. Explicitly, the unique solution is given by

ψ (t) = e−tA(ψ0),

for every t ≥ 0.
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Chapter 26

SDiagonalizable equations

26.1 Superpositions with respect to curves

Let b : I → S ′n be a curve in the space S ′n, and let v be an S family in S ′n. The
superposition of the S family v with respect to the curve b (in IS ′n) is the curve∫

Rn

bv : I → S ′n,

defined by ∫
Rn

bv : t 7→
∫
Rn

b(t)v,

for every t in I.in IS ′n;

287
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26.2 Solution of the eigenrepresentations

Theorem. Let H : S ′n → S ′n be an S diagonalizable operator, let (E, e) be an
S eigensolution of H, that is a pair (E, e) in the Cartesian product of the space

O(n)
n times the space S(Rn,S ′n) such that H(e) = Ee. Let X be a subspace of

the space of curves IS ′n and let

D : X → IS ′n

be an operator defined on that subspace X with values in the space of curves
IS ′n. Assume that

1) there exists a curve a in X such that the superposition∫
Rn

ae

belongs to the subspace X and such that

D

(∫
Rn

ae

)
=

∫
Rn

(Da)e,

where the superposition of an S family v with respect to a curve b in
IS ′n is the curve ∫

Rn

bv : t 7→
∫
Rn

b(t)v,

in IS ′n;

2) the curve a satisfies the equation

D(a)(t) = Ea(t),

for every point t in I.

Then the curve

u =

∫
Rn

ae

is a solution of the equation

D(u)(t) = H(u(t)),

for every t in the interval I. Moreover, if the property 1) of action of the
operator D under the superposition sign, is true for every curve a in the domain
of the operator, then a curve

u =

∫
Rn

be
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is a solution of the equation if and only if the coefficient curve b satisfies the
equation

D(b)(t) = Eb(t),

for every point t in I.

Proof. First part. We have, for any t in I,

D

(∫
Rn

ae

)
(t) =

(∫
Rn

D(a)e

)
(t) =

=

∫
Rn

D(a)(t)e =

=

∫
Rn

Ea(t)e =

=

∫
Rn

a(t)(Ee) =

=

∫
Rn

a(t)H(e) =

= H

(∫
Rn

a(t)e

)
,

as we claimed. Second part. We have to prove that if a curve

u =

∫
Rn

be

satisfies the equation
D(u)(t) = H(u(t)),

for every t then the coefficient b satisfies the equation

D(b)(t) = Eb(t).

Indeed, we have ∫
Rn

D(b)(t)e =

(∫
Rn

D(b)e

)
(t) =

= D

(∫
Rn

be

)
(t) =

= H

(∫
Rn

b(t)e

)
=

=

∫
Rn

b(t)H(e) =

=

∫
Rn

b(t)Ee =

=

∫
Rn

Eb(t)e,
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for every t, and, since the family e is linearly independent, we deduce that
the coefficient distribution D(b)(t) must be equal to the coefficient distribution
Eb(t). �

Remark. It is clear that any differential operator

D : ∂1(I,S ′n)→ IS ′n

with constant coefficient - with ∂1(I,S ′n) we denote the space of all differentiable
curves defined on the non-degenerate interval I and with value in the space S ′n
- verifies the equality

D

(∫
Rn

av

)
=

∫
Rn

(Da)v,

for any coefficient curve a in S ′n and every S family in S ′n. So that the above
resolution of the Schrödinger equation can be considered a particular case of the
above theorem.

26.3 The eigenrepresentations

Definition (of eigenrepresentation of an equation). Let H : S ′n → S ′n
be an Sdiagonalizable operator with S eigensolution a pair (E, e). Let X be a
subspace of the space of curves IS ′n and let

D : X → IS ′n

be an operator defined on that subspace X with values in the space of curves
IS ′n. We say that the equation

D(b) = Eb,

where Eb is the curve t 7→ Eb(t), is the representation in the basis e of the
equation

D(u) = H ◦ u.

Since the curve b is the representation of the curve∫
Rn

be,

in the basis e, we can conclude the following corollary.

Corollary. In the conditions of the above theorem, a curve u is a solution
of the equation

D(u) = H ◦ u,
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if and only if the representation of u is a solution of the eigenrepresentation of
the equation itself.

Remark. Let us observe that the eigenrepresentation D(b) = Eb is indeed
an eigenvalue equation but not in a vector space, it is an eigen vector equation
in a module. Indeed, the space of curves IS ′n is a module with respect to the
multiplication by OM functions, that defined by

OM (n)×I S ′n →I S ′n : (f, b) 7→ fb

with

fb : I → IS ′n : t 7→ Eb(t),

note that in the equation D(b) = Eb, the function E is one eigenvalue (belonging
to the ring of the module) and the curve b is one eigenvector corresponding to the
eigenvalue E. From a physical point of view D can be see as an observable but
the states are curves (dynamical evolutions) and the observed physical measures
are functions.

