

Two- and four-component relativistic calculations of parity violation effects in molecules

Radovan Bast

Laboratoire de Chimie et Physique Quantiques CNRS/ Université de Toulouse 3 (Paul Sabatier)

```
\label{eq:adovan.bast@irsamc.ups-tlse.fr} $$ dirac.ups-tlse.fr/bast/
```

Radovan Bast

Mathematical Methods for AIQC 1/50

NCPCHEM members

Theoretical chemistry (Toulouse, Auckland)

T. Saue

S. Komorovský

P. Schwerdtfeger

Synthetic chemistry (Rennes, Lyon)

N. Saleh

L. Guy

NCPCHEM members

Infrared ultra high resolution spectroscopy (Paris)

B. Darquié

A. Amy-Klein

C. Chardonnet

C. Daussy

C. Stoeffler

Fourier-transform infrared and microwave spectroscopy (Paris, Lille)

P. Asselin

P. Soulard

T. Huet

Outline: parity violation (PV) in relativistic framework

- relativistic interaction Hamiltonian
- calculation of PV shifts in vibrational transitions
- search for a suitable molecule for experimental observation of PV
- projection analysis of the PV energy
- electron chirality density
- PV energy gradient
- perspectives

• other theory groups working on PV: R. Berger, P. Lazzeretti, P. Manninen, M. Quack, P. Schwerdtfeger, J. Stohner

Left or right

- mirror-image symmetry is broken
- universe is "left-handed"
- biomolecular homochirality (*D*-sugars, *L*-aminoacids)
- replication/docking/... is easier in a homochiral environment

Chiral molecule in front of two mirrors

$$\hat{P}|\psi(\vec{r})\rangle = |\psi(-\vec{r})\rangle \qquad \hat{P}|\psi^{\mathsf{S}}\rangle = |\psi^{\mathsf{R}}\rangle \qquad \hat{P}|\psi^{\mathsf{R}}\rangle = |\psi^{\mathsf{S}}\rangle \qquad \hat{P}^2 = \hat{I}$$

Radovan Bast

Mathematical Methods for AIQC 6/50

Loss of symmetry means loss of degeneracy

enantiomers related by parity operation

$$\hat{P}|\psi^{\mathsf{R}}\rangle = |\psi^{\mathsf{S}}\rangle$$

PV Hamiltonian changes sign under parity operation

$$\hat{P}^{-1}\hat{H}_{\mathsf{PV}}\hat{P} = -\hat{H}_{\mathsf{PV}}$$

expectation values differ by sign

$$\begin{split} \langle \psi^{\mathsf{R}} | \hat{H}_{\mathsf{P}\mathsf{V}} | \psi^{\mathsf{R}} \rangle &= \langle \hat{P}\psi^{\mathsf{R}} | \hat{P}^{-1} \hat{H}_{\mathsf{P}\mathsf{V}} \hat{P} | \hat{P}\psi^{\mathsf{R}} \rangle \\ &= -\langle \psi^{\mathsf{S}} | \hat{H}_{\mathsf{P}\mathsf{V}} | \psi^{\mathsf{S}} \rangle \end{split}$$

PV energy difference is twice the expectation value

$$\Delta E_{PV} = 2 |\langle \psi | \hat{H}_{PV} | \psi \rangle |$$

Radovan Bast

PV energy difference

$$E_{\mathsf{PV}} = \langle \Psi | \hat{H}_{\mathsf{PV}} | \Psi \rangle \qquad \hat{H}_{\mathsf{PV}} = \frac{G_{\mathsf{F}}}{2\sqrt{2}} \sum_{A} Q_{\mathsf{w}}^{A} \sum_{i} \gamma_{i}^{5} \rho^{A}(\vec{r}_{i})$$

- $G_{\rm F}=2.22255\times 10^{-14}E_{\rm h}a_0^3$ energy difference obtained through perturbation theory
- Q^A_w: weak charge of nucleus A scales roughly as number of neutrons
- γ^5 matrix couples large and small components

$$\gamma^5 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

- ρ^A: normalized nuclear charge density
 provides natural partitioning in atomic contributions
- $E_{\rm PV}^A$ scales as Z_A^5 we are interested in for heavy nuclei and relativistic treatment

