
Quantum complexity theory
A very brief introduction, with some topology

Clément Maria

INRIA Sophia Antipolis-Méditerranée

QuantAzur seminar

Classical complexity

2

Some complexity classes (more or less formally)

Definition (Computing)

A problem is a language L ⊆ {0, 1}∗ = ∪n≥0{0, 1}n.
Deciding a language L consists of deciding membership of any input
word x ∈ {0, 1}n of length n to L:

INPUT x ∈ {0, 1}n, OUTPUT yes if x ∈ L, and no o.w.

The complexity is measures as a function of the length n of the input
x ∈ {0, 1}n.

- P: class of problems L solvable in polynomial time by a classical
deterministic computer.

Ex: given a graph G and two nodes u, v, is there a (u, v) path of
length ≤ k?

Fix a language L ∈ P; there exists an “algorithm” and a polynomial
p s.t. for any input x ∈ {0, 1}n, the algorithm returns yes if x ∈ L,
and no otherwise, in at most p(n) logical operations.

- #P: class of counting problems.

Ex: given a graph, how many Hamiltonian cycles are there ?

Directly from the definitions: P ⊆ NP ⊆ P#P.

3

Some complexity classes (more or less formally)

Definition (Computing)

A problem is a language L ⊆ {0, 1}∗ = ∪n≥0{0, 1}n.

Deciding a language L consists of deciding membership of any input
word x ∈ {0, 1}n of length n to L:

INPUT x ∈ {0, 1}n, OUTPUT yes if x ∈ L, and no o.w.

The complexity is measures as a function of the length n of the input
x ∈ {0, 1}n.

- P: class of problems L solvable in polynomial time by a classical
deterministic computer.

Ex: given a graph G and two nodes u, v, is there a (u, v) path of
length ≤ k?

Fix a language L ∈ P; there exists an “algorithm” and a polynomial
p s.t. for any input x ∈ {0, 1}n, the algorithm returns yes if x ∈ L,
and no otherwise, in at most p(n) logical operations.

- #P: class of counting problems.

Ex: given a graph, how many Hamiltonian cycles are there ?

Directly from the definitions: P ⊆ NP ⊆ P#P.

3

Some complexity classes (more or less formally)

Definition (Computing)

A problem is a language L ⊆ {0, 1}∗ = ∪n≥0{0, 1}n.
Deciding a language L consists of deciding membership of any input
word x ∈ {0, 1}n of length n to L:

INPUT x ∈ {0, 1}n, OUTPUT yes if x ∈ L, and no o.w.

The complexity is measures as a function of the length n of the input
x ∈ {0, 1}n.

- P: class of problems L solvable in polynomial time by a classical
deterministic computer.

Ex: given a graph G and two nodes u, v, is there a (u, v) path of
length ≤ k?

Fix a language L ∈ P; there exists an “algorithm” and a polynomial
p s.t. for any input x ∈ {0, 1}n, the algorithm returns yes if x ∈ L,
and no otherwise, in at most p(n) logical operations.

- #P: class of counting problems.

Ex: given a graph, how many Hamiltonian cycles are there ?

Directly from the definitions: P ⊆ NP ⊆ P#P.

3

Some complexity classes (more or less formally)

Definition (Computing)

A problem is a language L ⊆ {0, 1}∗ = ∪n≥0{0, 1}n.
Deciding a language L consists of deciding membership of any input
word x ∈ {0, 1}n of length n to L:

INPUT x ∈ {0, 1}n, OUTPUT yes if x ∈ L, and no o.w.

The complexity is measures as a function of the length n of the input
x ∈ {0, 1}n.

- P: class of problems L solvable in polynomial time by a classical
deterministic computer.

Ex: given a graph G and two nodes u, v, is there a (u, v) path of
length ≤ k?

Fix a language L ∈ P; there exists an “algorithm” and a polynomial
p s.t. for any input x ∈ {0, 1}n, the algorithm returns yes if x ∈ L,
and no otherwise, in at most p(n) logical operations.

- #P: class of counting problems.

Ex: given a graph, how many Hamiltonian cycles are there ?

Directly from the definitions: P ⊆ NP ⊆ P#P.

3

Some complexity classes (more or less formally)

Definition (Computing)

A problem is a language L ⊆ {0, 1}∗ = ∪n≥0{0, 1}n.
Deciding a language L consists of deciding membership of any input
word x ∈ {0, 1}n of length n to L:

INPUT x ∈ {0, 1}n, OUTPUT yes if x ∈ L, and no o.w.

The complexity is measures as a function of the length n of the input
x ∈ {0, 1}n.

