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Multi-sorted quantum systems 

•  Quantum Chemistry: 

 
•     Multi-sorted Quantum Systems: 
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Multi-sorted quantum systems 

me ~ mp Type I: 
   positronic chemistry, muonized atoms and molecules    

me < <  mp Type II: 
“Chemically” non-adiabatic molecular systems     

e: electrons      p: positron/muon/etc.     Np= 1 

e: electrons       
p: quantum nuclei           Np= 1 
 

e p n 

quantum classical 

Ψ re | R( )→Ψ re,Rp | R( )



•  Mean-field (HF) wavefunction: 
 
 
        HF energy: 
 
•  Configuration interaction (CI) / MCSCF 

 
 
        CI/MCSCF energy:    
     
•  Perturbation theory (MP2) 
        Use 2nd-order perturbation theory to calculate  
         electron-electron and electron-proton corrections 
 

 
 
 

“Imitating” Quantum Chemistry: 
mean-field based approaches 
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Testing electron-positron 
wavefunctions 

•  Positron binding energies 
              - no binding predicted for most systems: e.g., Li, Be, Na, Mg atoms, 
                 LiH molecule etc.  
               - accounting for the Ps dissociation channel is problematic   

•  Positron annihilation rate 
              - direct measure of quality of e/e+ wavefunctions 
 
               -    

•  Good reference points: 
              - experimental: e+ binding energies and annihilation rates 
               - computational: high accuracy results for small few-electron systems 
                                                                                   (QMC,SVM, SVM+ECG,,etc.)   
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Bound Positrons – Annihilation Rate 
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6s 6s1p 6s2p1d 6s3p1d 
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0.3723 0.6304 0.8662 0.8993 
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PsH Annihilation Rate 



Dynamical correlation 
 
•  Electron-electron dynamical correlation:       
        - defined as difference between exact and mean-field answers 
                
                  E.g. for the energy:  
 
        - mathematically is (mostly) due to deviation of         from       when   
 
        -  typically is ‘icing on the cake’:  e-e Coulomb interaction is repulsive… 
 
•  Electron-proton correlation is the cake! 
             - qualitatively important:  e-p Coulomb interaction is attractive 

Ecorr = Ψexact Ĥ Ψexact − ΨHF Ĥ ΨHF

Ψexact ΨHF | ri
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•  Gaussian-type geminals for electron-positron correlation 
•  bk and γk are constants pre-determined from models 
•  Variational method: minimize total energy wrt molecular 
   orbital coefficients → Modified Hartree-Fock equations, 
   solve iteratively to self-consistency 

g ri
e ,r j

p( ) = bk exp −γ k ri
e − r j

p 2"
#$

%
&'k=1

Ngem

∑Gaussian-type geminals: 

Explicitly correlated wavefunctions 
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Method	
   E	
   λ2γ(ns-1)	
  

HF	
   -0.664337	
   0.3189	
  

XCHF-1G	
   -0.693216	
   0.6883	
  

XCHF-2G	
   -0.705863	
   1.1402	
  

XCHF-3G	
   -0.712496	
   2.0122	
  

XCHF-4G*	
   0.716097	
   2.0443	
  

FCI	
   -0.758965	
   0.8993	
  

SVM	
   -0.789198	
   2.4714	
  

PsH  Annihilation Rate from NEO XCHF 

 Basis sets: 
          HF. XCHF:  6s 
          FCI:         6s2p1d 
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Two-Photon Annihilation Rates 

•  HF very inaccurate 
•  XCHF better but still inaccurate 
•  RXCHF-ne/ae perform similarly and agree well with highly  
   accurate ECG/SVM results 
•  Electronic and positronic densities are also in decent agreement 
•  RXCHF is 235 (25) times faster than XCHF for e+Li (LiPs) 

aMitroy, Phys. Rev. A 70, 024502 (2004). 
bRyzhikh, Mitroy, Varga, J. Phys. B 31, 3965 (1998). 

cStrasburger, J. Chem. Phys. 111, 10555 (1999). 

e+Li LiPs e+LiH 
NEO-HF 3.3556×10-4 0.0512 0.03 
 XCHF 1.7361 0.566 0.62 

RXCHF-ne 1.6759 1.940 1.08 
RXCHF-ae 1.6657 1.940 1.11 
SVM/ECG 1.7512a 2.107b 1.26c 

Units: ns-1 



Conclusions: 
Electron-positron wavefunctions 

 
•  No usable method for computing accurate wavefunctions is available:       
        - highly accurate methods of ECG+SVM type are not practical for systems with 
more than 5-10 electrons. ((NEO-XCHF/RXCHF is perhaps in the same class)) 
        - methods easily applied to larger positronic molecules (HF, MP2, CI) are utterly 
unreliable even for systems with 3 electrons or less. 
        - trivial example: experimentally, e+ binds to propane. No known theoretical 
method can predict this binding… 
             