26.4 Solutions in functional form

Theorem. Assume, in the conditions of the above theorem that the curve coef-
ficient distribution a have the form

a(t) = (ft ◦ E)a0,

for every t in I, where we put a0 = a(0). Then, the solution of the equation is
the curve defined by

t 7→ ft(H)(u0),

where by ft we mean a complex function defined on the eigenspectrum of the
operator H, for every t in the interval I, such that the composition ft ◦ E is
function of class OM .

Proof. Note first that

u(0) =

(∫
Rn

ae

)
(0) =

=

∫
Rn

a(0)e =

=

∫
Rn

a0e,
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so that a0 = [u0|e]. Moreover, for every t in I, we have(∫
Rn

ae

)
(t) =

(∫
Rn

ae

)
(t) =

=

∫
Rn

a(t)e =

=

∫
Rn

(ft ◦ E)a0e =

=

∫
Rn

(ft ◦ E)[u0|e]e =

= ft(H)(u0),

as we claimed. �



Chapter 27

Feynman propagators

27.1 Propagators as family-valued functions

Definition (of Feynman propagator). We call a function

G : R2 → S(Rn,S ′n)

a Feynman (or group) S-propagator on the space S ′n if

• 1) for every real t, G(t, t) = δ;

• 2) for every pair of reals t0 and t, the family G(t0, t) is invertible and

G(t0, t) = G(t, t0)−1;

• 3) for every triple of times t0, t1 and t2, we have

G(t0, t2) = G(t0, t1) ·G(t1, t2).

293
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Remark. Note that a group S-propagator G is a S-family-valued function,
indeed

G(t0, t) = (G(t0, t)y)y∈Rn .

Remark. Note that the property 2 of the definition derives from properties
1 and 3. In fact, from property 3 we have, for t2 = t0 ,

G(t0, t0) = G(t0, t1) ·G(t1, t0),

and then, applying 1 we obtain 2.

Definition (propagator of a process). Let u : R → S ′n be a dynamic
process. We say that a propagator

G : R2 → S(Rn,S ′n)

is an S-Green function, or an Spropagator, for the process u if

u(t) =

∫
Rn

u(t0)G(t0, t),

for every t0 and t in T .

Remark. Hence G(t0, t) is a family such that the state of u at the time t is
the superposition of the family G(t0, t) with respect to the system of coefficients
coinciding with the state of u at t0.

If a process u admits a Feynman propagator, then it is a strongly causal and
reversible process. In fact, by definition, the state of the process at every time
t0, determines the state of the process u at every other time t. Moreover, the
process u is reversible, since, if

u(t) =

∫
Rn

u(t0)G(t0, t),

then

u(t0) =

∫
Rn

u(t)G(t0, t)
−1.

27.2 Evolution operators

Definition (evolution operator). An evolution operator

E : R× S ′n → C0(R,S ′n),

is an operator that sends every initial condition (t0, u0) belonging to R×S ′n into
a continuous dynamical process

E(t0,u0) : R→ S ′n
such that
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• 1) E(t0,u0)(t0) = u0;

• 2) if E(t,u)(t0) = u0 then E(t0,u0)(t) = u;

• 3) if E(t0,u0)(t1) = u1 and E(t1,u1)(t2) = u2 then E(t0,u0)(t2) = u2.

Definition (the propagator of an evolution). Let E be an evolution
operator. We say that a function

G : R2 → S(Rn,S ′n)

is an S-Green function, or an Spropagator, for the evolution operator E if

E(t0,u0)(t) =

∫
Rn

u0G(t0, t),

for every u0 in S ′n and for every t0 and t in R.

Theorem (characterization of evolution operators). Let E : R×S ′n →
C0(R,S ′n), be an operator that sends every initial condition (t0, u0) belonging to
R× S ′n into a continuous dynamical process E(t0,u0) : R→ S ′n, and let

G : R2 → S(Rn,S ′n),

be a family-valued function such that

E(t0,u0)(t) =

∫
Rn

u0G(t0, t),

for every state u0 in S ′n and for every t0 and t in R. Then, E is an evolution
operator if and only if G is a Feynman propagator.

Proof. Assume E be an evolution operator, we must verify the properties of
the Feynman propagator.

1) Let t be a real. for every u, we have

u = E(t,u)(t) =

∫
Rn

uG(t, t);

thus G(t, t) = δ.
2) Consider two instant of time t0 and t. For every u0 in S ′n set

u := E(t0,u0)(t) =

∫
Rn

u0G(t0, t);

by axiom 2, we have

u0 = E(t,u)(t0) =

∫
Rn

uG(t, t0),
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then, consequently

u0 =

∫
Rn

(∫
Rn

u0G(t0, t)

)
G(t, t0) =

=

∫
Rn

u0

∫
Rn

G(t0, t)G(t, t0).

