Quantum complexity theory
 A very brief introduction, with some topology

Clément Maria

INRIA Sophia Antipolis-Méditerranée

QuantAzur seminar

Classical complexity

2

Some complexity classes (more or less formally)

Definition (Computing)

Some complexity classes (more or less formally)

Definition (Computing)
A problem is a language $L \subseteq\{0,1\}^{*}=\cup_{n \geq 0}\{0,1\}^{n}$.

Some complexity classes (more or less formally)

Definition (Computing)

A problem is a language $L \subseteq\{0,1\}^{*}=\cup_{n \geq 0}\{0,1\}^{n}$.
Deciding a language L consists of deciding membership of any input word $x \in\{0,1\}^{n}$ of length n to L :

INPUT $x \in\{0,1\}^{n}$, OUTPUT yes if $x \in L$, and no o.w.

Some complexity classes (more or less formally)

Definition (Computing)

A problem is a language $L \subseteq\{0,1\}^{*}=\cup_{n \geq 0}\{0,1\}^{n}$.
Deciding a language L consists of deciding membership of any input word $x \in\{0,1\}^{n}$ of length n to L :

INPUT $x \in\{0,1\}^{n}$, OUTPUT yes if $x \in L$, and no o.w.
The complexity is measures as a function of the length n of the input $x \in\{0,1\}^{n}$.

Some complexity classes (more or less formally)

Definition (Computing)

A problem is a language $L \subseteq\{0,1\}^{*}=\cup_{n \geq 0}\{0,1\}^{n}$.
Deciding a language L consists of deciding membership of any input word $x \in\{0,1\}^{n}$ of length n to L :

INPUT $x \in\{0,1\}^{n}$, OUTPUT yes if $x \in L$, and no o.w.
The complexity is measures as a function of the length n of the input $x \in\{0,1\}^{n}$.

- P: class of problems L solvable in polynomial time by a classical deterministic computer.

Ex: given a graph G and two nodes u, v, is there a (u, v) path of length $\leq k$?

Some complexity classes (more or less formally)

Definition (Computing)

A problem is a language $L \subseteq\{0,1\}^{*}=\cup_{n \geq 0}\{0,1\}^{n}$.
Deciding a language L consists of deciding membership of any input word $x \in\{0,1\}^{n}$ of length n to L :

INPUT $x \in\{0,1\}^{n}$, OUTPUT yes if $x \in L$, and no o.w.
The complexity is measures as a function of the length n of the input $x \in\{0,1\}^{n}$.

- P: class of problems L solvable in polynomial time by a classical deterministic computer.
Ex: given a graph G and two nodes u, v, is there a (u, v) path of length $\leq k$?
Fix a language $L \in \mathbf{P}$; there exists an "algorithm" and a polynomial p s.t. for any input $x \in\{0,1\}^{n}$, the algorithm returns yes if $x \in L$, and no otherwise, in at most $p(n)$ logical operations.

Some complexity classes (more or less formally)

Definition (Computing)

A problem is a language $L \subseteq\{0,1\}^{*}=\cup_{n \geq 0}\{0,1\}^{n}$.
Deciding a language L consists of deciding membership of any input word $x \in\{0,1\}^{n}$ of length n to L :

INPUT $x \in\{0,1\}^{n}$, OUTPUT yes if $x \in L$, and no o.w.
The complexity is measures as a function of the length n of the input $x \in\{0,1\}^{n}$.

- NP: class of problems L where the yes-instances can be solved in polynomial time, when given a hint of polynomial size.
Ex: given a graph G, is there a Hamiltonian cycle (cycle visiting all nodes exactly once) ?
\longrightarrow the hint is the sequence of nodes forming the Hamiltonian cycle (in a yes-instance).
Hard to find one, easy to verify one is valid.

