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1 Introduction
In 1929 Dirac wrote famously [1]

The fundamental laws necessary for the mathematical treatment of large parts of
physics and the whole of chemistry are thus fully known, and the difficulty lies only in
the fact that application of these laws leads to equations that are too complex to be
solved.

It is worth reminding ourselves of the context of this remark. In the text immediately prior to
the famous quotation, Dirac had identified the exact fitting in of quantum mechanics with rela-
tivity ideas as the remaining imperfection in fundamental physical theory. For the consideration
of atomic and molecular structure and ordinary chemical reactions he thought it would usually
be sufficiently accurate to neglect the relativity variation of mass with velocity, and assume only
Coulomb forces between the various electrons and atomic nuclei. A molecule considered as a quan-
tum mechanical collection of electrons and nuclei is customarily described by the usual Coulomb
Hamiltonian H acting on an Euclidean configuration space defined by the particle coordinates with

Schrodinger equation
H® = Fd. (1)

More explicitly, for a system of N, electrons and NV,, atomic nuclei we have
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Na+3Ne where R denotes the set of real numbers. The interparticle

The configuration space is R3
distances are: 7y = [xg — x|, iy’ = |[x7 —xg|, and 7§ = [x{ —x§| in terms of particle coordinates
{x{,xy} in a laboratory frame. Here and elsewhere we use (7, j) and (g, h) as indices for electrons
and nuclei respectively. The primes on the summation symbols mean that terms with identical
indices (‘self-interactions’) are to be omitted.

The Hamiltonian is only Galillei and not Lorentz invariant but the Coulomb form of the
interaction is legitimate in the absence of external electromagnetic fields.

In computational quantum chemistry it is usual simply to assert that “making the Born-
Oppenheimer (BO) approximation” the Hamiltonian of interest for electronic structure calcula-

tions is
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The nuclear positions are treated as constant vectors a, so that the Coulomb energy of the
nuclei, Vepp, is a pure number and the r;4, though dependent on the a,, are functions of the
electronic variables only. Thus (3) arises from (2) by allowing the nuclear masses to increase



without limit and then choosing particular values for the nuclear position vectors. Of course
nuclear motion has to be restored if the description is to account for vibrations and rotations,
chemical reactions and so on. The trial wavefunctions are thus of product form, one part arising
from the solution of the electronic problem with the nuclear variables as parameters and the other
part as a function of the nuclear variables. The eigenvalues found by a calculation at a particular
value of the nuclear variables are called electronic energies and when added to the nuclear repulsion
calculated classically are said to be a point on a potential energy surface (PES). The PES is defined
only for distinct nuclear geometries. It is independent of uniform translations and rigid rotations
of the nuclear positions.

The theory conventionally invoked to tie these two Hamiltonians together is either that of Born
and Oppenheimer [2], or of Born as presented in the book by Born and Huang [3]. It is generally
assumed that the latter theory includes the former as a special case although there does not seem
to be an explicit demonstration of this in the literature. It is also generally assumed that if the
Born and Huang approach were carried through fully, then an exact result could be obtained. The
form (3) will be referred to as the clamped nuclei Hamiltonian.

There can be no doubt that computational work undertaken starting with (3) has proved ex-
tremely successful and a computation with it is often regarded as a sort of “instrument” used
to reveal new chemical information. There can be no doubt about its utility and it can thus
be regarded as a self-justifying scheme. However the scheme itself is also regarded as tying the
traditional theories of chemistry, involving bonds and molecular structures and the like, to quan-
tum mechanics, and hence “justifying” the tradition. The central element in this fitting is the
identification of the nuclei, even when quantum mechanically, they are indistinguishable particles.
Without identifying nuclei, molecules cannot be identified and hence no relevant theory could be
developed. If one is going to start with the full Hamiltonian and treat the nuclei properly, what-
ever is done will not attract any interest from chemists unless it can yield the kind of results that
can be considered as “just like” those obtained from the the clamped nuclei Hamiltonian (3). It
is appropriate then to consider the nature of the full Hamiltonian rather more.

