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Introduction

This talk is based on the following works :

→ Th. Jecko, B.T. Sutcliffe, R.G. Woolley. On factorization of molecular wavefunctions.

J. Phys. A : Math. Theor. 48, (2015), 445201 (20pp). Available on :

“ http : //arxiv.org/abs/1506.00103 ′′ .

→ Th. Jecko. On the mathematical treatment of the Born-Oppenheimer approximation.

J. Math. Phys. 55, 053504 (2014). Available on :

“ http : //arxiv.org/abs/1303.5833 ′′ .



Outline

→ Molecular Hamiltonian.

→ Review of the Born-Oppenheimer approximation.

→ Factorisation of bound states.

→ Discussion and open questions.



Molecular Hamiltonian

We consider a molecular Hamiltonien without the mass centre motion :

H = −∇TR ·M · ∇R + Hel(R) ,

where R denotes the nuclear variables, Hel(R) is the electronic hamiltonian at nuclear

positions R, and M is a positive matrix containing the (inverse) nuclear masses. The

interaction between particles is given by the Coulomb potential.

We are interested in bound states for H, i.e. square integrable functions Ψ satisfying

HΨ = EΨ for some real E. Note that the usual derivatives of Ψ may be ill-defined.



Born-Oppenheimer approximation

We present here the mathematical point of view of the Born-Oppenheimer approximation.

For (almost) all R, Hel(R) is self-adjoint operator. Therefore it has a spectral resolution

that “diagonalizes’ it.

In particular, one can decompose appropriate square integrable functions f of the electronic

variables in this spectral resolution :

f =
N∑
j=1

〈gj(r;R) , f(r)〉r gj(·, R) +
∫
λ≥TR

dSR(λ)f ,

where the gj(·, R) are eigenfunctions of Hel(R) with energies λj(R). This can be

applied to f = Ψ(·, R).



An eigenfunction Ψ of H with eigenvalue E < T := infR TR should be well approxi-

mated by

Ψa(·, R) = Π(R)Ψ(·, R) =
∑
j∈J
〈gj(r;R) , f(r)〉r gj(·, R) ,

where J is the set of indices j such that λj(R) ≤ E, for some R. For each R, Π(R) is

a projection. Denoting Π(R)⊥ = 1−Π(R),

H = ΠHΠ + Π⊥HΠ + ΠHΠ⊥ + Π⊥HΠ⊥ .

It turns out that the operator ΠHΠ is a good approximation of H to compute E and Ψ.

That is the sense of the validity of the Born-Oppenheimer approximation in mathematical

Physics. In Chemistry and Physics, the Born-Oppenheimer approximation is said valid if

the diagonal part of ΠHΠ is a good approximation of H for the chosen purpose.



Factorisation

Let us now investigate the factorisation which has recently aroused interest.

Starting from a molecular bound state Ψ, we define for (almost) all R,

χ(R) = eiS(R)
(∫
|Ψ(r;R)|2 dr

)1/2
and ϕ(·;R) = χ(R)−1Ψ(·;R) ,

for some arbitrary real function S. The function χ is interpreted as a nuclear wave function

and, for all R, ∫
|ϕ(r;R)|2 dr = 1 .

It was claimed that the factorisation Ψ = χϕ ressembles to the Born-Oppenheimer

approximation.



The equation HΨ = EΨ is formaly equivalent to the following nonlinear system of

equations for the factors :(
H − χ−1(∇Rχ)T ·M · ∇R − Eel

)
ϕ = 0 ,

Eel = E − χ−1
(
∇TR ·M · ∇R

)
χ ,

Eel‖ϕ‖2r =
〈
ϕ ,
(
H − χ−1(∇Rχ)T ·M · ∇R

)
ϕ
〉
r
.

Note that one has to care about the zeros of the unknown function χ.



Discussion

→ Link between the factorisation and the Born-Oppenheimer approximation ?

→ Zeros of χ.

→ Nature of the non linear system for the factors.

→ Usefulness of the non linear system ?



Conclusion

For the moment,

→ the factorisation and the Born-Oppenheimer approximation seem to be different in

their spirit ;

→ the non linear system seems to be harder to solve than the Schrödinger equation.



Thank you for your attention !