Some complexity classes (more or less formally)

Definition (Computing)

A problem is a language $L \subseteq\{0,1\}^{*}=\cup_{n \geq 0}\{0,1\}^{n}$.
Deciding a language L consists of deciding membership of any input word $x \in\{0,1\}^{n}$ of length n to L :

INPUT $x \in\{0,1\}^{n}$, OUTPUT yes if $x \in L$, and no o.w.
The complexity is measures as a function of the length n of the input $x \in\{0,1\}^{n}$.

- \#P: class of counting problems.

Ex: given a graph, how many Hamiltonian cycles are there ?

Directly from the definitions: $\mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P}^{\# \mathbf{P}}$.

Quantum computing

Quantum states

Consider the \mathbb{C}-vector space \mathbb{C}^{2} of basis: $|0\rangle:=\binom{1}{0},|1\rangle:=\binom{0}{1}$.

Definition (Qubits)

$|0\rangle$ and $|1\rangle$ are qubits.

Quantum states

Consider the \mathbb{C}-vector space \mathbb{C}^{2} of basis: $|0\rangle:=\binom{1}{0},|1\rangle:=\binom{0}{1}$.

Definition (Qubits)

$|0\rangle$ and $|1\rangle$ are qubits. An n-qubit state is, for $b_{j} \in\{0,1\}$:

$$
\left|b_{1} b_{2} \cdots b_{n}\right\rangle:=\left|b_{1}\right\rangle \otimes\left|b_{2}\right\rangle \otimes \cdots \otimes\left|b_{n}\right\rangle \in \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2} \cong \mathbb{C}^{2^{n}}
$$

Quantum states

Consider the \mathbb{C}-vector space \mathbb{C}^{2} of basis: $|0\rangle:=\binom{1}{0},|1\rangle:=\binom{0}{1}$.

Definition (Qubits)

$|0\rangle$ and $|1\rangle$ are qubits. An n-qubit state is, for $b_{j} \in\{0,1\}$:

$$
\left|b_{1} b_{2} \cdots b_{n}\right\rangle:=\left|b_{1}\right\rangle \otimes\left|b_{2}\right\rangle \otimes \cdots \otimes\left|b_{n}\right\rangle \in \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2} \cong \mathbb{C}^{2^{n}}
$$

\longrightarrow so far, quite similar to classical words $x \in\{0,1\}^{n}$.

Quantum states

Consider the \mathbb{C}-vector space \mathbb{C}^{2} of basis: $|0\rangle:=\binom{1}{0},|1\rangle:=\binom{0}{1}$.

Definition (Qubits)

$|0\rangle$ and $|1\rangle$ are qubits. An n-qubit state is, for $b_{j} \in\{0,1\}$:

$$
\left|b_{1} b_{2} \cdots b_{n}\right\rangle:=\left|b_{1}\right\rangle \otimes\left|b_{2}\right\rangle \otimes \cdots \otimes\left|b_{n}\right\rangle \in \mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2} \cong \mathbb{C}^{2^{n}}
$$

Definition (Quantum state)

A quantum state on n qubits is the superposition:

$$
\alpha_{0}|0\rangle+\cdots+\alpha_{2^{n}-1}\left|2^{n}-1\right\rangle, \quad \sum_{j=0}^{2^{n}-1}\left|\alpha_{j}\right|^{2}=1
$$

or equivalently a norm 1 vector of $\mathbb{C}^{2^{n}}$.

Quantum gates \& measurement

A quantum gate is a unitary matrix $U: \mathbb{C}^{2 k} \rightarrow \mathbb{C}^{2 k}$, i.e., $U^{-1}=U^{*}$.

Quantum gates \& measurement

A quantum gate is a unitary matrix $U: \mathbb{C}^{2 k} \rightarrow \mathbb{C}^{2 k}$, i.e., $U^{-1}=U^{*}$.
Examples on 1 qubit, in the basis $\{|0\rangle,|1\rangle\}$:

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { swaps bits, } \quad R_{\phi}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \phi}
\end{array}\right) \quad \text { phase gate }
$$

Hadamard $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right), \quad H|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle, H H|0\rangle=|0\rangle$.