This is equivalent to ∫
Rn

G(t0, t)G(t, t0) = δ,

and then
G(t0, t) = G(t, t0)−1.

3) Consider three instants of time t0, t1 and t2, we have

G(t0, t2) = G(t0, t1) ·G(t1, t2).

In fact, if E(t0,u0)(t1) = u1 and E(t1,u1)(t2) = u2 then E(t0,u0)(t2) = u2. Now
E(t0,u0)(t1) = u1 is equivalent to∫

Rn

u0G(t0, t1) = u1,

and E(t1,u1)(t2) = u2 is equivalent to∫
Rn

u1G(t1, t2) = u2.

Hence

u2 =

∫
Rn

u1G(t1, t2) =

=

∫
Rn

(∫
Rn

u0G(t0, t1)

)
G(t1, t2) =

=

∫
Rn

u0

∫
Rn

G(t0, t1)G(t1, t2).

On the other hand, we have

u2 = E(t0,u0)(t2) =

=

∫
Rn

u0G(t0, t2),

and so ∫
Rn

u0G(t0, t2) =

∫
Rn

u0

(∫
Rn

G(t0, t1)G(t1, t2)

)
,

thus
G(t0, t2) = G(t0, t1) ·G(t1, t2).

The vice versa is a simple calculation. �
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27.3 Operatorial propagators

Definition (operatorial propagator). An operatorial propagator

S : R2 → L(S ′n),

is an operator-valued function verifying the following properties:

• 1) S(t0, t0) = (·)S′n ;

• 2) S(t0, t)
−1 = S(t, t0);

• 3) S(t0, t1) ◦ S(t1, t2) = S(t0, t2).

The following evident theorem shows the relation among operatorial and
Feynman propagators.

Theorem. Let S : R2 → L(S ′n) be an operator-valued function, and let

G : R2 → S(Rn,S ′n),

be a family-valued function such that

G(t0, t)y = S(t0, t)δy.

Then, S is an operatorial propagator if and only if G is a Feynman propagator.

Let u : R → S ′n be a process. u is said generated by an operator-valued
function

S : R2 → L(S ′n),

if, for every pair of times t and t0, we have

u(t) = S(t0, t)u(t0).

Theorem. Let S : R2 → L(S ′n) be an operatorial propagator, and let u :
R→ S ′n be a process generated by S. Then, the function

G : R2 → S(Rn,S ′n),

defined by
G(t0, t)y = S(t0, t)δy,

for every y in Rn, i.e., by

G(t0, t) = S(t0, t)δ,

is a Green function for u.
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Proof. In fact, by the S-linearity of S(t0, t) we have

u(t) = S(t0, t)

∫
Rn

u(t0)δ =

=

∫
Rn

u(t0)S(t0, t)δ,

as we desired. �

Theorem. Let the operator valued function S : T 2 → L(S ′n) be of the form

S(t0, t) = exp(−i(t− t0)H),

for a certain S-linear operator H. Then S is an operatorial propagator.

Proof. It’s enough to prove that the Green function of S is a Feynman
propagator. For every times t0 and t, we have - by definition of Green function,
the exponential assumption, expanding in the Dirac basis and applying the S-
linearity of the operator exp(−i(t− t1)H) -

G(t0, t) = S(t0, t)δ =

= exp(−i(t− t0)H)δ =

= exp(−i(t− t1 + t1 − t0)H)δ =

= exp(−i(t− t1)H) ◦ exp(−i(t1 − t0)H)(δ) =

= exp(−i(t− t1)H)(G(t0, t1)) =

= exp(−i(t− t1)H)(

∫
Rn

G(t0, t1)δ) =

=

∫
Rn

G(t0, t1) exp(−i(t− t1)H)δ =

=

∫
Rn

G(t0, t1)G(t1, t) =

= G(t0, t1) ·G(t1, t),

as we desired. �

27.4 Feynman propagator of a free particle

Let us evaluate the Green function of the evolution of a free particle. The
operatorial propagator, in this case, is of the form

S(t0, t) = exp(− i
~

(t− t0)H),
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where H is the S-linear operator defined by

H =
1

2m
P 2,

where
P : S ′1 → S ′1 : u 7→ −i~u′

is the momentum operator on S ′1. Moreover, let ϕ be the Dirac-orthonormal
standard eigenbasis of P , that is the following family of regular tempered dis-
tributions

ϕ =

(
1√
2π~

[
e−

i(p|·)
~

])
p∈R

.

