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Abstract

Given an F,-algebra A we explicitly construct a fully extended n-dimensional
topological field theory which is essentially given by factorization homology.
Under the cobordism hypothesis, this is the fully extended n-TFT correspond-
ing to the E,-algebra A, considered as an object in a suitable Morita-(c0, n)-
category Alg, . We first give a precise definition of a fully extended n-dimensional
topological field theory using complete n-fold Segal spaces as a model for
(00, n)-categories. This involves developing an n-fold Segal space Bord,, of n-
dimensional bordisms and endowing it with a symmetric monoidal structure.
Exploiting the equivalence between E,-algebras and locally constant factoriza-
tion algebras proven by Lurie we use locally constant factorization algebras on
stratified spaces to construct an (oo, n)-category with E,-algebras as objects,
(pointed) bimodules as 1-morphisms, (pointed) bimodules between bimodules
as 2-morphisms, etc. and endow it with a symmetric monoidal structure. Fi-
nally, given an F,-algebra we construct a morphism of n-fold Segal spaces from
Bord,, to Alg,, given by a suitable pushforward of the factorization algebra ob-
tained by taking factorization homology. We show that this map respects the
symmetric monoidal structure.
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Zusammenfassung

Fiir eine E,,-Algebra A geben wir eine explizite Konstruktion einer vollstandig
erweiterten n-dimensionalen topologischen Feldtheorie, die im Wesentlichen
durch Faktorisierungshomologie gegeben ist. Unter Verwendung der Kobordismus-
Hypothese entspricht diese der vollstiandig erweiterten n-TFT, die durch die
E,-Algebra A, als Objekt einer geeigneten Morita- (o0, n)-Kategorie Alg,, betra-
chtet, bestimmt ist. Als Modell fiir (o0, n)-Kategorien benutzen wir vollstdndige
n-fache Segalraume und geben zunéchst eine prazise Definition einer vollstandig
erweiterten n-dimensionalen topologischen Feldtheorie. Diese benttigt die Kon-
struktion eines n-fachen Segalraumes n-dimensionaler Bordismen Bord,, und
einer symmetrisch monoidalen Struktur darauf. Motiviert durch die Aquivalenz
zwischen E,-Algebren und lokal konstanten Faktorisierungsalgebren, die von
Lurie bewiesen wurde, verwenden wir lokal konstante Faktorisierungsalgebren
auf stratifizierten R&umen um eine (00, n)-Kategorie, deren Objekte E,,-Algebren,
1-Morphismen (punktierte) Bimoduln, 2-Morphismen (punktierte) Bimoduln
zwischen Bimoduln, etc. sind, und eine symmetrisch monoidalen Struktur da-
rauf zu definieren. Schliellich konstruieren wir, in Abhéngigkeit einer FE,,-
Algebra, einen Morphismus n-facher Segalrdume von Bord, nach Alg,, der
durch einen gewissen Pushout der Faktorisierungsalgebra, die mittels Fak-
torisierungshomologie erhalten wird, gegeben ist. Wir zeigen, dass diese Ab-
bildung die symmetrisch monoidale Struktur respektiert.
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Résumeé

Etant donné une algebre E,,, nous construisons explicitement une théorie des
champs topologiques pleinement étendue de dimension n, essentiellement donnée
par 'homologie de factorisation. D’apres 'Hypothese du Cobordisme il s’agit
de la n-TFT pleinement étendue qui correspond & 'algebre E,, A, considérée
comme un objet dans une (o0, n)-catégorie appropriée de Morita Alg,. Nous
donnons dans un premier temps une définition précise d’une théorie des champs
topologiques pleinement étendue de dimension n en utilisant les espaces de
Segal complets n-uples comme un modele pour les (00, n)-catégories. Pour
cela nous construisons un espace de Segal complet n-uple Bord,, de bordismes
de dimension n et lui donnons une structure monoidale symétrique. En ex-
ploitant ensuite ’équivalence, démontrée par Lurie, entre les algebres E,, et les
algebres de factorisation localement constantes, nous utilisons des algebres de
factorisation localement constantes sur des espaces stratifiés pour construire
une (00, n)-catégorie ayant les algebres F,, pour objets, les bimodules (pointés)
pour 1-morphismes, les bimodules entre bimodules pour 2-morphismes, etc...
lui donnons une structure monoidale symétrique. Finalement, étant donné une
algebre FE,, nous construisons un morphisme entre espaces de Segal n-uples
depuis Bord,, vers Alg,,, donné par un pushforward de ’algebre de factorisation
obtenue par I’homologie de factorisation. Nous montrons que cette construction
préserve la structure monoidale symétrique.
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Introduction

Motivation

Topological field theories

Topological field theories (TFTs) arose as toy models for physical quantum
field theories, and have proven to be of mathematical interest, notably be-
cause they are a fruitful tool for studying topology. Inspired by Witten’s paper
[Wit82] relating supersymmetry and Morse theory, they were first axiomatized
by Atiyah in [Ati88]. An n-dimensional TFT is a symmetric monoidal functor
from the category of bordisms, which has closed (n — 1)-dimensional manifolds
as objects and n-dimensional bordisms as morphisms, to any other symmetric
monoidal category, which classically is taken to be the category of vector spaces
or chain complexes. In particular it assigns topological invariants to closed n-
dimensional manifolds, which has turned out to be very useful in the study of
low-dimensional topology. Early results by Witten in [Wit89] showed that the
Jones polynomial of knot theory arises from the 3-dimensional Chern-Simons
theory, which is a TFT. Interesting 4-dimensional examples are Donaldson in-
variants of 4-dimensional manifolds which arise from a twisted 4-dimensional
supersymmetric gauge theory, [Wit88], and the related Seiberg-Witten invari-
ants [Wit94, SW94a, SW94b).

A classification of 1- and 2-dimensional TFTs follows from classification the-
orems for 1- and 2-dimensional compact manifolds with boundary. In the 1-
dimensional case, a 1-TFT is fully determined by its value at a point, which is a
dualizable object in the target category and conversely, every dualizable object
in the target gives rise to a 1-TFT. In the 2-dimensional case, a classification,
given by the value at a circle, was proven by Abrams in [Abr96]. The question
of a classification result for larger values of n appears naturally and raises the
question of a suitable replacement of the classification of compact n-manifolds
with boundary used in the low-dimensional cases. In [BD95], Baez and Dolan
explain the need for higher categories of cobordisms for a classification of n-
dimensional extended topological field theories. Here extended means that we
need to be able to evaluate the n-TFT not only at n- and (n — 1)-dimensional
manifolds, but also at (n — 2)-,...1-, and 0-dimensional manifolds. In light of
the hope of computability of the invariants determined by an n-TFT, e.g. by

XV



xvi INTRODUCTION

a triangulation, it is natural to include this data. They conjectured that ex-
tended n-TFTs are fully determined by their value at a point, calling this the
cobordism hypothesis. A proof of a classification theorem of extended TFTs
for dimension 2 and in particular a definition of a suitable bicategory of 2-
cobordisms was given in [SP09].

In his expository manuscript [Lur09b], Lurie explained the need for (oo, n)-
categories for a proof of the cobordism hypothesis in arbitrary dimension n
and gave a detailed sketch of such a proof using a suitable (oo, n)-category of
cobordisms, which, informally speaking, has zero-dimensional manifolds as ob-
jects, bordisms between objects as 1-morphisms, bordisms between bordisms
as 2-morphisms, etc., and for k& > n there are only invertible k-morphisms.
Finding an explicit model for such a higher category poses one of the difficul-
ties in rigorously defining these n-dimensional TFTs, which are called “fully
extended”. His result shows that evaluation at a point gives a bijection, or
more precisely an equivalence of co-groupoids, between (isomorphism classes
of) fully extended n-TFTs with values in a target symmetric monoidal (oo, n)-
category C and (isomorphism classes of) “fully dualizable” objects in C. Thus
any fully dualizable object in the target category determines a fully extended
n-TFT. Full dualizability is a finiteness condition generalizing the condition of
being a dualizable object in the 1-dimensional case.

Factorization homology and factorization algebras

Inspired by Segal’s approach to conformal field theories in [Seg04] and Atiyah’s
axioms for TFTs mentioned above, there have been several approaches to de-
scribe (topological) quantum field theories in an axiomatic way. Factorization
homology and factorization algebras are two such approaches which were de-
veloped and studied by many people, among them Beilinson-Drinfeld, Lurie,
Francis, Costello-Gwilliam.

Factorization homology, also called topological chiral homology, was first de-
fined by Jacob Lurie in [Lur]. It is a homology theory for topological manifolds
satisfying a generalization of the Eilenberg-Steenrod axioms for ordinary ho-
mology, see [Fral2, AFT12]. The construction depends on the data of an
E,-algebra in a suitable symmetric monoidal (oo, 1)-category S, which is an
algebra in S for the operad E,, which in turn is equivalent to the little cubes
operad in dimension n. In the case n = 1, Ej-algebras are equivalent to as-
sociative algebras up to homotopy, i.e. Ap-algebras, and in the case of n = 2,
FEs-algebras in the category of categories are braided monoidal categories. In
the special case that S is the (00, 1)-category of chain complexes, any commuta-
tive differential graded algebra A is in particular also an F,-algebra and it was
shown in [GTZ10] that factorization homology recovers the (higher) Hochschild
homology of A. Factorization homology for manifolds with boundary yields an
n-TFT, as was shown by Horel in [Horl4].

Factorization algebras are algebraic structures encoding the structure of the
observables of a quantum field theory (henceforth QFT), as was shown in
[CG] for perturbative QFTs. One can think of them as a multiplicative, non-
commutative version of cosheaves and they turn out to be a tool useful for
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describing well-known algebraic structures such as E,-algebras ([Lur09b]) and
bimodules between algebras ([Gin]). Factorization algebras and factorization
homology are related in a local-to-global way: in [GTZ10] it was shown that
considering factorization homology locally on a given manifold M yields a fac-
torization algebra on M whose global sections are the factorization homology
of M.