2 The nature of the full Hamiltonian.

As a start it is useful to recapitulate some mathematical results relevant to the present discussion.
It would perhaps prove tedious to reference the origins of such results but, if required, a relevant
selection placed in an appropriate context can be found in Sutcliffe [4].

The full Hamiltonian (2) is not only Hermitian but self-adjoint too. Providing the continuous
spectrum arising from uniform translational motion is removed, it has a spectrum which can con-
sist of two parts, a discrete part and an essential part. It need not have a discrete part but if it
has, it ends where the essential spectrum begins which is at the energy of the lowest two-body
decomposition possible. The discrete states correspond to bound states and have square-integrable
wavefunctions. It is however possible that members of the pure point spectrum (which includes the
discrete spectrum) occur in the essential spectrum, which otherwise consists of entirely continuous
functions. To exemplify this, the discrete spectrum of the hydrogen atom ends at the first ionisa-
tion energy and the essential spectrum consists of all the scattered electron states. The discrete
spectrum of the helium atom again ends at the first ionisation energy but the essential spectrum
here contains not only of the scattered electron states but also pure point states (resonances) from
the discrete spectrum of helium-plus.

It has not yet proved possible to say anything particularly helpful about the extent of the dis-
crete spectrum of the Hamiltonian in the multi-nuclear case, but the Hamiltonian corresponding
to a neutral or positively charged atom, has a countably infinite number of discrete states. In the
negatively charged atom case, at most a finite number of discrete states are possible. Unsurpris-
ingly, this result carries over to the clamped nuclei Hamiltonian but the nature of the discrete
spectrum here, depends on the nuclear geometry. The essential spectrum again begins at the first
ionisation energy, but that depends on the nuclear geometry too.

The bound state eigenfunctions of the full Hamiltonian though continuous at, are not differ-
entiable at points corresponding to particle collisions. A discussion of the consequences of this for
the consideration of nuclear motion can be found in Jecko et al[5].

The full Hamiltonian (2) is invariant under all uniform translations and rotation-reflections
and under any permutation of identical particles. Removing the translation invariance leaves the
discrete states, if any, as providing a basis for irreducible representations of the orthogonal group
and of the symmetric groups of the sets of identical particles. The actual representations possible
of the symmetric groups are restricted by the Pauli principle depending on whether the particles
are fermions or bosons.

As it stands (2) has no discrete spectrum and the translational motion must be dealt with to
allow the discrete spectrum to emerge. A full discussion of these and related matters can be found



in [6] but a brief unsourced summary will be made here. Since the translation group is Abelian,
it is perfectly possible to transform the laboratory coordinates to a set on N — 1 translationally
invariant coordinates and a centre-of-mass coordinate. This transformation is a linear one and the
resulting space is a coordinate space. If it is wished to retain the distinction between electronic
and nuclear coordinates coupled in the Hamiltonian only by a potential term then the simplest
choice is to make the electronic origin the centre-of-nuclear mass leaving one with a Hamiltonian
for N, electrons and N,, — 1 nuclear pseudo-particles. A nuclear permutation now involves a linear
transformation of these coordinates. If one wants to keep the original coordinates, the centre-of-
mass coordinate can be back-transformed and the resulting form subtracted from (2) to give a
translationally invariant form. If one doesn’t care about having a square-integrable wave function
then one can use coherent state functions as trial-functions for solutions of the full problem. This
approach is used by George Hagedorn [7] in his consideration of the BO approximation but it
seems unlikely to commend itself to Computational Chemists.

To deal with the the invariance under the operations of the orthogonal group O(3) one can
transform the translationally invariant coordinates to a set of orthogonally invariant internal coor-
dinates and three angles. Such a transformation does not yield a coordinate space but a manifold
which is coordinatisable only in regions in which the Jacobian for the transformation does not van-
ish. No one choice of such coordinates can cover the whole space To keep the electronic coordinates
in their usual form, the transformation must be specified in terms that involve the N,, — 1 nuclear
variables to yield 3N,, — 6 internal coordinates g and N, Cartesian electronic variables z;. This is
impossible with two nuclei and gives a very special result for three nuclei and is quite special for
four nuclei. In general a nuclear permutation transforms the internal coordinates among them-
selves, though not necessarily linearly but transforms the angular coordinates into a combination
of themselves and the internal coordinates. The transformation also couples the electronic angular
momentum to to the nuclear motion spoiling the multiplicative form of the operator connection.

