New development of internally contracted MRCI

Bingbing Suo

Institute of Modern Physics, Northwest University Xi'an, Shaanxi China

Contains

- Excited state and none-adiabatic problem
- · EN-GMFCI
- icMRCI based on GUGA

Photo-physics and photo-chemistry procedures

Methods for the excited state

Beijing Density Functional package- BDF

• SCF level

RHF, UHF, ROHF, RKS, UKS, ROKS - Direct and none-direct, point group symmetry, CD/RI approximation.

DFT functional: LDA,GGA,Hybrid, range-sep Hybrid etc.

- MCSCF.
- Post SCF and excited states

MP2, Frag-LMP2

TDDFT/TDHF, TDDFT+SOC, TD Gradient and NAC CCSD,CCSD(T), EOM-IP/EA/EE,CCSD+SOC MRCI,MRPT2, MRCI-SOC,MCCEPA EN-GMFCI

Contains

- Excited state and non-anabatic problem
- · EN-GMFCI
- icMRCI based on GUGA

Electron-Nuclei General mean field configuration interaction

$$\hat{H}(\vec{R}^e, \vec{Q}) = \hat{H}(\vec{R}^e) + \hat{H}(\vec{Q}) + \hat{H}(\vec{R}^e, \vec{Q})$$

P. Cassam-Chenai, B. Suo, W. Liu, Phys. Rev. A,92,012502,2015.

General Mean field approach

Electrons are in a mean field generated by nucleus

$$\hat{H}^{eff}(\vec{R}^e) = \hat{H}(\vec{R}^e) + \langle \phi_{\vec{0}}^{(0)}(\vec{Q}) | \hat{H}(\vec{Q}) + \hat{H}(\vec{R}^e, \vec{Q}) | \phi_{\vec{0}}^{(0)}(\vec{Q}) \rangle_{\vec{Q}}$$

Nucleus are in a mean field generated by electrons

$$\hat{H}^{eff}(\vec{Q}) = \hat{H}(\vec{Q}) + \langle \phi_{\vec{0}}^{(1)}(\vec{R}^e) | \hat{H}(\vec{R}^e) + \hat{H}(\vec{R}^e, \vec{Q}) | \phi_{\vec{0}}^{(1)}(\vec{R}^e) \rangle_{\vec{R}^e}$$

Nucleus

$$\begin{split} \hat{H}^{eff}(Q) &= -\frac{1}{2} \sum_{i=1}^{q} \nabla_{Q_{i}}^{2} + \frac{\sqrt{\mu_{ab}} Z_{a} Z_{b}}{|\xi_{ab}^{0} + Q|} + \langle \phi_{\vec{0}}^{(1)}(\vec{R^{e}})| - \frac{1}{2} \sum_{i=1}^{p} \nabla_{\vec{r_{i}^{e}}}^{2} + \sum_{1 \le i < j \le p} \frac{1}{\|\vec{r_{i}^{e}} - \vec{r_{j}^{e}}\|} \\ &- \sum_{i=1}^{p} \frac{Z_{a}}{\sqrt{(r_{i_{x}}^{e})^{2} + (r_{i_{z}}^{e} - r_{a_{z}}^{0} - \frac{\sqrt{\mu_{ab}} Q}{m_{a}})^{2}}} + \frac{Z_{b}}{\sqrt{(r_{i_{x}}^{e})^{2} + (r_{i_{z}}^{e} - r_{b_{z}}^{0} + \frac{\sqrt{\mu_{ab}} Q}{m_{b}})^{2}}} |\phi_{\vec{0}}^{(1)}(\vec{R^{e}})\rangle_{\vec{R^{e}}} \end{split}$$

Electron

$$\begin{split} \hat{H}^{eff}(\vec{R^e}) &= -\frac{1}{2} \sum_{i=1}^{p} \nabla_{\vec{r_i^e}}^2 + \sum_{1 \le i < j \le p} \frac{1}{\|\vec{r_i^e} - \vec{r_j^e}\|} + \langle \phi_0^{(0)}(Q)| - \frac{1}{2} \nabla_Q^2 + \frac{\sqrt{\mu_{ab}} Z_a Z_b}{|\xi_{ab}^0 + Q|} \\ &- \sum_{i=1}^{p} \frac{Z_a}{\sqrt{(r_{i_x}^e)^2 + (r_{i_y}^e)^2 + (r_{i_z}^e - r_{a_z}^0 - \frac{\sqrt{\mu_{ab}} Q}{m_a})^2}} + \frac{Z_b}{\sqrt{(r_{i_x}^e)^2 + (r_{i_z}^e - r_{b_z}^0 + \frac{\sqrt{\mu_{ab}} Q}{m_b})^2}} |\phi_0^{(0)}(Q)\rangle_Q \end{split}$$