Overview of the thesis

Lurie’s cobordism hypothesis gives a “recipe” for producing a fully extended
n-TFT. Namely one first needs to find a suitable target, which is a symmetric
monoidal (o0, n)-category, and then one needs to pick a fully dualizable object.
However, this construction is not explicit in the sense that one might like to
be able to actually compute the values of the n-TFT. The goal of this the-
sis was to, avoiding the use of the cobordism hypothesis, explicitly construct
a family of examples of fully extended m-dimensional TFTs, which is essen-
tially given by factorization homology with coefficients in a given F,-algebra
A. Under the cobordism hypothesis this fully extended n-TFT corresponds
to the E,-algebra A, which is a fully dualizable object in a suitable Morita-
(o0, n)-category Alg,,. Informally it can be thought of as a higher category
with F,-algebras as objects, bimodules in E,,_i-algebras as 1-morphisms, bi-
modules between bimodules as 2-morphisms, etc. In fact, this (oo, n)-category
is the truncation of an (00, n + 1)-category KEL whose (n + 1)-morphisms are
morphisms in §. Our construction allows to compute the topological invariants
given by the TFT by taking global sections of a factorization algebra, and the
gluing condition (locality) of the factorization algebra allows this to be com-
puted locally. This extends the excision property of factorization homology
proved by Ayala, Francis, and Tanaka in [AFT12].

The first two chapters aim to give a precise definition of a fully extended n-
dimensional topological field theory. In the third chapter we define the target
category of F,-algebras and the final chapter contains the construction of the
fully extended n-TFT as a morphism of n-fold Segal spaces. We now give a
more detailed overview of the chapters.

Symmetric monoidal complete n-fold Segal spaces

First, in chapter 1 we recall the necessary tools from higher category the-
ory needed to define fully extended TFTs. We explain the model for (oo, n)-
categories given by complete n-fold Segal spaces. Moreover, we give two pos-
sible definitions of symmetric monoidal structures on complete n-fold Segal
spaces, once as a I'-object in complete n-fold Segal spaces following [TV09]
and once as a tower of suitable (n + k)-fold Segal spaces with one object,
1-morphism,..., (k— 1)-morphism for k > 0 following the Stabilization Hypoth-
esis.

Definition of a fully extended n-TFT

Chapter 2 deals with the symmetric monoidal (o0, n)-category of bordisms.
Lurie gives a formal definition of this (o0, n)-category using complete n-fold
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Segal spaces, however, as we explain in section 2.3.6, this actually is not an
n-fold Segal space. In our definition 2.3.1, we propose a stronger condition on
elements in the levels of the Segal space and show that this indeed yields a
n-fold Segal space PBord,. Its completion Bord,, defines an (o0, n)-category
of n-cobordisms and thus is a corrigendum to Lurie’s n-fold simplicial space of
bordisms from [Lur09b].

Instead of using manifolds with corners and gluing them, Lurie’s idea was
to conversely use embedded closed (not necessarily compact) manifolds and
to specify points where they are cut into bordisms of which the embedded
manifold is a composition. Whitney’s embedding theorem ensures that every
n-dimensional manifold M can be embedded into some large enough vector
space and suitable versions for manifolds with boundary can be adapted to
obtain an embedding theorem for bordisms, see 2.5.1. Moreover, the rough idea
behind the definition of the levels of PBord,, is that the (k1, ..., k,)-level of our
n-fold Segal space PBord,, should be a classifying space for k;-fold composable
n-bordisms in the ith direction. Lurie’s idea was to use the fact that the space
of embeddings of M into R* is contractible to justify the construction.

We base our construction of PBord,, on a simpler complete Segal space Int
of closed intervals, which is defined in section 2.1. The closed intervals corre-
spond to places where we are allowed to cut the manifold into the bordisms it
composes. The fact that we prescribe closed intervals instead of just a point
corresponds to fixing collars of the bordisms.

In section 2.2 we study a version of a time-dependent Morse lemma which
serves as a motivation for our definition of the spatial structure of the levels
of PBord,,. As we explain in 2.3.2, the spatial structure we define is almost
obtained by taking differentiable chains of the space of embeddings, but we add
the data of a semi-group of diffeomorphisms between bordisms along a simplex.
The time-dependent Morse lemma shows that this yields the same paths.

Section 2.3 is the central part of this chapter and consists of the construction
of the complete n-fold Segal space Bord,, of cobordisms. It is endowed with a
symmetric monoidal structure in section 2.4, both as a I'-object and as a tower.

In section 2.5 we show that its homotopy (bi)category is what one should
expect, namely the homotopy category of its (n — 1)-fold looping L,,—1(Bord,,)
gives back the classical cobordism category nCob and the homotopy bicategory
of Bordy is Schommer-Pries’ bicategory 2Cob®* from [SP09).

Finally, in section 2.6 we consider bordism categories with additional structure
such as orientations, denoted by Bord?", and framings, denoted by Bord!",

which allows us to define fully extended n-dimensional topological field theories
in section 2.7.

The target: FE,-algebras

In chapter 3 we define the target of our fully extended n-TFT, namely a sym-
metric monoidal Morita-(00,n)-category Alg,, = Alg, (S) of E,-algebras. By
an F,-algebra, we mean an F,-algebra object in a suitable symmetric monoidal
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(o0, 1)-category §. Main examples we will be interested in are the category of
chain complexes over a ring R, S = Chg, or the category of (Lagrangian)
correspondences S = (Lag)Corr.

To define this as a complete n-fold Segal space, we exploit the equivalence of
(o0, 1)-categories between E,-algebras and locally constant factorization alge-
bras on R™ =~ (0,1)™ (proven by Lurie in [Lur09b]) and define the objects of
the n-fold Segal space to be locally constant factorization algebras on (0,1)™.
Furthermore, following the observation that the data of a factorization algebra
on (0,1) which is locally constant with respect to a stratification of the form
(0,1) o {p} for any p € (0,1) are equivalent to the data of a pointed (homo-
topy) bimodule, we model the “levels” of the n-fold Segal space as factorization
algebras on (0,1)™ which are locally constant with respect to certain stratifi-
cations. For the existence of the factorization algebras we need the following
assumption on S.

Assumption 1. Let S be a symmetric monoidal (00, 1)-category which admits
all small colimits.

As with Bord,,, we base the construction on a simpler complete Segal space
Covers which we construct in section 3.1. The data given by Covers determine
the stratification with respect to which the factorization algebras are locally
constant.

Section 3.2 contains the main construction of the (00, n)-category, i.e. the n-fold
Segal space, Alg,. In fact, it is the truncation of an (oo, n + 1)-category IKE;:L
given by an n-fold Segal object in Segal spaces. These Segal spaces, i.e. the
levels, are (o0, 1)-categories of locally constant factorization algebras on (0, 1)
which are locally constant with respect to a stratification of a particular form.
The simplicial structure of Alg, essentially comes from the simplicial structure
of the Segal space Covers and is given by the pushforward of the factorization
algebra along a suitable collapse-and-rescale map. With this definition compo-
sition in the homotopy category corresponds to sending two bimodules 4 Mp
and pN¢ to their tensor product (4 Mp) ®p (8Nc).-

The fact that factorization algebras naturally lead to pointed objects has an
important consequence. Namely, it implies that, under a mild assumption on
S, the n-fold Segal space Alg,, is complete. This is shown in section 3.2.8. The
assumption on S needed is flatness:

Assumption 2. Let all objects in the symmetric monoidal (00, 1)-category S
be flat for the monoidal structure.

In section 3.3 we endow Alg, with a symmetric monoidal structure, both as a
I'-object and as a tower.

Finally we show in section 3.4 that the homotopy category of Alg, is the Morita
category, whose objects are (homotopy) algebras and whose morphisms are
isomorphism classes of pointed (homotopy) bimodules.
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Construction of the fully extended n-dimensional topological
field theory

The final chapter, chapter 4 connects the two previous chapters. It contains
the construction of the fully extended n-TFT as a morphism of n-fold Segal
spaces. As we want this to essentially be given by factorization homology, we
need an extra assumption on S:

Assumption 3. Let S be a symmetric monoidal (00, 1)-category which admits

small colimits and such that for each s € S, the functor S LN preserves
filtered colimits and geometric realizations.

The construction of the functor proceeds in two steps: we first define an aux-
illary symmetric monoidal complete n-fold Segal space Fact,, of factorization
algebras on (0, 1)™ in section 4.2, which, like Bord,, is based on the Segal space
Int. It translates the properties of PBorder via a map given by factorization
homology with coefficients in a fixed E,-algebra A,

f A: Bord/" —  Fact,,
(=)

M5V x (0,1)"
\ l — W*(SM A),
(0,1)"

which is defined in section 4.3. However, this map is just a morphism of the
underlying n-fold simplicial sets as it fails to extend to the spatial structure of
the levels.

In a second step, in section 4.4, we define a map to an n-fold Segal space
FAlg, = Alg,, of factorization algebras on (0,1)™ which have certain locally
constancy properties, but do not lead to bimodules,

Y : Fact,, — FAlg,, .

This map can be understood as “collapsing” parts of the factorization algebra
and then rescaling. It arises from a map ¥ : Int — Covers of the simpler Segal
spaces on which Fact,, and FAlg, are based, which determines a collapse-and-
rescale map o : (0,1)™ — (0,1)™. Then the map V is given by the pushforward
of the factorization algebra along p.

One should think of this process as collapsing the part of the factorization
algebra in which the factorization algebra might change along a path, or an
even higher simplex in Bordir. The global sections of this part do not change,
as the data of a higher simplex in Bord,, include diffeomorphisms between
bordisms along this simplex. Following this argument we show in section 4.5
that the composition of the two constructed maps YV o S(_) A is a morphism of
n-fold Segal spaces and its image in fact lands in Alg,,,

FHn(A) : PBord!" — Alg,, .
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By the universal property of the completion, this map extends to a map of
complete n-fold Segal spaces,

FH,(A) : Bord!™ — Alg,, .

To conclude that FH,,(A) is the desired fully extended topological field theory
we show in 4.6 that it extends to the symmetric monoidal structure for both
structures.

S
PBord/" —=1; Fact,, —=— FAlg,,

T ]

Bord,, LA Alg,

Guide to the reader

Parts of this thesis contain rather technical constructions of suitable (n-fold)
Segal spaces, so let us explain which parts can be left aside on a first reading.

The first chapter mostly contains a recollection on complete n-fold Segal spaces
as a model for (o0, n)-categories. The only original part in this section is that
of the definition of a symmetric monoidal structure on an n-fold Segal space
following the Stabilization Hypothesis in subsection 1.6.2 using the notion of k-
hybrid n-fold Segal spaces, which are a suitable interpolation between complete
n-fold Segal spaces and Segal n-categories.

The second and third chapters are mostly independent of each other. In both,
one can first brush over the rather technical constructions of the underlying
simpler Segal spaces Int and Covers in sections 2.1 and 3.1 and go straight to
the main constructions of the (oo, n)-categories Bord,, and Alg,, in sections 2.3
and 3.2.

The forth chapter contains the heart of this thesis. The fully extended TFT is
constructed within this chapter.