Quantum gates \& measurement

A quantum gate is a unitary matrix $U: \mathbb{C}^{2 k} \rightarrow \mathbb{C}^{2 k}$, i.e., $U^{-1}=U^{*}$.
Examples on 1 qubit, in the basis $\{|0\rangle,|1\rangle\}$:

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \text { swaps bits, } \quad R_{\phi}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \phi}
\end{array}\right) \text { phase gate }
$$

Hadamard $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right), \quad H|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle, H H|0\rangle=|0\rangle$.
$\underline{\text { Example on } 2 \text { qubits, in the basis }\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\} \text { : }}$

$$
\mathrm{CNOT}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \begin{aligned}
& \rightarrow \text { flips the second target qubit } \\
& \text { iff the first control qubit is } 1 .
\end{aligned}
$$

Quantum gates \& measurement

A quantum gate is a unitary matrix $U: \mathbb{C}^{2 k} \rightarrow \mathbb{C}^{2 k}$, i.e., $U^{-1}=U^{*}$.
Examples on 1 qubit, in the basis $\{|0\rangle,|1\rangle\}$:

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { swaps bits, } \quad R_{\phi}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \phi}
\end{array}\right) \quad \text { phase gate }
$$

Hadamard $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right), \quad H|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle, H H|0\rangle=|0\rangle$.
$\underline{\text { Example on } 2 \text { qubits, in the basis }\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\} \text { : }}$

$$
\text { CNOT }=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \begin{aligned}
& \rightarrow \text { flips the second target qubit } \\
& \text { iff the first control qubit is } 1 .
\end{aligned}
$$

Measuring a quantum state $\sum_{j=0}^{2^{n}-1} \alpha_{j}|j\rangle$ returns the (non-superposed) state $|j\rangle$ with probability $\left|\alpha_{i}\right|^{2}$. (there exist more general projections)

Quantum circuits

Horizontal collection of wires, one per qubit, on which gates are applied from left to right, followed by a final measurement.

$$
\begin{aligned}
& -\sqrt[U_{1}]{-U_{2}}-\equiv-\sqrt[U_{2} \circ U_{1}]{-} \\
& -\equiv-\operatorname{id}_{\mathbb{C}^{2}}-
\end{aligned}
$$

can be mixed with "classical" computations.

Quantum complexity

Quantum complexity classes

- BQP: the class of "efficiently solvable problem on a quantum computer".

Quantum complexity classes

- BQP: the class of "efficiently solvable problem on a quantum computer".

Formally, a language $L \in \mathbf{B Q P}$ is there exists a polynomial-time unirform family of quantum circuits $\left\{Q_{n}: n \geq 1\right\}$, such that:

Quantum complexity classes

- BQP: the class of "efficiently solvable problem on a quantum computer".

Formally, a language $L \in \mathbf{B Q P}$ is there exists a polynomial-time unirform family of quantum circuits $\left\{Q_{n}: n \geq 1\right\}$, such that:

- The circuit Q_{n} takes n-qubits as input, and outputs 1 bit,

Quantum complexity classes

- BQP: the class of "efficiently solvable problem on a quantum computer".

Formally, a language $L \in \mathbf{B Q P}$ is there exists a polynomial-time unirform family of quantum circuits $\left\{Q_{n}: n \geq 1\right\}$, such that:

- The circuit Q_{n} takes n-qubits as input, and outputs 1 bit,
- For any $x \in L$ of length $n, \operatorname{Pr}\left(Q_{n}(|x\rangle)=1\right) \geq \frac{2}{3}$,

Quantum complexity classes

- BQP: the class of "efficiently solvable problem on a quantum computer".