Mathematical Methods for AIQC 8/50

Heavy elements dominate

$E_{PV}^A = \frac{G_{F}}{2\sqrt{2}}$	$Q_{w}^{A} \sum_{i} \langle \psi_{i} \gamma_{i}^{5} \rho^{A}(\vec{r_{i}}) $	$\psi_i \rangle$
--------------------------------------	--	------------------

nucleus A	$\langle \psi_i \gamma_i^5 \rho^A(\vec{r}_i) \psi_i \rangle$	Q^A_{w}	EA
	(in 1.0×10^{-3} a.u.)		$(in 1.0 \times 10^{-15} E_{\rm h})$
Н	-0.00011	0.07	-0.00000
н	-0.00012	0.07	-0.00000
н	+0.00005	0.07	+0.00000
н	+0.00005	0.07	+0.00000
н	-0.00023	0.07	-0.00000
н	-0.00003	0.07	-0.00000
н	+0.00016	0.07	+0.00000
н	+0.00016	0.07	+0.00000
н	+0.00002	0.07	+0.00000
н	-0.00032	0.07	-0.00000
С	-0.00127	-5.57	+0.00006
С	-0.00082	-5.57	+0.00004
С	-0.01484	-5.57	+0.00065
С	+0.00521	-5.57	-0.00023
С	-0.00807	-5.57	+0.00035
С	+0.00655	-5.57	-0.00029
0	+0.01010	-7.42	-0.00059
0	+0.05418	-7.42	-0.00316
S	+0.19781	-14.84	-0.02307
N	+0.06501	-6.49	-0.00332
Re	+3.06542	-106.57	-2.56703
total			-2.59659

Radovan Bast

PV energy difference

$$E_{\rm PV} = \frac{G_{\rm F}}{2\sqrt{2}} \sum_{A} Q_{\rm w}^A \sum_i \langle \psi_i | \gamma_i^5 \rho^A(\vec{r}_i) | \psi_i \rangle$$

• a priori we do not know which enantiomer is lower in energy

(although qualitative models exist)

- we cannot say in general that *D*-sugars and *L*-aminoacids are lower
- nodal surface that changes sign is often very close to the nucleus

1-electron Dirac equation

$$\begin{bmatrix} VI_{2\times 2} & c(\vec{\sigma} \cdot \vec{p}) \\ c(\vec{\sigma} \cdot \vec{p}) & (V - 2mc^2)I_{2\times 2} \end{bmatrix} \begin{bmatrix} \psi^{\mathsf{L}} \\ \psi^{\mathsf{S}} \end{bmatrix} = E \begin{bmatrix} \psi^{\mathsf{L}} \\ \psi^{\mathsf{S}} \end{bmatrix}$$

$$c(\vec{\sigma}\cdot\vec{p})\psi^{\mathsf{L}} + (V - 2mc^2)I_{2\times 2}\psi^{\mathsf{S}} = E\psi^{\mathsf{S}}$$

relation between large and small components

$$\psi^{\mathsf{S}} = \frac{1}{2m} B(E) (\vec{\sigma} \cdot \vec{p}) \psi^{\mathsf{L}}$$

energy-dependent factor

$$B(E) = \left[1 + \frac{E - V}{2mc^2}\right]^{-1}$$

nonrelativistic limit

$$\lim_{c \to \infty} c \psi^{\mathsf{S}} = \frac{1}{2m} (\vec{\sigma} \cdot \vec{p}) \psi^{\mathsf{L}}$$