Warning. In chapter 1 we define an (o0, n)-category to be a complete n-fold
Segal space. We try to be consistent with this definition throughout the thesis,
but at times have to switch to different models for (o0, n)-categories, usually
for (00, 1)-categories. We will usually state this explicitly where necessary.

Conventions. We will use the following conventions throughout this thesis.

e By space, we will mean a simplicial set. This is to distinguish the n
simplicial “directions” of the n-fold Segal space from the simplicial set
of the “levels”, which we call spatial direction. The (00, 1)-category of
spaces will be denoted by Space.

with the

e We fix a diffeomorphism (0,1) X R. This will endow (0,
~ R” we will

structure of a vector space. Whenever we write “(0,1)
mean this fixed diffeomorphism.

1)
R7
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e To simplify notation, if we write [a,b] < (0,1), we allow a =0 or b = 1
and mean [a, b] n (0,1).

e We denote {1,...,n} by n.



CHAPTER ].

Preliminaries: symmetric monoidal
(00, n)-categories

A higher category, say, an n-category for n > 0, has not only objects and (1-
Jmorphisms, but also k-morphisms between (k — 1)-morphisms for 1 < k <
n. Strict higher categories can be rigorously defined, however, most higher
categories which occur in nature are not strict. Thus, we need to weaken
some axioms and coherence between the weakenings become rather involved
to formulate explicitly. Things turn out to become somewhat easier when
using a geometric definition, in particular when furthermore allowing to have
k-morphisms for all k& > 1, which for & > n are invertible. Such a higher
category is called an (o0, n)-category. There are several models for such (oo, n)-
categories, e.g. Segal n-categories (cf. [HS98]), O,-spaces (cf. [Rez10]), and
complete n-fold Segal spaces, which all are equivalent in an appropriate sense
(cf. [To€05, BS11]). For our purposes, the latter model turns out to be well-
suited and in this section we recall some basic facts about complete n-fold Segal
spaces as higher categories. This is not at all exhaustive, and more details can
be found in e.g. [BR13, Zhal3].

1.1 The homotopy hypothesis and (o0, 0)-categories

The basic hypothesis upon which higher category theory is based is the follow-
ing

Hypothesis 1.1.1 (Homotopy hypothesis). Topological spaces are models for
oo-groupoids, also referred to as (00, 0)-categories.

Given a topological space X, its points are thought of as objects of the (o0, 0)-
category, 1-morphisms as paths between points, 2-morphisms as homotopies
between paths, 3-morphisms as homotopies between homotopies, and so forth.
With this interpretation, it is clear that all n-morphisms are invertible up to
homotopies, which are higher morphisms.

We take this hypothesis as the basic definition.
Definition 1.1.2. An (o0,0)-category is a topological space.
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1.2 Complete Segal spaces as models for
(o0, 1)-categories
A good overview on different models for (oo,1)-categories can be found in

[Ber10]. Here we would just like to mention one particularly simple and quite
rigid model, namely that of topologically enriched categories.

Definition 1.2.1. A topological category is a category enriched in topological
spaces (or simplicial sets, depending on the purpose).

Topological categories are discussed and used in [Lur09a, TV05]. However, for
our applications, complete Segal spaces, first introduced by Rezk in [Rez01]
as models for (o0, 1)-categories, turn out to be very well-suited. We recall the
definition in this section.

1.2.1 Segal spaces

Definition 1.2.2. A (1-fold) Segal space is a simplicial space X = X, which
satisfies the Segal condition, i.e. for any n,m = 0,

Xm+n — Xm

|

X, — X

induced by the maps [m] — [m+n], (0 <--- <m) — (0 < --- < m), and
[n] = [m+n],( 0<---<n)— (m+1<--- <m+n), is a homotopy pullback
square. In other words,

h
Xm+n > Xm X Xn7
Xo
is a weak equivalence.

Defining a map of Segal spaces to be a map of the underlying simplicial spaces
gives a category of Segal spaces, SSpaces = SSpaces; .

Remark 1.2.3. Following [Lur09b] we omit the Reedy fibrant condition which
often appears in the literature. In particular, this condition would guarantees
in particular that the canonical map

h
X x X, — X, x X,,
Xo Xo

is a weak equivalence. This explains the different appearance of the Segal
condition.

Example 1.2.4. Let C be a small topological category, i.e. a small category
enriched over topological spaces. Then its nerve N(C) is a Segal space.
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Segal spaces as (w0, 1)-categories

The above example motivates the following interpretation of Segal spaces as
models for (oo, 1)-categories. If X, is a Segal space then we view the set of
0-simplices of the space X as the set of objects. For z,y € Xy we view

Homy (z,y) = {z} xk, X1 x’, {y}

as the (o0, 0)-category, i.e. the space, of arrows from z to y. More generally, we
view X, as the (00, 0)-category, i.e. the space, of n-tuples of composable arrows
together with a composition. Note that given an n-tuple of composable arrows,
there is a contractible space of compositions. Moreover, one can interpret paths
in the space X of 1-morphisms as 2-morphisms, which thus are invertible up
to homotopies, which themselves are 3-morphisms, and so forth.

Definition 1.2.5. We will later refer to the spaces X, as the levels of the
Segal space.

1.2.2 The homotopy category of a Segal space

To a higher category one can intuitively associate an ordinary category, its ho-
motopy category, having the same objects, with morphisms being 2-isomorphism
classes of 1-morphisms. For Segal spaces, one can realize this idea as follows.

Definition 1.2.6. The homotopy category hi(X) of a Segal space X = X, has
as set of objects the set of vertices of the space Xy and as morphisms between
objects z,y € Xy,

Homhl(X) (35, y) = To (HOIHX (:Ca y))
h h
= <{w} z Xy X {y}> :

For z,y, z € Xy, the following diagram induces the composition of morphisms,
as weak equivalences induce bijections on .

h h h h h h h
(@ixim)x(winie) — @inknke
h h
— w3 X x

h h
— {a} )>(<0 X1 )>(<0 {z}.

Example 1.2.7. Given a small (ordinary) category C, the homotopy category
of its nerve, viewed as a simplicial space with discrete levels, is equivalent to
Ca

hi(N(C)) =C.

1.2.3 Complete Segal spaces

In our definition of the homotopy category hq(X) of a Segal space X = X, as
well as in our interpretation of X as an (00, 1)-category, we do not seem to use
the information coming from the topology of Xy. Loosely speaking, we would
like that the topology of Xy encodes the co-groupoid of invertible 1-morphisms
in our (oo, 1)-category.
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Definition 1.2.8. An element f € X; with source and target = and y, i.e. the
two faces of f are z and y, is invertible if its image under

h h h h
foh X0 x o} — () $ 30 % (0} — o (1) % X0 & () = Hom, (2.

is an invertible morphism in h;(X).

Denote by X" the subspace of invertible arrows and observe that the map
Xo — X factors through X{™", since the image of x € Xy under Xy — X; —
Homy,, (x)(, ) is id,, which is invertible.

Definition 1.2.9. A Segal space X, is complete if the map Xy — Xi™ is a
weak equivalence.

Complete Segal spaces are (o0, 1)-categories

Rezk explained in [Rez01] that complete Segal spaces are a good model for
(00, 1)-categories. This justifies the following definition.

Definition 1.2.10. An (o0, 1)-category is a complete Segal space.

Remark 1.2.11. The completeness condition says that all invertible mor-
phisms essentially are just identities up to the choice of a path. So strictly
speaking, complete Segal spaces should be called skeletal, or, according to
[Joy], reduced (o0, 1)-categories.

Completion of Segal spaces

Rezk showed in [Rez01] that Segal spaces can always be completed. He showed
that there is a completion functor which to every Segal space X associates a
complete Segal space X together with a map ix : X — X, which is a Dwyer-
Kan equivalence, which is defined below. Moreover, X is universal among
complete Segal spaces Y together with a map X — Y.

Definition 1.2.12. An map f : X — Y of Segal spaces is a Dwyer-Kan
equivalence if

1. the induced map hi(f) : hi1(X) — h1(Y) on homotopy categories is an
equivalence of categories, and

2. for each pair of objects z,y € X the induced function on mapping spaces
Homx (x,y) — Homy (f(z), f(y)) is a weak equivalence.

Relative categories and the classification diagram

In this section we recall a construction due to Rezk [Rez01] which produces a
complete Segal space from a simplicial closed model category. More generally,
Barwick and Kan proved in [BK11] that this construction also gives a complete
Segal space for so-called partial model categories.
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Definition 1.2.13. Let (C,W) be a relative category, i.e. a category C with
a distinguished subcategory W. Consider the simplicial object in categories
C. given by C, := Fun([n],C). It has a subobject C)¥, where C}V < C,, is the
subcategory having the same objects and morphisms consisting only of those
from W. Taking its nerve we obtain a simplicial space N(C, W), with

N(C.W)a = N(C)
called the relative/simplicial nerve or the classification diagram.

Example 1.2.14. Let C be a small category. Then it is straightforward to see
that N(C,IsoC) is a complete Segal space. Alternatively, if C has finite limits
and colimits, it can be made into a closed model category in which the weak
equivalences are the isomorphisms and all maps are fibrations and cofibrations.
Then the above result also shows that the classification diagram is a complete
Segal space, cf. [Rez01].

1.2.4 Segal categories

A second way to avoid the problem that in a Segal space and its homotopy
category we do not use the topology on X is to impose that X is discrete.
By this we obtain the notion of Segal categories, which are another model for
(00, 1)-categories and briefly mention here. More details and references can be
found in the above mentioned [Berl10].

Definition 1.2.15. A Segal (1-)category is a Segal space X = X, such that
Xy is discrete.

(Reedy fibrant) complete Segal spaces and Segal categories are the fibrant ob-
jects of certain model categories which are Quillen equivalent. For our purposes,
complete Segal spaces turn out to be the “right” model.

1.3 Complete n-fold Segal spaces as models for
(o0, n)-categories
As a model for (o0, n)-categories, we will use complete n-fold Segal spaces,

which were first introduced by Barwick in his thesis and appeared prominently
in Lurie’s [Lur09b].

1.3.1 n-fold Segal spaces

An n-fold Segal space is an n-fold simplicial space with certain extra conditions.

Definition 1.3.1. An n-fold simplicial space X, . o is essentially constant if
there is a weak homotopy equivalence of n-fold simplicial spaces Y — X, where
Y is constant.

Definition 1.3.2. An n-fold Segal space is an n-fold simplicial space X =
X, ..o such that

,,,,,
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(i) For every 1 <i < n, and every ki,...,ki—1,kit1,...,kn =0,

X,k

Jkio1,0kip1, 0k
is a Segal space.
(ii) For every 1 < i < n, and every ki,...,ki—1 =0,
Xky,ki1,0,0,...,0

is essentially constant.

