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Photo-physics and photo-chemistry procedures

state surface, named photoadiabatic reactions, or jumping
among hypersurfaces when they are close enough. The latter
are called non-adiabatic reactions and involve extremely
fast energy transfers through regions of avoided or surface
crossings, of conical nature or not [4]. In those regions the
probability for the transfer to take place may be the highest
because of the proximity of the surfaces, where the coupling
of the vibrational and electronic states is strong. We have to
remember that the Born-Oppenheimer approximation is not
valid in regions where the electronic states become too
close. It is logical therefore that the non-adiabatic transfers
are faster than the radiative relaxations. In essence, the
former are transfer of energies based on the structure of the
vibronic states. If the transfer takes place between states of
the same spin multiplicity the system undergoes an internal
conversion (IC), and the operator which drives the
probability is just the kinetic energy operator. If the two
involved states belong to different spin multiplicities the
process is named intersystem crossing (ISC) and the
perturbation operator is the spin-orbit Hamiltonian [5].
Certainly, the smaller is the gap between the states, the
larger is the probability for transfer. Therefore, the surface
crossings, named hyperlines or conical intersection points
when the crossing occurs between states of the same spatial
and spin symmetry, are the most favorable topology for the
transfer of population. In the ISC case, the largest
probability takes place in a widest region of the PES,
because two factors have to be balanced, the smallest energy
gap and the largest spin-orbit coupling, an effect which
mixes the different states allowing interaction among them
[6]. Fig. 1 provides a scheme of the photophysics and
photochemistry of a molecular system. The parameters
previously mentioned, energies and probabilities, give the
required information to understand and predict the phenom-
ena described in the scheme, which basically corresponds to
those frequently found in the Jablonski diagrams [7]. More
detailed information about these aspects can be found
elsewhere [1,4,5,7–10].

2. Quantum-chemical methods for the excited state

A brief summary of quantum chemical methods for the
excited states of molecules must necessarily be focused on
those methodologies that, after a quick glance to the
literature and in the authors’ opinion, are more commonly
employed, whether they are appropriate or not. We impose
here a practical approach in which limitations and
possibilities for the different methods will be commented,
while for a deepest insight into equations and algorithms the
reader is referred to the specialized literature.

We shall firstly focus on ab initio methods. Starting by
the single-configurational methods that use the Hartree–
Fock (HF) solution as reference wave function, the most
extended approach is the widespread method called CIS
(Configuration Interaction-Singles) [11]. The essence of the
method is to consider that a excited state can be described by
a singly excited determinant formed by replacing, with
respect to the reference wave function, an occupied spin
orbital with a virtual spin orbital. The drawbacks of such a
description may be partially compensated if a linear
combination of all possible single excited determinants is
used to build the excited state wave function. The main flaw
of the CIS method is the basic lack of correlation energy.
Further attempts to solve the problem by using double
excitations [12] or perturbation theory [11] were not
successful. In general the CIS excitation energies are
largely overestimated due to the absence of correlation
energy effects. Despite the claims that the results are
qualitatively useful because the states are correctly ordered
[13], the facts speak to the contrary. There are more cases in
the literature [14–17] of failures in the prediction of the CIS
energy ordering that successes, simply because the differ-
ential correlation energy affects the excited states unevenly
and because the intrinsic character of the states is multi-
configurational. For instance, a calculation on the singlet
excited states of benzene reported a mean absolute error of
0.7 eV, with deviations as large as 1.4 eV, although larger
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Fig. 1. Scheme of the main photophysical and photochemical molecular events.
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Methods for the excited state
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Beijing Density Functional package- BDF
• SCF level

RHF, UHF, ROHF, RKS, UKS,ROKS - Direct and none-direct, 
point group symmetry, CD/RI approximation.
DFT functional: LDA,GGA,Hybrid, range-sep Hybrid etc.

• MCSCF.