Nuclear wave function

Kratzer potential

$$[\frac{\hbar^2}{2\mu}(-\frac{\partial^2}{\partial r^2} + \frac{J(J+1)}{r^2}) + \frac{A}{r^2} - \frac{B}{r}]\psi_n^j(r) = E_{nj}\psi_n^n(r)$$

Reduced formula from Kratzer $x = \frac{r}{r_e}$

$$\{-\frac{\partial^2}{\partial x^2} + K(\frac{1}{x^2} - \frac{2}{x})\}\psi_n^j(x)] = \epsilon_{nj}\psi_n^j(x)$$

$$K = J(J+1) + A\frac{2\mu}{\hbar^2}$$

D. Secrest, JCP, 89, 1017, 1988

EN coupling integrals

$$I_{e-n}[Z_I, r_{I_z}^0, \eta] = \langle \phi_i^{kra}(Q)\chi_1(\vec{r^e}) | \frac{Z_I}{\sqrt{(r_x^e)^2 + (r_y^e)^2 + (r_z^e - r_{I_z}^0 + \eta Q)^2}} | \phi_j^{kra}(Q)\chi_2(\vec{r^e}) \rangle$$

Here, the Kratzer functions are

$$\phi_i^{kra}(Q) = \frac{N_i^{kra}}{\sqrt{\xi_{ab}^0}} \left(1 + \frac{Q}{\xi_{ab}^0}\right)^{\lambda} Exp\left[\frac{\lambda(1-\lambda)}{\lambda+i}\left(1 + \frac{Q}{\xi_{ab}^0}\right)\right] \ _1F_1[-i, 2\lambda; \frac{2\lambda(\lambda-1)}{\lambda+i}\left(1 + \frac{Q}{\xi_{ab}^0}\right)]$$

Rys and generalized Laguerre double quadrature formulas
Multi-Precision based on library arprec

P. Cassam-Chenia, B. Suo, W. Liu, Phys. Rev. A,92,012502,2015.

Off-center basis:

H₂, Convergence of total energy with number of Kratz and Offcenter basis, Full-CI, cc-PVTZ

	K=4	K=8	K=12	K=16
n=4	-1.1621504	-1.1622377	-1.1622418	-1.1622419
n=8	-1.1623184	-1.1624301	-1.1624334	-1.1624341
n=12	-1.1623574	-1.1624676	-1.1624750	-1.1624754
n=16	-1.1623877	-1.1624996	-1.1625050	-1.1625060

Convergence of EN-GMFCI energy with basis sets and off-center basis

	cc-pVDZ	cc-pVTZ	cc-pVQZ	cc-pV5Z
n=4	-1.1576745 (18,0)	-1.1622419 (36,0)	-1.1632984 (68,0)	-1.1636441 (118,0)
n=8	-1.1579290 (26,5)	-1.1624380 (44,4)	-1.1634754 (76,2)	-1.1638262 (126,0)
n=12	-1.1581072 (34,10)	-1.1624953 (52,9)	-1.1636184 (84,5)	-1.1638365 (134,5)
4.0				

n=16 -1.1581475 (42,16) -1.1625060 (60,16) -1.1635140 (92,10) -1.1638438 (142,8)

Two numbers in parentheses are number of basis functions and number of basis functions should be eliminated due to basis set linear dependent.

cc-pV5Z, n=16

Transition	TF-NOMO/CIS	TF-NOMO/FCI	This work	Exp.
		H_2		
v: 0 —>1	4655	4182	4165	4161
v: 0 —>2	9406	NA	8110	8087
Σ_{g}^{+} : 0 —>1	106556	NA	91711	91700
		D_2		
v: 0 —>1	3549	3006	2994	2994
v: 0 —>2	7026	NA	5874	5869
$\Sigma_g^+: 0 \longrightarrow 1$	107628	NA	92182	91697
		T ₂		
v: 0 —>1	2929	2477	2465	2465
v: 0 —>2	5843	NA	4851	4849
$\Sigma_{g}^{+}: 0 \longrightarrow 1$	108043	NA	92375	91696

A brief summary

- Electron-Nuclei Mean field approximation
- EN-SCF/MCSCF/MRCI
- EN-FCI (direct product of electron and nucleus)
- Off-center basis sets