Defining a map of n-fold Segal spaces to be a map of the underlying n-fold
simplicial spaces gives a category of n-fold Segal spaces, SSpaces,.

Remark 1.3.3. Alternatively, one can formulate the conditions iteratively.
First, an n-iterated Segal space is a simplicial object Y, in (n — 1)-fold Segal
spaces which satisfies the Segal condition. Then, an n-fold Segal space is an
n-iterated Segal space such that Yj is essentially constant (as an (n — 1)-fold
Segal space). To get back the above definition, the ordering of the indices is
crucial: Xkl,-<~7kn, = (Ykl)kg,“.,kn~

Interpretation as higher categories

An n-fold Segal space can be thought of as a higher category in the following
way.

The first condition means that this is an n-fold category, i.e. there are n different
“directions” in which we can “compose”. An element of Xy, . . should be
thought of as a composition consisting of k; composed morphisms in the ith
direction.

The second condition imposes that we indeed have a higher n-category, i.e. an
n-morphism has as source and target two (n — 1)-morphisms which themselves
have the “same” (in the sense that they are homotopic) source and target.

For n = 2 one can think of this second condition as “fattening” the objects in
a bicategory. A 2-morphism in a bicategory can be depicted as

The top and bottom arrows are the source and target, which are 1-morphisms
between the same objects.

In a 2-fold Segal space X, ., an element in X, ; can be depicted as

X0,0 ~ X0,1 3 U € Xo,1 ~ Xo,1
v v
o— e

K xm ®+
Q
o v %
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The images under the source and target maps in the first direction X1 1 = Xj
are l-morphisms which are depicted by the horizontal arrows. The images
under the source and target maps in the second direction X; 1 =3 Xo,1 are 1-
morphisms, depicted by the dashed vertical arrows, which are essentially just
identity maps, up to homotopy, since X1 =~ Xgo. Thus, here the source
and target 1-morphisms (the horizontal ones) themselves do not have the same
source and target anymore, but up to homotopy they do.

The same idea works with higher morphisms, in particular one can imagine
the corresponding diagrams for n = 3. A 3-morphism in a tricategory can be
depicted as

whereas a 3-morphism, i.e. an element in X; ;; in a 3-fold Segal space X can
be depicted as

> e
>
=
>

Here the dotted arrows are those in X 11 >~ Xo,0,1 =~ Xo,0,0 and the dashed
ones are those in X; 91 >~ X 9,0.

Thus, we should think of the set of 0-simplices of the space Xy, . o as the
_____ o as i-morphisms, where
0 < i < n is the number of 1’s. Pictorially, they are the i-th “horizontal”
arrows. Moreover, the other “vertical” arrows are essentially just identities of
lower morphisms. Similarly to before, paths in X; ;i should be thought of
as (n + 1)-morphisms, which therefore are invertible up to a homotopy, which
itself is an (n + 2)-morphism, and so forth.

1.3.2 Complete and hybrid n-fold Segal spaces

As with (1-fold) Segal spaces, so far we have not used the topology on Xj.
Again, there are several ways to include its information.

Definition 1.3.4. Let X be an n-fold Segal space and 1 < 4,5 < n. It is said
to satisfy

CSS? if for every ki,..., ki1

WV
(=
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is a complete Segal space.
SCY if for every ki, ..., kj_1 =0,
Xk17~~-7/€j—1:07°,-~7°

is discrete, i.e. a discrete space viewed as a constant (n — j + 1)-fold Segal
space.

Definition 1.3.5. An n-fold Segal space is

1. complete, if for every 1 <i < n, X satisfies (CSS?).
2. a Segal n-category if for every 1 < j < n, X satisfies (SC7).

3. m-hybrid for m > 0 if condition (C'SS?) is satisfied for i > m and condi-
tion (SCY) is satisfied for j < m.

Denote the full subcategory of SSpaces, of complete n-fold Segal spaces by
CSSpaces,,.

Remark 1.3.6. Note that an n-hybrid n-fold Segal space is a Segal n-category,
while an n-fold Segal space is 0-hybrid if and only if it is complete.

For our purposes, the model of complete n-fold Segal spaces is well-suited, so
we define

Definition 1.3.7. An (o0, n)-category is an n-fold complete Segal space.

Completion

In light of the iterative definition of an n-fold Segal space, i.e. viewing an n-
fold Segal space as an (n — 1)-fold Segal space, condition (C'SS?) above means
that the ith iteration is a complete Segal space object. Thus, given an n-fold
Segal space X, . ., one can apply the completion functor iteratively to obtain
a complete n-fold Segal space )A(.y__”., its (n-fold) completion. There is a map
X — )’(\', the completion map, which is universal among all maps to complete
n-fold Segal spaces. Also, if an n-fold Segal space X, . satisfies (SC7) for
j < m, we can apply the completion functor just to the last (n —m) indices to

obtain an m-hybrid n-fold Segal space )A(f“,, its m-hybrid completion.

‘Weak equivalences

There is a model category structure on the category of simplicial spaces sSpacesy,.
Since SSpaces, and CSSpaces,, are full subcategories of sSpaces,, they in-
herit a subcategory of weak equivalences. One can prove that they are exactly
the Dwyer-Kan equivalences, the analogous notion to definition 1.2.12 for n = 1.
More details can be found e.g. in [Zhal3].
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1.4 The homotopy bicategory of a 2-fold Segal space

To any higher category one can intuitively associate a bicategory having the
same objects and 1-morphisms, and with 2-morphisms being 3-isomorphism
classes of the original 2-morphisms.

Definition 1.4.1. The homotopy bicategory hy(X) of a 2-fold Segal space
X = X... is defined as follows: objects are the points of the space Xy o and

h h
Homhg(X)(xvy) = hl (HOD’IX(-T,ZJ)) = hl ({ib} XX XL- XX {y}>

as Hom categories. Horizontal composition is defined as follows:
h h h h h h h
(@ kx5 )« (0 F 3 k@) — @ 5 xe ko ko
_ h h
— {z} o e X {z}
h h
— o A1 o 7}

The second arrow happens to go in the wrong way but it is a weak equivalence.
Therefore after taking h; it turns out to be an equivalence of categories, and
thus to have an inverse (assuming the axiom of choice).

1.5 Constructions of n-fold Segal spaces

We describe several intuitive constructions of (o0, n)-categories in terms of
(complete) n-fold Segal spaces.

1.5.1 Truncation

Given an (o0, n)-category, for k < n its (o0, k)-truncation is the (oo, k)-category
obtained by discarding the non-invertible m-morphisms for k < m < n.

In terms of n-fold Segal spaces, there is a functor of n-fold Segal spaces sending
X = X, ... . toits k-truncation, the k-fold Segal space

,,,,,

k times n—k times

Remark 1.5.1. Note that if X is m-hybrid then so is 7. X by the definition
of the conditions (CSS?) and (SCY).

Warning. Truncation does not behave well with completion, i.e. the trunca-
tion of the completion is not the completion of the truncation. However, we
get a map in one direction.

Th(X) — 7(X)

P
-
-
-
-
-
-
-

7 (X)
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In general, we do not expect this map to be an equivalence.

Thus in general one should always complete an n-fold Segal space before trun-
cating it, as
X1,..1,0..0>X1,..1,0,..0
~—— ~——

k m

are the invertible m-morphisms for k& < m < n if and only if X satisfies (1.3.4)
for k < i < n. For example, if X = X, is a (1-fold) Segal space then Xj is the
underlying co-groupoid of invertible morphisms if and only if X is complete.

1.5.2 Extension

Any (00, n)-category can be viewed as an (00, n+1)-category with only identities
as (n + 1)-morphisms.

In terms of iterated Segal spaces, any n-fold Segal space can be viewed as a
constant simplicial object in n-fold Segal spaces, i.e. an (n+ 1)-fold Segal space
which is constant in the first index. Explicitly, if X, . . is an n-fold Segal
space, then €(X),, . is the constant (n + 1)-fold Segal space such that for
every k = 0,

E(X)k,o,...,o = Xo,.. .

)

with identities as face and degeneracy maps.

Lemma 1.5.2. If X is complete, then £(X) is complete.

Proof. Since X is complete, it satisfies (C'SS?) for i > 1. For i = 0, we have to
show that (X )0, 0 is complete. This is satisfied because

(e(X)1,0,..0)"™" = &(X)1.0...0 = Xo,...0 = £(X)0,0,....0,

since morphisms between two elements x, y in the homotopy category of (X )e ,,...

are just connected components of the space of paths in Xy, . ., and thus are

always invertible. O

We call ¢ the extension functor, which is left adjoint to 7;. Moreover, the unit
id — 7 o € of the adjunction is the identity.

1.5.3 The higher category of morphisms and loopings

Given two objects z,y in an (00, n)-category, morphisms from z to y should
form an (00, n —1)-category. This can be realized for n-fold Segal spaces, which
is one of the main advantages of this model for (o0, n)-categories.

Definition 1.5.3. Let X = X, .. . be an n-fold Segal space. As we have
seen above one should think of objects as vertices of the space Xy . o. Let
z,y € Xo.. 0. The (n — 1)-fold Segal space of morphisms from x to y is

X

{y}.

h
Homx (x,%9)e... « = {x X Xie. o
X (%), 0 = }XO,,.,.,. Lo X
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Remark 1.5.4. Note that if X is m-hybrid, then Homy, (x,y) is (m — 1)-
hybrid.

Example 1.5.5 (Compatibility with extension). Let X be an (oo, 0)-category,
i.e. a space, viewed as an an (00, 1)-category, i.e. a constant (complete) Segal
space €(X)., ¢(X)r = X. For any two objects z,y € (X)o = X the (o0,0)-
category, i.e. the topological space, of morphisms from x to y is

h h h
Hom,(x)(z,y) = {z} x e(X)1 x {y} = {z} x {y} = Pathx(z,y),
E(X)O E(X)O X

the path space in X, which coincides with what one expects by the interpreta-
tion of paths, homotopies, homotopies between homotopies, etc. being higher
invertible morphisms.

Definition 1.5.6. Let X be an n-fold Segal space, and z € Xy an object in
X. Then the looping of X at x is the (n — 1)-fold Segal space

L(Xa -r)',...w = HomX(x,x).),,,7. = {J}} X})L(o o X0 XA})L(O ....,0 {.Z’}

------ . 2T PLETRRN

In the following, it will often be clear at which element we are looping, e.g. if
there essentially only is one element, or at a unit for the monoidal structure.
Then we omit the z from the notation and just write

LX = L(X) = L(X, z).
Note that even if there is not a unique unit, this will be independent of the
choice of unit.