Radovan Bast

Mathematical Methods for AIQC | 11/50

$$\hat{H}_{\mathsf{PV}} = \sum_{A} \hat{H}_{\mathsf{PV}}^{A} \qquad E_{\mathsf{PV}} = \sum_{A} E_{\mathsf{PV}}^{A}$$

$$\begin{split} E_{\mathsf{PV}}^{A} &= \frac{G_{\mathsf{F}}}{2\sqrt{2}} Q_{\mathsf{w}}^{A} \sum_{i} \langle \psi | \gamma_{i}^{5} \rho^{A}(\vec{r}_{i}) | \psi \rangle \\ &= \frac{G_{\mathsf{F}}}{2\sqrt{2}} Q_{\mathsf{w}}^{A} \sum_{i} \left[\langle \psi^{\mathsf{L}} | I_{2\times 2} \rho^{A}(\vec{r}_{i}) | \psi^{\mathsf{S}} \rangle + \langle \psi^{\mathsf{S}} | I_{2\times 2} \rho^{A}(\vec{r}_{i}) | \psi^{\mathsf{L}} \rangle \right] \end{split}$$

using

$$\lim_{c \to \infty} c \psi^{\mathsf{S}} = \frac{1}{2m} (\vec{\sigma} \cdot \vec{p}) \psi^{\mathsf{L}}$$

nonrelativistic limit of the interaction Hamiltonian

$$\lim_{c \to \infty} c\hat{H}^A_{\mathsf{PV}} = \frac{1}{2m} \frac{G_{\mathsf{F}}}{2\sqrt{2}} Q^A_{\mathsf{w}} \sum_i [I_{2 \times 2} \rho^A(\vec{r}_i), (\vec{\sigma}_i \cdot \vec{p}_i)]_+$$

relativistic Hamiltonian

$$\hat{H}_{\rm PV}^A = \frac{G_{\rm F}}{2\sqrt{2}} Q_{\rm w}^A \sum_i \gamma_i^5 \rho^A(\vec{r}_i)$$

Radovan Bast

Mathematical Methods for AIQC | 12/50

Hamiltonian including the nuclear spin dependent term

Hamiltonian so far

$$\hat{H}_{\rm PV} = \frac{G_{\rm F}}{2\sqrt{2}}\sum_{A}\sum_{i}\gamma_{i}^{5}Q_{\rm w}^{A}\rho^{A}(\vec{r_{i}})$$

Hamiltonian including the nuclear spin dependent term

$$\hat{H}_{\mathsf{PV}} = \frac{G_{\mathsf{F}}}{2\sqrt{2}} \sum_{A} \sum_{i} \left[\gamma_{i}^{5} Q_{\mathsf{w}}^{A} \rho^{A}(\vec{r}_{i}) - 2\lambda_{A}(1 - 4\sin^{2}\theta_{\mathsf{W}}) \vec{\alpha}_{i} \cdot \vec{I}_{A} \rho^{A}(\vec{r}_{i}) \right]$$

- first term modifies energy eigenvalues
- second term modifies NMR parameters
- we will not consider the second term in this talk

Experimental techniques

we are still waiting for the first successful experiment on molecular PV

- vibrational spectroscopy
- Mössbauer spectroscopy
- NMR spectroscopies
- optical rotation
- electronic excitation spectra
- spectroscopy on laser-cooled molecules

PV in vibrational spectroscopy

- select suitable molecule
- select suitable vibrational coordinate Q
- PV energy depends on Q

$$E_{\mathsf{PV}} = E_{\mathsf{PV}}(Q)$$

• PV vibrational transition frequency difference for $0 \rightarrow n$ transition:

$$\Delta E_{\mathsf{PV};0\to n} = 2\langle n | E_{\mathsf{PV}}(Q) | n \rangle - 2\langle 0 | E_{\mathsf{PV}}(Q) | 0 \rangle$$

$$E_{\mathsf{PV}}(Q) = E_{\mathsf{PV}}^{[0]} + E_{\mathsf{PV}}^{[1]}Q + \frac{1}{2}E_{\mathsf{PV}}^{[2]}Q^2 + \cdots$$