• Post SCF and excited states
MP2, Frag-LMP2
TDDFT/TDHF, TDDFT+SOC, TD Gradient and NAC
CCSD,CCSD(T), EOM-IP/EA/EE,CCSD+SOC
MRCI,MRPT2, MRCI-SOC,MCCEPA
EN-GMFCI
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• Excited state and non-anabatic problem 
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• icMRCI based on GUGA



Electron-Nuclei General mean field 
configuration interaction

Electron

Nuclei

Coupling term

Ĥ(~Re, ~Q) = Ĥ(~Re) + Ĥ( ~Q) + Ĥ(~Re, ~Q)

P. Cassam-Chenai, B. Suo, W. Liu, Phys. Rev. A,92,012502,2015. 
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General Mean field approach

Electrons are in a mean field generated by nucleus

Nucleus are in a mean field generated by electrons
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Initial Guess 
Nuclear WF

Calculate E-N coupling 
integrals for electron

Calculate electron  WF
HF/MCSCF/CI

Calculate electron  E-N 
coupling integral for 
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Self-consistent solving
EN general mean field
problem is solved.

Configuration interaction 
can be evoked based on 
mean field result.
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For diatomic molecule
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Nuclear wave function

Kratzer potential

D. Secrest,JCP,89,1017,1988
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EN coupling integrals
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Here, the Kratzer functions are

1 Rys and generalized Laguerre double quadrature formulas 
2 Multi-Precision based on library arprec

P. Cassam-Chenia, B. Suo, W. Liu, Phys. Rev. A,92,012502,2015. 



K=4 K=8 K=12 K=16

n=4 -1.1621504 -1.1622377 -1.1622418 -1.1622419

n=8 -1.1623184 -1.1624301 -1.1624334 -1.1624341

n=12 -1.1623574 -1.1624676 -1.1624750 -1.1624754

n=16 -1.1623877 -1.1624996 -1.1625050 -1.1625060

Off-center basis:

H2, Convergence of total energy with number of Kratz and Off-
center basis, Full-CI, cc-PVTZ



Convergence of EN-GMFCI energy with 
basis sets and off-center basis

cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z

n=4 -1.1576745 (18,0) -1.1622419 (36,0) -1.1632984 (68,0) -1.1636441 (118,0)

n=8 -1.1579290 (26,5) -1.1624380 (44,4) -1.1634754 (76,2) -1.1638262 (126,0)

n=12 -1.1581072 (34,10) -1.1624953 (52,9) -1.1636184 (84,5) -1.1638365 (134,5)

n=16 -1.1581475 (42,16) -1.1625060 (60,16) -1.1635140 (92,10) -1.1638438 (142,8)

Two numbers in parentheses are number of basis functions and number of basis functions 
should be eliminated due to basis set linear dependent.



Full CI v.s. Limited CI

Full CI Limited CI

Numbers of CSF’s 144720 6286

E0 (hartree) -1.1638438 -1.1638413

ν; 0 —> 1 (cm-1) 4165.36 4165.86

cc-pV5Z, n=16

4.4%



Transition TF-NOMO/CIS TF-NOMO/FCI This work Exp.

H2

ν: 0 —>1 4655 4182 4165 4161

ν: 0 —>2 9406 NA 8110 8087

        : 0 —>1 106556 NA 91711 91700

D2

ν: 0 —>1 3549 3006 2994 2994

ν: 0 —>2 7026 NA 5874 5869

     : 0 —>1 107628 NA 92182 91697

T2

ν: 0 —>1 2929 2477 2465 2465

ν: 0 —>2 5843 NA 4851 4849

        : 0 —>1 108043 NA 92375 91696

⌃+
g

⌃+
g

⌃+
g



A brief summary

• Electron-Nuclei Mean field approximation 

• EN-SCF/MCSCF/MRCI 

• EN-FCI (direct product of electron and nucleus) 

• Off-center basis sets
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• Excited state and non-anabatic problem 

• EN-GMFCI 

• icMRCI based on GUGA



Electron correlation energy



Configuration interaction

coefficients C can be calculated by solving eigenvalue problem
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The dimension of CI space (Spin-adapted CSFs,neglect spatial symmetry) 
can be calculated from Weyl equation

CH4, 6-31G**, 10 electron, 49 MOs. The CI dimension is

673,371,590,640
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Electron correlation methods

• Truncated CI — (MR)CISD,(MR)CISDT, ….

• Cluster expansion — CCSD,CCSD(T), …..

• Multi-reference perturbation theory - CASPT2, 
NEVPT2

• DMRG-CI, by White, Chan, Wouter etc.

• QMC-CI by Alavi, Booth etc.