We can iterate this procedure as follows.

Definition 1.5.7. Let Lo(X,z) = X. For 1 < k < n, let the k-fold iterated
looping be the (n — k)-fold Segal space

Lk<X, .’17) = L(kal(X, .%‘),SC),

where we view x as a trivial k-morphism via the degeneracy maps, i.e. an
element in Ly_1(X,2)o...0 € X1, 10,0, With k 1’s.

Remark 1.5.8. We remark that looping commutes with taking the ordinary

or the m-hybrid completion, since completion is taken index per index.

1.6 Symmetric monoidal n-fold Segal spaces

1.6.1 as a I'-object

Following [Toe, TV09], we define a symmetric monoidal n-fold Segal space in
analogy to so-called I'-spaces.

Definition 1.6.1. Segal’s category I' is the category whose objects are the
finite sets

{m)y=1{0,...,m},
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for m = 0 which are pointed at 0. Morphisms are pointed functions, i.e. for
k,m > 0, functions

fi{my — k), f(0)=0.

For every m > 0, there are m canonical morphisms
vp i {my — (1), jr—> by
for 1 < B < m, called the Segal morphisms.

Remark 1.6.2. Segal’s category I' is the skeleton of the category of finite
pointed sets.

Recall from section 1.2.3 that for a small category C with W = IsoC or for a
partial model category C with weak equivalences W the classification diagram
N(C,W) is a complete Segal space.

Definition 1.6.3. Let W denote the weak equivalences in (C)SSpace,. A
symmetric monoidal (complete) n-fold Segal spaceis a functor of (0o, 1)-categories,
i.e. complete Segal spaces,

A:N(T,IsoT') — N((C)SSpace,, W)
such that for every m > 0, the induced map

AC T s) - Amy — (AD)™

1<B<m
is an equivalence of n-fold (complete) Segal spaces.

The (complete) n-fold Segal space X = A(1) is called the (complete) n-fold
Segal space underlying A, and by abuse of language we will sometimes call a
(complete) n-fold Segal space X symmetric monoidal, if there is a symmetric
monoidal (complete) n-fold Segal space A such that A1) = X.

Remark 1.6.4. The above condition should be understood as follows. The
1-morphism

A( H 78) € N((C)SSpace,, W),

1<p<m

by definition of the classification diagram is a map of n-fold (complete) Segal
spaces with source A(m) and target (A{1))™, and require it to be a weak
equivalence. Note that in particular, for m = 0, this implies that A{0) is a
point, viewed as a constant n-fold Segal space.

Definition 1.6.5. There is an (o0, 1)-category, i.e. a Segal space, of functors
N(I',IsoT') — N((C)SSpacen, W). It has a full sub-(c0, 1)-category of sym-
metric monoidal (complete) n-fold Segal spaces. A 1-morphism in this category
is called a symmetric monoidal functor of (00, n)-categories.

Since the completion map X — X is a weak equivalence, we obtain the follow-
ing
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Lemma 1.6.6. If A: N(I',IsoI') — N(SSpace,, W) is a symmetric monoidal
n-fold Segal space, then

A: N(T,IsoT’) — N(CSSpacen, W),
(m) — A{m)
is a symmetric monoidal complete n-fold Segal space.

Remark 1.6.7. In the following, all our symmetric monoidal structures will
arise from functors (of actual categories)

I' — SSpace,,

and our symmetric monoidal functors from (strict) natural transformations of
such. However, in the homotopy theoretic setting, one should allow our more
flexible definition above.

Remark 1.6.8. For more details on this definition and a definition of monoidal
n-fold Segal spaces, see [Zhal3].

Example 1.6.9. Let A : ' — SSpace; be a symmetric monoidal Segal
space. Consider the product of maps 71 X 2 and the map induced by the map

v:{2) > 1)1,2- 1,

A1) x A1) A2y 29 4¢1,

A(71)x A(72)

Passing to the homotopy category, we obtain a map
hi(ACL)) x hi(ACL)) — ha(ACD)).

Toén and Vezzosi showed in [TV09] that this is a symmetric monoidal structure
on the category hi(A{1)). Roughly speaking, this uses functoriality of A.
Associativity uses the Segal space A(3), A(0) corresponds to the unit, and the
map c:{2) = (2);1 — 2,2 +— 1 induces the commutativity constraint.

Example 1.6.10. Truncation and extension are symmetric monoidal of sym-
metric monoidal (00, n)-categories again are symmetric monoidal. Let A be a
symmetric monoidal n-fold Segal space. Then we can define

Te(A)(m) = m.(Almy), - e(A)(m) = e(A(m)).

Note that 7, and € are functors of n-fold Segal spaces which preserves weak
equivalences. Thus, these assignments can be extended to functors 74 (A) and
e(A), and the images of A(]];<s<,, 75) are again weak equivalence.

Example 1.6.11. For every m > 0 there is a unique map {0) — {m), and
since A{0) is the point as a constant (complete) n-fold Segal space, this in-
duces, for every m > 0, a distinguished object 1(,,, € A(m). The looping
of a symmetric monoidal n-fold Segal space A with respect this object also is
symmetric monoidal, with

L(A)(m) = L(A(m), Limy),

which extends to an appropriate functor similarly to in the previous example.
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Example 1.6.12. Important examples come from the classification diagram
construction. Let C be a small symmetric monoidal category and let W = IsoC.
As we saw in section 1.2.3, this gives a complete Segal space Co = N(C, W).
The symmetric monoidal structure of C endows C, with the structure of a
symmetric monoidal complete Segal space:

First note that W*™ = Iso(C*™) for every m. On objects, let A : T' —
CSSpace; be given by A{m) = N(C*™, W*™),. We explain the image of the
map (2) — (1);1,2 — 1, which should be a map A{2) — A{1). The image of
an arbitrary map {m) — {I) can be defined analogously.

An [-simplex in A¢(2) g = N(C x C,W x W), is a pair

/ ’
w w w w
Co = - 25, Dy — .- —5 Dy,

and is sent to
Co® Dy —5 ... = Cy® Dy,

w;®idp, ido, QW
Ci®D;_

where w : Ci—1 ® D;_1 C; ® D; is in W. More

generally, an [-simplex in
A(2), = N(C xC, W x W)y

is a pair of diagrams

0070 fio Cio f20 o fro Ok,O Doo 910 Dio 920, _gko
wo1 w11 W1 vo1 v11

0071 fi1 0171 f21 fr1 Ck,l D071 911 Dl,l g1, _9m
wo2 wa1 W2 Vo2 v21
wol w1 Wk Vol V11

Cou S C1 fai . fr Cro Doy g Dy g2, Gkt

which is sent to the diagram

Co.0® Do % Ci0® D1 g % o

| |

®
Co,1 ® Do 1 RALIN Ci1®Di

| |

f21®921

where the vertical maps are defined as for the objects.

Vil

Dy
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Finally, we need to check that A(]_[1 <B<m 75) is a weak equivalence. This
follows from the fact that

(Alm))e = N(C™ W), = (N(C,W)k) ™ = (A),)"™.

Remark 1.6.13. If we start with a symmetric monoidal relative category
(C,W) (a definition can e.g. be found in [Cam14]) such that all N(C*™, W*™)
are (complete) Segal spaces, then the above construction for (C, W) yields a
symmetric monoidal (complete) Segal space N(C, W).

1.6.2 Symmetric monoidal n-fold Segal spaces as a tower of
(n + i)-fold Segal spaces

Our motivation for the following definition of a (k-)monoidal complete n-fold
Segal space comes from the Delooping Hypothesis, which is inspired by the
fact that a monoidal category can be seen as a bicategory with just one object.
Similarly, a k-monoidal n-category should be a (k+n)-category (whatever that
is) with only one object, one l-morphism, one 2-morphism, and so on up to
one (k — 1)-morphism.

Hypothesis 1.6.14 (Delooping Hypothesis). k-monoidal (o0, n)-categories can
be identified with (k—j)-monoidal, (j—1)-simply connected (o0, n+ j)-categories
for any 0 < j < k, where (j — 1)-simply connected means that any two parallel
i-morphisms are equivalent for ¢ < j. In particular, monoidal (00, n)-categories
can be identified with (o0, n + 1)-categories with (essentially) one object.

Monoidal n-fold complete Segal spaces

We use the last statement in the delooping hypothesis as the motivation for
the following definition. However, first we need to explain what “having (es-
sentially) one object” means.

Definition 1.6.15. An n-fold Segal space X is called pointed or 0-connected,
if
XO’.,.

09

is weakly equivalent to the point viewed as a constant n-fold Segal space.

Definition 1.6.16. A monoidal complete n-fold Segal space is a 1-hybrid (n +
1)-fold Segal space X1 which is pointed. We say that this endows the n-fold
complete Segal space

X = L(XW, %)
with a monoidal structure and that X is a delooping of X.
Remark 1.6.17. Note that as X () is 1-hybrid, Xél.). is discrete. Thus,

_____ . is equal to the point viewed as a constant

to be pointed implies that Xé}.)
n-fold Segal space.

Without the completeness condition, we could define a monoidal n-fold Segal
space as an (n + 1)-fold Segal space X @ which is pointed. Then L(X(l), %) =
Hom ) (#, %) is independent of the choice of point * € Xy o and we can

,,,,,
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say that this endows the n-fold Segal space X = L(X™M) = L(X™), ) with a
monoidal structure.

However, a complete Segal space will not have a contractible space as Xo,... o.
Thus, we need to introduce a model for (00, n + k)-categories which can have
a point as the set of objects, 1-morphisms, et cetera, which motivates our use
of hybrid Segal spaces.

Remark 1.6.18. Let X be an m-hybrid n-fold Segal space with m > 0 which
is pointed. Then Xy, .. . = *, and the looping is

h h
L(X)o, « = {*} >>: Xl,o,...,o >>: {*} = Xl .

195...,@

A similar definition works for hybrid Segal spaces.

Definition 1.6.19. A monoidal m-hybrid n-fold Segal space is an (m + 1)-
hybrid (n+ 1)-fold Segal space X () which is pointed. We say that this endows
the m-hybrid n-fold Segal space

X = L(xXM)
with a monoidal structure and that X is a delooping of X.