Contains

- Excited state and non-anabatic problem
- EN-GMFCI
- icMRCI based on GUGA

Configuration interaction

$$\begin{split} |\Psi\rangle &= \sum_{R} C_{R} |\Phi_{R}\rangle + \sum_{ai} C_{ai} |\Phi_{ai}\rangle + \sum_{ai,bj} C_{ai,bj} |\Phi_{ai,bj}\rangle \\ &+ \sum_{ia,jb,kc} C_{ai,bj,ck} |\Phi_{ai,bj,ck}\rangle + \cdots \end{split}$$

coefficients C can be calculated by solving eigenvalue problem

$$HC = EC$$

The dimension of CI space (Spin-adapted CSFs, neglect spatial symmetry) can be calculated from Weyl equation

$$D = \frac{2S+1}{m+1} \begin{pmatrix} m+1\\ \frac{N}{2} - S \end{pmatrix} \begin{pmatrix} m+1\\ \frac{N}{2} + S + 1 \end{pmatrix}$$

CH₄, 6-31G^{**}, 10 electron, 49 MOs. The CI dimension is 673,371,590,640

Electron correlation methods

- Truncated CI (MR)CISD,(MR)CISDT,
- Cluster expansion CCSD,CCSD(T),
- Multi-reference perturbation theory CASPT2, NEVPT2
- DMRG-CI, by White, Chan, Wouter etc.
- QMC-CI by Alavi, Booth etc.

MRCISD - UC v.s. IC

Un-contracted MRCISD

$$\begin{split} |\Psi\rangle &= \sum_{R} C_{R} |\Phi_{R}\rangle + \sum_{ai} C_{ai} |\Phi_{ai}\rangle + \sum_{ai,bj} C_{ai,bj} |\Phi_{ai,bj}\rangle \\ &\quad |\Phi_{ai}\rangle = E_{ai} |\Phi_{R}\rangle \\ &\quad |\Phi_{ai,bj}\rangle = E_{ai,bj} |\Phi_{R}\rangle \end{split}$$

Internally contracted MRCISD

$$\begin{split} |\Psi\rangle &= |\Psi_0\rangle + \sum_{ai} C_{ai} |\Phi'_{ai}\rangle + \sum_{ai,bj} C_{ai,bj} |\Phi'_{ai,bj}\rangle \\ |\Psi_0\rangle &= \sum_R C_R |\Phi_R\rangle \\ |\Phi'_{ai}\rangle &= E_{ai} |\Psi_0\rangle \\ |\Phi'_{ai,bj}\rangle &= E_{ai,bj} |\Psi_0\rangle \end{split}$$

CI matrix element

Iterative diagonalization

$$\sigma_{\mu}^{(n+1)} = \sum_{\nu} H_{\mu\nu} C_{\nu}$$

$$H_{\mu\nu} = \langle \Phi_{\mu} | \hat{H} | \Phi_{\nu} \rangle$$

=
$$\sum_{p,q} (p|h_1|q) \Gamma_{pq} + \sum_{pr,qs} (pq|h_{12}|rs) \Gamma_{pq,rs}$$

$$\Gamma^{\mu\nu}_{pq} = \langle \Phi_{\mu} | E_{pq} | \Phi_{\nu} \rangle$$

$$\Gamma^{\mu\nu}_{pq,rs} = \langle \Phi_{\mu} | E_{pr,qs} | \Phi_{\nu} \rangle$$

Coupling coefficients

 $(p|h_1|q)$ $(pr|h_{12}|qs)$

Molecular integrals

Multi-electron basis

Slater Determinate

Configuration state function

Spin adapted	NO	YES

Size 2-4 times 1

Calculation		
of coupling	easy	complicated
coefficients		

Graphic unitary group approach - GUGA

- 1950 Gelfand-Tsetlin
- 1962-1966 Biedenhavn, Moshisky, Boyu Hou
- 1974 Paldus: UGA
- 1978 Shavitt: GUGA
- 1979-1982 Schaefer, Sigbahn, Saxe, Payne
- 1984 Shepard, Lishika in Cloumbus
- 1986 now, Wen and Wang, Xi'an-Cl
- 2013 -now, Shepard, contracted GUGA