• vibrational spectroscopy experiment does not probe $E_{\rm PV}^{[0]}$

Radovan Bast

Radovan Bast

Mathematical Methods for AIQC | 16/50

computational protocol

- optimize structure
- obtain harmonic force field
- perturb molecule along a selected mode
- calculate energy at these displaced geometries
- calculate $\langle \hat{H}_{\rm PV} \rangle$ at these displaced geometries
- calculate shift for $0 \rightarrow n$ transition

methods

- structure and force field: ECP B3LYP, def2–TZVPP basis
- single-point energy and property calculations: DC Hamiltonian or X2C Hamiltonian, HF or KS, dedicated even-tempered basis

approximations

- Born–Oppenheimer approximation
- electron correlation is approximated (exchange-correlation)
- Dirac–Coulomb Hamiltonian or X2C Hamiltonian (relativistic treatment crucial)
- assume that wavefunction is dominated by one electron occupation (self-consistent field)
- we follow normal modes: uncoupled picture
- no environment (molecule alone in the universe)

• fit polynomials to P(Q) and V(Q)

$$E_{\mathsf{PV}}(Q) = E_{\mathsf{PV}}^{[0]} + E_{\mathsf{PV}}^{[1]}Q + \frac{1}{2}E_{\mathsf{PV}}^{[2]}Q^2 + \cdots$$

Numerov–Cooley procedure

$$\Delta E_{\mathsf{PV};0\to n} = 2\langle n | E_{\mathsf{PV}}(Q) | n \rangle - 2\langle 0 | E_{\mathsf{PV}}(Q) | 0 \rangle$$

perturbational approach

$$\Delta E_{\mathsf{PV};0\to n} \approx n \frac{\hbar}{\mu\omega_e} \bigg[E_{\mathsf{PV}}^{[2]} - \frac{1}{\mu\omega_e^2} E_{\mathsf{PV}}^{[1]} V^{[3]} \bigg]$$

- perturbational approach works well
- good for analysis
- can offer error estimates
- we do not probe $E_{\rm PV}^{[0]}$ in the vibrational experiment
- there can be cancellation or enhancement

Search for the ideal candidate

• experimental setup aiming at resolving 10 mHz

- contain one or more heavy atoms near the stereochemical center
- intense band within the CO₂ laser operating range (850–1120 cm⁻¹)
- separable in stable enantiomers
- not bulky (sensitivity of experiment determined by the partition function)
- avoid nuclei with quadrupole moment (avoid large hyperfine structure)
- allow supersonic expansion (sublimate without decomposition)
- gram-scale

Some studied molecules

Mathematical Methods for AIQC | 21/50

$\mathsf{C}_5\mathsf{H}_7\mathsf{NOS}\text{-}\mathsf{ReOMe}$

Mathematical Methods for AIQC 22/50

C₅H₇NOS-ReOMe

method	harmonic	anharmonic
LDA	-0.672	-0.753
BLYP	-0.582	-0.656
B3LYP	-0.482	-0.554
HF	-0.279	-0.341

method	$E_{PV}^{[1]}$	$E_{PV}^{[2]}$
LDA	-24.5	-8.5
BLYP	-22.7	-7.3
B3LYP	-21.8	-6.1
HF	-18.6	-3.5

* All numbers in Hz (all DC Hamiltonian).

CHCIBrReO3

CHCIBrReO3

method	harmonic	anharmonic
LDA	+0.040	-0.088
BLYP	+0.044	-0.082
B3LYP	+0.112	+0.070
HF	+0.453	+0.708

method	$E_{PV}^{[1]}$	$E_{PV}^{[2]}$
LDA	+19.8	+5.2
BLYP	+19.4	+5.7
B3LYP	+6.1	+14.8
HF	-42.5	+58.1

* All numbers in Hz (all DC Hamiltonian).

Projection analysis

SCF expectation value is a sum of orbital contributions

$$E^{A}_{\rm PV} = \langle \Phi | \hat{H}^{A}_{\rm PV} | \Phi \rangle = \sum_{i} \langle \psi_{i} | \hat{H}^{A}_{\rm PV} | \psi_{i} \rangle$$

we can expand the molecular orbitals $|\psi_i\rangle$ in a set of fragment orbitals $|\phi_j\rangle$

$$|\psi_i\rangle = \sum_j |\phi_j\rangle \langle \phi_j |\psi_i\rangle + |\mathrm{pol}\rangle = \sum_j |\phi_j\rangle c_{ji} + |\mathrm{pol}\rangle$$

 c_{ji} can be determined from a system of linear equations

$$\langle \phi_k | \psi_i \rangle = \sum_j \langle \phi_k | \phi_j \rangle c_{ji}$$

$$E_{\rm PV}^A = \sum_{ijk} \langle \phi_j | \hat{H}_{\rm PV}^A | \phi_k \rangle c_{ji}^{\star} c_{ki} + \langle {\rm pol} \rangle$$

