Accurate wavefunctions for
multi-sorted quantum systems

Michael Pak
University of lllinois at Urbana-Champaign

ILLINOIS



Multi-sorted quantum systems

Quantum Chemistry:
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Multi-sorted quantum systems

Type I: m,~m,
positronic chemistry, muonized atoms and molecules
e: electrons  p: positron/muon/etc.  N,=1

Type llI: m,<< m,
“Chemically” non-adiabatic molecular systems
e: electrons
@O O@ p: quantum nuclei N,=1
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“Imitating” Quantum Chemistry:
mean-field based approaches

« Mean-field (HF) wavefunction:

W (re,r’) = o (ro)D(r") ®¢, PP : Slater determinants

HF energy: E" = <<I>§(re)<1>8 (r’)

A (r)05 (1)

« Configuration interaction (Cl) / MCSCF
Neg NG
W (r° pP) = EEC[,,q)j(re)cp;(rP)

I 1

CI/MCSCF energy: E°' = <‘I’Cl(l‘e,l'p) ﬁ“PC[(l‘e,l‘p)>
 Perturbation theory (MP2) EMP2 _ pHF , pQ)  p(2)
ee ep

Use 2nd-order perturbation theory to calculate
electron-electron and electron-proton corrections



Testing electron-positron
wavefunctions

« Good reference points:

- experimental: e* binding energies and annihilation rates
- computational: high accuracy results for small few-electron systems
(QMC,SVM, SVM+ECG,,etc.)
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« Positron binding energies

- no binding predicted for most systems: e.g., Li, Be, Na, Mg atoms,
LiH molecule etc.
- accounting for the Ps dissociation channel is problematic

« Positron annihilation rate
- direct measure of quality of e/e* wavefunctions
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Bound Positrons — Annihilation Rate
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PsH Annihilation Rate
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Dynamical correlation

* Electron-electron dynamical correlation:
- defined as difference between exact and mean-field answers

E.g. for the energy: £ = <‘Pexm H“Pex“Ct>—<‘PHF ‘H‘IPHF>
- mathematically is (mostly) due to deviation of ¥**“ fromw"* when |r/-r;| —0

- typically is ‘icing on the cake’: e-e Coulomb interaction is repulsive...

 Electron-proton correlation is the cake!
- qualitatively important. e-p Coulomb interaction is attractive




Explicitly correlated wavefunctions

v o) 103 Sl

i=1 j=1

x5 (x)e(rr)  x(x x5 (x7)
‘PRXCHF'fe(xe,xp)X\p/%v) X, (X2 g(rf,rp) X (Xz XN(XZ)
w(x)elrir) () - x(x)
Ngem 2
Gaussian-type geminals: g(rf,rf)= E b exp|-y, v, —r; ]
k=1

» Gaussian-type geminals for electron-positron correlation
* b, and y, are constants pre-determined from models
 Variational method: minimize total energy wrt molecular
orbital coefficients — Modified Hartree-Fock equations,
solve iteratively to self-consistency



PsH Annihilation Rate from NEO XCHF

N, e NP Ngem
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Method E Xzy(nS'l) 2('x1 ’x] ’xp) gzp(sjp + glp(sjp
HF -0.664337 0.3189 +28,8,9,
XCHF-1G -0.693216 0.6883 Q,(x,X,,%,,% ) =g,8,0,
XCHF-2G -0.705863 1.1402
XCHF-3G -0.712496 2.0122
XCHF-4G" 0.716097 2.0443 Basis sets:
FCI -0.758965 0.8993 HF. XCHF: 6s
FCI: 6s2p1d

SVM -0.789198 2.4714




Two-Photon Annihilation Rates

e*Li LiPs e*LiH
NEO-HF 3.3556x10+  0.0512 0.03
XCHF 1.7361 0.566 0.62
RXCHF-ne 1.6759 1.940 1.08
RXCHF-ae 1.6657 1.940 1.11
SVM/ECG 1.751242 2.107b 1.26¢
Units: ns™’

* HF very inaccurate

« XCHF better but still inaccurate

« RXCHF-ne/ae perform similarly and agree well with highly
accurate ECG/SVM results

* Electronic and positronic densities are also in decent agreement

 RXCHF is 235 (25) times faster than XCHF for e*Li (LiPs)

aMitroy, Phys. Rev. A 70, 024502 (2004).
bRyzhikh, Mitroy, Varga, J. Phys. B 31, 3965 (1998).
¢Strasburger, J. Chem. Phys. 111, 10555 (1999).