MRCISD - UC v.s. IC
Un-contracted MRCISD

Internally contracted MRCISD
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CI matrix element
Iterative diagonalization
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Multi-electron basis
Slater Determinate Configuration 

state function

Spin adapted NO YES

Size 2-4 times 1

Calculation 
of coupling 
coefficients

easy complicated



Graphic unitary group approach - GUGA
• 1950 Gelfand-Tsetlin 

• 1962-1966 Biedenhavn, Moshisky, Boyu Hou 

• 1974 Paldus: UGA 

• 1978 Shavitt: GUGA 

• 1979-1982 Schaefer, Sigbahn, Saxe, Payne 

• 1984 Shepard, Lishika  in Cloumbus 

• 1986 - now, Wen and Wang, Xi’an-CI 

• 2013 -now, Shepard, contracted GUGA



Paldus tabular, step vector and Distinct Row Table
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Coupling coefficients are calculated as
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Distinct Row Table of MRCISD



10 
1 

02 
1 

01 
1  

00 
1 

10 
1 

02 
1 

01 
1 

00 
1 

10 
1 

02 
1 

01 
1 

00 
1 

10 
1 

01 
1 

00 
1 

00 
1 

a1 

a1 

a1 

  External DRT 

02 
1 

10 
1 

01 
1 

00 
1 

a1 

a1 

 
50 

 

 
50 

 

 
41 

 

 
40 

 

 
40 

 

 
32 

 

 
31 

 

 
30 

 

 
30 

 

 
22 

 

 
21 

 

 
20 

 

 
20 

 

 
12 

 

 
11 

 

 
10 

 

 
10 

 

 
02 

 

 
01 

 

 
00 

 

00

00

00

00

00

00

10

10

10

10

10

20

20

01

20

20 01

01

01

01

Hole-particle trans

d̃ = 3� d

Hole space DRT



E =
neX

r=1

W (Qr; d
0
rdr, �br, br)

A =
ne+naX

r=ne+1

W (Qr; d
0
rdr, �br, br)

D =
nX

r=ne+na+1

W (Qr; d
0
rdr, �br, br)

Partial Loops in external space

Partial Loops in active space

Partial Loops in hole space

�µ⌫
pq = h(d0)e(d0)a(d0)h|Epq|(d)e(d)a(d)hi

= E ·D ·A

E: 109 pLoop shapes
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1−T

S T D V

V2/1D1T

D  (Hole) 

A  (Active) 

E  (External) 

Coupling coefficient = D  A  E • •

2/1−D)( 0TS

Programming



Application of Hole-particle symmetry
Molecules CH2F2 CH2Cl2 CH2Br2 

No. orbitals 55(11+4+40)(1) 63(19+4+40) 85(37+4+44) 

Symmetry C2V 

Active space 4 electrons in orbitals: a1 a1 b2 b2 

No. of CSFs 695,302 1,944,118 8,508,449 

 A(2) B A B A B 

No. Partial loops 1,155,011 100,756 5,122,447 100,756 33,883,641 100,756 

Storage required 
(Kb) 

51,574 3,376 231,646 3,376 1,528,500 3,376 

Time per iteration 
(sec)(3) 

39 24 176 101 1417 795 

(1) In the parenthesis there are numbers of hole, active and external orbitals, respectively.  
 
(2) A: without hole-particle symmetry;  B: with hole-particle symmetry. 

(3) CPU: P-4-1.6 GHz, memory: 512 Mb 



Different contraction schemes based on GUGA

1S • • • • • •
V1D2D2T 1T2S 1S

• • • • • • •
V1D2D2T 1T2S

5 16 5 10 1 5 1

189 276 246189 9 21 1

DRT-sub

Hole space 

Active space 

External space 

:NUS

:NDS

•

DRT for O3 ()/CAS(6,6)/cc-pVDZ 

1S

952S2S
951S1S
932S2T
2071T1T
1082S2D
1482T2D
1461T2D
1022S1D
1081S1D
1462T1D
1081T1D
1762D1D
1881D1D
482SV
571SV
562TV
491TV
1022DV
1081DV
95VV

Doubly contract

Doubly contract

External contract

Internally contract



icMRCI based on hole-particle symmetry
Internal contracted functions are defined within sub-DRTs 

