New development of internally contracted MRCI

Bingbing Suo

Institute of Modern Physics, Northwest University Xi'an, Shaanxi China

Contains

- Excited state and none-adiabatic problem
- EN-GMFCI
- icMRCI based on GUGA

Photo-physics and photo-chemistry procedures

Absorption

Photosynthesis

TheoChem, 729,99-108,2005

Methods for the excited state

Beijing Density Functional package- BDF

- SCF level

RHF, UHF, ROHF, RKS, UKS,ROKS - Direct and none-direct, point group symmetry, CD/RI approximation.

DFT functional: LDA,GGA,Hybrid, range-sep Hybrid etc.

- MCSCF.
- Post SCF and excited states

MP2, Frag-LMP2
TDDFT/TDHF, TDDFT+SOC, TD Gradient and NAC
CCSD,CCSD(T), EOM-IP/EA/EE,CCSD+SOC
MRCI,MRPT2, MRCI-SOC,MCCEPA
EN-GMFCI

Xi'an-Cl package

Contains

- Excited state and non-anabatic problem
- EN-GMFCI
- icMRCI based on GUGA

Electron-Nuclei General mean field configuration interaction

$$
\begin{gathered}
\hat{H}\left(\vec{R}^{e}, \vec{Q}\right)=\hat{H}\left(\vec{R}^{e}\right)+\hat{H}(\vec{Q})+\hat{H}\left(\vec{R}^{e}, \vec{Q}\right) \\
\hat{H}\left(\vec{R}^{e}\right)=-\frac{1}{2} \sum_{i=1}^{p} \nabla_{\vec{r}_{i}^{e}}^{2}+\sum_{1 \leq i<j \leq p} \frac{1}{\left\|\vec{r}_{i}^{e}-\vec{r}_{j}^{e}\right\|} \quad \text { Electron } \\
\hat{H}(\vec{Q})=-\frac{1}{2} \sum_{i=1}^{q} \nabla_{\vec{Q}_{i}}^{2}+\sum_{1 \leq a<b \leq N} \frac{Z_{a} Z_{b}}{\left\|\vec{r}_{i}^{e}-\vec{r}_{a}^{0}-\hat{G}_{a}^{-1} \hat{L}^{T} \vec{Q}-\hat{G}_{b}^{-1} \hat{L}^{T} \vec{Q}\right\|} \\
\quad \text { Nuclei } \\
\hat{H}\left(\vec{Q}, \vec{R}^{e}\right)=-\sum_{i}^{p} \sum_{a}^{N} \frac{Z_{a} Z_{b}}{\left\|\vec{r}_{i}^{e}-\vec{r}_{a}^{0}-\hat{G}_{a}^{-1} \hat{L}^{T} \vec{Q}\right\|} \quad \text { Coupling term }
\end{gathered}
$$

P. Cassam-Chenai, B. Suo, W. Liu, Phys. Rev. A,92,012502,2015.

General Mean field approach

Electrons are in a mean field generated by nucleus

$$
\hat{H}^{e f f}\left(\vec{R}^{e}\right)=\hat{H}\left(\vec{R}^{e}\right)+\left\langle\phi_{\overrightarrow{0}}^{(0)}(\vec{Q})\right| \hat{H}(\vec{Q})+\hat{H}\left(\vec{R}^{e}, \vec{Q}\right)\left|\phi_{\overrightarrow{0}}^{(0)}(\vec{Q})\right\rangle_{\vec{Q}}
$$

Nucleus are in a mean field generated by electrons

$$
\hat{H}^{e f f}(\vec{Q})=\hat{H}(\vec{Q})+\left\langle\phi_{\overrightarrow{0}}^{(1)}\left(\vec{R}^{e}\right)\right| \hat{H}\left(\vec{R}^{e}\right)+\hat{H}\left(\vec{R}^{e}, \vec{Q}\right)\left|\phi_{\overrightarrow{0}}^{(1)}\left(\vec{R}^{e}\right)\right\rangle_{\vec{R}^{e}}
$$