•   The field is wide open, and in need of new ideas…  

•   PET applications  



Multi-sorted quantum systems: 
electron-nuclear wavefunctions 

•  Solution of mixed nuclear-electronic time-independent Schrödinger 
equation with molecular orbital methods 

•  Treat specified nuclei quantum mechanically on same level as electrons 
        - treat only key H nuclei QM 
        - retain at least two classical nuclei 
 
•  Easy access to ‘exact’ answer is available for benchmarking electron-

nuclear orbital methods  
p :r  quantum proton

c :r  all other nuclei



Electron-proton wavefunctions: 
how accurate is BO approximation? 
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•    Expand exact solution in double-adiabatic basis 

•     Need to evaluate non-adiabatic coupling terms:  

Phenoxyl-phenol: electronically non-adiabatic 

Benzyl-toluene: electronically adiabatic  

C000 = .9973

C000 = .9997
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Electron-proton wavefunctions: 
what is ‘accurate’? 

exact 

•  Isotope Effects on Geometries 

X HX   DX   TX 

F 0.9186 0.9134 0.9110 

Cl 1.2884 1.2815 1.2785 

Br 1.4235 1.4165 1.4134 

Bond lengths in Å 

• NEO-HF → As mass increases, 
   - bond length decreases 
   - magnitude of negative partial charge on X decreases 
•  Same trends observed for H2O, NH3, H3O+ 

•  Proton density distribution: 

typically, HF frequency is off by 200% or more 

He He 



Nuclear Quantum Effects and H-bonding 
•   Large amplitude, anharmonic zero-point motion  

Prism

 Cage



H5O2
+

Hydrogen fluoride



•  Clusters: increase H-bond donor–acceptor distances 
   -  (H2O)n=2-6 → QDMC: Clary, CR 2000 
   -  (HF)2 → Experiment: Klemperer, JCP 1984 
•  Liquids: decrease H-bond donor–acceptor distances 
   -  H2O, HF → PICPMD: Klein, JACS 2003, PRL 2004 

•   Zero point energy effects:  
   – bending-type modes  
       → increase D–A distance 
 
   – stretching modes   
       → decrease D–A distance 



Proton-Containing Systems with RXCHF

•  14-electron system 
•     Explicitly correlate two electronic 

       orbitals to proton (CH bond orbital) 
Frequency (cm-1) 

HF 5077 
NEO-RXCHF-ne 3604 
NEO-RXCHF-ae 3476 
3D grid 3544 black: grid (adiabatic) 

blue: NEO-HF 
red: RXCHF-ne 
green: RXCHF-ae 

N ≡ C – H 

F – H – F-

Frequency (cm-1) 
NEO-HF 4614 
NEO-RXCHF-ne 3348 
NEO-RXCHF-ae 2616 
3D grid 2639 

•  20-electron system 
•     Explicitly correlate four electronic 

       orbitals to proton (FH bond orbitals) 



Problems with explicitly correlated 
methods for BO systems

ϕi (r){ }i∈ℜ ∈ L2[r] ϕ(r,R)∈ L2[r⊗ R]
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electron density: BO(solid line) vs. RXCHF (dotted line)  
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Description of Bilobal Wavefunctions 

HF: variational solution is always localized 
 
In practice, so is CI/CASSCF 
Delocalization: at least FCI in a very large  
basis set 

Pak and SHS, PRL 2004 

 D A-H  D- A H 

• TS for H transfer reactions corresponds to  
   equal H probability near donor and acceptor  

Model system studies (analytical proof) 



Conclusions 
•  Electron-positron correlation is too large to make HF a viable reference. 
•  Post-HF (CI,MP2) methods fail to produce reasonably accurate electron-
positron wavefunctions. 
•  Explicitly correlated methods do somewhat better, but are very expensive.    

•  New approaches are needed to describe positron behavior in large 
molecules. 

•  BO ground state electron-nuclear wavefunctions are almost exact even for 
chemically non-adiabatic systems. 

•  Orbital-based methods fail to reproduce the shape and size of exact nuclear 
density. This is true, to some extent, even for explicitly-correlated approaches. 

•  This basic failure probably implies that the functional dependence of 
electronic wavefunction on nuclear coordinate is described incorrectly. 

•  Producing bilobal proton wavefunctions (in a double-well potential) with 
nuclear-electron orbital methods is essentially an unsolved problem. 

