
MANIFOLD CALCULUS IS DUAL TO

FACTORIZATION HOMOLOGY
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Abstract. These are notes from a talk given at the 2012 Talbot Workshop. It dis-
cusses relationships between the study of factorization homology and manifold calculus.
It ends by classifying all symmetric monoidal functors which are equivalent to their
Taylor series approximation.
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1. Introduction

Yesterday and today, we were introduced to the theory of manifold calculus. If the
functors we consider are context-free, manifold calculus studies contravariant functors

F : Mfldop
n → C

where C is some appropriate category. (Recall that Mfldn is the category of n-manifolds
with morphisms embeddings.) What I want to do today is study covariant functors

A : Mfldn → C.

I will do this through the lens of factorization homology.
Already from this ‘op’, it seems like these two subjects should be dual to each other.

And indeed, if there’s one thing you remember from my talk, it’s that the theory of
manifold calculus and the theory of factorization homology are dual to each other. Let
me first define things, and then I’ll get into this ‘dual’ statement more concretely.

Conventions. I come from a school where every category is an ∞-category (so in
particular, it is possible to think of a category as enriched over spaces). I also come
from a school where any category term X is actually an ∞-X. (So when I say functor,
I mean functor of ∞-categories, and when I say colimit, I mean a colimit in the sense
of ∞-categories.) The point being, I will explicitly state that something is a ‘strict’
colimit when it is a colimit in the sense of ordinary category theory. Otherwise, every
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categorical notion I state (symmetric monoidal, tensored over spaces, et cetera) is in the
context of ∞-categories.

Acknowledgments. I’d like to thank Gregory Arone and Michael Ching for an
awesome week at the 2012 Talbot Workshop. I’d also like to thank David Nadler and Sam
Gunningham for very helpful communications, and Pedro Bietro and Owen Gwilliam for
being on-site sherpas during our week in Utah. Finally, I’d like to thank John Francis
for his great mathematical influence on me.

2. Factorization Homology

As advertised, we study functors A : Mfldn → C.

Definition 2.1. We define the following categories enriched over spaces:

• Let Mfldn be the category of smooth n-manifolds. The hom space Mfldn(M,N)
is given by the space of embeddings from M to N . We will also denote this space
by Emb(M,N).
• Let Diskn be the full subcategory of manifolds which are disjoint unions of finitely

many Rn.
• Let Disk≤kn be the full subcategory of Diskn where objects are at most k disjoint

copies of Rn.

Remark 2.2. The empty manifold is an object of all the categories above.

Definition 2.3 (For this week). Let TkA be the left Kan extension of A from Disk≤kn to
Mfldn. By the universal property of left Kan extensions we have maps

T0A //

��

T1A //

{{xxxxxxxxx
. . .

A

We call this the Taylor tower of A.
We say a functor A is polynomial of degree k if the natural map TkA → A is an

equivalence. We let T∞A denote the colimit of the sequence TkA.

Remark 2.4. Note that I make no mention of being excisive with respect to cubes, or
with being a cosheaf with respect to any kind of topology. The main reason for this is
that we have the theorem of Brito and Weiss, that Kan extensions give rise to polynomial
functors in whatever sense you mean. So I will forget about an extrinsic definition of
polynomial functors altogether.

Remark 2.5. The arrows are in the opposite direction from manifold calculus, as are
the numerics. So it’s like a co-Postnikov tower for the functor A, or, if you like, a cell
decomposition.

Also, note that since colimits commute with each other, T∞A is actually the left Kan
extension of A from Diskn to Mfldn.

Definition 2.6. Let M ∈ Mfldn. The factorization homology of M with coefficients in
A is ∫

M
A := T∞A(M) ∈ C.
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We say that A is convergent if the natural transformation T∞A→ A is an equivalence.

Remark 2.7. I call this convergent and not analytic, since the latter term usually has
a condition restricting the rate of convergence.

Remark 2.8 (Framed manifolds). One can change Mfld to be the category of mani-
folds with certain kinds of structure, where the embeddings must respect that structure
up to homotopy. For instance, if we demand that every manifold is equipped with a
trivialization of the tangent bundle (this is a fairly heavy restriction on the admissible

manifolds), the resulting category Mfldfr has morphisms which are embeddings, together
with a homotopy between the domain manifold’s framing with the pullback framing.