It’s obvious that Pϕp = pϕp, for every real p. We have

G(0, t)q = exp(−itH)(δq) =

= exp(−itH)(

∫
Rn

(δq | ϕ)ϕ) =

=

∫
Rn

(δq | ϕ) exp(−itH)(ϕ) =

=

∫
Rn

[δq | ϕ] exp(−it (·)
2

2m
)ϕ =

=

∫
Rn

exp(−it (·)
2

2m
)

(∫
Rn

δqϕ
−1

)
ϕ =

=

∫
Rn

exp(−it (·)
2

2m
)

(∫
Rn

δqϕ

)
ϕ =

=

∫
Rn

exp(−it (·)
2

2m
)ϕqϕ.

The family ϕ is a regular family, and denoted by fq the S-function generating
the regular tempered distribution ϕq, the function

exp(−it (·)
2

2m
)fq

is an S-function (it the product of a bounded function by an S-function). Hence
the superposition ∫

Rn

exp(−it (·)
2

2m
)ϕqϕ

is a regular distribution of class S; say gq the generating S-function, it’s simple
to see that

gq(q
′) =

∫
Rn

exp(−it p
2

2m
)fq(p)fp(q

′
)dp,

in fact, the superposition

[gq] =

∫
Rn

exp(−it (·)
2

2m
)ϕqϕ
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is the Fourier transform of the tempered distribution

exp(−it (·)
2

2m
)ϕq,

and so gp is the Fourier transform of the function

p 7→ exp(−it p
2

2m
)fq(p).

Substituting the expression of f , we have

gq(q
′) =

∫
Rn

exp(−it p
2

2m
)fq(p)fp(q

′)dp =

=
1

2π~

∫
Rn

exp(−it p
2

2m
) exp(

ipq

~
) exp(− ipq

′

~
)dp =

=
1

2π~

∫
Rn

exp(−it p
2

2m
+
ipq

~
− ipq′

~
)dp.

The last integral is classic, after the standard calculation, we, at last, conclude

G(0, t)q = [gq] =

[( m

2πit

)1/2

eim((·)−q)2/2t
]
.



Chapter 28

Evolutions in the space S ′n

28.1 Introduction

We start from the abstract Schrödinger equation

i~u′(t) = H(t)u(t),

where: H(t) is a linear operator on some topological vector space (X,σ), for
every real time t; u is a σ-differentiable curve in that space; and u′ is the
derivative of u with respect to the topology σ. When X is an Hilbert space,
physicists solve formally this equation using propagators, more precisely, for
every time t and for every initial condition (t0, u0) ∈ R×X, they find a unique
differentiable solution u starting from the initial condition defined by

u(t) = S(t0, t)u0,

for every time t, where the operator S(t0, t) is given by the Dyson formula

S(t0, t) = exp

(
1

i~

∫ t

t0

H(τ)dτ

)
.
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Unfortunately, it is not true that in Hilbert spaces the abstract Schrödinger
equations has always a solution (because the operators H(t) , that are of in-
terest in Quantum Mechanics, are always unbounded-linear operators and not-
everywhere defined) and moreover in those spaces the Dyson formula has not a
precise mathematical sense. In this chapter we solve the problem in the space of
tempered distributions (where the operators of Quantum Mechanics are always
continuous and everywhere defined) we will find a unique solution, for every
initial condition, in the propagator-form desired by physicists, and we shall give
a meaning to the Dyson formula in this context. We solve in this space the
abstract heat evolution equation too, in view of financial applications.

28.2 Integral of function from Rm to S ′n

Let us define the integral of function from Rm to S ′n.

Definition. Let u be a function from Rm into the distributions space S ′n
and let φ be a test function in Sn. We define image of φ by u the function

u(φ) : Rm → C : u(φ)(p) = u(p)(φ).

The images by u of the test functions give informations on the entire function
u, as, for instance, states the following.

Theorem. Let u be a function from Rm into the space S ′n. Then, u is
continuous with respect to the topology σ(S ′n,Sn), if and only if the function

u(φ) : Rm → C : u(φ)(t) = u(t)(φ),

is continuous, for every test function φ in Sn.

Proof. In fact, u is continuous at t0, with respect to the topology σ(S ′n,Sn),
if and only if, for every test function φ (recall that σ(S ′n,Sn) is induced by the
family of seminorms |〈·, φ〉|), the semi-distance

|〈u(t)− u(t0), φ〉|

vanishes, as t→ t0; on the other hand

lim
t→t0
|(u(t)− u(t0)) (φ)| = lim

t→t0
|u(φ)(t)− u(φ)(t0)| ,

so u is σ(S ′n,Sn)-continuous at t0 if and only if for every test function φ, the
complex function u (φ) is continuous at t0. �
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The preceding theorem allow us to associate with the function u, in an
extremely natural way, an operator from Sn into the space of continuous complex
functions C0(Rm,C), which in the following we shall denote by C0

m.