Example 1.6.20. Let C be a small monoidal category and let W = IsoC. As
we saw in section 1.2.3, this gives a complete Segal space C, = N(C,W). The
monoidal structure of C endows C, with the structure of a monoidal complete
Segal space:

Let Cpnpn = CO™ be the category which has objects of the form
Co1®: @ Com —— - — Cro®-++ ® Cpym,
and morphisms of the form

C1 Cn

001®"'®00m OnO@"'®Cnm

l -

D01®®DOmL>L>DnO®®Dnm7

where ¢1,...,¢n,d1,...,dy, and f9,..., f* are morphisms in C.

Consider its subcategory CHVX n < Cpm.n, which has the same objects, and vertical
morphisms involving only the ones in W = IsoC, i.e. f,..., f® are morphisms
in W.

Now let
Cv(v}b,)n = N(Cnvy,n%

the (ordinary) nerve. By a direct verification one sees that the collection CEl.)
is a 2-fold Segal space. Moreover,
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1. Cé}g = N(C®°) = «, so C(()’l.) is discrete and equal to the point viewed as a
constant Segal space, and

2. for every m = 0, C,(,i). = N(C),) = N((C&™)W), which is a complete
Segal space.

Summarizing, CV) is a 1-hybrid 2-fold Segal space which is pointed and endows
L(C™M), = C. with the structure of a monoidal complete Segal space.

k-monoidal n-fold complete Segal spaces

To encode braided or symmetric monoidal structures, we can push this defini-
tion even further.

Definition 1.6.21. An n-fold Segal space X is called j-connected if for every
1<7,

is weakly equivalent to the point viewed as a constant n-fold Segal space.

Definition 1.6.22. A k-monoidal m-hybrid n-fold Segal space is an (m + k)-
hybrid (n + k)-fold Segal space X*) which is (j — 1)-connected for every 0 <
Jj<k.

yeeesd, O,0 0000

(lk)l O0rie is equal to the

crete. Thus, to be (j — 1)-connected implies that X

point viewed as a constant (n — i + 1)-fold Segal space.

By the following proposition this definition satisfies the delooping hypothesis.
In practice this allows to define a k-monoidal n-fold complete Segal space step-
by-step by defining a tower of monoidal i-hybrid (n + )-fold Segal spaces for
0<i<k.

Proposition 1.6.24. The data of a k-monoidal n-fold complete Segal space is
the same as a tower of monoidal i-hybrid (n + i)-fold Segal spaces XY for
0 <t < k together with weak equivalences

x0) ~ L(X(j+1))
for every 0 < j <k —1.

Remark 1.6.25. We say that these equivalent data endow the complete n-fold
Segal space
X =X~ pxM)

with a k-monoidal structure. The (n + i + 1)-fold Segal space X "*1) is called
an i-fold delooping of X.

Before we prove this proposition, we need some lemmas:
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Lemma 1.6.26. If X is a k-monoidal m-hybrid n-fold Segal space, and 0 <
I <k, then X is also an l-monoidal (m + k — 1)-hybrid (n + k — )-fold Segal
space.

Proof. Since X is a k-monoidal m-hybrid n-fold Segal space, X is a (m + k)-
hybrid (n + k)-fold Segal space such that for every 0 < i < k,

X1,...1,0,..0=%
so in particular, this also holds for 0 < < [. O

Lemma 1.6.27. Let X be a k-monoidal m-hybrid n-fold Segal space. Then
Homyx (x, *) is a (k — 1)-monoidal (m — 1)-hybrid n-fold Segal space.

Proof. This follows from

(Homy (v, %)),y = () ko Xiwoe Xk {3} = X1

yee® A2 A0,e,,

since Xo .. o is a point. O

Proof of Proposition 1.6.24. Let X be a k-monoidal n-fold complete Segal space.
By Lemma 1.6.26 X(®) = X is a monoidal (k — 1)-hybrid (n + k — 1)-fold Segal
space.

Now let X~ = [(X®)). By Lemmas 1.6.27 and 1.6.26, this is a monoidal
(k — 2)-hybrid (n + k — 2)-fold Segal space.

Inductively, define X = L(X0*Y) for 1 < i < k — 1. Similarly to above, by
Lemmas 1.6.27 and 1.6.26, this is a monoidal (¢ — 1)-hybrid (n + ¢ — 1)-fold

Segal space.

Conversely, assume we are given a tower X as in the proposition. Since
X = X®) is a monoidal (k — 1)-hybrid (n + k — 1)-fold Segal space,

Xoope = Xo) o= (1.1)

Since X *~1) is a monoidal (k — 2)-hybrid (n + k — 2)-fold Segal space and by
(11),

k k
leov.a'“v. = Xl(,()),O,...,o = {*} X;L((()ko) Xl(,O),O,.,.,o X;L(((]ko) {*}
= (Hom‘()];)(*7 *)) (1.2)
O,e,...,0
~ Xéfc;l),. = %,

Since X %) ig k-hybrid, X1 0., e is discrete and so X106 = *.
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Inductively, for 0 < i < k, since X*~9 is a monoidal (k — i — 1)-hybrid
(n+ k —1i— 1)-fold Segal space and by (1.1), (1.2),...

,,,,,,,

Again, since X®) ig k-hybrid, X 1,1, 0,e,...,e isdiscrete and so X 1.1, 0,e,....0 =
——

.1, 0,e,.. eyl

i i

*, O

Symmetric monoidal n-fold complete Segal spaces

The Stabilization Hypothesis, first formulated in [BD95], states that an (oo, n)-
category which is monoidal of a sufficiently high degree cannot be made “more
monoidal”, and thus it makes sense to call it symmetric monoidal.

Hypothesis 1.6.28 (Stabilization Hypothesis). For k > n + 2, a k-monoidal
(0, n)-category is the same thing as an (n + 2)-monoidal (o, n)-category.
Thus, in light of Proposition 1.6.24, the following definition implements the
Stabilization Hypothesis.

Definition 1.6.29. A symmetric monoidal structure on a complete n-fold Se-
gal space X is a tower of monoidal i-hybrid (n + i)-fold Segal spaces X “+1) for
i > 0 such that if we set X = X©)_ for every i > 0,

x® ~ L(X(“'l)).






CHAPTER 2

The (o0, n)-category of cobordisms

To rigorously define fully extended topological field theories we need a suitable
(o0, n)-category of cobordisms, which, informally speaking, has zero-dimensional
manifolds as objects, bordisms between objects as 1-morphisms, bordisms be-
tween bordisms as 2-morphisms, etc., and for k > n there are only invertible
k-morphisms. Finding an explicit model for such a higher category, i.e. defining
a complete n-fold Segal space of bordisms, is the main goal of this chapter. We
endow it with a symmetric monoidal structure and also consider bordism cat-
egories with additional structure, e.g. orientations and framings, which allows
us, in section 2.7, to rigorously define fully extended topological field theories.

2.1 The n-fold Segal space of closed intervals in (0, 1)

In this section we define a Segal space Inte of closed intervals in (0,1) which
will form the basis of the n-fold Segal space of cobordisms. First we define
the sets of vertices, i.e. of O-simplices, of the levels. Then we define the spatial
structure of the levels. Next we endow the collection of sets (Inty); with a
simplicial structure which we then extend to the [-simplices of the levels in
a compatible way, giving the simplicial structure. Finally, we show that this
construction yields a Segal space.

Definition 2.1.1. For an integer k > 0 let

Int;, = {IQ SOERR <I}c}
be the set consisting of ordered (k + 1)-tuples of intervals I; < (0,1) with
left endpoints a; and right endpoints b; such that I; has non-empty interior,

is closed in (0,1), and ag = 0, by = 1. By “ordered” we mean that the left
endpoints, denoted by a;, and the right endpoints, denoted by b;, are ordered.

2.1.1 The spatial structure of the levels Int,
The [-simplices of the space Inty

An [-simplex of Intj consists of

21
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1. a smooth family of underlying 0-simplices, i.e. for every s € |Al],
(Io(s) < -+ < I(s)) € Inty,

depending smoothly on s;

2. a rescaling datum, which is a smooth family of strictly monotonically
increasing diffeomorphisms

(¢, 1 (0,1) = (0,1)) 5 se|aly
such that

a) Ps,s = Zda Ptu © Ps,t = Ps,us and

b) for 0 < j < k such that for every s € |A!] the intersection I;(s) N
I;+1(s) is empty or for every s € Al the intersection I;(s) N I;11(s)

contains only one element, we require

Ps,t Ps,t .
bj(s) —=bi(t),  aj4i(s) — aj11(0);
0 a1(0)  bo(0)b1(0) a2(0) b2(0) a3(0) 1
( [ il ] [ 1 [ \
{ L ] 1 1 ¥ L« ]

i / \ N
/ // \ AN
! 1
s i ,/ i
! / 1 /’
Ps,t \\ I/ // //
$0,1 \ | / ’
t : \\ // //
\ \ [ 1
\ \ \ 1
! \ \ \
0 CY Y N 1
[ 1 [ ] I K { \
{ ] L ] L ] L ]
bo(1)a1(1) by1(1) az(1l) b2(1) ag(1)

Remark 2.1.2. Note that in particular for [ = 0 an [-simplex in this sense is
an underlying 0-simplex together with ¢, ¢ = id : (0,1) — (0, 1), so, by abuse
of language we call both a 0-simplex.

The space Inty

The spatial structure arises similarly to that of the singular set of a topological
space.

Fix k > 0 and let f : [m] — [{] be a morphism in the simplex category A, i.e. a
(weakly) order-preserving map. Then let |f| : |[A™| — |A!| be the induced map
between standard simplices and let f2 be the map sending an I-simplex in Inty,

given by
(IO(S) SN Ik(s))SG\AHa (@S,t : (07 1) - (07 1>)s,t€\Al\’
to the m-simplex in Inty given by

Io(1f1(s)) < ... < Ii(£1(5))se|am|s (@1715)1718) = (0,1) —> (0, 1))Sytemm|-

This gives a functor A°? — Set and thus we have the following
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Lemma 2.1.3. Inty is a space, i.e. a simplicial set.

Notation 2.1.4. We denote the spatial face and degeneracy maps of Inty by
de andsjAforO<j<l.

We will need the following lemma later for the Segal condition.

Lemma 2.1.5. Fach level Inty, is contractible.

Proof. For every k > 0, consider the composition of degeneracy maps, which
is the inclusion of the point ((0,1) < --- < (0,1)) € Inty. A deformation
retraction of Inty onto its image is given by

((Io < -+ < 1), 8) —> (Ip(s) < -+ < Ii(s)),

where a;(s) = (1 — s)aj, bj(s) = (1 — s)b; + s for s € [0,1]. Thus, Inty is
contractible. O

2.1.2 The simplicial set Int,

In this subsection, the collection of sets Intj is endowed with a simplicial struc-
ture by extending the assignment

[k] — Intg
to a functor from A°P.