The angular eigenfunctions can be explicitly constructed and are labelled by four integers
J, M,k and r. J labels the irreducible representation of SO(3) while the 2J + 1 values of M
label the degenerate members of the representation. The 2.J + 1 values of k label non-degenerate
eigenstates of the z component of the internal angular momentum. r takes two values and labels
the parity of the state. It should be noted that the requirements of the Pauli principle upon the
nuclear permutations may conflict with the description of a particular rotational state and so some
states may be permutationally impossible. They may also force a particular parity on a state.

It is obvious that, strictly speaking, if one wants to get to a PES one should consider it as
arising from the Hamiltonian after dealing with translation and rotational motion. To obtain an
effective local nuclear motion Hamiltonian, depending only on the q, can be obtained by letting
the Hamiltonian operator operate on functions of product form and multiplying the resulting
expression from the left by by ¢,/ (q,z) and integrating over the z. Doing this yields an equation
with coupling between different electronic states, labelled by p. The effective internal motion
operator is then:
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The definitions of the terms can be found in [6] but it is sufficient here to note that K4 represents
the vibrational kinetic energy operator, F, the electronic energy, V" the nuclear repulsion operator
and the terms b and by are elements of a matrix closely related to the inverse of the instantaneous
inertia operator matrix. It should also be noted that the v terms arise from the interaction of the
rotational with the electronic motion and tend to couple electronic states, even those diagonal in
k.

If it were the case that a single electronic state dominated in the energy range of interest and
that within that state for a given J only a single value of £ dominated then, to a first approximation
the Hamiltonian

(Ka+ Ep(q) +V™(a))



would determine the vibrational motion and, since the b and by values are simply multipliers, the
Hamiltonian 12
S ((J(T+1) - k?)b + bok?)

would determine the rotational motion if any contribution from A¢ can be ignored. This separation
forms the basis for the standard description of vibration-rotation motion in which the vibrational
levels are treated as primary levels having rotational sub-levels. In the standard description of an
oblate symmetric-top, for example, the expression becomes

he(BJ(J + 1) + (C — B)k?)
where B and C are the rotational constants expressed in cm™!.

It is argued in [8], however, that it would be logical to regard this second term as a modifi-
cation to the potential in the context of solving the full rotation-vibration problem for there is
no particular indication that the second term is separable. Indeed this is exactly what is done in
the most accurate clamped-nuclei calculations on the Hydrogen molecule. In [9] it is shown that
for the hydrogen molecule dissociating into two hydrogen atoms in their ground states, the J =0
state supports 14 vibrational states, the state J = 15, supports 10 and for J = 31, only 1. In fact
there are just 301 states that can be associated with the lowest electronic state of the hydrogen
molecule. So it is clear that here the number of vibrational states possible is strongly associated
with the rotational state. Furthermore the energy levels are inter-twined. Thus, for example, in
the ground vibrational state, the rotational state with J = 9 has a higher energy than the J =0
state has in the second vibrational state. This approach to the potential has also been used in
some calculations on Hj. In the case of J = 0 in the chosen formulation it is estimated that
there are 1280 vibrational states below dissociation [10]. It seems that 46 is the highest value of.J
for which at least one vibrational state exists [11] but these figures should be taken as indicative
rather than definitive.

The reason why one is interested in a solution of the full problem in this tricky form is because
it is the form in which molecular vibration-rotation spectra are discussed in work arising from the
clamped nuclei approximation. For a given rotational state J it is the eigenstates labelled by the
integer k that are relevant. Indeed, their very designation as symmetric-top eigenfunctions makes
their relevance clear.