Definition. Let u be a function from Rm into the space S ′n, continuous in
the topology σ(S ′n,Sn). The operator û : Sn → C0

m defined by û(φ) = u (φ), for
every test function φ, is called the operator induced by u.

The operator associated with a continuous function in the topology σ(S ′n,Sn)
is automatically continuous in the natural topologies of the two spaces Sn and
C0
m.

Theorem. Let u be a function from Rm into the space S ′n continuous
in the topology σ(S ′n,Sn) and let a be a Radon-measure on Rm with compact
support. Then, the composition a◦ û is σ(S ′n,Sn)-continuous for every a in C0′

m

and, consequently, the operator û is continuous in the topologies σ(Sn,S ′n) and
σ(C0

m, C
0′
m).

Proof. Denote by C0′
m the dual of C0

m with respect to its standard locally
convex topology. The dual C0′

m is, by definition, the space of Radon-measures on
Rm with compact support. Note, that the linear operator û is continuous with
respect to the topologies σ(Sn,S ′n) and σ(C0

m, C
0′
m) if and only if for every a in

C0′
m, i.e., for every Radon-measure on Rm with compact support, the functional

a ◦ û is σ(Sn,S ′n)-continuous (see, for example, [5],[8]). Note, moreover, that
this is true for a sequentially dense subset of C0′

m, the linear subspace spanned
by the delta-measures on Rm, so by the Banach-Steinhaus theorem a ◦ û is
σ(S ′n,Sn) -continuous, being Sn a Fréchet space and thus a Baire-space (see
Banach-Steinhaus on Laurent Schwartz’s Functional Analysis). �

Definition (integral of a function with respect to a measure). In
the conditions of the above theorem the composition a ◦ û is said the integral
on Rm of the function u with respect to the measure a and it is denoted by∫
Rm u (a) or by a(u).

Our aim is, generalizing the above definition, to integrate u on every bounded
Borel-subset of Rm, with respect to a Radon-measure on Rm eventually not with
compact support. To this end we have the following theorem.

Theorem. Let a be a Radon-measure on Rm, and let B be a bounded Borel
subset of Rm . Consider the functional aB : C0

m → C defined

f 7→
∫
B

f(µa) =

∫
Rm

χBf(µa),

where µa is the Borel-measure associated canonically to a by the Riesz theorem.
Then, aB is a Radon-measure with compact support on Rm.
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Proof. We must prove that aB is continuous in the standard topology of C0
m

(that is the topology of compact convergence), it is the locally convex topology
induced by the family of seminorms (qK)K∈K(Rm) indexed by the set of compact
subset of Rm and defined by

qK(f) := max
K
|f | .

Remember that a linear functional T on C0
m is continuous in this topology if

there exists a positive real number M and a seminorm qK such that, for every
function f in C0

m is
|T (f)| ≤MqK(f).

Indeed, we have

|aB(f)| =

∣∣∣∣∫
B

fdµa

∣∣∣∣ ≤
≤ sup

B
|f | · |µa| (B) ≤

≤ |µa| (B) ·max
B
|f | ,

so, since the closure of B is compact, aB is continuous with respect to the
topology of compact convergence, and then it is a compact-support Radon-
measure on Rm. �

We call the functional aB of the preceding theorem restriction of a to B. We
can give, so, the following definition.

Definition (integral on a bounded Borel set with respect to a mea-
sure). In the above conditions the composition aB ◦ û is said the integral on
B of the function u with respect to the measure a, it is denoted by

∫
B
uda. In

other terms we put ∫
B

uda :=

∫
Rm

udaB .

Remark. Let B be a bounded Borel-subset of Rm, and aB be the restriction
of a Radon-measure a to B. Then, aB is the Radon-measure on Rm associated
with the Borel-measure defined for every Borel-set E by (µa)B (E) = µa(E∩B)
. In fact, we have

T (f) =

∫
Rm

f (µa)B =

=

∫
B

f µa =

= aB(f).
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28.3 Integral of functions of Rm into L(S ′n)

In this section we give the definition of integral of an operator-valued function
H, namely of functions from Rm into L(S ′n) (the space of S-endomorphisms on
the space S ′n, see [1] or [3]) in a Radon-measure on Rm. Analogously to the
preceding section it is possible to prove the following proposition.

Proposition. A function H : Rm → L(S ′n) is continuous with respect to the
pointwise topology induced by the topology σ(S ′n,Sn) if and only if the function
H (u) : Rm → S ′n defined by

H(u)(p) := H(p)(u),

for every p, is continuous in the topology σ( S ′n), for every tempered distri-
bution u.