- P: class of problems L solvable in polynomial time by a classical
deterministic computer.

Ex: given a graph G and two nodes u, v, is there a (u, v) path of
length ≤ k?

Fix a language L ∈ P; there exists an “algorithm” and a polynomial
p s.t. for any input x ∈ {0, 1}n, the algorithm returns yes if x ∈ L,
and no otherwise, in at most p(n) logical operations.

- #P: class of counting problems.

Ex: given a graph, how many Hamiltonian cycles are there ?

Directly from the definitions: P ⊆ NP ⊆ P#P.

3

Some complexity classes (more or less formally)

Definition (Computing)

A problem is a language L ⊆ {0, 1}∗ = ∪n≥0{0, 1}n.
Deciding a language L consists of deciding membership of any input
word x ∈ {0, 1}n of length n to L:

INPUT x ∈ {0, 1}n, OUTPUT yes if x ∈ L, and no o.w.

The complexity is measures as a function of the length n of the input
x ∈ {0, 1}n.

- P: class of problems L solvable in polynomial time by a classical
deterministic computer.

Ex: given a graph G and two nodes u, v, is there a (u, v) path of
length ≤ k?

Fix a language L ∈ P; there exists an “algorithm” and a polynomial
p s.t. for any input x ∈ {0, 1}n, the algorithm returns yes if x ∈ L,
and no otherwise, in at most p(n) logical operations.

- #P: class of counting problems.

Ex: given a graph, how many Hamiltonian cycles are there ?

Directly from the definitions: P ⊆ NP ⊆ P#P.

3

Some complexity classes (more or less formally)

Definition (Computing)

A problem is a language L ⊆ {0, 1}∗ = ∪n≥0{0, 1}n.
Deciding a language L consists of deciding membership of any input
word x ∈ {0, 1}n of length n to L:

INPUT x ∈ {0, 1}n, OUTPUT yes if x ∈ L, and no o.w.

The complexity is measures as a function of the length n of the input
x ∈ {0, 1}n.

- NP: class of problems L where the yes-instances can be solved in
polynomial time, when given a hint of polynomial size.

Ex: given a graph G, is there a Hamiltonian cycle (cycle visiting all
nodes exactly once) ?
−→ the hint is the sequence of nodes forming the Hamiltonian
cycle (in a yes-instance).
Hard to find one, easy to verify one is valid.

- #P: class of counting problems.

Ex: given a graph, how many Hamiltonian cycles are there ?

Directly from the definitions: P ⊆ NP ⊆ P#P.

3

Some complexity classes (more or less formally)

Definition (Computing)

A problem is a language L ⊆ {0, 1}∗ = ∪n≥0{0, 1}n.
Deciding a language L consists of deciding membership of any input
word x ∈ {0, 1}n of length n to L:

INPUT x ∈ {0, 1}n, OUTPUT yes if x ∈ L, and no o.w.

The complexity is measures as a function of the length n of the input
x ∈ {0, 1}n.

- #P: class of counting problems.

Ex: given a graph, how many Hamiltonian cycles are there ?

Directly from the definitions: P ⊆ NP ⊆ P#P.

3

Quantum computing

4

Quantum states

Consider the C-vector space C2 of basis: |0⟩ :=
(
1
0

)
, |1⟩ :=

(
0
1

)
.

Definition (Qubits)

|0⟩ and |1⟩ are qubits.

An n-qubit state is, for bj ∈ {0, 1}:

|b1b2 · · · bn⟩ := |b1⟩ ⊗ |b2⟩ ⊗ · · · ⊗ |bn⟩ ∈ C2 ⊗ · · · ⊗ C2 ∼= C2n .

Definition (Quantum state)

A quantum state on n qubits is the superposition:

α0 |0⟩+ · · ·+ α2n−1 |2n − 1⟩ ,
2n−1∑
j=0

|αj|2 = 1,

or equivalently a norm 1 vector of C2n .

5

Quantum states

Consider the C-vector space C2 of basis: |0⟩ :=
(
1
0

)
, |1⟩ :=

(
0
1

)
.

Definition (Qubits)

|0⟩ and |1⟩ are qubits. An n-qubit state is, for bj ∈ {0, 1}:

|b1b2 · · · bn⟩ := |b1⟩ ⊗ |b2⟩ ⊗ · · · ⊗ |bn⟩ ∈ C2 ⊗ · · · ⊗ C2 ∼= C2n .

Definition (Quantum state)

A quantum state on n qubits is the superposition:

α0 |0⟩+ · · ·+ α2n−1 |2n − 1⟩ ,
2n−1∑
j=0

|αj|2 = 1,

or equivalently a norm 1 vector of C2n .