- we choose the fragment orbitals to be the occupied orbitals of the individual atoms
- we can distinguish intra- and interatomic contributions

Radovan Bast

Mathematical Methods for AIQC 26/50

Projection analysis: classic series H_2X_2

Projection analysis: reduced contribution in H_2Te_2

Radovan Bast

Mathematical Methods for AIQC 28/50

Projection analysis: individual contributions in H_2Te_2

Radovan Bast

Mathematical Methods for AIQC 29/50

Projection analysis

$$\boldsymbol{\psi} = \begin{bmatrix} \boldsymbol{\psi}^{\mathsf{L}\boldsymbol{\alpha}} \\ \boldsymbol{\psi}^{\mathsf{L}\boldsymbol{\beta}} \\ \boldsymbol{\psi}^{\mathsf{S}\boldsymbol{\alpha}} \\ \boldsymbol{\psi}^{\mathsf{S}\boldsymbol{\beta}} \end{bmatrix} = \begin{bmatrix} R^{\mathsf{L}}(r)\chi_{\kappa,m_{j}}(\boldsymbol{\theta},\boldsymbol{\phi}) \\ \mathrm{i}R^{\mathsf{S}}(r)\chi_{-\kappa,m_{j}}(\boldsymbol{\theta},\boldsymbol{\phi}) \end{bmatrix}$$

- $\bullet \ \, R^{\rm L}$ and $R^{\rm S}$ are the large and small radial functions
- χ_{κ,m_i} are the 2-component angular functions

$$\begin{split} \sum_{jk} \langle \phi_j^X | \gamma^5 \rho^X | \phi_k^X \rangle &= \mathsf{i} \langle R_j^{\mathsf{L};X} | \rho^X | R_k^{\mathsf{S};X} \rangle_r \langle \chi_{\kappa_j,m_j}^X | \chi_{-\kappa_k,-m_k}^X \rangle_{\theta,\phi} \\ &- \mathsf{i} \langle R_j^{\mathsf{S};X} | \rho^X | R_k^{\mathsf{L};X} \rangle_r \langle \chi_{-\kappa_j,m_j}^X | \chi_{\kappa_k,-m_k}^X \rangle_{\theta,\phi} \end{split}$$

Radovan Bast

Projection analysis: scaling

Radovan Bast

Mathematical Methods for AIQC | 31/50

Electron chirality density

can we visualize the contribution from one atom?

$$E^{A}_{\rm PV} = \frac{G_{\rm F}}{2\sqrt{2}} Q^{A}_{\rm w} \sum_{i} \langle \psi_{i} | \gamma^{5}_{i} \rho^{A}(\vec{r}_{i}) | \psi_{i} \rangle$$

contribution is a sum of weighted integrals

$$\begin{split} E^A_{\rm PV} &= \frac{G_{\rm F}}{2\sqrt{2}}Q^A_{\rm w}\sum_i \int {\rm d}\vec{r}\;\psi^\dagger_i(\vec{r})\gamma^5_i\psi_i(\vec{r})\rho^A(\vec{r}_i)\\ &= \frac{G_{\rm F}}{2\sqrt{2}}Q^A_{\rm w}\int {\rm d}\vec{r}\;\gamma^5(\vec{r})\rho^A(\vec{r}) \end{split}$$

 $\gamma^5(\vec{r})$ has been introduced in the NR framework by Hegstrom particularly simple in the relativistic framework (κ span L, λ span S)

$$\gamma^{5}(\vec{r}) = \sum_{\kappa\lambda} \left[\chi^{\dagger}_{\kappa}(\vec{r}) \chi_{\lambda}(\vec{r}) D_{\lambda\kappa} + \chi^{\dagger}_{\lambda}(\vec{r}) \chi_{\kappa}(\vec{r}) D_{\kappa\lambda} \right]$$