For diatomic molecule

$$
\begin{equation*}
Q=\sqrt{\mu_{a b}}\left(r_{a_{z}}-r_{a_{z}}^{0}-r_{b}+r_{b_{z}}^{0}\right) \quad \mu_{a b}=\frac{m_{a} m_{b}}{m_{a}+m_{b}} \tag{0}
\end{equation*}
$$

Nucleus

$$
\begin{aligned}
& \hat{H}^{e f f}(Q)=-\frac{1}{2} \sum_{i=1}^{q} \nabla_{Q_{i}}^{2}+\frac{\sqrt{\mu_{a b}} Z_{a} Z_{b}}{\left|\xi_{a b}^{0}+Q\right|}+\left\langle\phi_{\overrightarrow{0}}^{(1)}\left(\overrightarrow{R^{e}}\right)\right|-\frac{1}{2} \sum_{i=1}^{p} \nabla_{r_{i}^{e}}^{2}+\sum_{1 \leq i<j \leq p} \frac{1}{\left\|\vec{r}_{i}^{e}-\vec{r}_{j}^{e}\right\|} \\
& -\sum_{i=1}^{p} \frac{Z_{a}}{\sqrt{\left(r_{i_{x}}^{e}\right)^{2}+\left(r_{i_{y}}^{e}\right)^{2}+\left(r_{i_{z}}^{e}-r_{a_{z}}^{0}-\frac{\sqrt{\mu_{a b} Q}}{m_{a}}\right)^{2}}}+\frac{Z_{b}}{\sqrt{\left(r_{i_{x}}^{e}\right)^{2}+\left(r_{i_{y}}^{e}\right)^{2}+\left(r_{i_{z}}^{e}-r_{b_{z}}^{0}+\frac{\sqrt{\mu_{a b} Q}}{m_{b}}\right)^{2}}}\left|\phi_{\overrightarrow{0}}^{(1)}\left(\overrightarrow{R^{e}}\right)\right\rangle_{\overrightarrow{R^{e}}}
\end{aligned}
$$

Electron

$$
\begin{aligned}
& \hat{H}^{e f f}\left(\overrightarrow{R^{e}}\right)=-\frac{1}{2} \sum_{i=1}^{p} \nabla_{r_{i}^{e}}^{2}+\sum_{1 \leq i<j \leq p} \frac{1}{\left\|\vec{r}_{i}^{e}-\vec{r}_{j}^{e}\right\|} \\
& -\left\langle\phi_{0}^{(0)}(Q)\right|-\frac{1}{2} \nabla_{Q}^{2}+\frac{\sqrt{\mu_{a b}} Z_{a} Z_{b}}{\left|\xi_{a b}^{0}+Q\right|} \\
& -\sum_{i=1}^{p} \frac{Z_{a}}{\sqrt{\left(r_{i_{x}}^{e}\right)^{2}+\left(r_{i_{y}}^{e}\right)^{2}+\left(r_{i_{z}}^{e}-r_{a_{z}}^{0}-\frac{\sqrt{\mu_{a b} Q}}{m_{a}}\right)^{2}}}+\frac{Z_{b}}{\sqrt{\left(r_{i_{x}}^{e}\right)^{2}+\left(r_{i_{y}}^{e}\right)^{2}+\left(r_{i_{z}}^{e}-r_{b_{z}}^{0}+\frac{\sqrt{\mu_{a b} Q}}{m_{b}}\right)^{2}}}\left|\phi_{0}^{(0)}(Q)\right\rangle_{Q}
\end{aligned}
$$

Nuclear wave function

Kratzer potential

$$
\left[\frac{\hbar^{2}}{2 \mu}\left(-\frac{\partial^{2}}{\partial r^{2}}+\frac{J(J+1)}{r^{2}}\right)+\frac{A}{r^{2}}-\frac{B}{r}\right] \psi_{n}^{j}(r)=E_{n j} \psi_{n}^{n}(r)
$$

Reduced formula from Kratzer $x=\frac{r}{r_{e}}$

$$
\begin{aligned}
& \left.\left\{-\frac{\partial^{2}}{\partial x^{2}}+K\left(\frac{1}{x^{2}}-\frac{2}{x}\right)\right\} \psi_{n}^{j}(x)\right]=\epsilon_{n j} \psi_{n}^{j}(x) \\
& K=J(J+1)+A \frac{2 \mu}{\hbar^{2}}
\end{aligned}
$$