Example 2.9. There is the natural inclusion of categories

ι : Mfldfr
n → Spaces

given by taking the underlying topological space of a manifold. This is a convergent
functor.

Proof. Note that this is actually equivalent to a corepresentable functor. Namely,

Embfr(Rn,−) ' ι.
This is because the space of embeddings of Rn into M is homotopy equivalent to the
space of embeddings of a point into M – this is given by the restriction to 0 ∈ Rn. On
the other hand, the left Kan extension is computed object-wise by the coend

Embfr(−,M)⊗Diskn ι ' Embfr(−,M)⊗Diskn Embfr(Rn,−)

' Embfr(Rn,M).

The last line follows because we are taking a coend with respect to a corepresentable
functor. �

The same method of proof, by realizing that qkRn is an object in Disk≤k, leads to
the following:

Proposition 2.10. The functor Emb((Rn)qk,−) is a polynomial functor of degree k.
If we work with framed manifolds, the functor assigns to any M the homotopy type of
Mk\∆; the k-fold product without the fat diagonal.

Remark 2.11 (Non-framed case). For non-framed manifolds, the space of embeddings
of Rn retracts not to the configuration space of one point on M , but the configuration
space of one point together with a choice of an element in O(n). More specifically is,
it is the choice of a point in the O(n)-bundle over M associated to TM . In general if
we work in the category of manifolds with reduction of structure group to G, then the
representable functor Emb((Rn)qk,−) assigns to any manifold a point in P k\∆. Here P
is the G-bundle associated to TM and ∆ is the fact diagonal. The punchline is that the
space of embeddings deformation retracts onto the space of derivatives of an embedding.

So this gives us two more examples of convergent functors. The functor Mfld→ Spaces
given by M 7→ P → M , where P is the associated O(n) bundle to TM , is convergent
using the same method above. The forget functor M 7→ M is also convergent, as it is
obtained by taking the quotient of P by the O(n) action, and colimits commute.

Example 2.12. Let n ≥ 2. Let U be Rn−{0}. Then A = Emb(U,−) is not convergent.
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2.1. Symmetric Monoidal Version and Excision. Note that the category of mani-
folds has a symmetric monoidal structure, given by disjoint union. So it makes sense to
talk about symmetric monoidal functors out of this category.

Let C be a category with a fixed monoidal structure. (This could be Spaces with q,
or with ×. It could be Spectra with ∧ or ∨ – let’s not get into the construction of a
symmetric monoidal structure for spectra – and it could even be chain complexes with
⊕ or ⊗.) From hereon we only consider symmetric monoidal functors

A : (Mfldn,q)→ (C,⊗).

The first observation I’d like to make is that, if we restrict A to the category Diskn, one
recovers the structure of an algebra over the operad of framed little n-disks. If you don’t
know what that is, you should take this as a definition:

Definition 2.13. A Diskn-algebra in the category (C,⊗) is a symmetric monoidal functor
A : (Diskn,q)→ (C,⊗).

Example 2.14. If n = 1, we have the structure of an associative algebra A together
with an involution τ : A → A. What do I mean? It’s a map s.t. τ2 = idA and
τ(a)τ(b) = τ(ab).

If n = 2, we get an E2-algebra A with an O(2) action. (Draw a picture.)

If we think of symmetric monoidal functors out of Mfldfr
n , then we would get algebras

over the usual n-disks operad.

Remark 2.15. This is the first time this week that we’ve ever even thought of consid-
ering functors with this kind of restriction. But there are two good reasons for this –
first, Diskn algebras have been popping up a lot lately. They are objects of interest to
derived algebraic geometers, who should study schemes over Diskn-algebras, they show
up in topological field theories, and they interpolate between the stable and unstable
world—they’re in some sense the bridge between spectra, which are like infinite loop
spaces, and spaces, which need not be loop spaces at all.

One can still define factorization homology as a left Kan extension of A along the inclu-
sion Diskn → Mfldn. It shouldn’t be a surprise that factorization homology has some spe-
cial properties, once we impose the extra condition that A be symmetric monoidal. The
following is proven by Francis in [Francis12], and it is also proven in [AyalaFrancisT12].

Theorem 2.16 (Excision, [Francis12], [AyalaFrancisT12]). Suppose M has a cover by
two open manifolds N0, N1 ⊂M , and that the intersection N0 ∩N1 can be written as a
product manifold V × R. Fix this identification. Then∫

M
A '

∫
N0

A
⊗

∫
V ×R A

∫
N1

A.