A general back-transformation from these coordinates to the translationally invariant set is
not possible and only a local, usually non-linear, transformation can be made, so it is not possible
to re-write the fully invariant Hamiltonian in terms of the translationally invariant coordinate
set and hence in terms of the initial set in any general way. So either one faces up to dealing
with a manifold and not a coordinate space or one tries to find another way of moving directly
from the translationally invariant space. Of course the orthogonal symmetry can be considered
in another way by the construction angular momentum eigenfunctions as trial functions in the
translationally invariant space and trying to sort from among functions with a given J a set that
can be associated with the k£ values and parity states anticipated in the tricky approach. The J
eigenfunctions could be constructed in a way analogous to way used for atoms given that individual
angular momentum labels could be provided for functions of the individual translationally invariant
nuclear coordinates. An approach of this kind was set out by Varga [12] et al..

Of course if exact discrete solutions of (2) were known then all the symmetry requirements
would be automatically enforced. The only trouble would be selecting the functions which satisfy
the Pauli principle from among the set. But much more usefully it may be observed that if
results can be obtained from full Hamiltonian using any decently defined square-integrable set of
functions, then these results will certainly remain true for functions of the proper symmetry if the
functions of the proper symmetry can be expressed in terms of the chosen set.

If it is hoped to make a connection between the results obtained using the full Hamiltonian
and those obtained using the clamped nuclei Hamiltonian it is necessary to consider the extent to
which such solutions might be written as a product of an electronic and a nuclear part.

3 The wave function in product form

The earliest attempt to write an exact wavefunction of the Coulomb Hamiltonian for a neutral
system of electrons and nuclei in a factorised form was made by Hunter[13]. He he worked directly
in terms of the laboratory coordinates and simply assumed that a discrete state solution existed.
For the purpose of an exposition of his argument the electronic variables will be denoted r and
the nuclear ones R. His analysis was made in terms of conditional and marginal probability
amplitudes; the wavefunction ®(r, R), assumed normalised, is written in the product form

o(r,R) = f(R)¢(r,R) (5)



with the nuclear function f(R) defined as a marginal by means of

If(R)|? = /@(r, R)*®(r,R)dr. (6)

This fixes f(R) to within a phase factor,
eiG(R) (7)

where §(R) is a real function of the nuclear coordinates. In the absence of a criterion to choose
it, Hunter suggested taking simply

fR) = —[fR)[or f(R) =[f(R)]. (8)
The associated function, ¢, is then defined to be the quotient

_ ®(r,R)

and it satisfies the normalization condition
[ ot Ry o Ryar =1

for all R. Obviously this construction would be problematic if either f(R) has zeroes for finite R
or ®(r,R)/f(R) is too irregular at infinity. The construction, if applicable, is available for any
wavefunction ®; and so the nuclear functions {f(R);} are required generally to be quite different
from the usual approximate nuclear wavefunctions for vibrationally excited states which do have
nodes [14]. Equally, it is evident that every wavefunction ®; has its own distinct electronic factor,
¢;; this is to be contrasted with the clamped nuclei description where whole groups of approximate
eigenfunctions {®,} share one electronic state ¢ which supports a vibration-rotation manifold of
states.

Hunter goes on to develop a set of equations that are claimed capable of yielding the exact
solution in product form and this line has been followed by Gross [15] and by Cederbaum [16].

4 The beginning of full wavefunction trials.

Trials that begin from the clamped nuclei Hamiltonian extended along the Born-Huang lines will
not be considered further here. It should be remembered too, that there is a completely different
way of developing the clamped-nuclei results, the generator coordinate approach that began in
nuclear structure theory and was developed in a molecular structure context as reviewed in [17]
but does not seem to have been used yet on other than diatomic molecules. Some work has also
been done of the construction of permutationally invariant PES summarised in [18].

Full wavefunction work done in the last twenty or so years will not be explicitly mentioned
for I regard that as “work in progress”. So my “history” will stop in the middle nineties. It will
also exclude work on diatomics. However it seems appropriate to mention some reviews that cover
some aspects of the work unmentioned here. One by Woolley and me [19], one by Nakai[20] and
one by the Adamowicz group [21].