Conclusions:
Electron-positron wavefunctions

* No usable method for computing accurate wavefunctions is available:

- highly accurate methods of ECG+SVM type are not practical for systems with
more than 5-10 electrons. ((NEO-XCHF/RXCHEF is perhaps in the same class))

- methods easily applied to larger positronic molecules (HF, MP2, Cl) are utterly
unreliable even for systems with 3 electrons or less.

- trivial example: experimentally, e* binds to propane. No known theoretical
method can predict this binding...

* The field is wide open, and in need of new ideas...

« PET applications

Positron emission and
positron-electron annihilation




Multi-sorted quantum systems:
electron-nuclear wavefunctions

Solution of mixed nuclear-electronic time-independent Schrodinger
equation with molecular orbital methods

Treat specified nuclei qguantum mechanically on same level as electrons
- treat only key H nuclei QM
- retain at least two classical nuclei

Easy access to ‘exact’ answer is available for benchmarking electron-
nuclear orbital methods
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Electron-proton wavefunctions:
how accurate is BO approximation?

Expand exact solution in double-adiabatic basis

WP (k.1 IR) = Ecktpelec . |1, R)WP (r, IR)

Need to evaluate non-adlabatlc coupling terms:
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Electron-proton wavefunctions:
what is ‘accurate’?

» lIsotope Effects on Geometries
Bond lengths in A

X HX DX TX
F 0.9186 |0.9134 |0.9110 .
Cl 1.2884 [1.2815 |1.2785 -

Br 1.4235 14165 |1.4134

‘NEO-HF — As mass increases,
- bond length decreases

- magnitude of negative partial charge on X decreases
« Same trends observed for H,0, NH;, H;0*




Nuclear Quantum Effects and H-bonding

» Large amplitude, anharmonic zero-point motion

« Zero point energy effects:
— bending-type modes
— increase D—A distance

— stretching modes
— decrease D—-A distance

1
Q.. Q. o ¢ c-‘b &
Hydrogen fluoride Hs0,* b,% &) ,-—-6
Prism Cage
» Clusters: increase H-bond donor—acceptor distances
- (H,0),.c — QDMC: Clary, CR 2000
- (HF), — Experiment: Klemperer, JCP 1984

* Liquids: decrease H-bond donor—acceptor distances
- H,O, HF — PICPMD: Klein, JACS 2003, PRL 2004




Proton-Containing Systems with RXCHF
N=C-H

* 14-electron system 4.0

« Explicitly correlate two electronic
orbitals to proton (CH bond orbital)

Frequency (cm™) °. 2.0
HF 5077
NEO-RXCHF-ne 3604 0.0
NEO-RXCHF-ae 3476 '
3D grid 3544 black: grid (adiabatic)
blue: NEO-HF
- 20-electron system F-H-F gergéixé:ngHr;e_ae

« Explicitly correlate four electronic

4.0
orbitals to proton (FH bond orbitals)

Frequency (cm™)

NEO-HF 4614 207
NEO-RXCHF-ne 3348
NEO-RXCHF-ae 2616 0.05

3D grid 2639 r




Problems with explicitly correlated
methods for BO systems
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electron density: BO(solid line) vs. RXCHF (dotted line)



Description of Bilobal Wavefunctions
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TS for H transfer reactions corresponds to
equal H probability near donor and acceptor
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Model system studies (analytical proof)
Pak and SHS, PRL 2004

HF: variational solution is always localized

In practice, so is CI/CASSCF
Delocalization: at least FCI in a very large

basis set




Conclusions

* Electron-positron correlation is too large to make HF a viable reference.

* Post-HF (Cl,MP2) methods fail to produce reasonably accurate electron-
positron wavefunctions.

 Explicitly correlated methods do somewhat better, but are very expensive.

* New approaches are needed to describe positron behavior in large
molecules.

» BO ground state electron-nuclear wavefunctions are almost exact even for
chemically non-adiabatic systems.

* Orbital-based methods fail to reproduce the shape and size of exact nuclear
density. This is true, to some extent, even for explicitly-correlated approaches.

* This basic failure probably implies that the functional dependence of
electronic wavefunction on nuclear coordinate is described incorrectly.

* Producing bilobal proton wavefunctions (in a double-well potential) with
nuclear-electron orbital methods is essentially an unsolved problem.
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Extra: Topology of nodal surfaces

 Diffusion MC (DMC) depends on the fixed-node approximation.

» Topology of the nodal surface of multi-sorted wavefunctions

responds to the level of correlation in an unknown way.

« Nodal surface of an N+M-particle system is an embedded manifold

(in R3N+3M)_

« Alternatively, after a polynomial approximation, it is an algebraic
variety over R.

 We need a computable pathway from the embedding function to
some suitable topological characteristic (e.g. Betti numbers for
some cohomology theory) of the surface.