The idea is that V × R is a Disk1 algebra in the category of manifolds, since we have
the functor Disk1 → Mfld given by R 7→ V × R, and (f : R → R) 7→ idV × f . Moreover
N0 has the structure of a right module, and N1 has the structure of a left module. Since
A is a symmetric monoidal functor, these module structures remain in C, and we can
take the bar construction in C.

And this gives us a criterion for detecting convergent functors:
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Definition 2.17. Say that a symmetric monoidal functor H satisfies excision if the
above theorem is true when one replaces

∫
•A with H.

Corollary 2.18. Let A : Mfldn → C be a symmetric monoidal functor. If A does not
satisfy excision, A is not convergent.

But in fact, one can go further. We have a complete classification of convergent
symmetric monoidal functors. First, note the obvious fact:

Proposition 2.19. There is an equivalence of categories

Diskn -ModL ' Funω(Mfldn, C).
between the category of left modules over the Diskn-operad, and the category of convergent
functors. There is also a symmetric monoidal version

Diskn−Alg ' Funω,⊗(Mfldn, C).
between the category of Diskn-algebras and convergent symmetric monoidal functors.

Proof. A Kan extension is completely determined by the values of a functor on the
category from which one is extending. �

We also have the following theorem of Francis from [Francis12]:

Theorem 2.20 ([Francis12]). Let H(C) ⊂ Fun⊗(Mfld, C) be the full subcategory of sym-
metric monoidal functors H such that H satisfies excision. There is an equivalence of
categories

H(C) ' Diskn−Alg(C).
The equivalence is given by factorization homology in one direction, and by restriction
to Diskn in the other.

Corollary 2.21. A symmetric monoidal functor is convergent if and only if it satisfies
excision.

Remark 2.22. The category H is called the category of homology theories for n-
manifolds. This is because it satisfies (a version of) the usual Eilenberg-Steenrod axioms
familiar from classical topology. First, while a homology theory is a functor out of Spaces,
we now consider functors out of Mfld. Second, while a usual homology theory satisfies
excision (i.e., Mayer-Vietoris), a functor in H sends some strict pushouts of manifolds
to a tensor product.

Example 2.23. Let A : Mfld1 → C. Then A assigns the structure of an E1-algebra to
R. By the above theorem, we see that the factorization homology of A over the circle is
given by the bar construction

A(R)
⊗

A(R)⊗A(R)op

A(R).

If A takes values in chain complexes, this is the Hochschild homology of the algebra
A(R). In spectra, this is also talled THH, or the topological Hochschild homology.

Note that S1 has a group of diffeomorphisms given by Z2nS1. Well, the functoriality
of

∫
•A means this action is transferred to the object

∫
S1 A in C. The circle action by S1

is (according to Lurie, but without written proof) precisely the action of cyclic homology.
So the quotient by S1’s action will be topological cyclic homology.
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Example 2.24. Let X ∈ Spaces and let Free(X) be the free Diskfrn algebra generated by
X. Then ∫

M
Free(X) '

∐
k≥0

Confk(M ;X)

where the latter is the space of configurations of k points in M , each point labeled by
an element of X. These points are unordered.

To see this, note that there’s a functor Σ→ Diskfrn , where Σ is the category of (possibly
empty) finite sets with bijections. Then the left Kan extension of the functor Σ → X

given by S 7→ XS along the inclusion Σ → Diskfrn yields the free Diskfrn-algebra on X.

Composing with Diskfrn → Mfldfr
n , we get the Kan extension

Mfld((Rn)q(−),M)
⊗

Σ

X(−).

But this is the same thing as embeddings of disks into M , labeled by points of X. And
this is homotopy equivalent to the space of points on M labeled by X.

More generally, if we study the category of manifolds with a reduction of the tangent
bundle to some G, together with G-framed embeddings, then we would find the config-
uration space of points on P labeled by X, where P is the associated G-budle to TM .
Note this space has an action of G by virtue of the fact that G is a principle G-bundle.

Now let’s study the Taylor tower. In the framed case, we have

T1 Free(X) ' Embfr(Rn,M)×
∐
k

Confk(Rn;X).

In the non-framed case, we have

EmbG(Rn,M)×G

∐
k

Confk(PRn ;X).