Insert an identity 
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icMRCI based on hole-particle symmetry

Contaction coefficients can be calculated as

aM =
X

R

cRh(d)h(d)a(d)e|Êai,bj |(0 · · · 0)e(d)a(3 · · · 3)hi

= ELS(Y V ) · (
X

R

cRh(dµ)a|Êai,bj |(d⌫)ai) ·HLS(X̄V̄ )

= ELS(Y V ) · aµ ·HLS(X̄V̄ )

|�M i = |(d)e(d)a(d)hi, |�Ri = |(0 · · · 0)e(d)a(3 · · · 3)hi

ELS(Y V )

HLS(X̄V̄ )
Segment factors in external and hole space

aµ is the fragment of        in the active space aM



Test 1 - O3 
1A’ (Cs) cc-pVTZ CAS(12,9)

Method Dimension Energy(a.u.) Time(min)/Iters c

ic-MRCI (WK)a 2284304 -225.083654    11.24/9

ic-MRCI (WK-
like)a  2284304 -225.083658    79.83/14

ic-MRCI (WK)b 6114533 -225.125812    74.22/9

ic-MRCI (WK-
like)b 6114533 -225.125802     146.79/14

uc-MRCI(FOIS)a 165247124 -225.093292     2042.87/20

uc-MRCIa 199281704 -225.093999     2799.00/20

a 3 frozen orbital 
b No frozen orbital 
c Xeon x5657 3.06 GHz, 1 CPU core Y. Wang, H. Han. etc. JCP 141,164114,2014



A flexible internally contracted MRCI scheme

Contraction 
Scheme Contracted Sub-CI spaces Abbrv.

Werner and Knowles WK

SD contration SD

Celani and Werner CW

No internal excitation 
contraction NI

Semi-full contraction SFC

SD contraction plus

¯DD, ¯V D

SD contraction plus

¯DD, ¯S( ¯T )V

WK contraction plus

¯S( ¯T )D

CW contraction plus

¯DV, ¯V D

S̄(T̄ )S(T ), D̄S(T ), V̄ S(T )

B. Suo, Y. Lei, H. Han, Y. Wang, Z. Wen, manuscript in preparing



CFBr calculated by different icMRCI schemes
UC WK SD CW NI SFC

CI dimension
1A’ 13,679,604,286 132,561,907 27,053,899 3,638,743 1,819,342 1,525,246

3A” 27,203,671,923 246,089,715 49,661,259 7,289,103 4,046,766 3,608,930

1A” 13,292,817,282 132,322,497 27,000,969 3,628,989 1,811,310 1,524,626

Total energy (a.u. )
1A’ -0.35201711 -0.35201169 -0.35200696 -0.35196129 -0.35196114

3A” -0.30810780 -0.3080997 -0.30809192 -0.30762112 -0.30762102

1A” -0.25015951 -0.25014786 -0.25013715 -0.24897901 -0.24897896

Relative energy (eV)
1A’ 0.00 0.00 0.00 0.00 0.00

3A” 1.19 1.20 1.20 1.21 1.21

1A” 2.77 2.77 2.77 2.80 2.80

B. Suo, Y. Lei, H. Han, Y. Wang, Z. Wen, manuscript in preparing



Correlation errors of PECs of SiO
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B. Suo, Y. Lei, H. Han, Y. Wang, Z. Wen, manuscript in preparing



d-d transitions of [Fe(H2O)6]3+

State CASPT2(5,5) CASPT2(5,10) icMRCI(5,5) icMRCI(5,10) Expt.

6Ag 0.00 0.00 0.00 0.00 0.00

4B1g 2.91 2.94 2.90(2.52) 2.53(2.31) 1.56

4B1g 3.34 3.27 3.62(3.26) 3.25(3.05) 2.29

4Ag 3.74 3.77 3.97(3.66) 3.64(3.49) 3.01

4Ag 3.79 3.81 4.01(3.71) 3.68(3.53) 3.05

ΔEabs 0.97 0.96 1.15(0.81) 0.80(0.61)
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Conclusion and Future development

• EN-GMFCI — treat nuclear and electron in same 
footing.  

• icMRCI based on GUGA — much useful than un-
contracted MRCI due to highly efficient. 

• EN-GMF-icMRCI
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Thank you for attention!