Definition. Let H : Rm → L(S ′n) be a continuous function. We define
integral of H in a Radon-measure a the operator

a(H) =

∫
Rm

Hda : S ′n → S ′n : u 7→
∫
R
H (u) da.

The integral of H in the Lebesgue-measure is denoted by
∫
Rm H.

Theorem. Let H : Rm → L(S ′n) be a continuous function. Then, the
integral of H in a Radon-measure a, is continuous in the topology σ(S ′n,Sn)
and consequently S-linear.

Proof. Recall that an linear operator T from a seminormed space (E, p) to
another seminormed space (F, q) is continuous if for every seminorm qj of the
family q there is a seminorm pi of the family p and a positive real M such that
qj(T (x)) ≤Mpi(x). Let φ be a test function, we have, then, to prove that there
are another test function ψ and a positive real M such that∣∣∣∣〈φ,∫

Rm

H(u)da

〉∣∣∣∣ ≤M |〈ψ, u〉| .
Concluding we have, if K is the compact support of a, that there exist an m-
index p0 (by the Weierstrass theorem) and a test function ψ with a real M (by
continuity of the operator Hp0) such that∣∣∣∣〈φ, ∫

Rm

H(u)da

〉∣∣∣∣ =

∣∣∣∣∫
Rm

H(u) (φ) da

∣∣∣∣ ≤
≤ |a| (K)supK |H(u) (φ)| =
= |a| (K) |Hp0(u) (φ)| =
= |a| (K) |〈φ,Hp0(u)〉| ≤
≤ (|a| (K)M) |〈ψ, u〉| .
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So the integral of H, by a Radon-measure with compact support, is a con-
tinuous operator in the weak∗ topology, and consequently (D. Carf̀ı, Topological
characterizations of S -linearity, preprint) is S-linear. �

The last definition concerns integral on bounded Borel-set.

Definition (integral on a bounded Borel set with respect to a mea-
sure). Let a be a Radon-measure on Rm, B be a bounded Borel-subset of Rm,
aB be the restriction of a to B and let H : Rm → L(S ′n) be
a continuous function. We define∫

B

Hda :=

∫
Rm

HdaB .

The integral of H in the Lebesgue measure is denoted by
∫
B
H.

28.4 Curves of S-linear operators

From this section to the end we shall use intensively the S -linear Algebra, that
will be assumed known. For the fundamentals of S-linear Algebra and for the
functional calculus of S -diagonalizable endomorphisms see [1], [3]. We observe
only that if A is an S-diagonalizable operator and if α is one of its S-eigenbasis
for the space, then there is only a function a associating to each n-tuple p
the unique complex eigenvalues ap of A on the eigenvector αp. We call a the
system of eigenvalues of A on the S-basis α. We remark that this function a is
necessarily a smooth function of class OM . In fact, from Aαp = apαp we have

A (α)
∧

(φ)(p) = a(p)α∧(φ)(p);

the functions A (α)
∧

(φ) and α∧(φ) are, by definition of S-family, of class S; since
α is an S-eigenbasis we have that the operator α∧ is surjective and injective.
Let us prove that a is smooth at every p0, let φ be a test function such that
α∧(φ)(p0) is different from 0 (it certainly exists because α∧ is surjective), it
follows that there is a neighborhood of p0 in which α∧(φ) is different from 0,
for each p in this neighborhood we have

a(p) =
A (α)

∧
(φ)(p)

α∧(φ)(p)
,

then a is smooth at p0. Moreover, since

A (α)
∧

(φ) = aα∧(φ)

and since α∧ is surjective, the product of the function a with all the functions
of class S is yet of class S, and then a is of class OM .
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Now, let A : R→ L(S ′n) be a curve of S-diagonalizable endomorphisms with
a common S-eigenbasis α, the family a = (a(t))t∈R of the systems of eigenvalues
of the operators A(t) on α is called the system of eigenvalues of the curve A.
For every p, we define the function ap : R→ C associating to t the value of the
function a(t) on the n-tuple p: ap(t) := a(t)(p). If A is a continuous curve of
S-diagonalizable endomorphisms with a common S -eigenbasis α, the functions
ap are continuous. In fact, from the equality

A(t)(αp) = ap(t)αp,

if φ does not belong to the kernel of αp, we deduce

ap(t) =
A(αp)(t)(φ)

αp(φ)
,

for every t, so ap is proportional to the continuous function A(αp)
∧(φ) and then

it is continuous.

Theorem. Let A be a differentiable curve of S-diagonalizable endomor-
phisms on Sn, in the pointwise topology induced by σ(S ′n,Sn). Assume that the
endomorphisms of the curve have a common S-eigenbasis for the space and real
eigenvalues. Then the curve of states

B : t 7→ exp (iA (t))

is differentiable in the topology σ(S ′n,Sn), and

B′(t) = iA′ (t) exp iA (t) ,

where we used the multiplicative notation for the composition of endomorphisms.
As a consequence, for every state ψ the curve u defined by

u(t) := exp (iA (t)) (ψ)

satisfies the differential equality

u′ (t) = iA′ (t) (u (t)) .