5

Quantum states

Consider the C-vector space C2 of basis: |0⟩ :=
(
1
0

)
, |1⟩ :=

(
0
1

)
.

Definition (Qubits)

|0⟩ and |1⟩ are qubits. An n-qubit state is, for bj ∈ {0, 1}:

|b1b2 · · · bn⟩ := |b1⟩ ⊗ |b2⟩ ⊗ · · · ⊗ |bn⟩ ∈ C2 ⊗ · · · ⊗ C2 ∼= C2n .

−→ so far, quite similar to classical words x ∈ {0, 1}n.

Definition (Quantum state)

A quantum state on n qubits is the superposition:

α0 |0⟩+ · · ·+ α2n−1 |2n − 1⟩ ,
2n−1∑
j=0

|αj|2 = 1,

or equivalently a norm 1 vector of C2n .

5

Quantum states

Consider the C-vector space C2 of basis: |0⟩ :=
(
1
0

)
, |1⟩ :=

(
0
1

)
.

Definition (Qubits)

|0⟩ and |1⟩ are qubits. An n-qubit state is, for bj ∈ {0, 1}:

|b1b2 · · · bn⟩ := |b1⟩ ⊗ |b2⟩ ⊗ · · · ⊗ |bn⟩ ∈ C2 ⊗ · · · ⊗ C2 ∼= C2n .

Definition (Quantum state)

A quantum state on n qubits is the superposition:

α0 |0⟩+ · · ·+ α2n−1 |2n − 1⟩ ,
2n−1∑
j=0

|αj|2 = 1,

or equivalently a norm 1 vector of C2n .

5

Quantum gates & measurement

A quantum gate is a unitary matrix U : C2k → C2k, i.e., U−1 = U∗.

Examples on 1 qubit, in the basis {|0⟩ , |1⟩}:

X =

(
0 1
1 0

)
swaps bits, Rϕ =

(
1 0
0 eiϕ

)
phase gate

Hadamard H =
1√
2

(
1 1
1 −1

)
, H |0⟩ = 1√

2
|0⟩+ 1√

2
|1⟩ ,HH |0⟩ = |0⟩ .

Example on 2 qubits, in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 → flips the second target qubit
iff the first control qubit is 1.

Measuring a quantum state
∑2n−1

j=0 αj |j⟩ returns the (non-superposed)
state |j⟩ with probability |αi|2. (there exist more general projections)

6

Quantum gates & measurement

A quantum gate is a unitary matrix U : C2k → C2k, i.e., U−1 = U∗.

Examples on 1 qubit, in the basis {|0⟩ , |1⟩}:

X =

(
0 1
1 0

)
swaps bits, Rϕ =

(
1 0
0 eiϕ

)
phase gate

Hadamard H =
1√
2

(
1 1
1 −1

)
, H |0⟩ = 1√

2
|0⟩+ 1√

2
|1⟩ ,HH |0⟩ = |0⟩ .

Example on 2 qubits, in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 → flips the second target qubit
iff the first control qubit is 1.

Measuring a quantum state
∑2n−1

j=0 αj |j⟩ returns the (non-superposed)
state |j⟩ with probability |αi|2. (there exist more general projections)

6

Quantum gates & measurement

A quantum gate is a unitary matrix U : C2k → C2k, i.e., U−1 = U∗.

Examples on 1 qubit, in the basis {|0⟩ , |1⟩}:

X =

(
0 1
1 0

)
swaps bits, Rϕ =

(
1 0
0 eiϕ

)
phase gate

Hadamard H =
1√
2

(
1 1
1 −1

)
, H |0⟩ = 1√

2
|0⟩+ 1√

2
|1⟩ ,HH |0⟩ = |0⟩ .

Example on 2 qubits, in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 → flips the second target qubit
iff the first control qubit is 1.

Measuring a quantum state
∑2n−1

j=0 αj |j⟩ returns the (non-superposed)
state |j⟩ with probability |αi|2. (there exist more general projections)

6

Quantum gates & measurement

A quantum gate is a unitary matrix U : C2k → C2k, i.e., U−1 = U∗.

Examples on 1 qubit, in the basis {|0⟩ , |1⟩}:

X =

(
0 1
1 0

)
swaps bits, Rϕ =

(
1 0
0 eiϕ

)
phase gate

Hadamard H =
1√
2

(
1 1
1 −1

)
, H |0⟩ = 1√

2
|0⟩+ 1√

2
|1⟩ ,HH |0⟩ = |0⟩ .