EN coupling integrals

$$
I_{e-n}\left[Z_{I}, r_{I_{z}}^{0}, \eta\right]=\left\langle\phi_{i}^{k r a}(Q) \chi_{1}\left(\overrightarrow{r^{e}}\right)\right| \frac{Z_{I}}{\sqrt{\left(r_{x}^{e}\right)^{2}+\left(r_{y}^{e}\right)^{2}+\left(r_{z}^{e}-r_{I_{z}}^{0}+\eta Q\right)^{2}}}\left|\phi_{j}^{k r a}(Q) \chi_{2}\left(r^{\vec{e}}\right)\right\rangle
$$

Here, the Kratzer functions are

$$
\phi_{i}^{k r a}(Q)=\frac{N_{i}^{k r a}}{\sqrt{\xi_{a b}^{0}}}\left(1+\frac{Q}{\xi_{a b}^{0}}\right)^{\lambda} \operatorname{Exp}\left[\frac{\lambda(1-\lambda)}{\lambda+i}\left(1+\frac{Q}{\xi_{a b}^{0}}\right)\right]{ }_{1} F_{1}\left[-i, 2 \lambda ; \frac{2 \lambda(\lambda-1)}{\lambda+i}\left(1+\frac{Q}{\xi_{a b}^{0}}\right)\right]
$$

1 Rys and generalized Laguerre double quadrature formulas 2 Multi-Precision based on library arprec
P. Cassam-Chenia, B. Suo, W. Liu, Phys. Rev. A,92,012502,2015.

Off-center basis:

H_{2}, Convergence of total energy with number of Kratz and Offcenter basis, Full-CI, cc-PVTZ

$$
\begin{array}{lcccc}
& \mathrm{K}=4 & \mathrm{~K}=8 & \mathrm{~K}=12 & \mathrm{~K}=16 \\
\mathrm{n}=4 & -1.1621504 & -1.1622377 & -1.1622418 & -1.1622419 \\
\mathrm{n}=8 & -1.1623184 & -1.1624301 & -1.1624334 & -1.1624341 \\
\mathrm{n}=12 & -1.1623574 & -1.1624676 & -1.1624750 & -1.1624754 \\
\mathrm{n}=16 & -1.1623877 & -1.1624996 & -1.1625050 & -1.1625060
\end{array}
$$

Convergence of EN-GMFCI energy with basis sets and off-center basis

$$
\begin{array}{ccccc}
& \text { cc-pVDZ } & c c-p V T Z & c c-p V Q Z & c c-p V 5 Z \\
\hline \mathrm{n}=4 & -1.1576745(18,0) & -1.1622419(36,0) & -1.1632984(68,0) & -1.1636441(118,0) \\
\hline \mathrm{n}=8 & -1.1579290(26,5) & -1.1624380(44,4) & -1.1634754(76,2) & -1.1638262(126,0) \\
\hline \mathrm{n}=12 & -1.1581072(34,10) & -1.1624953(52,9) & -1.1636184(84,5) & -1.1638365(134,5) \\
\hline \mathrm{n}=16 & -1.1581475(42,16) & -1.1625060(60,16) & -1.1635140(92,10) & -1.1638438(142,8) \\
\hline
\end{array}
$$

Two numbers in parentheses are number of basis functions and number of basis functions should be eliminated due to basis set linear dependent.

Full Cl v.s. Limited Cl

Full Cl

Numbers of CSF's
144720
-1.1638438
-1.1638413
$\mathrm{v} ; 0 \longrightarrow 1\left(\mathrm{~cm}^{-1}\right) \quad 4165.36$
4165.86
cc-pV5Z, n=16

Transition	TF-NOMO/CIS TF-NOMO/FCI	This work	Exp.	
	H_{2}			
v: $0 \longrightarrow 1$	4655	4182	4165	4161
v: $0 \longrightarrow 2$	9406	NA	8110	8087
$\Sigma_{g}^{+}: 0 \longrightarrow 1$	106556	NA	91711	91700
v: $0 \longrightarrow 1$	3549	3006	2994	2994
v: $0 \longrightarrow 2$	7026	NA	5874	5869
$\Sigma_{g}^{+}: 0 \longrightarrow 1$	107628	NA	92182	91697
v: $0 \longrightarrow 1$	2929	2477	2465	2465
v: $0 \longrightarrow 2$	5843	NA	4851	4849
$\Sigma_{g}^{+}: 0 \longrightarrow 1$	108043	NA	92375	91696