Proof. Let t0 be a real time, we have

B′ (t0) (ψ) = σ(S′n) lim
t→t0

exp iA (t) (ψ)− exp iA (t0) (ψ)

t− t0
,

if the right-hand limit exists. We prove the pointwise existence of B′(t0) for
an eigenbasis α of A. To this aim ap : R → C will be, for every n-tuple p the
unique function such that

A(t)(αp) = ap(t)αp,
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it is continuous by the above argumentations; we have

B′ (t0) (αp) = lim
t→t0

exp iA (t) (αp)− exp iA (t0) (αp)

t− t0
=

= lim
t→t0

eiap(t)αp − eiap(t0)αp
t− t0

=

=

(
lim
t→t0

eiap(t) − eiap(t0)

t− t0

)
αp =

= ia′p (t0)
(
eiap(t0)αp

)
=

= ia′p (t0) exp iA (t0) (αp) =

= iA′ (t0) (exp iA (t0) (αp)).

Now, let z be a tempered distribution, for the difference-quotient we have

QB (t0, t) (z) =
expA (t) (z)− expA (t0) (z)

t− t0
=

=
1

t− t0

[
expA (t)

(∫
Rn

(z)αα

)
− expA (t0)

(∫
Rn

(z)αα

)]
=

=
1

t− t0

[∫
Rn

(z)α expA (t) (α)−
∫
Rn

(z)α expA (t0) (α)

]
=

=

∫
Rn

(z)α
expA (t) (α)− expA (t0) (α)

t− t0
,

passing to limit

B′(t0)(z) = lim
t→t0

∫
Rn

(z)α
exp iA (t) (α)− exp iA (t0) (α)

t− t0
=

=

∫
Rn

(z)αiA
′ (t0) ◦ exp iA (t0) (α) =

= iA′ (t0) ◦ exp iA (t0)

∫
Rn

(z)αα =

= iA′ (t0) ◦ exp iA (t0) (z),

so
B′(t) = iA′ (t) exp iA (t) .

Applying the preceding result, we have

u′ (t) = iA′ (t) (exp iA (t) (ψ)) =

= iA′ (t) (u (t)) ,

and the theorem is proved. �

The preceding theorem can be generalized.
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Theorem. Let A be a curve of S -diagonalizable operators with a same
S-basis of the space, namely α, and let, for every n-tuple p, ap the complex
function defined on the real line such that

A(t)(αp) = ap(t)αp,

for every real time t. Then, the curve A is differentiable with respect to the
pointwise topology τ induced by the weak topology σ(S ′n,Sn) on the space L(S ′n)
at a real time t0 if and only if ap is differentiable in t0 for every n-tuple p.
Moreover, in these conditions the operator A′(t0) is S-diagonalizable with the
same S-basis α and its system of eigenvalues is the system of derivatives

p 7→ a′p (t0) .

Proof. For every n-tuple p, assume the function ap be differentiable at a
time t0, we have to prove that the pointwise-limit

τ lim
t→t0

A (t)−A (t0)

t− t0
there exists, i.e., that for every u in S ′n the σ(S ′n,Sn)-limit

σ(S′n) lim
t→t0

A (t)−A (t0)

t− t0
(u)

there exists; we begin with the basis α:

A′ (t0) (αp) = σ(S′n) lim
t→t0

A (t)−A (t0)

t− t0
(αp) =

= σ(S′n) lim
t→t0

A (t) (αp)−A (t0) (αp)

t− t0
=

= lim
t→t0

ap (t)αp − ap (t0)αp
t− t0

=

= lim
t→t0

ap (t)− ap (t0)

t− t0
(αp) =

= a′p (t0)αp.

Now, let u be a tempered distribution, for the difference-quotient, we have

A (t)−A (t0)

t− t0
(u) =

A (t)−A (t0)

t− t0
(

∫
Rn

(u)α α) =

=
1

t− t0

(
A (t)

∫
Rn

(u)α α−A (t0)

∫
Rn

(u)α α

)
=

=
1

t− t0

(∫
Rn

(u)α A (t)α−
∫
Rn

(u)α A (t0)α

)
=

=
1

t− t0

∫
Rn

(u)α (A (t)−A (t0))α =

=

∫
Rn

(u)α (
A (t)−A (t0)

t− t0
)α,
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so by σ(S ′n)-continuity of superpositions, the limit

σ(S′n) lim
t→t0

A (t)−A (t0)

t− t0
(u)

exists and its value is the superposition∫
Rn

(u)α (a′p (t0)αp)p∈Rn ,

as we desired. �

28.5 The Dyson Formula

First of all we generalize a fact of elementary Linear-Algebra. If A and
B are two diagonalizable endomorphisms on a finite-dimensional vector space
with the same eigenbasis v, then every linear combination aA+bB has the same
eigenbasis and

evaA+bB(vi) = aevA(vi) + bevB(vi),

for every vector vi of v, where evL is the mapping associating to every eigen-
vector of the linear operator L the corresponding (unique) eigenvalues.