As before, now the configuration space is that of points on PRn , the principle G-bundle
on Rn.

Example 2.25. This example was told to me by Geoffroy Horel. Let A be an En

algebra. Its degree one Taylor polynomial is given by the free E∞ algebra generated by
A. Namely, to a disjoint union of k disks, one assigns Aqk.

Then
∫
S1 A

q ' A ∨ ΣA.
On the other hand the universal property of the Taylor tower gives a map to the

actual factorization homology. So we get a map

A ∨ ΣA→ THH(A).

This is a well-known map. It is know to be an equivalence for a certain E1 spectrum.

Remark 2.26 (Factorization homology usually). This is usually the setting in which
one considers factorization homology – the symmetric monoidal context. This is why I
said that the definition above is a definition for this week.
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Manifold Calculus Factorization Homology

F : Mfldop
n → C A : Mfldn → C

Right Kan extension Left Kan extension
Right Diskn-modules Left Diskn-modules

T∞F (M) ' ExtDiskn -ModR(Embn, F )
∫
M A ' TorDiskn(Embn,

∫
)

...

��
T2F

��
T1F

��
F //

=={{{{{{{{

FF
















II�����������������������
T0F

...

��+++++++++++++++++++++++

T2A

OO

��111111111111111

T1A

OO

!!BBBBBBBB

T0A

OO

// A

Table 1. Dual notions

3. Manifold Calculus Revisited

Now I’d like to state a reformulation of manifold calculus – from how we considered
it earlier this week, to the way that Pedro and Michael Weiss consider it in their paper
[BW12].

Recall that I complained when Dan said he’d consider good functors

F : Open(M)op → C.

My complaint was that while F would assign equivalent objects to isotopic open sets, F
wouldn’t be sensitive to how they were isotopic.

Well, here’s a way to fix that situation. We could instead consider functors

F : Mfldop
/M → C

from the overcategory. (This is an overcategory in the sense of ∞-categories. So for
instance, a morphism from X → Y would be a homotopy commutative triangle with
edges X → Y, Y →M,X →M .)

But if we’ve gone this far, we may as well consider functors out of all of Mfld:

F : Mfldop → C.

And that’s what we’ll do here.

Definition 3.1 (Boavida De Brito-Weiss [BW12]). Given F : Mfldop → C, let TkF be

the right Kan extension of F |
Disk≤k

n
along the inclusion Disk≤kn → Mfldn. We call this

the kth Polynomial approximation to F .

That this is equivalent to the notion of polynomial approximation is Theorem 5.3 and
Proposition 4.2 of Pedro and Michael Weiss’s pre-print [BW12].
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By the universal property of right Kan extensions, we have the usual Taylor tower

T0F T1Foo . . .oo

F.

OO ;;xxxxxxxxx

55llllllllllllllllll

I will say that A is convergent if it is equal to T∞A := holimTiA. Note that by definition
we see

T∞(F )(M) ' homDiskn -ModR(Emb(−,M), F ).

3.1. Symmetric Monoidal Version. Now we can study the symmetric monoidal such
functors. Note that the restriction of such a functor F to Diskn gives rise to a diskn-
coalgebra, not algebra. I don’t know about a lot of examples of such coalgebras.

Regardless, we can consider this as a functor Mfld → Cop being extended by left
Kan extensions. Then everything we said about excision holds, but with every diagram
flipped in direction. In other words, we have

Corollary 3.2. The functor T∞F satisfies coexcision if F is symmetric monoidal. That
is: Suppose M has a cover by two open manifolds N0, N1 ⊂M , and that the intersection
N0 ∩N1 can be written as a product manifold V × R. Fix this identification. Then

T∞F (M) ' Cobar(T∞F (N0), T∞F (V × R), T∞F (N1).

Dual to the factorization homology picture, V × R now has the structure of an E1

coalgebra. N0 and N1 are left and right comodules over V ×R. Hence it makes sense to
take the cobar construction, or cotensor product, of these two modules.

Again by dualizing, we classify convergent functors in manifold calculus:

Corollary 3.3. There is an equivalence of categories between convergent symmetric
monoidal functors F : Mfldop → C and homology theories H : Mfldop → C.

Where here, by homology theory, we mean a functor satisfying the ‘coexcision axiom,’
where the bar construction from Theorem 2.16 is replaced by a cobar construction.
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