Formally, a language $L \in \mathbf{B Q P}$ is there exists a polynomial-time unirform family of quantum circuits $\left\{Q_{n}: n \geq 1\right\}$, such that:

- The circuit Q_{n} takes n-qubits as input, and outputs 1 bit,
- For any $x \in L$ of length $n, \operatorname{Pr}\left(Q_{n}(|x\rangle)=1\right) \geq \frac{2}{3}$,
- For any $x \notin L$ of length $n, \operatorname{Pr}\left(Q_{n}(|x\rangle)=1\right) \leq \frac{1}{3}$.

Quantum complexity classes

- BQP: the class of "efficiently solvable problem on a quantum computer".
Formally, a language $L \in \mathbf{B Q P}$ is there exists a polynomial-time unirform family of quantum circuits $\left\{Q_{n}: n \geq 1\right\}$, such that:
- The circuit Q_{n} takes n-qubits as input, and outputs 1 bit,
- For any $x \in L$ of length $n, \operatorname{Pr}\left(Q_{n}(|x\rangle)=1\right) \geq \frac{2}{3}$,
- For any $x \notin L$ of length $n, \operatorname{Pr}\left(Q_{n}(|x\rangle)=1\right) \leq \frac{1}{3}$.
\longrightarrow there is a probably of error, that can be made exponentially small by repeating the computation.

Quantum complexity classes

- BQP: the class of "efficiently solvable problem on a quantum computer".

Formally, a language $L \in \mathbf{B Q P}$ is there exists a polynomial-time unirform family of quantum circuits $\left\{Q_{n}: n \geq 1\right\}$, such that:

- The circuit Q_{n} takes n-qubits as input, and outputs 1 bit,
- For any $x \in L$ of length $n, \operatorname{Pr}\left(Q_{n}(|x\rangle)=1\right) \geq \frac{2}{3}$,
- For any $x \notin L$ of length $n, \operatorname{Pr}\left(Q_{n}(|x\rangle)=1\right) \leq \frac{1}{3}$.
\longrightarrow there is a probably of error, that can be made exponentially small by repeating the computation.

Naturally, $\mathbf{P} \subseteq \mathbf{B Q P}$.

Quantum complexity classes

- BQP: the class of "efficiently solvable problem on a quantum computer".
Formally, a language $L \in \mathbf{B Q P}$ is there exists a polynomial-time unirform family of quantum circuits $\left\{Q_{n}: n \geq 1\right\}$, such that:
- The circuit Q_{n} takes n-qubits as input, and outputs 1 bit,
- For any $x \in L$ of length $n, \operatorname{Pr}\left(Q_{n}(|x\rangle)=1\right) \geq \frac{2}{3}$,
- For any $x \notin L$ of length $n, \operatorname{Pr}\left(Q_{n}(|x\rangle)=1\right) \leq \frac{1}{3}$.
\longrightarrow there is a probably of error, that can be made exponentially small by repeating the computation.

Naturally, $\mathbf{P} \subseteq \mathbf{B Q P}$.

- There is a quantum counterpart to NP called QMA, with a rich theory of complexity (complete problems, etc). The hint is a quantum state.

The Solovay-Kitaev theorem

- The infinite set of all 1-qubit operations plus the 2-qubits CNOT gate is universal, meaning any other unitary can be implemented with them.

The Solovay-Kitaev theorem

- The infinite set of all 1-qubit operations plus the 2-qubits CNOT gate is universal, meaning any other unitary can be implemented with them.
Furthermore, one can restrict efficiently the set of quantum gate to a (small) finite set of gates, allowing an arbitrary small error:

The Solovay-Kitaev theorem

- The infinite set of all 1-qubit operations plus the 2-qubits CNOT gate is universal, meaning any other unitary can be implemented with them.
Furthermore, one can restrict efficiently the set of quantum gate to a (small) finite set of gates, allowing an arbitrary small error:

Theorem (Solovay-Kitaev)
Let G be a finite set of elements (and their inverses) of $\mathbf{S U}(\mathbf{d})$, and assume the group $\langle\mathrm{G}\rangle$ they generate is dense in $\mathbf{S U}(\mathbf{d})$.
Then, there exists a constant c such that, for any $\varepsilon>0$ and element $M \in \mathbf{S U}(\mathbf{d})$, there exists $O\left(\log ^{c}(1 / \varepsilon)\right)$ many elements $U_{1}, \ldots, U_{O\left(\log ^{c}(1 / \varepsilon)\right)}$ of G such that:

$$
\left\|U_{O\left(\log ^{c}(1 / \varepsilon)\right)} \cdots U_{1}-M\right\|<\varepsilon
$$

The Solovay-Kitaev theorem

- The infinite set of all 1-qubit operations plus the 2-qubits CNOT gate is universal, meaning any other unitary can be implemented with them.
Furthermore, one can restrict efficiently the set of quantum gate to a (small) finite set of gates, allowing an arbitrary small error:

Theorem (Solovay-Kitaev)

Let G be a finite set of elements (and their inverses) of $\mathbf{S U}(\mathbf{d})$, and assume the group $\langle G\rangle$ they generate is dense in $\mathbf{S U}(\mathbf{d})$.
Then, there exists a constant c such that, for any $\varepsilon>0$ and element $M \in \mathbf{S U}(\mathbf{d})$, there exists $O\left(\log ^{c}(1 / \varepsilon)\right)$ many elements $U_{1}, \ldots, U_{O\left(\log ^{c}(1 / \varepsilon)\right)}$ of G such that:

$$
\left\|U_{O\left(\log ^{c}(1 / \varepsilon)\right)} \cdots U_{1}-M\right\|<\varepsilon
$$

\Longrightarrow there are finite sets of gates dense in $\mathbf{S U}(\mathbf{2})$. Several finite sets of gates are used depending on applications.

Quantum topology

Penrose functor: Diagram \rightarrow (algebraic) invariant [Sketch of construction]

Penrose functor: Diagram \rightarrow (algebraic) invariant [Sketch of construction]

Penrose functor: Diagram \rightarrow (algebraic) invariant [Sketch of construction]

Penrose functor: Diagram \rightarrow (algebraic) invariant [Sketch of construction]

Penrose functor: Diagram \rightarrow (algebraic) invariant [Sketch of construction]

Penrose functor: Diagram \rightarrow (algebraic) invariant

 [Sketch of construction]

Penrose functor: Diagram \rightarrow (algebraic) invariant

 [Sketch of construction]

$f \otimes g: V_{1} \otimes \ldots \otimes V_{p} \rightarrow W_{1} \otimes \ldots W_{q}$

$g \circ f: U_{1} \otimes \ldots \otimes U_{\ell}$

Penrose functor: Diagram \rightarrow (algebraic) invariant

 [Sketch of construction]

Penrose functor: Diagram \rightarrow (algebraic) invariant

 [Sketch of construction]

Penrose functor: Diagram \rightarrow (algebraic) invariant

 [Sketch of construction]

$$
\begin{aligned}
& V \neq \operatorname{id}_{V}: V \rightarrow V \quad V \mid \doteq=\mathrm{id}_{V^{*}} \\
& V \theta_{V}: V \rightarrow V \\
& W \text { V } c_{V, W}^{V}: V \otimes W \rightarrow W \otimes V
\end{aligned}
$$

$f \otimes g: V_{1} \otimes \ldots \otimes V_{p} \rightarrow W_{1} \otimes \ldots W_{q}$

$g \circ f: U_{1} \otimes \ldots \otimes U_{\ell}$

Penrose functor: Diagram \rightarrow (algebraic) invariant

 [Sketch of construction]

$$
\begin{aligned}
& V \neq \mathrm{id}_{V}: V \rightarrow V \quad V \uparrow \doteq \mathrm{id}_{V^{*}} \\
& V \theta_{V}: V \rightarrow V \quad V \bigcap d_{v}: V^{*} \otimes V \rightarrow \mathbb{1} \\
& V b_{v}: \mathbb{1} \rightarrow V \otimes V^{*} \\
& V{ }_{V} c_{V, W}: V \otimes W \rightarrow W \otimes V
\end{aligned}
$$