A brief summary

- Electron-Nuclei Mean field approximation
- EN-SCF/MCSCF/MRCI
- EN-FCI (direct product of electron and nucleus)
- Off-center basis sets

Contains

- Excited state and non-anabatic problem
- EN-GMFCI
- icMRCI based on GUGA

Electron correlation energy

Configuration interaction

$$
\begin{aligned}
|\Psi\rangle & =\sum_{R} C_{R}\left|\Phi_{R}\right\rangle+\sum_{a i} C_{a i}\left|\Phi_{a i}\right\rangle+\sum_{a i, b j} C_{a i, b j}\left|\Phi_{a i, b j}\right\rangle \\
& +\sum_{i a, j b, k c} C_{a i, b j, c k}\left|\Phi_{a i, b j, c k}\right\rangle+\cdots
\end{aligned}
$$

coefficients C can be calculated by solving eigenvalue problem

$$
H C=E C
$$

The dimension of Cl space (Spin-adapted CSFs,neglect spatial symmetry) can be calculated from Weyl equation

$$
D=\frac{2 S+1}{m+1}\binom{m+1}{\frac{N}{2}-S}\binom{m+1}{\frac{N}{2}+S+1}
$$

$\mathrm{CH}_{4}, 6-3 \mathrm{IG}^{* *}$, 10 electron, 49 MOs . The Cl dimension is

$$
673,371,590,640
$$

Electron correlation methods

- Truncated Cl - (MR)CISD,(MR)CISDT,
- Cluster expansion - CCSD,CCSD(T),
- Multi-reference perturbation theory - CASPT2, NEVPT2
- DMRG-CI, by White, Chan, Wouter etc.
- QMC-CI by Alavi, Booth etc.

MRCISD - UC v.s. IC

Un-contracted MRCISD

$$
\begin{gathered}
|\Psi\rangle=\sum_{R} C_{R}\left|\Phi_{R}\right\rangle+\sum_{a i} C_{a i}\left|\Phi_{a i}\right\rangle+\sum_{a i, b j} C_{a i, b j}\left|\Phi_{a i, b j}\right\rangle \\
\left|\Phi_{a i}\right\rangle=E_{a i}\left|\Phi_{R}\right\rangle \\
\left|\Phi_{a i, b j}\right\rangle=E_{a i, b j}\left|\Phi_{R}\right\rangle
\end{gathered}
$$

Internally contracted MRCISD

$$
\begin{gathered}
|\Psi\rangle=\left|\Psi_{0}\right\rangle+\sum_{a i} C_{a i}\left|\Phi_{a i}^{\prime}\right\rangle+\sum_{a i, b j} C_{a i, b j}\left|\Phi_{a i, b j}^{\prime}\right\rangle \\
\left|\Psi_{0}\right\rangle=\sum_{R} C_{R}\left|\Phi_{R}\right\rangle \\
\left|\Phi_{a i}^{\prime}\right\rangle=E_{a i}\left|\Psi_{0}\right\rangle \\
\left|\Phi_{a i, b j}^{\prime}\right\rangle=E_{a i, b j}\left|\Psi_{0}\right\rangle
\end{gathered}
$$

Cl matrix element

Iterative diagonalization

$$
\begin{gathered}
\sigma_{\mu}^{(n+1)}=\sum_{\nu} H_{\mu \nu} C_{\nu} \\
H_{\mu \nu}=\left\langle\Phi_{\mu}\right| \hat{H}\left|\Phi_{\nu}\right\rangle \\
=\sum_{p, q}\left(p\left|h_{1}\right| q\right) \Gamma_{p q}+\sum_{p r, q s}\left(p q\left|h_{12}\right| r s\right) \Gamma_{p q, r s} \\
\Gamma_{p q}^{\mu \nu}=\left\langle\Phi_{\mu}\right| E_{p q}\left|\Phi_{\nu}\right\rangle \\
\Gamma_{p q, r s}^{\mu \nu}=\left\langle\Phi_{\mu}\right| E_{p r, q s}\left|\Phi_{\nu}\right\rangle \quad \text { Coupling coefficients } \\
\begin{array}{l}
\left(p\left|h_{1}\right| q\right) \\
\left(p r\left|h_{12}\right| q s\right)
\end{array} \quad \text { Molecular integrals }
\end{gathered}
$$