Example on 2 qubits, in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 → flips the second target qubit
iff the first control qubit is 1.

Measuring a quantum state
∑2n−1

j=0 αj |j⟩ returns the (non-superposed)
state |j⟩ with probability |αi|2. (there exist more general projections)

6

Quantum circuits

Horizontal collection of wires, one per qubit, on which gates are
applied from left to right, followed by a final measurement.

|b1〉

|bn〉

U

Z

HH

ZZ

CNOT

control

target

U1 U2 ≡ U2 ◦ U1

≡ idC2

U1

U2

≡ U1 ⊗ U2

can be mixed with “classical” computations.

7

Quantum complexity

8

Quantum complexity classes

- BQP: the class of “efficiently solvable problem on a quantum
computer”.

Formally, a language L ∈ BQP is there exists a polynomial-time
unirform family of quantum circuits {Qn : n ≥ 1}, such that:

▶ The circuit Qn takes n-qubits as input, and outputs 1 bit,
▶ For any x ∈ L of length n, Pr(Qn(|x⟩) = 1) ≥ 2

3 ,
▶ For any x /∈ L of length n, Pr(Qn(|x⟩) = 1) ≤ 1

3 .

−→ there is a probably of error, that can be made exponentially
small by repeating the computation.

Naturally, P ⊆ BQP.

- There is a quantum counterpart to NP called QMA, with a rich
theory of complexity (complete problems, etc). The hint is a
quantum state.

9

Quantum complexity classes

- BQP: the class of “efficiently solvable problem on a quantum
computer”.

Formally, a language L ∈ BQP is there exists a polynomial-time
unirform family of quantum circuits {Qn : n ≥ 1}, such that:

▶ The circuit Qn takes n-qubits as input, and outputs 1 bit,
▶ For any x ∈ L of length n, Pr(Qn(|x⟩) = 1) ≥ 2

3 ,
▶ For any x /∈ L of length n, Pr(Qn(|x⟩) = 1) ≤ 1

3 .

−→ there is a probably of error, that can be made exponentially
small by repeating the computation.

Naturally, P ⊆ BQP.

- There is a quantum counterpart to NP called QMA, with a rich
theory of complexity (complete problems, etc). The hint is a
quantum state.

9

Quantum complexity classes

- BQP: the class of “efficiently solvable problem on a quantum
computer”.

Formally, a language L ∈ BQP is there exists a polynomial-time
unirform family of quantum circuits {Qn : n ≥ 1}, such that:

▶ The circuit Qn takes n-qubits as input, and outputs 1 bit,

▶ For any x ∈ L of length n, Pr(Qn(|x⟩) = 1) ≥ 2
3 ,

▶ For any x /∈ L of length n, Pr(Qn(|x⟩) = 1) ≤ 1
3 .

−→ there is a probably of error, that can be made exponentially
small by repeating the computation.

Naturally, P ⊆ BQP.

- There is a quantum counterpart to NP called QMA, with a rich
theory of complexity (complete problems, etc). The hint is a
quantum state.

9

Quantum complexity classes

- BQP: the class of “efficiently solvable problem on a quantum
computer”.

Formally, a language L ∈ BQP is there exists a polynomial-time
unirform family of quantum circuits {Qn : n ≥ 1}, such that:

▶ The circuit Qn takes n-qubits as input, and outputs 1 bit,
▶ For any x ∈ L of length n, Pr(Qn(|x⟩) = 1) ≥ 2

3 ,

▶ For any x /∈ L of length n, Pr(Qn(|x⟩) = 1) ≤ 1
3 .

−→ there is a probably of error, that can be made exponentially
small by repeating the computation.

Naturally, P ⊆ BQP.

- There is a quantum counterpart to NP called QMA, with a rich
theory of complexity (complete problems, etc). The hint is a
quantum state.

9

Quantum complexity classes

- BQP: the class of “efficiently solvable problem on a quantum
computer”.

Formally, a language L ∈ BQP is there exists a polynomial-time
unirform family of quantum circuits {Qn : n ≥ 1}, such that:

▶ The circuit Qn takes n-qubits as input, and outputs 1 bit,
▶ For any x ∈ L of length n, Pr(Qn(|x⟩) = 1) ≥ 2

3 ,
▶ For any x /∈ L of length n, Pr(Qn(|x⟩) = 1) ≤ 1

3 .

−→ there is a probably of error, that can be made exponentially
small by repeating the computation.

Naturally, P ⊆ BQP.

- There is a quantum counterpart to NP called QMA, with a rich
theory of complexity (complete problems, etc). The hint is a
quantum state.