Radovan Bast

Electron chirality density

$$\begin{split} \gamma^5(\vec{r}) &= \sum_{\kappa\lambda} \left[\chi^{\dagger}_{\kappa}(\vec{r}) \chi_{\lambda}(\vec{r}) D_{\lambda\kappa} + \chi^{\dagger}_{\lambda}(\vec{r}) \chi_{\kappa}(\vec{r}) D_{\kappa\lambda} \right] \\ E^A_{\rm PV} &= \frac{G_{\rm F}}{2\sqrt{2}} Q^A_{\rm w} \int {\rm d}\vec{r} \; \gamma^5(\vec{r}) \rho^A(\vec{r}) \end{split}$$

approximation: point charge nucleus (difference typically 10%)

$$\begin{split} E^A_{\rm PV} &= \frac{G_{\rm F}}{2\sqrt{2}} Q^A_{\rm w} \int {\rm d}\vec{r} \; \gamma^5(\vec{r}) \delta^3(\vec{r}-\vec{R}_A) \\ &= \frac{G_{\rm F}}{2\sqrt{2}} Q^A_{\rm w} \gamma^5(\vec{R}_A) \end{split}$$

observations

- knowledge of $\gamma^5(\vec{R}_A)$ is enough for qualitative understanding
- atomic nature
- it must have positive and negative regions and nodal surfaces
- ${\ensuremath{\bullet}}$ if we understand derivatives of $\gamma^5(\vec{R}_A)$ we understand the PV vibrational shift

Radovan Bast

Mathematical Methods for AIQC 33/50

Electron chirality density in $\mathsf{H}_2\mathsf{Te}_2$

Radovan Bast

Mathematical Methods for AIQC | 34/50

Electron chirality density in $\mathsf{H}_2\mathsf{Te}_2$

Radovan Bast

Mathematical Methods for AIQC | 35/50

CHFCIBr electron chirality density isosurface

• CHFCIBr molecule from two angles

Radovan Bast

Mathematical Methods for AIQC | 36/50

CHFCIBr electron chirality density isosurface

 $\bullet\,$ first derivative with respect to C–F stretching normal coordinate

Radovan Bast

Mathematical Methods for AIQC | 37/50

CHFCIBr electron chirality density isosurface

• second derivative with respect to C-F stretching normal coordinate

Radovan Bast

Mathematical Methods for AIQC 38/50

$$\hat{H}_{\mathsf{PV}} = \sum_{A} \hat{H}_{\mathsf{PV}}^{A} \qquad E_{\mathsf{PV}} = \sum_{A} E_{\mathsf{PV}}^{A}$$
$$\hat{H} = \hat{H}_{0} + \sum_{A} f_{A} \hat{H}_{\mathsf{PV}}^{A}$$
$$= A \qquad \mathsf{d}E \mid \qquad = f_{A} \qquad = f_{A}$$

$$E_{\mathsf{PV}}^{A} = \frac{\mathsf{d}E}{\mathsf{d}f_{A}} \Big|_{\{\vec{f}_{K}\}=0} = E^{f_{A}} = E^{f}$$
$$\vec{g}_{B} = \vec{R}_{B} - \vec{R}_{B,0}$$

$$\frac{\mathrm{d}}{\mathrm{d}g_{B,i}} E^A_{\mathsf{PV}} = \frac{\mathrm{d}^2 E}{\mathrm{d}g_{B,i} \mathrm{d}f_A} \bigg|_{\{\vec{f}_K\}=0,\{\vec{g}_K\}=0} = E^{g_{B,i}f_A} = E^{gf}$$