Multi-electron basis

Slater Determinate

Configuration state function

Spin adapted	NO	YES
Size	$2-4$ times	1

Calculation of coupling coefficients

Graphic unitary group approach - GUGA

- 1950 Gelfand-Tsetlin
- 1962-1966 Biedenhavn, Moshisky, Boyu Hou
- 1974 Paldus: UGA
- 1978 Shavitt: GUGA
- 1979-1982 Schaefer, Sigbahn, Saxe, Payne
- 1984 Shepard, Lishika in Cloumbus
- 1986 - now, Wen and Wang, Xi'an-Cl
- 2013 -now, Shepard, contracted GUGA

Paldus tabular, step vector and Distinct Row Table

CSF is represented as

Step vector

Coupling coefficients are calculated as

$$
\begin{aligned}
\Gamma_{p q}^{\mu \nu} & =\left\langle d_{\mu}^{\prime}\right| E_{p q}\left|d_{\nu}\right\rangle \\
& =\prod_{r=\min (p, q)}^{\max (p, q)} W\left(Q_{r}, d_{r}^{\prime}, d_{r}, \Delta b_{r}, b_{r}\right) \\
\Gamma_{p q, r s}^{\mu \nu} & =\left\langle d_{\mu}^{\prime}\right| E_{p q, r s}\left|d_{\nu}\right\rangle \\
& =\sum_{J=0,1} \omega_{J}^{\max (p q, r s)} \prod_{r=\min (p q, r s)} W\left(Q_{r}, d_{r}^{\prime}, d_{r}, \Delta b_{r}, b_{r}, J\right)
\end{aligned}
$$

Tail

$$
\begin{aligned}
\Gamma_{p q, r s}^{\mu \nu} & =\left\langle d_{\mu}^{\prime}\right| E_{p q, r s}\left|d_{\nu}\right\rangle \\
& =\sum_{J=0,1} \omega_{J} \prod_{r=\min (p q, r s)}^{\max (p q, r s)} W\left(Q_{r}, d_{r}^{\prime}, d_{r}, \Delta b_{r}, b_{r}, J\right)
\end{aligned}
$$

Distinct Row Table of MRCISD

Head of DRT

Tail of DRT

$$
\begin{aligned}
\Gamma_{p q}^{\mu \nu} & =\left\langle\left(d^{\prime}\right)_{e}\left(d^{\prime}\right)_{a}\left(d^{\prime}\right)_{h}\right| E_{p q}\left|(d)_{e}(d)_{a}(d)_{h}\right\rangle \\
& =E \cdot D \cdot A
\end{aligned}
$$

$$
E=\sum_{r=1}^{n_{e}} W\left(Q_{r} ; d_{r}^{\prime} d_{r}, \delta b_{r}, b_{r}\right)
$$

$$
A=\sum_{r=n_{e}+1}^{n_{e}+n_{a}} W\left(Q_{r} ; d_{r}^{\prime} d_{r}, \delta b_{r}, b_{r}\right) \quad \text { Partial Loops in active space }
$$

$$
D=\sum_{r=n_{e}+n_{a}+1}^{n} W\left(Q_{r} ; d_{r}^{\prime} d_{r}, \delta b_{r}, b_{r}\right) \quad \text { Partial Loops in hole space }
$$