« Example: de Rham cohomology groups for (a complement to) an
affine variety over C can be computed from the polynomial
coefficients of the variety.

Toshinori Oaku, Nobuki Takayama, Journal of Pure and Applied Algebra,
139 (1999) 201



Multicomponent DFT

Hohenberg-Kohn theorem has been proven for multi-component systems:
functional exists for electronic and nuclear 1-particle densities

Parr, JCP1982

P.(r), Py () 4 > V_(r)

Kreibich, Gross, PRL 2001

0.(r),T(R,,...,R,) ¢ > V()




Strategy for Developing e-p Functional
Chakraborty, Pak, SHS, PRL 2008

U =(1+G) DD’
gem —

ep € p ~e
p?, 0% 00 4 5
geminal densities auxiliary densities

« Geminal ansatz defines map from auxiliary to geminal densities
« Use this map to obtain a functional relationship between
1- and 2-particle geminal densities

ep[ ~e ~

p[ﬁeﬁ, ] ‘ p* =F[p,p"]
pP’Lo°,p",...]
* Obtain geminal densities by integration of geminal wavefunction

 Truncate expressions for geminal densities
* Make a well-defined approximation that satisfies sum rules



Electron-Proton Functional

Contribution to total energy:

E,. [pe,pp] = —fdredrpr o +fdredrpr
Expression for ep pair density in terms of 1-particle densities:

pT ="+ p (0 P gN;'N, ),
V.., =(1+G)00" mmp L PPe+ P NN (0" e), (o)

L+ N 'N{p P 8)e
- PP (P°gN."). - p° P (P gN;"),

e p2
I'—l"

Ngem
Geminal function: g(re,r’) = Z b, exp [—?/k
=]

Motivating work: Colle and Salvetti, 1975, developed an electronic functional



NEO-HF

NEO-DFT

He nuclei classical, H nucleus quantum 3D Grid

Electronic basis set: STO-2G T
Nuclear basis set: 5s

-0.4 -0.2 0.2 0.4

(A
Frequencies in cm~'with H, D, and T for the central nucleus

Isotope | NEO-HF | NEO-XCHF | 3D Grid | NEO-DFT
H 3759 1030 1107 1072
D 2738 725 783 770
T 2274 558 639 630

« NEO-DFT agrees well with NEO-XCHF and grid method
* NEO-DFT ~1400 times faster than NEO-XCHF for this system

Frequencies determined by fitting nuclear density along He-He axis to Gaussian



XCHF vs. RXCHF: Physical Assumptions

« XCHF correlates all electrons with positron using same
geminal parameters
— geminal functions are used to account for interactions
other than short-ranged electron-positron dynamical correlation
— wavefunction is not optimized to accurately describe this
specific interaction but rather is more globally optimized

« RXCHF correlates only one electron with positron using
geminal parameters optimized for a single e”/e* interaction
— geminal functions are used to account mainly for the
short-ranged electron-positron dynamical correlation
— wavefunction produces highly accurate description of
this interaction, although overall wavefunction is not optimal



NEO-DFT for [He-H-He]*
Sirjoosingh, Pak, SHS, JCTC 2011, JCP 2012

* He nuclei classical (fixed)
* H quantum mechanical

Nuclear basis set: 1s exponent optimized variationally
2 Gaussian-type geminals, scaled with single scaling factor to fit H cc-pVDZ result

Frequencies in cm~1with H, D, T for central nucleus

Isotope NEO-HF | NEO-DFT | 3D Grid | NEO-DFT 3D Grid
cc-pVDZ | cc-pVDZ | cc-pVDZ | cc-pVTZ cc-pVTZ

H 3098 1191 1191 1103 1111

D 2284 820 801 782 740

T 1903 660 633 646 581

 NEO-DFT provides accurate nuclear densities at low cost!
 Electron-electron and electron-proton correlation predominantly additive




PCET: Multiconfigurational RXCHF

» Two-configuration SCF approach for O-H bond on left or right

» Only explicitly correlate 2 electronic orbitals to proton orbital (O-H bond)

* Restricted basis set: only expand explicitly correlated orbitals in terms of
valence basis functions on donor, acceptor, and H

* Includes static and dynamical electron-proton correlation

» Substantial computational savings - allows applications to larger systems

I Iy yeRXCHF [y yfRXCHF
v-ce . e
II II RXCHF II RXCHF
IP =C1 lIIl +C21P2 ¢
i J
S Y
= % )
~
O-H O @) H-0O

State 1 State 2

4



Electronic and Positronic Densities

e*Li LiPs e*LiH
2.0 T T - T T ' ' T
ey i 12} T
1.5 —P '
=, 1.0} = 1 %9
0.5} 0.5} PN 1 4t
0.0—~—4 o 15 20 0-% 5 T 4
r (au) r (au)
0.005
electronic density 0.004f
positronic density _ o.003f
C}-0.002-
solid: RXCHF-ae 0.001f -
dashed: SVM/ECG 0.000—~4——¢t——T5——5—2

r (au)

RXCHF-ne and RXCHF-ae perform similarly and agree well with
highly accurate SVM/ECG results

SVM data (dashed lines): Ryzhikh, Mitroy, Varga, J. Phys. B 31, 3965 (1998).
ECG data (dashed lines): Strasburger, J. Chem. Phys. 111, 10555 (1999).