Paldus tabular, step vector and Distinct Row Table

Step vector

Coupling coefficients are calculated as

$$\Gamma_{pq}^{\mu\nu} = \langle d'_{\mu} | E_{pq} | d_{\nu} \rangle$$

=
$$\prod_{r=min(p,q)}^{max(p,q)} W(Q_r, d'_r, d_r, \Delta b_r, b_r)$$

$$\Gamma_{pq,rs}^{\mu\nu} = \langle d'_{\mu} | E_{pq,rs} | d_{\nu} \rangle$$

=
$$\sum_{J=0,1}^{max(pq,rs)} \omega_J \prod_{r=min(pq,rs)}^{max(pq,rs)} W(Q_r, d'_r, d_r, \Delta b_r, b_r, J)$$

Distinct Row Table of MRCISD

$$\Gamma_{pq}^{\mu\nu} = \langle (d')_e (d')_a (d')_h | E_{pq} | (d)_e (d)_a (d)_h \rangle$$
$$= E \cdot D \cdot A$$

$$E = \sum_{r=1}^{n_e} W(Q_r; d'_r d_r, \delta b_r, b_r)$$

Partial Loops in external space

$$A = \sum_{r=n_e+1}^{n_e+n_a} W(Q_r; d'_r d_r, \delta b_r, b_r)$$

Partial Loops in active space

 $D = \sum_{r=n_e+n_a+1}^{n} W(Q_r; d'_r d_r, \delta b_r, b_r) \quad \text{Partial Loops in hole space}$

E: 109 pLoop shapes D: 244 pLoop shapes A: Searching in active space

Programming

D (Hole)

E (External)

Coupling coefficient = $D \cdot A \cdot E$

Application of Hole-particle symmetry

Molecules	CH_2F_2		CH ₂	Cl ₂	CH ₂	Br ₂	
No. orbitals	55(11+4+40) ⁽¹⁾		63(19+	63(19+4+40)		85(37+4+44)	
Symmetry			C_{2V}				
Active space		4 ele	etrons in orbitals: $a_1 a_1 b_2 b_2$				
No. of CSFs	695,302		1,944,118		8,508,449		
	A ⁽²⁾	В	А	В	А	В	
No. Partial loops	1,155,011	100,756	5,122,447	100,756	33,883,641	100,756	
Storage required (Kb)	51,574	3,376	231,646	3,376	1,528,500	3,376	
Time per iteration $(\sec)^{(3)}$	39	24	176	101	1417	795	

(1) In the parenthesis there are numbers of hole, active and external orbitals, respectively.

(2) A: without hole-particle symmetry; B: with hole-particle symmetry.

(3) CPU: P-4-1.6 GHz, memory: 512 Mb

Different contraction schemes based on GUGA

DRT for O₃ ()/CAS(6,6)/cc-pVDZ

icMRCI based on hole-particle symmetry

Internal contracted functions are defined within sub-DRTs

$$\begin{split} |\Phi_{ij;\bar{X}Y}^{ab}\rangle &= \hat{E}_{bj,ai} |\Phi_0\rangle \\ |\Phi_0\rangle &= \sum_{R \in ref} c_R |\Phi_R\rangle \end{split}$$

Insert an identity

$$\Psi_{ij;\bar{X}Y}^{ab} = \sum_{R} c_R \hat{E}_{ij}^{ab} |\Phi_R\rangle$$
$$= \sum_{M} |\Phi_M\rangle \sum_{R} c_R \langle \Phi_M | \hat{E}_{ij}^{ab} |\Phi_R\rangle$$
$$= \sum_{M} a^M |\Phi_M\rangle$$

Here

$$|\Phi_M\rangle \in \bar{X}Y$$
 $a^M = \sum_R c_R \langle \Phi_M | \hat{E}_{ij}^{ab} | \Phi_R \rangle$ contaction coefficient

icMRCI based on hole-particle symmetry

$$|\Phi_M\rangle = |(d)_e(d)_a(d)_h\rangle, |\Phi_R\rangle = |(0\cdots 0)_e(d)_a(3\cdots 3)_h\rangle$$

Contaction coefficients can be calculated as

$$a^{M} = \sum_{R} c_{R} \langle (d)_{h}(d)_{a}(d)_{e} | \hat{E}_{ai,bj} | (0 \cdots 0)_{e}(d)_{a} (3 \cdots 3)_{h} \rangle$$

$$= ELS(YV) \cdot (\sum_{R} c_{R} \langle (d_{\mu})_{a} | \hat{E}_{ai,bj} | (d_{\nu})_{a} \rangle) \cdot HLS(\bar{X}\bar{V})$$

$$= ELS(YV) \cdot a^{\mu} \cdot HLS(\bar{X}\bar{V})$$

ELS(YV) $HLS(\bar{X}\bar{V})$ **Segment factors in external and hole space**

$$a^{\mu}$$
 is the fragment of a^{M} in the active space

Test 1 - $O_3^{1}A'(C_s)$ cc-pVTZ CAS(12,9)