Let f : [m] — [k] be a morphism in the simplex category A, i.e. a (weakly)
order-preserving map. Then, let

f*
Inty, — Int,,,

Ly<---<I;, — pf(If(O) SRR <If(m))7

where the rescaling map py is the unique affine transformation R — R sending
ay) to 0 and by, to 1.

Lemma 2.1.6. The collection of sets (Inty )y is a simplicial set.

Proof. Given two maps [m] 4, (k] > [p], and Iy < --- < I, the rescaling

map pgoy and the composition of the rescaling maps pg o py both send ay. (o)
to 0 and byor(p) to 1 and, since affine transformations R — R are uniquely
determined by the image of two points, this implies that they coincide. Thus,
this gives a functor A°? — Set. O

Notation 2.1.7. We denote the (simplicial) face and degeneracy maps by
d; : Inty, — Inty_; and s; : Inty, — Intgyq for 0 < j < k.

Explicitly, they are given by the following formulas. The jth degeneracy map
is given by inserting the jth interval twice,

5.
Int, —5 Intyyq,
Ihy<---<I, — I0<<IJ<IJ<<IIC
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The jth face map is given by deleting the jth interval and, for j = 0, k, by
rescaling the rest linearly to (0,1). For j = 0, the rescaling map is the affine
r—aq

map po sending (a1,1) to (0,1), po(z) = =g+ and for j = k, it is the affine
map py, : (0,bp—1) — (0,1), pi(z) = 3% Explicitly,

d;
Intk - Intk_l,

< << < j# 0,k
Ip<-<Iy — $(0,5=2]<- <[%=21), j=0,
(07 b:il] SRS [Z::llal)a j:k

2.1.3 The Segal space Int,
The simplicial space Int,

We first extend the assignment f — (f* : Inty — Int,,) to [-simplices in a
compatible way. Essentially, f* arises from applying f* to each of 0-simplices
underlying the l-simplex.

Let f : [m] — [k] be a morphism in the simplex category A, i.e. a (weakly)
order-preserving map.

Recall that given (Ip < --- < Ii) € Int; we have an affine rescaling map
ps + R — R which sends ayq) to 0 and by, to 1. Given a smooth family
(Io(s) < -++ < I(8))se|al|, denote by pg(s) the rescaling map associated to

the sth underlying O-simplex (Io(s) < -+ < Ig(s)). Moreover, denote by
Dj(s) = (at0)(s), bym)(s))-

Let f* send an l-simplex of Inty,

(I1(s) < -+ < Ii(8))sejar (@s,t) s telAl]

to the following [-simplex of Int,,.

1. The underlying O-simplices of the image are the images of the underlying
0-simplices under f*, i.e. for s € |A!|,

f*o(s) < -+ < Ik(9);

2. its rescaling data is

F(@st) = pr(t) 0 @stlpys) 0 pr(s)~h:(0,1)" — (0,1)".

Using the fact that the rescaling maps behave functorially, we obtain the fol-
lowing lemma.

Lemma 2.1.8. The collection of spaces (Inty)y is a simplicial space.
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The complete Segal space Int,

Proposition 2.1.9. Int, is a complete Segal space.

Proof. We have seen in lemma 2.1.5 that every Inty, is contractible. This ensures
the Segal condition, namely that

~ h h
Inty — Int; x --- x Intq,
Intg Intg

and completeness. O

Definition 2.1.10. Let
Int"___7. = (Inte)™".

.7

Lemma 2.1.11. The n-fold simplicial space Inty _, is a complete n-fold Segal
space.

Proof. The Segal condition and completeness follow from the Segal condition
and completeness for Int,. Since every Inty is contractible by lemma 2.1.5,
(Int,)*™ satisfies essential constancy, so Int" is an n-fold Segal space. O

2.2 A time-dependent Morse lemma

2.2.1 The classical Morse lemma

The following theorem is classical Morse lemma, as can be found e.g. in [Mil63].

Theorem 2.2.1 (Morse lemma). Let f be a smooth proper real-valued function
on a manifold M. Let a < b and suppose that the interval [a,b] contains no
critical values of f. Then M® = f~1((—ow,a)]) is diffeomorphic to M" =

FH(=0, b))

We repeat the proof here since later on in this section we will adapt it to the
situation we need.

Proof. Choose a metric on M, and consider the vector field

IVyfI?

where V,, is the gradient on M. Since f has no critical value in [a,b], V is
defined in f~1((a—e¢, b+e¢)), for suitable . Choose a smooth function g : R — R
which is 1 on (a — §,b+ §) and compactly supported in (a — ¢€,b + ¢). Extend
g to a function g : M — R by setting g(y) = g(f(y)). Then

VT2

Y
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is a compactly supported vector field on M and hence generates a 1-parameter
group of diffeomorphisms
vy M — M.

Viewing f — (a 4+ t) as a function on R x M, (t,y) — f(y) — (a + t), we find
that in f~'((a — 5,0+ %)),

Vyf

at(f - (a + t)) =1= ‘vyf|2

(f=(a+1)=V-(f = (a+1)),
and so the flow preserves the set

{ty): fly) =a+t}
Thus, the diffeomorphism ,_, restricts to a diffeomorphism

waahwa : Ma — Mb.

2.2.2 The time-dependent Morse lemma

In Lemma 3.1 in [GWW] Gay, Wehrheim, and Woodward prove a time-dependent
Morse lemma which shows that a smooth family of composed cobordisms in
their (ordinary) category of (connected) cobordisms gives rise to a diffeomor-
phism which intertwines with the cobordisms. We adapt this lemma to a vari-
ant which will be suitable for our situation in the higher categorical setting.

Proposition 2.2.2. Let M be a smooth manifold and let (fs : M — (0,1))e[o0,1]
be a smooth family of smooth functions which give rise to a smooth proper func-
tion f: N =1[0,1] x M — (0,1). Let (Io(s) < -+ < I1(8))sef0,1] be a smooth
family of closed intervals in (0,1) such that for every s € [0,1], the function fs
has no critical value in In(s)u---UIg(s). Then there is a rescaling datum (ps¢ :
(0,1) = (0,1))s,tef0,1] which makes (Io(s) < -+ < I;(5))se[0,1] into a I-simplex
in Inty, and a smooth family of diffeomorphisms (s : M — M) te[0,1] Such
that for

ti(s) € Li(s) s wsu(tj(s)) € I;(t), and

tl(s) € Il(S) : gos,t(tl(s)) € Il(t),

st Testricts to diffeomorphisms

Vsl por eyt Fo ([ t]) — f7 ([pse(th), s (0)])-

Proof. The main strategy of the proof is the same as for the classical Morse
lemma. Namely, we will construct a suitable vector field whose flow gives the
desired diffeomorphisms.

Step 1: disjoint intervals

First assume that for all 0 < j < k and for every s € [0,1] we have

1(s) A Ljsa(s) = .
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Fix a metric on M. Denote the endpoints of the intervals by a;(s),b;(s) as
before, which yield smooth functions a;,b; : [0,1] — (0,1), and let

A= |J < £000), By = U]{s}xf?(bj(s)).

s€[0,1] s€[0,1

Now for 0 < j < k consider the vector fields

v = (88,65(%(8) B fs)|vvyy]{82> N (65,83(63‘(8) — fs) IVvnyi:sf) ;

where V,, is the gradient on M. Since f; has no critical value in I;(s), the
vector fields V; and W; are defined on f~!(U;), where Uj; is a neighborhood of
Usepo,1{s} x L;(s). Moreover, viewing a; : (s,y) — a;(s) as a function on N,

Vyf
IVyfI?

So the the vector field Vj is tangent to A; and similarly, W; is tangent to B;.

Vi(f—aj) = 0s(f —a;) +0s(a; — f) (f—aj) = 0s(f —a;)+0s(a; — f) =0,

We would now like to construct a vector field V on N which for every 0 < j < k,
at A; restricts to V; and at B; restricts to W;, and such that there exists a

family of functions (¢, : [0,1] — (0, 1))%[_(0) such that

- ¢(0) =, cu(s) € Ii(s),

- the graphs of ¢, for varying x partition (o 17{s} x [a;(s),b;(s)], and

- Vis tangent to Cp = Uyepo 1118} x f5 ' (ca(s))-

We will use ¢, to define ¢ s(z) = ¢x(s) and w5t = po .t © goaé. Moreover, the
diffeomorphisms 1, ; will arise as the flow along V.

Fix smooth functions g;,h; : [0,1] x (0,1) — R which satisfy the following
conditions:

1. g;, h; are compactly supported in Uj,

2. gj = 1 in a neighborhood of grapha; = {(s,a;(s)) : s € [0,1]},
h;j =1 in a neighborhood of graph b;

3. 9j+ h; = 1in Uy 1){s} x L;(s), and the supports of the g; + h; are
disjoint.

By abuse of notation, extend the functions g;, h; to functions g;,h; : N =
[0,1] x M — R by setting g;(s,y) := g;(s, fs(y)). Then consider the following
vector field on N:

N o Vuf
Vi = <a$’(9338( i)+ hi0s(bj) = 0s(f)) |vyf|2>
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This vector field is supported on the support of g; + h; and thus extends to
a vector field on N. Note that for (s,y) € Aj, V;(s,y) = Vj(s,y), and for

(87y) € Bj? Vj(s’y) = Wj(‘S?y)'

Now let V be the vector field on NV constructed by combining the above vector
fields as follows:

V= (85, D1 (g50s(az) + hjds(b;) — 0s(f)) Vuls )

0<y<k |Vyf8|2

Note that in (Jsepo17{s} x IH(I;(s)), it restricts to V;.

In order for V to be tangent to C,, the functions ¢, must satisfy the following
equation at points in C,.

0 = Vi(f—c)
= 0s(f —cz) +(950s(a;) + hjds(b;) — 0s(f))
= —0s(ca) + 9;0s(a;) + ;05 (b;).

This leads to the ordinary differential equation with smooth coefficients on
[0, 1],

Vf

W(f - Cac)

Os(cz)(s) = g;(s,ca(s))0s(az)(s) + hj(s, cx(s))0s(b;)(s),
c:(0) = =

By Picard-Lindelof, it has a unique a priori local solution. To see that it extends
to s € [0,1], consider the smooth function F : N — [0,1] x (0,1), F(s,y) =
(s, f(s,9)) = (s, fs(y)). Since f is proper, so is F. Moreover, C,, = F~!(graphc,).
For fixed z, we can show that C, lies in a compact part of N = [0,1] x M
similarly to the argument given in example 2.3.2, and thus the local solution
exists for all s € [0, 1].