Theorem. Let H be a continuous curve of S-diagonalizable operators with
the same S -eigenbasis and let µ be a Radon measure on R. Let η = (ηp)p∈Rn be
the common eigenbasis of the operators of the curve, and let, for every n-tuple
p , Ep : R→ C be the unique function such that

H(t)(ηp) = Ep(t)ηp,

for every time t. Then, for every n-tuple p,

(

∫ t

t0

Hdµ)(ηp) = (

∫ t

t0

Ep(µ))(ηp).

Proof. It’s straightforward,

(

∫ t

t0

H (µ))(ηp) =

∫ t

t0

H(ηp)(µ) =

=

∫ t

t0

Epηp (µ) =

= (

∫ t

t0

Ep (µ))(ηp),
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as we desired. �

Theorem. Let H be a continuous curve of S-diagonalizable operators with
the same S -eigenbasis. Then, for every time t,(∫ (·)

t0

Hdλ

)′
(t) = H (t) .

Proof. Let η be the common eigenbasis of the operators of the curve, and
let Ep : R→ C the unique function such that

H(t)(ηp) = Ep(t)ηp,

for every n-tuple p and for every time t. We have, for every n-tuple p,(∫ t

t0

H (λ)

)
(ηp) =

(∫ t

t0

Ep (λ)

)
(ηp).

Let us compute the difference-quotient at a time t1

1

t− t1

(∫ t

t0

H −
∫ t1

t0

H

)
(ηp) =

1

t− t1

((∫ t

t0

H

)
(ηp)−

(∫ t1

t0

H

)
(ηp)

)
=

=
1

t− t1

(∫ t

t0

Ep −
∫ t1

t0

Ep

)
ηp,

passing to limit we have(∫ (·)

t0

Hdλ

)′
(t1) (ηp) = Ep(t1)(ηp) =

= H (t1) (ηp) .

For every u, we have

1

t− t1

(∫ t

t0

H −
∫ t1

t0

H

)
(u) =

1

t− t1

(∫ t

t0

H −
∫ t1

t0

H

)(∫
Rn

(u)η η

)
=

=

∫
Rn

(u)η
1

t− t1

(∫ t

t0

H −
∫ t1

t0

H

)
(η) ,

when t→ t1, by the previous step, the right hand side tend to∫
Rn

(u)ηH(t1)η = H(t1)(u),

and the theorem is proved. �

We finally can conclude with the main result.
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Theorem. Let H be a continuous curve of S-diagonalizable operators with
a same S -eigenbasis for the space S ′n, let (t0, u0) be an initial condition in
R×S ′n and let u be the curve in S ′n defined by

u : t 7→ exp

(∫ t

t0

Hdλ

)
(u0) ,

for every real time t. Then u is σ( S ′n)-differentiable and it is such that

u′ (t) = H (t) (u (t)) ,

for every real time t, and u(t0) = u0. Moreover, for every pair of times s and
t we have

u(t) = S(s, t)u(s),

where S : R2 → L(S ′n) is the propagator defined by

S(s, t) = exp

(∫ t

s

Hdλ

)
.

Proof. Applying the preceding theorem we obtain

u′ (t) =

(∫ (·)

t0

Hdλ

)′
(t)

(
exp

(∫ t

t0

Hdλ

)
(u0)

)
=

=

(∫ (·)

t0

Hdλ

)′
(t) (u (t)) =

= H (t) (u (t)) .

Concerning the propagator we have

u(t) = S(t0, s)S(s, t)u(t0) =

= S(s, t)S(t0, s)u(t0) =

= S(s, t)u(s),

as we desired. �

Analogously, for the Abstract Heat equation, fundamental in the study of
financial evolution, we have the following.

Theorem (on the abstract Heat equation). Let A : R≥ → L(S ′n) be a
continuous curve of Sdiagonalizable operators with a common Seigenbasis for
S ′n and with real and positive eigenvalues. Then, for every initial condition
(0, u0) ∈ R≥ × S ′n, the curve ψ : R≥ → S ′n, given by

ψ (t) = exp

(
−
∫ t

t0

A(λ)

)
(u0) ,

for every t ≥ 0, is such that

ψ′ (t) = −A (ψ (t)) ,

and ψ (0) = ψ0.
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