$f \otimes g: V_{1} \otimes \ldots \otimes V_{p} \rightarrow W_{1} \otimes \ldots W_{q}$

$g \circ f: U_{1} \otimes \ldots \otimes U_{\ell}$

Penrose functor: Diagram \rightarrow (algebraic) invariant

 [Sketch of construction]

$$
\begin{aligned}
& V \neq \operatorname{id}_{V}: V \rightarrow V \quad V \xlongequal{V} \stackrel{\mathrm{id}_{V^{*}}}{V} \theta_{V}: V \rightarrow V \quad V \bigcap d_{v}: V^{*} \otimes V \rightarrow \mathbb{1} \\
& V{ }_{V} b_{v}: \mathbb{1} \rightarrow V \otimes V^{*} \\
& { }_{V}^{W} c_{V, W}: V \otimes W \rightarrow W \otimes V
\end{aligned}
$$

Penrose functor: Diagram \rightarrow (algebraic) invariant

 [Sketch of construction]

$$
\begin{aligned}
& V \neq \mathrm{id}_{V}: V \rightarrow V \quad V \uparrow \dot{=} \mathrm{id}_{V^{*}} \\
& V \theta_{V}: V \rightarrow V \quad V \bigcap d_{v}: V^{*} \otimes V \rightarrow \mathbb{1} \\
& V b_{v}: \mathbb{1} \rightarrow V \otimes V^{*} \\
& V{ }_{V} c_{V, W}: V \otimes W \rightarrow W \otimes V
\end{aligned}
$$

Penrose functor: Diagram \rightarrow (algebraic) invariant

 [Sketch of construction]

$$
g \longdiv { V }
$$

$$
\begin{aligned}
& V \mid \doteq \mathrm{id}_{V}: V \rightarrow V \quad V \uparrow \doteq \mathrm{id}_{V^{*}} \\
& V \overbrace{V}: V \rightarrow V \quad V \bigcap d_{v}: V^{*} \otimes V \rightarrow \mathbb{1} \\
& V \bigcup b_{v}: \mathbb{1} \rightarrow V \otimes V^{*} \\
& \overbrace{\dot{W}}^{W} c_{V, W}^{V}: V \otimes W \rightarrow W \otimes V
\end{aligned}
$$

Penrose functor: Diagram \rightarrow (algebraic) invariant

 [Sketch of construction]

Penrose functor: Diagram \rightarrow (algebraic) invariant

Theorem (Reshetikhin, Turaev)
A ribbon category associates to every coloured ribbon diagram a morphism $\mathbb{1} \rightarrow \mathbb{1}$. It is an isotopy invariant.

Penrose functor: Diagram \rightarrow (algebraic) invariant

Theorem (Reshetikhin, Turaev)

A ribbon category associates to every coloured ribbon diagram a morphism $\mathbb{1} \rightarrow \mathbb{1}$. It is an isotopy invariant.

Proof: any isotopy of ribbon diagrams may be described by a sequence of Reidemeister moves. \longrightarrow inv. by design.

Penrose functor: Diagram \rightarrow (algebraic) invariant

These invariants have a rich computational complexity, around the classes \#P and BQP. They create links between classical and quantum complexity, and offer topological tools for their study.

Penrose functor: Diagram \rightarrow (algebraic) invariant

These invariants have a rich computational complexity, around the classes \#P and BQP. They create links between classical and quantum complexity, and offer topological tools for their study.

Penrose functor: Diagram \rightarrow (algebraic) invariant

These invariants have a rich computational complexity, around the classes \#P and BQP. They create links between classical and quantum complexity, and offer topological tools for their study.