Multicomponent DFT

Chakraborty, Pak, SHS, PRL 2008; Sirjoosingh, Pak, SHS, JCTC 2011; JCP 2012

kinetic energy of

E[p°, pP1=E [p°, "1+ E [ p°, p"] <— noninteracting system,
classical’ Coulomb

+E [0 1+ E [P ]+ E. [0, 0"]

Strategy for designing electron-proton functionals:
 Define e-p functional as

E,. [ 0°, pp] =— f drédr’r | p® (r°,r") + f drédr’r p®(r) 0" (r")

» Use an explicitly correlated wavefunction to obtain expression
for electron-proton pair density p °°(re,r?) in terms of one-particle
electron and proton densities p ¢(r®) and p P(rP)

Advantages: provides accurate nuclear densities, consistent
treatment of el-el & el-proton correlation
Disadvantages: inherent DFT approximations, still expensive

Parr, JCP1982; Kreibich, Gross, PRL 2001, Chakraborty, Pak, SHS, JCP 2009



Electron-Proton Functional

Contribution to total energy:
epc[ ]——fa’rea’rr1 ep+fa’rea’rr
Expression for ep pair density in terms of 1-particle densities:
pT = p° "+ p" (P P eN;'N,; ).,
W o(1+G)0" mmp L LLEEPPN Nl(ﬂ 2)(P°g).

- p°p™{p° gNe >e - PP (PN, "),

re —rpr]
Satisfies sum rules:
() =N o (e )) () =N (o (k).

Motivating work: Colle and Salvetti, 1975, developed an electronic functional

Ngem
Geminal function: g(re,rP) = Z b, exp [_)/k
=]



Born-Oppenheimer Approximation

« Schrodinger equation for electrons and protons
(T, + T, +V(r.,r,,R) )W (re,r;R) = E; (R)WP (1,15 R)
* Fix proton position and solve electronic part
(T, +V(r..r,,R)) ¥ (r;r,,R) = & (1, ,R) ¥ (.1, R)
« For each electronic state, solve proton part
(T, + & (1. R))WE (1R ) = &) (R) WE (5 R)

« Born-Oppenheimer approximation
quantum classical

¥t (r,,ry;R) = ‘P?leo(re;rp,R)‘P}’;Ot(rp;R)

e|p|n

l‘e,l'p,R: electrons, protons, and other nuclei




Non-Born-Oppenheimer Effects

quantum classical
« Expand exact solution in double-adiabatic basis |

qjtot l'e,l'p,R Eckqjelec I’e,l'p,R)IPprOt(l‘ R) e p N

<>

» Express Hamiltonian in matrix form ep nad

iu iu ij

h2 0 c 10 hz 0 c 0
Hiy iy = 00,6l >(R)-m—p<1pp ‘i) v, I‘I“]?Vt>p—%<\{ﬂ’ tlgler) e t>p

* Nonadiabatic couplings provide a measure of nonadiabaticity

ep) _ | 1 (ep) _ J| 2 1
i) = (weke |y, s gy = (Wi 1 V] rwse )

Y e e



Nuclear Quantum Effects

Energy 1,/1 I |
? Transitio A

: e"ergy/ "
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n=0 : 0= %ﬁtg .
Internuclear separahon X Proton Coordinate
Zero point energy Hydrogen bonding Hydrogen tunneling

Vibrationally excited states
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Proton-coupled electron transfer in
solution, proteins, electrochemistry




Nuclear Quantum vs. Non-Adiabatic Effects
Y(r,R)=o(r| R)X(R)
H(r R) = H +H +V(r R)
TRCI)(r,R) ~ ()

[H, +V(r,R)]®(r| R) = W(R)®(r | R)

H(r,R)¥(r,R)=E¥(r,R) — [H, +W(R)]X(R) = EX(R)

T, ®(r,R)=0 T,®(r,R)=0
W(r,R) = P(r,R, | A)X(R)

|[H, + Hy +V(r,R)+V (r,R)I®(r, R, | R) = W (R)D(r, R, | R)
LA + W (R)X(R) = EX(R)