9

Quantum complexity classes

- BQP: the class of “efficiently solvable problem on a quantum
computer”.

Formally, a language L ∈ BQP is there exists a polynomial-time
unirform family of quantum circuits {Qn : n ≥ 1}, such that:

▶ The circuit Qn takes n-qubits as input, and outputs 1 bit,
▶ For any x ∈ L of length n, Pr(Qn(|x⟩) = 1) ≥ 2

3 ,
▶ For any x /∈ L of length n, Pr(Qn(|x⟩) = 1) ≤ 1

3 .

−→ there is a probably of error, that can be made exponentially
small by repeating the computation.

Naturally, P ⊆ BQP.

- There is a quantum counterpart to NP called QMA, with a rich
theory of complexity (complete problems, etc). The hint is a
quantum state.

9

Quantum complexity classes

- BQP: the class of “efficiently solvable problem on a quantum
computer”.

Formally, a language L ∈ BQP is there exists a polynomial-time
unirform family of quantum circuits {Qn : n ≥ 1}, such that:

▶ The circuit Qn takes n-qubits as input, and outputs 1 bit,
▶ For any x ∈ L of length n, Pr(Qn(|x⟩) = 1) ≥ 2

3 ,
▶ For any x /∈ L of length n, Pr(Qn(|x⟩) = 1) ≤ 1

3 .

−→ there is a probably of error, that can be made exponentially
small by repeating the computation.

Naturally, P ⊆ BQP.

- There is a quantum counterpart to NP called QMA, with a rich
theory of complexity (complete problems, etc). The hint is a
quantum state.

9

Quantum complexity classes

- BQP: the class of “efficiently solvable problem on a quantum
computer”.

Formally, a language L ∈ BQP is there exists a polynomial-time
unirform family of quantum circuits {Qn : n ≥ 1}, such that:

▶ The circuit Qn takes n-qubits as input, and outputs 1 bit,
▶ For any x ∈ L of length n, Pr(Qn(|x⟩) = 1) ≥ 2

3 ,
▶ For any x /∈ L of length n, Pr(Qn(|x⟩) = 1) ≤ 1

3 .

−→ there is a probably of error, that can be made exponentially
small by repeating the computation.

Naturally, P ⊆ BQP.

- There is a quantum counterpart to NP called QMA, with a rich
theory of complexity (complete problems, etc). The hint is a
quantum state.

9

The Solovay-Kitaev theorem

• The infinite set of all 1-qubit operations plus the 2-qubits CNOT gate
is universal, meaning any other unitary can be implemented with them.

Furthermore, one can restrict efficiently the set of quantum gate to a
(small) finite set of gates, allowing an arbitrary small error:

Theorem (Solovay-Kitaev)

Let G be a finite set of elements (and their inverses) of SU(d), and
assume the group ⟨G⟩ they generate is dense in SU(d).
Then, there exists a constant c such that, for any ε > 0 and element
M ∈ SU(d), there exists O(logc(1/ε)) many elements
U1, . . . ,UO(logc(1/ε)) of G such that:

||UO(logc(1/ε)) · · ·U1 −M|| < ε

=⇒ there are finite sets of gates dense in SU(2). Several finite sets of
gates are used depending on applications.

10

The Solovay-Kitaev theorem

• The infinite set of all 1-qubit operations plus the 2-qubits CNOT gate
is universal, meaning any other unitary can be implemented with them.

Furthermore, one can restrict efficiently the set of quantum gate to a
(small) finite set of gates, allowing an arbitrary small error:

Theorem (Solovay-Kitaev)

Let G be a finite set of elements (and their inverses) of SU(d), and
assume the group ⟨G⟩ they generate is dense in SU(d).
Then, there exists a constant c such that, for any ε > 0 and element
M ∈ SU(d), there exists O(logc(1/ε)) many elements
U1, . . . ,UO(logc(1/ε)) of G such that:

||UO(logc(1/ε)) · · ·U1 −M|| < ε

=⇒ there are finite sets of gates dense in SU(2). Several finite sets of
gates are used depending on applications.

10

The Solovay-Kitaev theorem

• The infinite set of all 1-qubit operations plus the 2-qubits CNOT gate
is universal, meaning any other unitary can be implemented with them.