The first moving nuclei calculations were made by Thomas [22] — [27] and by Thomas and
Joy [28] beginning in 1969. Here Slater functions were used in a one-centre expansion approach.
I cannot speak sufficiently highly of this endeavour. I do wish that it was more widely known and
regret very much that even though I read it at the time of publication I failed to grasp its full
significance. The first paper in the series is slightly defective for it takes the full Hamiltonian in
a form where the nitrogen nucleus is fixed as just the same as the laboratory fixed Hamiltonian
with the nitrogen nucleus kinetic energy term just dropped. But that isn’t a big error. This is
how the first paper begins.

Schrédinger’s time independent equation was solved approximately using the varia-
tional theorem for methane, ammonia, water, and hydrogen fluoride with the kinetic
energy operators of the protons included in the Hamiltonian and the electrons and
protons described by Slater orbitals. One minimal basis confirmation was used for the
electrons and twelve, twenty, six, and one configurations were used for methane, am-
monia, water, and hydrogen fluoride respectively. The kinetic energies of the protons
were found to be about three per cent of the bond energies. The calculations yielded
protonic spectra similar to the electronic spectra.

I admire it because it seems to me to lay out exactly the way one ought to proceed in these
matters. Their conclusion was:



This calculation gives for the structure of the ammonia molecule one which is radically
different from the usual one. The molecule appears as an inner ellipsoid of electronic
charge surrounded by a belt of protonic charge. A spectrum of protonic states emerges
similar to the electronic states. The vibrational and rotational states do not
appear....

By 1970 with the aid of Hubert Joy, Thomas had got things sorted out and was using a
Hamiltonian with the centre-of-mass motion separated out. The results were not too different
from that obtained earlier but what is striking about the work is the conclusion that they made:

If the result of the calculations [here] described are correct it will be necessary for
quantum chemistry to modify its views on molecular structure.

What they had noticed was that they still couldn’t get vibrations and rotations and neither
was a dipole moment possible.

The results of this pioneering work on NH3 and CH,4 were insufficiently conclusive to prove
encouraging to a wider community of workers. Nevertheless the approach was again taken up by
Pettitt in 1986 [29] developing a more flexible basis set and a self-consistent field approach. They
say at the end of their exposition:

From the work of Thomas it is known that minimisation of the energies of HF, H5O,
NHjs, and CHy with respect to the parameters in minimal basis sets of Slater-type
orbitals for both electrons and protons gives physically reasonable states with the pro-
tons localised near the bond lengths of these molecules. The picture of XHy outlined
above, in terms of mutually consistent electron and proton states realised by orbitals
which are functions of their translationally invariant coordinates, shows formally how
to pursue this description to the Hartree-Fock limit for both particles. It might be
necessary to go beyond this limit using configuration mixing for both particles, or ex-
plicitly correlated proton wavefunctions, to obtain an accuracy comparable to other
ab initio methods, in which case the method can be expanded to include the appropri-
ate trial wavefunctions. Aspects of molecular geometry usually summarized by
bond lengths and bond angles most directly arise in this method as symme-
try properties of multi-particle wavefunctions and their associated reduced
density functions. The formalism has been presented here for single-determinantal
proton wavefunctions, but the basic variational approach can be extended to multi-
determinantal forms and analogous symmetric wavefunctions for deuterons (spin =
1 bosons). At present, we are developing computer codes to determine the level of
accuracy of electron-proton SCF wavefunctions for first- and second-row hydrides.

Some calculations were presented in the following year [30] but in these the electronic motion
was somewhat modelled to avoid some integral evaluation, but I think that nothing essential was
thereby missed. These are their conclusions. The authors characterised the results obtained in
this last paper as :

a fair, but not quantitatively satisfactory, description of the radial motion of (the)
protons.