E: 109 pLoop shapes

D: 244 pLoop shapes
A: Searching in active space

Programming

Application of Hole-particle symmetry

Molecules	$\mathrm{CH}_{2} \mathrm{~F}_{2}$		$\mathrm{CH}_{2} \mathrm{Cl}_{2}$		$\mathrm{CH}_{2} \mathrm{Br}_{2}$	
No. orbitals	55(11+	$+40)^{(1)}$	63(19+	+40)	85(37+	+44)
Symmetry	$\mathrm{C}_{2 \mathrm{~V}}$					
Active space	4 electrons in orbitals: $a_{1} a_{1} b_{2} b_{2}$					
No. of CSFs	695,302		1,944,118		8,508,449	
	$\mathrm{A}^{(2)}$	B	A	B	A	B
No. Partial loops	1,155,011	100,756	5,122,447	100,756	33,883,641	100,756
Storage required (Kb)	51,574	3,376	231,646	3,376	1,528,500	3,376
Time per iteration $(\mathrm{sec})^{(3)}$	39	24	176	101	1417	795
(1) In the parenthesis there are numbers of hole, active and external orbitals, respectively.						
(2) A: without hole-particle symmetry; B: with hole-particle symmetry.						
(3) CPU: P-4-1.6 GHz, memory: 512 Mb						

Different contraction schemes based on GUGA

DRT for $\mathrm{O}_{3} 0 / \mathrm{CAS}(6,6) / \mathrm{cc}-\mathrm{pVDZ}$

icMRCI based on hole-particle symmetry

Internal contracted functions are defined within sub-DRTs

$$
\begin{aligned}
\left|\Phi_{i j ; \bar{X} Y}^{a b}\right\rangle & =\hat{E}_{b j, a i}\left|\Phi_{0}\right\rangle \\
\left|\Phi_{0}\right\rangle & =\sum_{R \in r e f} c_{R}\left|\Phi_{R}\right\rangle
\end{aligned}
$$

Insert an identity

$$
\begin{aligned}
\Psi_{i j ; \bar{X} Y}^{a b} & =\sum_{R} c_{R} \hat{E}_{i j}^{a b}\left|\Phi_{R}\right\rangle \\
& =\sum_{M}\left|\Phi_{M}\right\rangle \sum_{R} c_{R}\left\langle\Phi_{M}\right| \hat{E}_{i j}^{a b}\left|\Phi_{R}\right\rangle \\
& =\sum_{M} a^{M}\left|\Phi_{M}\right\rangle
\end{aligned}
$$

Here

$$
\left|\Phi_{M}\right\rangle \in \bar{X} Y \quad a^{M}=\sum_{R} c_{R}\left\langle\Phi_{M}\right| \hat{E}_{i j}^{a b}\left|\Phi_{R}\right\rangle \text { contaction coefficient }
$$

icMRCI based on hole-particle symmetry

$$
\left|\Phi_{M}\right\rangle=\left|(d)_{e}(d)_{a}(d)_{h}\right\rangle,\left|\Phi_{R}\right\rangle=\left|(0 \cdots 0)_{e}(d)_{a}(3 \cdots 3)_{h}\right\rangle
$$

Contaction coefficients can be calculated as

$$
\begin{aligned}
a^{M} & =\sum_{R} c_{R}\left\langle(d)_{h}(d)_{a}(d)_{e}\right| \hat{E}_{a i, b j}\left|(0 \cdots 0)_{e}(d)_{a}(3 \cdots 3)_{h}\right\rangle \\
& =E L S(Y V) \cdot\left(\sum_{R} c_{R}\left\langle\left(d_{\mu}\right)_{a}\right| \hat{E}_{a i, b j}\left|\left(d_{\nu}\right)_{a}\right\rangle\right) \cdot H L S(\bar{X} \bar{V}) \\
& =E L S(Y V) \cdot a^{\mu} \cdot H L S(\bar{X} \bar{V})
\end{aligned}
$$

$E L S(Y V)$
$H L S(\bar{X} \bar{V})$
Segment factors in external and hole space
a^{μ} is the fragment of a^{M} in the active space

Test $1-\mathrm{O}_{3}{ }^{1} \mathrm{~A}^{\prime}\left(\mathrm{C}_{\mathrm{s}}\right)$ cc-pVTZ CAS $(12,9)$

Method	Dimension	Energy(a.u.)	Time(min)/Iters c
ic-MRCI (WK)a	2284304	-225.083654	$11.24 / 9$
ic-MRCI (WK- like)a	2284304	-225.083658	$79.83 / 14$
ic-MRCI (WK)b	6114533	-225.125812	$74.22 / 9$
ic-MRCl (WK- like)b	6114533	-225.125802	$146.79 / 14$
uc-MRCI(FOIS)a	165247124	-225.093292	$2042.87 / 20$
uc-MRCla	199281704	-225.093999	$2799.00 / 20$

a 3 frozen orbital
b No frozen orbital
c Xeon x5657 3.06 GHz, 1 CPU core
Y. Wang, H. Han. etc. JCP 141,164114,2014

A flexible internally contracted MRCI scheme

Contraction Scheme

Contracted Sub-Cl spaces Abbrv.