Furthermore, one can restrict efficiently the set of quantum gate to a
(small) finite set of gates, allowing an arbitrary small error:

Theorem (Solovay-Kitaev)

Let G be a finite set of elements (and their inverses) of SU(d), and
assume the group ⟨G⟩ they generate is dense in SU(d).
Then, there exists a constant c such that, for any ε > 0 and element
M ∈ SU(d), there exists O(logc(1/ε)) many elements
U1, . . . ,UO(logc(1/ε)) of G such that:

||UO(logc(1/ε)) · · ·U1 −M|| < ε

=⇒ there are finite sets of gates dense in SU(2). Several finite sets of
gates are used depending on applications.

10

The Solovay-Kitaev theorem

• The infinite set of all 1-qubit operations plus the 2-qubits CNOT gate
is universal, meaning any other unitary can be implemented with them.

Furthermore, one can restrict efficiently the set of quantum gate to a
(small) finite set of gates, allowing an arbitrary small error:

Theorem (Solovay-Kitaev)

Let G be a finite set of elements (and their inverses) of SU(d), and
assume the group ⟨G⟩ they generate is dense in SU(d).
Then, there exists a constant c such that, for any ε > 0 and element
M ∈ SU(d), there exists O(logc(1/ε)) many elements
U1, . . . ,UO(logc(1/ε)) of G such that:

||UO(logc(1/ε)) · · ·U1 −M|| < ε

=⇒ there are finite sets of gates dense in SU(2). Several finite sets of
gates are used depending on applications.

10

Quantum topology

11

Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction]

W1 Wm

V1 Vn

· · ·

· · ·

f

Wm+1 Wq

Vn+1 Vp

· · ·

· · ·

g
.
= f ⊗ g

W1 Wq

V1

· · ·

Vp

· · ·

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

f :V1 ⊗ . . .⊗ Vn →W1 ⊗ . . .⊗Wm

W1 Wm

V1 Vn
· · ·

· · ·

U1 U`
· · ·

f

g
.
=

U1 U`
· · ·

W1 Wm

· · ·

g ◦ f

f ⊗ g:V1 ⊗ . . .⊗ Vp →W1 ⊗ . . .Wq g ◦ f :U1 ⊗ . . .⊗ U`

12

Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction]

W1 Wm

V1 Vn

· · ·

· · ·

f

Wm+1 Wq

Vn+1 Vp

· · ·

· · ·

g
.
= f ⊗ g

W1 Wq

V1

· · ·

Vp

· · ·

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

f :V1 ⊗ . . .⊗ Vn →W1 ⊗ . . .⊗Wm

W1 Wm

V1 Vn
· · ·

· · ·

U1 U`
· · ·

f

g
.
=

U1 U`
· · ·

W1 Wm

· · ·

g ◦ f

f ⊗ g:V1 ⊗ . . .⊗ Vp →W1 ⊗ . . .Wq g ◦ f :U1 ⊗ . . .⊗ U`

12

Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction]

W1 Wm

V1 Vn

· · ·

· · ·

f

Wm+1 Wq

Vn+1 Vp

· · ·

· · ·

g
.
= f ⊗ g

W1 Wq

V1

· · ·

Vp

· · ·

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

f :V1 ⊗ . . .⊗ Vn →W1 ⊗ . . .⊗Wm

W1 Wm

V1 Vn
· · ·

· · ·

U1 U`
· · ·

f

g
.
=

U1 U`
· · ·

W1 Wm

· · ·

g ◦ f

f ⊗ g:V1 ⊗ . . .⊗ Vp →W1 ⊗ . . .Wq g ◦ f :U1 ⊗ . . .⊗ U`

12

Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction]

W1 Wm

V1 Vn

· · ·

· · ·

f

Wm+1 Wq

Vn+1 Vp

· · ·

· · ·

g
.
= f ⊗ g

W1 Wq

V1

· · ·

Vp

· · ·

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

f :V1 ⊗ . . .⊗ Vn →W1 ⊗ . . .⊗Wm

W1 Wm

V1 Vn
· · ·

· · ·

U1 U`
· · ·

f

g
.
=

U1 U`
· · ·

W1 Wm

· · ·

g ◦ f

f ⊗ g:V1 ⊗ . . .⊗ Vp →W1 ⊗ . . .Wq g ◦ f :U1 ⊗ . . .⊗ U`

12

Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction]

W1 Wm

V1 Vn

· · ·

· · ·

f

Wm+1 Wq

Vn+1 Vp

· · ·

· · ·

g
.
= f ⊗ g

W1 Wq

V1

· · ·

Vp

· · ·

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

W1 Wm

V1 Vn
· · ·

· · ·

U1 U`
· · ·

f

g
.
=

U1 U`
· · ·

W1 Wm

· · ·

g ◦ f

g ◦ f :U1 ⊗ . . .⊗ U`f :V1 ⊗ . . .⊗ Vn →W1 ⊗ . . .⊗Wm f ⊗ g:V1 ⊗ . . .⊗ Vp →W1 ⊗ . . .Wq