Radovan Bast

$$\begin{split} E &= v_{\mathsf{n}-\mathsf{n}} + v_{\mathsf{n}-\mathsf{ext}} + h_{\kappa\lambda} D_{\lambda\kappa} + V_{\kappa\lambda} D_{\lambda\kappa} + \frac{1}{2} G_{\kappa\lambda}(\mathbf{D}) D_{\lambda\kappa} \\ & F_{\kappa\lambda} = h_{\kappa\lambda} + V_{\kappa\lambda} + G_{\kappa\lambda}(\mathbf{D}) \\ & E^f = V^f_{\kappa\lambda} D_{\lambda\kappa} = \langle \chi_{\kappa} | \hat{H}^A_{\mathsf{PV}} | \chi_{\lambda} \rangle D_{\lambda\kappa} \\ & E^{gf} = V^{gf}_{\kappa\lambda} D_{\lambda\kappa} + h^g_{\kappa\lambda} D^f_{\lambda\kappa} + G^g_{\kappa\lambda}(\mathbf{D}) D^f_{\lambda\kappa} - S^g_{\kappa\lambda} W^f_{\lambda\kappa} \\ & W^f_{\lambda\kappa} = (\mathbf{DFD})^f_{\lambda\kappa} \\ & (\mathbf{DFD})^f = \mathbf{D}^f \mathbf{FD} + \mathbf{DF}^f \mathbf{D} + \mathbf{DFD}^f \end{split}$$

Radovan Bast

Example: CHFCIBr molecule

$$E^{gf} = \begin{bmatrix} E^{C_x,C} & E^{C_x,H} & E^{C_x,F} & E^{C_x,Cl} & E^{C_x,Br} \\ E^{C_y,C} & E^{C_y,H} & E^{C_y,F} & E^{C_y,Cl} & E^{C_y,Br} \\ E^{C_z,C} & E^{C_z,H} & E^{C_z,F} & E^{C_z,Cl} & E^{C_z,Br} \\ E^{H_x,C} & E^{H_x,H} & E^{H_x,F} & E^{H_x,Cl} & E^{H_x,Br} \\ E^{H_y,C} & E^{H_y,H} & E^{H_y,F} & E^{H_y,Cl} & E^{H_y,Br} \\ E^{H_z,C} & E^{F_x,H} & E^{F_z,F} & E^{F_z,Cl} & E^{F_z,Br} \\ E^{F_x,C} & E^{F_y,H} & E^{F_y,F} & E^{F_y,Cl} & E^{F_y,Br} \\ E^{F_z,C} & E^{F_z,H} & E^{F_z,F} & E^{F_z,Cl} & E^{F_z,Br} \\ E^{Cl_x,C} & E^{Cl_x,H} & E^{Cl_x,F} & E^{Cl_x,Cl} & E^{Cl_x,Br} \\ E^{Cl_y,C} & E^{Cl_y,H} & E^{Cl_y,F} & E^{Cl_y,Cl} & E^{Cl_y,Br} \\ E^{Br_x,C} & E^{Br_x,H} & E^{Br_x,F} & E^{Br_x,Cl} & E^{Br_x,Br} \\ E^{Br_y,C} & E^{Br_y,H} & E^{Br_y,F} & E^{Br_y,Cl} & E^{Br_y,Br} \\ E^{Br_z,C} & E^{Br_z,H} & E^{Br_z,F} & E^{Br_z,Cl} & E^{Br_y,Br} \\ E^{Br_z,C} & E^{Br_z,H} & E^{Br_z,F} & E^{Br_z,Cl} & E^{Br_z,Br} \\ \end{bmatrix}$$

Radovan Bast

Mathematical Methods for AIQC | 42/50

CHFCIBr: $E_{\rm PV}^{\rm Br}$ gradient

CHFCIBr: $E_{\rm PV}^{\rm CI}$ gradient

CHCIBrReO3

$\mathsf{CHClBrReO}_3: \ \mathsf{PV} \ \mathsf{energy} \ \mathsf{gradient}$

CHClBrReO₃: PV gradient and vibrational mode 13

CHClBrReO₃: PV gradient and vibrational mode 15

CHClBrReO₃: PV gradient and vibrational mode 14

Conclusions and perspectives

- PV is highly challenging for experiment and theory
- Re complexes are promising candidates
- we see large sensitivity on molecular structure elements
- we see large sensitivity on choice of method (functional)
- we need to invest in higher-level methods and push the computational machinery to the limit
- analysis tools will help us to develop models for the PV vibrational shift
- PV gradient and Hessian (to come) may point us to the right way