Meanwhile development of the use of Gaussian orbitals in electronic structure calculations
encouraged other approaches and in 1973 Almstrém [31] proposed a computational scheme for
moving nuclei based on Gaussian functions. In a later paper [32] he showed how calculations
might be performed on a system with total angular momentum 0 and positive parity; he illustrated
the technique on HDT and obtained pretty accurate values for the total energy. An interesting
aspect of his work is his attempt to develop coordinates that permuted into one another under
permutations of identical particles. Such behaviour is vital if an orbital description is to be offered
as a trial function. He developed a set of “non-adiabatic” Gaussian orbitals based upon the
nuclear positions of the lowest energy obtained in a clamped-nuclei calculation. He thought that
his approach might be possible for systems of up to ten particles but I can discover no more work
along his lines.

In 1976 Guy Woolley [33] published an article on the relationship between quantum theory and
molecular structure which led to a sometimes heated debate on whether or not molecular structure
could be accommodated by molecular wavefunctions that allowed the nuclei to move. This is
another case in which I failed at the time to grasp the full significance of the work, recognising
only its relevance to the translational motion. The debate encouraged Essen [34] to look again at
the role that the ratio of the electronic to nuclear mass might play in considering such matters;
interestingly enough, he came to the conclusion that it was the form of the Coulomb interaction



and not the smallness of the electron to nuclear mass ratio that made plausible treating the nuclei
as fixed. It also stimulated work by Monkhorst who, in 1987, proposed treating the moving nuclei
problem by an extension of the coupled-cluster method [35] using explicitly correlated Gaussian
functions, but no actual calculations appear to have been made in this way. Almost twenty years
later, two papers with Frank Harris, appeared outlining a formal procedure for the calculation
of the required integrals but again, nothing seems to have been done using it. I should like to
recommend, most strongly, that these two papers be read by anyone interested in the full problem.
They express in a vigorous and clear way precisely what the problems are, both practical and
theoretical, in attempting trial solutions of the full problem. They also provide intriguing (but
distinctly different) accounts of how the results of clamped-nuclei calculations might be related to
calculations using the full Hamiltonian.

The next development along these lines is the publication in 1991 by Kozlowski and Adamowicz
[36] of an approach to the moving nuclei problem using correlated Gaussian geminal functions
somewhat like those chosen by Almstrom, although the inspiration of this work originated in
contemporary ideas about correlated Gaussians in electronic structure calculations. Slightly later
Nakai and his group [37] introduced an orbital approach to the problem in which molecular orbitals
were constructed both for the nuclei and the electrons.

It is the “orbital” approach, correlated or not which, it seems to me underlies the current full
Hamiltonian work and is an appropriate point for me to end my “history”.

5 Some thoughts.

I have to admit that I admire the work done by Thomas and by Pettitt because it seems to me
that they tackle the problem exactly as one would tackle it if one knew about quantum mechanics
and atoms but knew nothing about “molecular structure”. It is an essentially one-centre approach
and it was a natural one in the case of their examples where there was a unique heavy nucleus,
and the chosen orbital basis behaved in the usual way under permutation of identical particle
variables. For any other choice of origin if a orbital basis of a natural kind is to be used then
suitable variables must be chosen in terms of the given translationally invariant set.

The point that I wish to make is that their results are not biased by an anterior view of what
a molecule ought to be. I am anxious that whatever we do with the full wavefunction calculations
we don’t slip a covert molecular view into our methods and hence, bias our results. If we are to
join full wavefunction results to clamped nuclei results, we must do so without cheating.

I should however like to end on a personal note. I think that the early death of Pierre Claverie
was a great loss for the field. He surely would have been a huge influence on the development of
full solutions.

At a completely different level I think the death late last year of Jan Boeyens is also a loss for
the field. It is easy to make fun of his views but he did press hard on ordinary chemists to think
about the way they thought. The last of his books (“Electronic Structure and Number Theory”
no less!) ends with:

It is a myth that chemistry derives from quantum theory. More fundamental than both
is the periodic table that reduces the properties of matter to a number basis, which is
revealed only peripherally in the differential equations of quantum theory.

Really? Perhaps. But it makes you think.
And thinking myself enables me to express my grateful thanks to Guy Woolley and to Jonathan
Tennyson for their encouragement over the last thirty years or so.
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