12

Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction]

W1 Wm

V1 Vn

· · ·

· · ·

f

Wm+1 Wq

Vn+1 Vp

· · ·

· · ·

g
.
= f ⊗ g

W1 Wq

V1

· · ·

Vp

· · ·

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

f :V1 ⊗ . . .⊗ Vn →W1 ⊗ . . .⊗Wm

W1 Wm

V1 Vn
· · ·

· · ·

U1 U`
· · ·

f

g
.
=

U1 U`
· · ·

W1 Wm

· · ·

g ◦ f

f ⊗ g:V1 ⊗ . . .⊗ Vp →W1 ⊗ . . .Wq g ◦ f :U1 ⊗ . . .⊗ U`

12

Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction]

W1 Wm

V1 Vn

· · ·

· · ·

f

Wm+1 Wq

Vn+1 Vp

· · ·

· · ·

g
.
= f ⊗ g

W1 Wq

V1

· · ·

Vp

· · ·

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

f :V1 ⊗ . . .⊗ Vn →W1 ⊗ . . .⊗Wm

W1 Wm

V1 Vn
· · ·

· · ·

U1 U`
· · ·

f

g
.
=

U1 U`
· · ·

W1 Wm

· · ·

g ◦ f

f ⊗ g:V1 ⊗ . . .⊗ Vp →W1 ⊗ . . .Wq g ◦ f :U1 ⊗ . . .⊗ U`

12

Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction]

W1 Wm

V1 Vn

· · ·

· · ·

f

Wm+1 Wq

Vn+1 Vp

· · ·

· · ·

g
.
= f ⊗ g

W1 Wq

V1

· · ·

Vp

· · ·

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

f :V1 ⊗ . . .⊗ Vn →W1 ⊗ . . .⊗Wm

W1 Wm

V1 Vn
· · ·

· · ·

U1 U`
· · ·

f

g
.
=

U1 U`
· · ·

W1 Wm

· · ·

g ◦ f

f ⊗ g:V1 ⊗ . . .⊗ Vp →W1 ⊗ . . .Wq g ◦ f :U1 ⊗ . . .⊗ U`

12

Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction]

W1 Wm

V1 Vn

· · ·

· · ·

f

Wm+1 Wq

Vn+1 Vp

· · ·

· · ·

g
.
= f ⊗ g

W1 Wq

V1

· · ·

Vp

· · ·

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

f :V1 ⊗ . . .⊗ Vn →W1 ⊗ . . .⊗Wm

W1 Wm

V1 Vn
· · ·

· · ·

U1 U`
· · ·

f

g
.
=

U1 U`
· · ·

W1 Wm

· · ·

g ◦ f

f ⊗ g:V1 ⊗ . . .⊗ Vp →W1 ⊗ . . .Wq g ◦ f :U1 ⊗ . . .⊗ U`

12

Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction]

W1 Wm

V1 Vn

· · ·

· · ·

f

Wm+1 Wq

Vn+1 Vp

· · ·

· · ·

g
.
= f ⊗ g

W1 Wq

V1

· · ·

Vp

· · ·

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

f :V1 ⊗ . . .⊗ Vn →W1 ⊗ . . .⊗Wm

W1 Wm

V1 Vn
· · ·

· · ·

U1 U`
· · ·

f

g
.
=

U1 U`
· · ·

W1 Wm

· · ·

g ◦ f

f ⊗ g:V1 ⊗ . . .⊗ Vp →W1 ⊗ . . .Wq g ◦ f :U1 ⊗ . . .⊗ U`

12

Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction]

W1 Wm

V1 Vn

· · ·

· · ·

f

Wm+1 Wq

Vn+1 Vp

· · ·

· · ·

g
.
= f ⊗ g

W1 Wq

V1

· · ·

Vp

· · ·

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

f :V1 ⊗ . . .⊗ Vn →W1 ⊗ . . .⊗Wm

W1 Wm

V1 Vn
· · ·

· · ·

U1 U`
· · ·

f

g
.
=

U1 U`
· · ·

W1 Wm

· · ·

g ◦ f

f ⊗ g:V1 ⊗ . . .⊗ Vp →W1 ⊗ . . .Wq g ◦ f :U1 ⊗ . . .⊗ U`

12

Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction]

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

.
=

V W

W V

V W

V W

V W
.
=

f

cW,V

idV⊗W

(cW,V)
−1

12

Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction]