Werner and Knowles $\bar{S}(\bar{T}) S(T), \bar{D} S(T), \bar{V} S(T) \quad$ WK
SD contration WK contraction plus $\bar{S}(\bar{T}) D \quad$ SD
Celani and Werner \quad SD contraction plus $\bar{D} D, \bar{S}(\bar{T}) V$
No internal excitation SD contraction plus $\bar{D} D, \bar{V} D$ contraction

Semi-full contraction CW contraction plus $\bar{D} V, \bar{V} D$ SFC
B. Suo, Y. Lei, H. Han, Y. Wang, Z. Wen, manuscript in preparing

CFBr calculated by different icMRCI schemes

UC WK SD CW NI SFC

	Cl dimension					
${ }^{1} A^{\prime}$	13,679,604,286	132,561,907	27,053,899	3,638,743	1,819,342	1,525,246
${ }^{3}$ A"	27,203,671,923	246,089,715	49,661,259	7,289,103	4,046,766	3,608,930
${ }^{1}$ A"	13,292,817,282	132,322,497	27,000,969	3,628,989	1,811,310	1,524,626
	Total energy (a.u.)					
${ }^{1} A^{\prime}$		-0.35201711	-0.35201169	-0.35200696	-0.35196129	-0.35196114
${ }^{3} A$ "		-0.30810780	-0.3080997	-0.30809192	-0.30762112	-0.30762102
${ }^{1}$ A"		-0.25015951	-0.25014786	-0.25013715	-0.24897901	-0.24897896
	Relative energy (eV)					
${ }^{1} A^{\prime}$		0.00	0.00	0.00	0.00	0.00
${ }^{3} A$ "		1.19	1.20	1.20	1.21	1.21
${ }^{1}$ A ${ }^{\prime}$		2.77	2.77	2.77	2.80	2.80

B. Suo, Y. Lei, H. Han, Y. Wang, Z. Wen, manuscript in preparing

Correlation errors of PECs of SiO

$$
X^{1} \Sigma^{+}
$$

${ }^{1} \Delta$
B. Suo, Y. Lei, H. Han, Y. Wang, Z. Wen, manuscript in preparing

d-d transitions of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

State CASPT2(5,5) CASPT2(5,10) icMRCI(5,5) icMRCI(5,10) Expt.

${ }^{6} A_{g}$	0.00	0.00	0.00	0.00	0.00
${ }^{4} B_{1 g}$	2.91	2.94	$2.90(2.52)$	$2.53(2.31)$	1.56
${ }^{4} B_{1 g}$	3.34	3.27	$3.62(3.26)$	$3.25(3.05)$	2.29
${ }^{4} A_{g}$	3.74	3.77	$3.97(3.66)$	$3.64(3.49)$	3.01
${ }^{4} A_{g}$	3.79	3.81	$4.01(3.71)$	$3.68(3.53)$	3.05
$\Delta E_{a b s}$	0.97	0.96	$1.15(0.81)$	$0.80(0.61)$	

B. Suo, Y. Lei, H. Han, Y. Wang, Z. Wen, manuscript in preparing

Conclusion and Future development

- EN-GMFCI - treat nuclear and electron in same footing.
- icMRCI based on GUGA - much useful than uncontracted MRCI due to highly efficient.
- EN-GMF-icMRCI

Acknowledgments

Prof. Zhenyi Wen
Prof. Yubin Wang Prof. Yibo Lei @Northwest Univ.

Prof. Wenjian Liu @Peking Univ.

Prof. Patrick Cassam-Chenai@Nice Univ.

Support from NFSC

Thank you for attention!