 



Acknowledgments 
Sharon Hammes-Schiffer (PSU, UIUC) 
 
Simon Webb  
Andrès Reyes  
Arindam Chakraborty 
Kurt Brorsen 
 
Tzvetelin Iordanov 
Chet Swalina 
Jonathan Skone 
Andrew Sirjoosingh 
Tanner Culpitt 
 
Funding: AFOSR, NSF 
 
NEO method is incorporated into GAMESS 
    



Extra: Topology of nodal surfaces

•  Diffusion MC (DMC) depends on the fixed-node approximation. 
•    Topology of the nodal surface of multi-sorted wavefunctions  
responds to the level of correlation in an unknown way. 
•    Nodal surface of an N+M-particle system is an embedded manifold 
(in R3N+3M). 
•  Alternatively, after a polynomial approximation, it is an algebraic 

variety over R. 

•  We need a computable pathway from the embedding function to 
some suitable topological characteristic (e.g. Betti numbers for 
some cohomology theory) of the surface. 

•  Example: de Rham cohomology groups for (a complement to) an 
affine variety over C can be computed from the polynomial 
coefficients of the variety.  

     
Toshinori Oaku, Nobuki Takayama, Journal of Pure and Applied Algebra, 
 139 (1999) 201 
 
 



Multicomponent DFT

Parr, JCP1982 

Hohenberg-Kohn theorem has been proven for multi-component systems: 
functional exists for electronic and nuclear 1-particle densities 

Kreibich, Gross, PRL 2001 

)(),( rr Ne ρρ )(rVext

)(rVext),...,(),( 1 Ne RRr Γρ



Strategy for Developing e-p Functional

  
  

•  Geminal ansatz defines map from auxiliary to geminal densities 
•  Use this map to obtain a functional relationship between  
  1- and 2-particle geminal densities 
                                           

Ψgem = (1+G)Φ
eΦp
!

ep e p, ,ρ ρ ρ !ρ e , !ρ p ,...
auxiliary densities geminal densities 

ρ ep[ !ρ e , !ρ p ,...]
ρ e[ !ρ e , !ρ p ,...]
ρ p[ !ρ e , !ρ p ,...]

ρ ep = F[ρ e ,ρ p ]

•  Obtain geminal densities by integration of geminal wavefunction 
•  Truncate expressions for geminal densities 
•  Make a well-defined approximation that satisfies sum rules 
 

? 

Chakraborty, Pak, SHS, PRL 2008 



Electron-Proton Functional
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NEO-DFT for [He-H-He]+ 

He nuclei classical, H nucleus quantum 
Electronic basis set: STO-2G 
Nuclear basis set: 5s

•  NEO-DFT agrees well with NEO-XCHF and grid method 
•  NEO-DFT ~1400 times faster than NEO-XCHF for this system 

He He 

Frequencies determined by fitting nuclear density along He-He axis to Gaussian 

 Isotope   NEO-HF NEO-XCHF  3D Grid  NEO-DFT 
     H     3759     1030    1107     1072 
     D     2738       725      783       770 
     T     2274       558      639       630 

NEO-HF 

NEO-DFT 

3D Grid 

Frequencies in cm−1 with H, D, and T for the central nucleus   



XCHF vs. RXCHF: Physical Assumptions 
•  XCHF correlates all electrons with positron using same 
   geminal parameters  
   → geminal functions are used to account for interactions  
   other than short-ranged electron-positron dynamical correlation 
   → wavefunction is not optimized to accurately describe this 
   specific interaction but rather is more globally optimized 
 
•  RXCHF correlates only one electron with positron using 
   geminal parameters optimized for a single e-/e+ interaction 
   → geminal functions are used to account mainly for the 
   short-ranged electron-positron dynamical correlation 
   → wavefunction produces highly accurate description of 
   this interaction, although overall wavefunction is not optimal 



NEO-DFT for [He-H-He]+ 

Nuclear basis set: 1s exponent optimized variationally 
2 Gaussian-type geminals, scaled with single scaling factor to fit H cc-pVDZ result

•  NEO-DFT provides accurate nuclear densities at low cost! 
•  Electron-electron and electron-proton correlation predominantly additive 

He He 

Isotope 
NEO-HF 
cc-pVDZ 

NEO-DFT 
cc-pVDZ 

3D Grid 
cc-pVDZ 

NEO-DFT 
cc-pVTZ 

3D Grid 
cc-pVTZ 

H 3098 1191 1191 1103 1111 
D 2284 820 801 782 740 
T 1903 660 633 646 581 

Sirjoosingh, Pak, SHS, JCTC 2011; JCP 2012 

Frequencies in cm−1 with H, D, T for central nucleus   

 
•  He nuclei classical (fixed) 
•  H quantum mechanical 



PCET: Multiconfigurational RXCHF
•  Two-configuration SCF approach for O-H bond on left or right 
•  Only explicitly correlate 2 electronic orbitals to proton orbital (O-H bond) 
•  Restricted basis set: only expand explicitly correlated orbitals in terms of  
  valence basis functions on donor, acceptor, and H 
•  Includes static and dynamical electron-proton correlation 
•  Substantial computational savings à allows applications to larger systems 

