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Definition (Computing)

A problem is a language L € {0, 1}* = Up>0{0,1}".
Deciding a language L consists of deciding membership of any input
word x € {0,1}" of length n to L:

INPUT x € {0,1}", OUTPUT yes if x € L, and no o.w.

The complexity is measures as a function of the length n of the input
x € {0,1}".

- P: class of problems L solvable in polynomial time by a classical
deterministic computer.
Ex: given a graph G and two nodes u, v, is there a (u, v) path of
length < k?
Fix a language L € P; there exists an “algorithm” and a polynomial
p s.t. for any input x € {0, 1}", the algorithm returns yes if x € L,
and no otherwise, in at most p(n) logical operations. 3]
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Definition (Computing)

A problem is a language L € {0, 1}* = Up>0{0,1}".
Deciding a language L consists of deciding membership of any input
word x € {0,1}" of length n to L:

INPUT x € {0,1}", OUTPUT yes if x € L, and no o.w.

The complexity is measures as a function of the length n of the input
x € {0,1}".

- NP: class of problems L where the yes-instances can be solved in
polynomial time, when given a hint of polynomial size.

Ex: given a graph G, is there a Hamiltonian cycle (cycle visiting all
nodes exactly once) ?

— the hint is the sequence of nodes forming the Hamiltonian
cycle (in a yes-instance).

Hard to find one, easy to verify one is valid.



Some complexity classes (more or less formally)

Definition (Computing)

A problem is a language L C€ {0,1}* = U,>0{0,1}".
Deciding a language L consists of deciding membership of any input
word x € {0, 1}" of length n to L:

INPUT x € {0,1}", OUTPUT yes if x € L, and no o.w.

The complexity is measures as a function of the length n of the input
x € {0,1}".

- #P: class of counting problems.

Ex: given a graph, how many Hamiltonian cycles are there ?

Directly from the definitions: P C NP C P#P,
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Quantum states
Consider the C-vector space C? of basis: |0) := <1> 1) = <O> .

Definition (Qubits)
|0) and |1) are qubits. An n-qubit state is, for b; € {0,1}:

|bibg - by) == |b1) @ |ba) ® - ® |b,) € C?®---®C?=C?.

Definition (Quantum state)

A quantum state on n qubits is the superposition:
ap|0) + - +aw_1]2"—-1), Z loj|? =1,

or equivalently a norm 1 vector of C%'.
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A quantum gate is a unitary matrix U : C?* — C%, ie, U™l = U*.

Examples on 1 qubit, in the basis {|0) , |1)}:

0 1 . 1 0
X= (1 0) swaps bits, Ry = (0 e’¢> phase gate

L) 10 = S0 ) o) = ).

Example on 2 qubits, in the basis {|00) , |01) , [10) , |11)}:

1
Hadamard H = —
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— flips the second target qubit
iff the first control qubit is 1.



Quantum gates & measurement

A quantum gate is a unitary matrix U : C?* — C%, ie, U™l = U*.

Examples on 1 qubit, in the basis {|0) , |1)}:

0 1 . 1 0
X= (1 0) swaps bits, Ry = (0 e’¢> phase gate

1 /1 1
HadamardH:\ﬁ<1 _1>, H0) = \[\0> \[|>,HH\O>:|0>.

Example on 2 qubits, in the basis {|00) , |01) , [10) , |11)}:

1 000

0100 — flips the second target qubit
CNOT = 00 0 1 iff the first control qubit is 1.

0 010

Measuring a quantum state Z?:EI a; |j) returns the (non-superposed)

state |j) with probability ||2. (there exist more general projections)

[6]



Quantum circuits

Horizontal collection of wires, one per qubit, on which gates are

applied from left to right, followed by a final measurement.

[b1) -- CNOT
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can be mixed with “classical” computations.
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Quantum complexity classes

- BQP: the class of “efficiently solvable problem on a quantum
computer”.

Formally, a language L € BQP is there exists a polynomial-time
unirform family of quantum circuits {Q,, : n > 1}, such that:

» The circuit Q, takes n-qubits as input, and outputs 1 bit,
» Forany x € L of length n, Pr(Q,(|x)) =1) > %,
» Forany x & L of length n, Pr(Q,(|x)) = 1) < 3.
— there is a probably of error, that can be made exponentially
small by repeating the computation.

Naturally, P C BQP.

There is a quantum counterpart to NP called QMA, with a rich
theory of complexity (complete problems, etc). The hint is a
quantum state.
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is universal, meaning any other unitary can be implemented with them.

Furthermore, one can restrict efficiently the set of quantum gate to a
(small) finite set of gates, allowing an arbitrary small error:

Theorem (Solovay-Kitaev)

Let G be a finite set of elements (and their inverses) of SU(d), and
assume the group (G) they generate is dense in SU(d).

Then, there exists a constant c such that, for any € > 0 and element
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The Solovay-Kitaev theorem

e The infinite set of all 1-qubit operations plus the 2-qubits CNOT gate

is universal, meaning any other unitary can be implemented with them.

Furthermore, one can restrict efficiently the set of quantum gate to a
(small) finite set of gates, allowing an arbitrary small error:

Theorem (Solovay-Kitaev)

Let G be a finite set of elements (and their inverses) of SU(d), and
assume the group (G) they generate is dense in SU(d).

Then, there exists a constant c such that, for any € > 0 and element
M € SU(d), there exists O(log®(1/e)) many elements

Ut, -+, UoQoge(1/¢)) of G such that:

||UO(logC(1/€)) U — M” <ég

= there are finite sets of gates dense in SU(2). Several finite sets of
gates are used depending on applications.
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Penrose functor: Diagram — (algebraic) invariant

dy ® dy+
idU* ® cu,v ® ldv*

idy« ® cy,u ® idy =

by ® by

Theorem (Reshetikhin, Turaev)

A ribbon category associates to every coloured ribbon diagram a
morphism 1 — 1. It is an isotopy invariant.

Proof: any isotopy of ribbon diagrams may be described by a sequence
of Reidemeister moves. — inv. by design.

/\ / - -

| / )
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Penrose functor: Diagram — (algebraic) invariant

dy @ dy~
idU* ® cu,v ® ldv*

idy« ® cy,u ® idy =

by ® by

These invariants have a rich computational complexity, around the
classes #P and BQP. They create links between classical and quantum
complexity, and offer topological tools for their study.

7(K)
P C PostBQP =PP and PFPP =pP#P
Thank you!

BQ
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