Method	Dimension	Energy(a.u.)	Time(min)/Iters c
ic-MRCI (WK)a	2284304	-225.083654	11.24/9
ic-MRCI (WK- like)ª	2284304	-225.083658	79.83/14
ic-MRCI (WK)b	6114533	-225.125812	74.22/9
ic-MRCI (WK- like) ^b	6114533	-225.125802	146.79/14
uc-MRCI(FOIS)a	165247124	-225.093292	2042.87/20
uc-MRCIa	199281704	-225.093999	2799.00/20

a 3 frozen orbital

b No frozen orbital

c Xeon x5657 3.06 GHz, 1 CPU core

Y. Wang, H. Han. etc. JCP 141,164114,2014

A flexible internally contracted MRCI scheme

Contraction Scheme	Contracted Sub-CI spaces	Abbrv.
Werner and Knowles	$ar{S}(ar{T})S(T),ar{D}S(T),ar{V}S(T)$	WK
SD contration	WK contraction plus $\bar{S}(\bar{T})D$	SD
Celani and Werner	SD contraction plus $\bar{D}D, \bar{S}(\bar{T})V$	CW
No internal excitation contraction	SD contraction plus $\bar{D}D, \bar{V}D$	NI
Semi-full contraction	CW contraction plus $\bar{D}V, \bar{V}D$	SFC
	B. Suo, Y. Lei, H. Han, Y. Wang, Z. Wen, manusc	cript in preparing

CFBr calculated by different icMRCI schemes

	UC	WK	SD	CW	NI	SFC	
	CI dimension						
¹ A'	13,679,604,286	132,561,907	27,053,899	3,638,743	1,819,342	1,525,246	
<i>3</i> А"	27,203,671,923	246,089,715	49,661,259	7,289,103	4,046,766	3,608,930	
¹ A"	13,292,817,282	132,322,497	27,000,969	3,628,989	1,811,310	1,524,626	
	Total energy (a.u.)						
¹ A'		-0.35201711	-0.35201169	-0.35200696	-0.35196129	-0.35196114	
<i>3</i> А"		-0.30810780	-0.3080997	-0.30809192	-0.30762112	-0.30762102	
¹ A"		-0.25015951	-0.25014786	-0.25013715	-0.24897901	-0.24897896	
	Relative energy (eV)						
¹ A'		0.00	0.00	0.00	0.00	0.00	
3Д"		1.19	1.20	1.20	1.21	1.21	
¹ A"		2.77	2.77	2.77	2.80	2.80	

B. Suo, Y. Lei, H. Han, Y. Wang, Z. Wen, manuscript in preparing

Correlation errors of PECs of SiO

B. Suo, Y. Lei, H. Han, Y. Wang, Z. Wen, manuscript in preparing

d-d transitions of $[Fe(H_2O)_6]^{3+}$

State CASPT2(5,5) CASPT2(5,10) icMRCI(5,5) icMRCI(5,10) Expt.

$^{6}A_{g}$	0.00	0.00	0.00	0.00	0.00
⁴ B _{1g}	2.91	2.94	2.90(2.52)	2.53(2.31)	1.56
⁴ B _{1g}	3.34	3.27	3.62(3.26)	3.25(3.05)	2.29
${}^{4}A_{g}$	3.74	3.77	3.97(3.66)	3.64(3.49)	3.01
${}^{4}A_{g}$	3.79	3.81	4.01(3.71)	3.68(3.53)	3.05
ΔE_{abs}	0.97	0.96	1.15(0.81)	0.80(0.61)	

B. Suo, Y. Lei, H. Han, Y. Wang, Z. Wen, manuscript in preparing

Conclusion and Future development

- EN-GMFCI treat nuclear and electron in same footing.
- icMRCI based on GUGA much useful than uncontracted MRCI due to highly efficient.
- EN-GMF-icMRCI

Acknowledgments

Prof. Zhenyi Wen Prof. Yubin Wang Prof. Yibo Lei @Northwest Univ.

Prof. Wenjian Liu @Peking Univ.

Prof. Patrick Cassam-Chenai@Nice Univ.

Support from **NFSC**

Thank you for attention!