I I RXCHF I RXCHF
1 1 2 2

II II RXCHF II RXCHF
1 1 2 2

C C
C C

Ψ = Ψ + Ψ

Ψ = Ψ + Ψ

State 1 State 2 



Electronic and Positronic Densities 

RXCHF-ne and RXCHF-ae perform similarly and agree well with 
highly accurate SVM/ECG results 

LiPs e+LiH 

electronic density 
positronic density 
 
solid: RXCHF-ae 
dashed: SVM/ECG 

SVM data (dashed lines): Ryzhikh, Mitroy, Varga, J. Phys. B 31, 3965 (1998). 
ECG data (dashed lines): Strasburger, J. Chem. Phys. 111, 10555 (1999). 

e+Li 



Multicomponent DFT

 
Strategy for designing electron-proton functionals:  
•  Define e-p functional as 

•  Use an explicitly correlated wavefunction to obtain expression  
  for electron-proton pair density ρ ep(re,rp) in terms of one-particle 
  electron and proton densities ρ e(re) and ρ p(rp) 
 
Advantages: provides accurate nuclear densities, consistent 
                      treatment of el-el & el-proton correlation 
Disadvantages: inherent DFT approximations, still expensive 

e p e p 1 ep e p 1 e p
e

e p e p
pc ep ep, ( , ) ( ) ( )rE d rd d dρ ρ ρ ρ ρ− −⎡ ⎤ = − +⎣ ⎦ ∫ ∫r rr rr rr r

Chakraborty, Pak, SHS, PRL 2008; Sirjoosingh, Pak, SHS, JCTC 2011; JCP 2012 

e p
e

e p e p e p
ext ref

e p
e pcxc pxc

[ , ] [ , ] [ , ]

[ ,[ ] [ ] ]

E E E
E E E

ρ ρ ρ ρ

ρ

ρ ρ

ρ ρ ρ

= +

+ + +

 Parr, JCP1982; Kreibich, Gross, PRL 2001; Chakraborty, Pak, SHS, JCP 2009 

kinetic energy of 
noninteracting system, 
“classical” Coulomb 



Electron-Proton Functional
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Satisfies sum rules: 

( ) ( )e e 1 ep e p
p p

,Nρ ρ−=r r r ( ) ( )p p 1 ep e p
e e

,Nρ ρ−=r r r

Motivating work: Colle and Salvetti, 1975, developed an electronic functional 
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Born-Oppenheimer Approximation 

•  Schrödinger equation for electrons and protons 
 
 
•  Fix proton position and solve electronic part 
 
 
•  For each electronic state, solve proton part 
 
 
•  Born-Oppenheimer approximation 

Tp +Te +V re,rp,R( )( )Ψk
tot re,rp;R( ) = Ek R( )Ψk

tot re,rp;R( )

Te +V re,rp,R( )( )Ψi
elec re;rp,R( ) = εi rp,R( )Ψi

elec re;rp,R( )

Tp + εi rp,R( )( )Ψiµ
prot rp;R( ) = εµi( ) R( )Ψiµ

prot rp;R( )

Ψk
tot re,rp;R( ) ≈ Ψi

elec re;rp,R( )Ψiµ
prot rp;R( )

re,rp,R: electrons, protons, and other nuclei 
e p n 

quantum classical 



Non-Born-Oppenheimer Effects 

•  Expand exact solution in double-adiabatic basis 

•  Express Hamiltonian in matrix form 

 
•  Nonadiabatic couplings provide a measure of nonadiabaticity 

Ψk
tot re,rp;R( ) = ciµk Ψi

elec re;rp,R( )Ψiµ
prot rp;R( )

i,µ
∑

Hiµ, jν = δijδµνεµ
i( ) R( ) −

!2

mp
Ψiµ
prot | dij

ep( ) ⋅ ∇rp | Ψ jν
prot

p
−
!2

2mp
Ψiµ
prot | gij

ep( ) | Ψ jν
prot

p

dij
ep( ) = Ψi

elec | ∇rp | Ψ j
elec

e
gij
ep( ) = Ψi

elec | ∇rp
2 | Ψ j

elec
e

e p n 

quantum classical 

ep nad  



Nuclear Quantum Effects 

Zero point energy 
Vibrationally excited states 

Hydrogen bonding Hydrogen tunneling 

Proton-coupled electron transfer in 
solution, proteins, electrochemistry 

ET 

PT 



Nuclear Quantum vs. Non-Adiabatic Effects  
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