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

V W

W V

V W

V W

V W
.
=

f

cW,V

idV⊗W

(cW,V)
−1

.
=

12

Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction]

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

V W

W V

V W

V W

V W
.
=

f

cW,V

idV⊗W

(cW,V)
−1

.
=

V

.
=

g

idV

θV

12

Penrose functor: Diagram → (algebraic) invariant
[Sketch of construction]

.
= idV :V → VV

.
= idV ∗V

cV,W :V ⊗W →W ⊗ V
V W

W V

θV :V → VV V dv:V
∗ ⊗ V → 1

V bv:1→ V ⊗ V ∗

WV

V W

W V

V W

V W

V W
.
=

f

cW,V

idV⊗W

(cW,V)
−1

.
=

V

.
=

g

idV

θV

12

Penrose functor: Diagram → (algebraic) invariant

U∗ ⊗ U ⊗ V ⊗ V ∗

U∗ ⊗ V ⊗ U ⊗ V ∗

U∗ ⊗ U ⊗ V ⊗ V ∗

1

V

bU∗ ⊗ bV

idU∗ ⊗ cV,U ⊗ idV ∗

idU∗ ⊗ cU,V ⊗ idV ∗

dU ⊗ dV ∗

1

U

Theorem (Reshetikhin, Turaev)

A ribbon category associates to every coloured ribbon diagram a
morphism 1 → 1. It is an isotopy invariant.

Proof: any isotopy of ribbon diagrams may be described by a sequence
of Reidemeister moves. −→ inv. by design.

.
=.

=
.
=

13

Penrose functor: Diagram → (algebraic) invariant

U∗ ⊗ U ⊗ V ⊗ V ∗

U∗ ⊗ V ⊗ U ⊗ V ∗

U∗ ⊗ U ⊗ V ⊗ V ∗

1

V

bU∗ ⊗ bV

idU∗ ⊗ cV,U ⊗ idV ∗

idU∗ ⊗ cU,V ⊗ idV ∗

dU ⊗ dV ∗

1

U

Theorem (Reshetikhin, Turaev)

A ribbon category associates to every coloured ribbon diagram a
morphism 1 → 1. It is an isotopy invariant.

Proof: any isotopy of ribbon diagrams may be described by a sequence
of Reidemeister moves. −→ inv. by design.

.
=.

=
.
=

13

Penrose functor: Diagram → (algebraic) invariant

U∗ ⊗ U ⊗ V ⊗ V ∗

U∗ ⊗ V ⊗ U ⊗ V ∗

U∗ ⊗ U ⊗ V ⊗ V ∗

1

V

bU∗ ⊗ bV

idU∗ ⊗ cV,U ⊗ idV ∗

idU∗ ⊗ cU,V ⊗ idV ∗

dU ⊗ dV ∗

1

U

These invariants have a rich computational complexity, around the
classes #P and BQP. They create links between classical and quantum
complexity, and offer topological tools for their study.

τ(K)
::

zzttt
tt

''NN
NNN

NN

BQP ⊆ PostBQP = PP and PPP = P#P

Thank you!

13

Penrose functor: Diagram → (algebraic) invariant

U∗ ⊗ U ⊗ V ⊗ V ∗

U∗ ⊗ V ⊗ U ⊗ V ∗

U∗ ⊗ U ⊗ V ⊗ V ∗

1

V

bU∗ ⊗ bV

idU∗ ⊗ cV,U ⊗ idV ∗

idU∗ ⊗ cU,V ⊗ idV ∗

dU ⊗ dV ∗

1

U

These invariants have a rich computational complexity, around the
classes #P and BQP. They create links between classical and quantum
complexity, and offer topological tools for their study.

τ(K)
::

zzttt
tt

''NN
NNN

NN

BQP ⊆ PostBQP = PP and PPP = P#P

Thank you!

13

Penrose functor: Diagram → (algebraic) invariant

U∗ ⊗ U ⊗ V ⊗ V ∗

U∗ ⊗ V ⊗ U ⊗ V ∗

U∗ ⊗ U ⊗ V ⊗ V ∗

1

V

bU∗ ⊗ bV

idU∗ ⊗ cV,U ⊗ idV ∗

idU∗ ⊗ cU,V ⊗ idV ∗

dU ⊗ dV ∗

1

U

These invariants have a rich computational complexity, around the
classes #P and BQP. They create links between classical and quantum
complexity, and offer topological tools for their study.

τ(K)
::

zzttt
tt

''NN
NNN

NN

BQP ⊆ PostBQP = PP and PPP = P#P

Thank you!
13