We now define our rescaling data essentially by following the curve c¢,. Ex-
plicitly, let g s : (0,1) — (0,1) be defined on [a;(0),b,(0)] by sending zo to
€z, (8). Note that by construction, it sends a;(0),b;(0) to a;(s),b;(s). Since the
solution ¢, of the ODE varies smoothly with respect to the initial value x this
map is a diffeomorphism. So we can define ¢, ; : (0,1) — (0,1) on [a;(s), b;(s)]
by sending zs = ¢z, (s) t0 g, (t). We extend ¢, to a diffeomorphism in be-
tween these intervals in the following way. Let gj, h; : [b;(0),a;41(0)] — R
be a partition of unity such that §; is strictly decreasing, §;(b;(s)) = 1, and

hj(aj+1(5)) =1. Then, for X € [bj(O),aj+1(O)] set

Czo(8) = Gj(To)cp, (0)(8) + ﬁj(ﬂﬁo)caﬁl(o)(s) and  @g¢(Cao(8)) = Cap (t)-

As mentioned above, we obtain the diffeomorphisms 1), ; by flowing along the
vector field V. Since V is tangent to the sets Cy = (J o, 1715} % fil(co(s)) for
x € Ip(0)u- - -Ulk(0), the flow preserves C,,, and USE[O’I]{s}xfs_l([bj(s), a;+1(s)])
in between. Again, this implies that the flow exists for all s € [0,1]. It is of
the form ¥(t — s, (s,y)) = (¢, ¢s,(y)) for 0 < s <t < 1, where (ws7t)s’t€[0’1] is
a family of diffeomorphisms and intertwines with the composed bordisms with
respect to the rescaling data ¢g ;.
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Step 2: common endpoints

Now consider the case that for 0 < j < k we have that either for every s € [0, 1],
I;(s) nIj11(s) = & as in the previous case or for every s € [0, 1] we have

11;(s) n Ij4a(s)| = 1.

In this case, one can modify the above argument. We explain for the case of
two intervals with one common endpoint, i.e. b;(s) = aj+1(s).

Instead of choosing smooth functions g;, hj, gj+1, hj+1 : [0,1] x (0,1) — R such
that the supports of g; + h; and g;4+1 + hj;1 are disjoint (which now is not
possible), we fix three smooth functions f;, g;, h; : [0,1] x (0,1) — R which
satisfy the following conditions:

1. fj, g4, h; are compactly supported in U; u Uj4q,

2. f; =1 in a neighborhood of grapha; = {(s,a;(s)) : s € [0,1]},
g; = 1 in a neighborhood of graphb; = grapha;1,
h; =1 in a neighborhood of graphb;1,

3. fj+gj+hj =1inUpist x (L;(s) U lj4i(s)), and the support of the
fj + g; + h; is disjoint to the sums associated to the other intervals.

Now continue the proof similarly to above.

Step 3: overlapping intervals

It remains to consider the case when for some 0 < j < k and some s € [0, 1],

Ii(s) 0 Ijsa(s)

has non-empty interior.

Intervals always overlap. First, if I;(s) n I;41(s) has non-empty interior
for every s € [0, 1], then one can do the above construction with the intervals
I;(s), Ij+1(s) replaced by the interval I;(s) u Ij11(s).

Intervals do not always overlap. If I;(s) n I;;1(s) sometimes has non-
empty interior, but not for every s € [0, 1], we can combine the cases treated
so far.

We explain the process in the case that there is an § such that for s < 3,
Ii(s) nIjy1(s) = & and for s > 5, I;(s) n Ij11(s) # . In this case, T =
b;(5) = aj+1(8), which is a regular value of f;. Since f is smooth, there is
an open ball U; centered at (§,Z) in [0,1] x (0, 1) such that for (s,z) e U, «
is a regular value of f,. Let § < § be such that for every § < s < §, the set
{s} x [a;(s),bj+1(s)] is covered by U U ({s} x (I;(s) uL;;+1(s))). Choose so and

tg such that s < s¢ < tg.
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1) ajy1(1)

In [0,t0], we are in the situation of disjoint intervals and can use the first
construction to obtain cg)(s) and V) (s,y) for s < to.

In [sg,1], we apply the construction from step 1 to the intervals I;(s) and
I +1(s) replaced by the interval [a;(s),b;+1(s)] to obtain cg)(s) and V3 (s,y)
for s = s9.

Now choose a partition of unity G,H : [0,1] — R such that G|y, =
1, H|y,11 = 1, and G is strictly decreasing on [so,%o]. For s <t define

ca(s) = G(s)el) () +H(s)cP) (s),  Vi(s,y) = G(s)VW (s,9) + H(s)V'? (s,).

Then define ¢, and 1, as before. O

2.3 The (w0, n)-category of bordisms Bord,

In this section we define an n-fold Segal space PBord,, in several steps. How-
ever, it will turn out not to be complete. By applying the completion functor we
obtain a complete n-fold Segal space, the (00, n)-category of bordisms Bord,,.

Let V be a finite dimensional vector space. We first define the levels relative to
V with elements being certain submanifolds of the (finite dimensional) vector
space V' x (0,1)" =~ V x R™. Then we let V vary, i.e. we take the limit over all
finite dimensional vector spaces lying in some fixed infinite dimensional vector
space, e.g. R®. The idea behind this process is that by Whitney’s embedding
theorem, every manifold can be embedded in some large enough vector space,
so in the limit, we include representatives of every n-dimensional manifold. We
use V x (0,1)™ instead of V' x R™ as in this case the spatial structure is easier
to write down explicitly.

2.3.1 The level sets (PBord,)s,... k.

For S < {1,...,n} denote the projection from (0,1)" onto the coordinates
indexed by S by 7g : (0,1)" — (0,1)°.

Definition 2.3.1. Let V be a finite dimensional vector space. For every n-
tuple ky,...,k, =0, let (PBord), ), 1, be the collection of tuples (M, (I} <
- < I/ii)i=1 n), satisfying the following conditions:

.....
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1. M is a closed n-dimensional submanifold of V' x (0,1)™ and the compo-
sition 7 : M — V x (0,1)" — (0,1)™ is a proper map.

2. For1 <i<n,

Iy < -+ < Ii) € Inty,.

3. For every S € {1,...,n}, let ps : M = (0,1)" =% (0,1)° be the com-
position of m with the projection mg onto the S-coordinates. Then for
every 1 <i<mnand0<j; <k, at every x € pﬁ([é), the map py; . ny
is submersive.

Remark 2.3.2. For k1, ..., k, > 0, one should think of an element in (PBord,, )k, ... k.,
as a collection of kq - - - k,, composed bordisms, with k; composed bordisms with
collars in the ith direction. They can be understood as follows.

e Condition 3 in particular implies that at every = € p{nl}(l;‘), the map pyy,;
is submersive, so if we choose ¢7 € I7, it is a regular value of py,;, and so
py ' (t}) is an (n — 1)-dimensional manifold. The embedded manifold M
should be thought of as a composition of n-bordisms and p;,* () is one
of the (n — 1)-bordisms in the composition.

e Atz e p{_nl_l}(I;’_l), the map pg,_1 ) is submersive, so for tl"_l € Il"_l,
the preimage

P (1)

is an (n — 2)-dimensional manifold, which should be thought of as one
of the (n — 2)-bordisms which are connected by the composition of n-
bordisms M. Moreover, again since pg,_1 ,} is submersive at p{_nl_l} (Il"_l),
the preimage p{_nl_l} (t7~1) is a trivial (n—1)-bordism between the (n—2)-
bordisms it connects.

e Similarly, for (t;?k, - 715?”) € I]’?k x .-+ x I? the preimage

1 k
Pk} ((tjk7 .. ,t?))

is a (k — 1)-dimensional manifold, which should be thought of as one of
the (k—1)-bordisms which is connected by the composition of n-bordisms
M.

e Moreover, the following proposition shows that different choices of “cut-
ting points” t; € I} lead to diffeomorphic bordisms. One should thus
think of the n-bordisms we compose as 7~ ([ ][0}, a%,]), and the
preimages of the specified intervals as collars of the bordisms along which
they are composed.

We will come back to this interpretation in section 2.5 when we compute ho-
motopy (bi)categories.
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Proposition 2.3.3. For1<i¢<n let ué,vé € I; and u§+1,v§+1 € I}H' Then
there is a diffeomorphism

i

pa([uja U;H]) - p{j([“} ”;'H]-

Proof. Since the map py; is submersive in I} and I7, ;, we can apply the Morse
lemma 2.2.1 to pg;y twice to obtain diffeomorphisms

P (w1 1) — p (41 ]) — p ([0l vl ).

Applying the proposition successively for i = 1,...,n yields

Corollary 2.3.4. Let By,By C (0,1)™ be products of closed intervals with
endpoints lying in the same I}’s. Then there is a diffeomorphism

71'_1(31) — 7T_1(B2).

2.3.2 The spaces (PBordy, )k, ..k,

The level sets (PBord) ), . &, form the underlying set of O-simplices of a space
which we construct in this subsection.

The [-simplices of the space (PBordT‘f)klm’kn
Let |A!| denote the standard geometric [-simplex.

Definition 2.3.5. An [-simplex of (PBordY )z, s, consists of the following
data:

1. A smooth family of underlying 0-simplices, which is a smooth family of
elements

(M €V x (0,1)", (Ig(s) < -+ < I, (8))im1,..n) € (PBordy iy ..,

indexed by s € |A!|. By this we mean that Usejar{st x My < |A!] x
V x (0,1)™ is a smooth submanifold with corners, and that the endpoint
maps aé-, b; of the intervals are smooth;
2. For every 1 < i < n, a rescaling datum (¢%, : (0,1) — (0, 1))8’t€|N|
making

(1i(e) < -+ < 16)) s
into an [-simplex in Intyg,;
3. A smooth family of diffeomorphisms
(ws,t My —> Mt)s,te|Al\7

such that ¢, s = idpy, and ;4 0 Ys = s 4, which intertwine with the
composed bordisms with respect to the product of the rescaling data
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s = (@L)iy : (0,1)" — (0,1)". By this we mean the following.
Denoting by 7, the composition My — V x(0,1)" — (0,1)",for1 <i<n
and 0 < j;,0; < k; let

t;_i(s) € I}j(s) : cpsvt(t;}i(s)) € I]Z (t), and

t,(s) eIy (s) : sty (s)) € I}, (1)

Then 1), ; restricts to a diffeomorphism

L (n[t;xswa (s)]) Yty ! <H[¢S,t(t§i (s>>,sos,t<t§i<s))]> :

i=1 =1

i.e. denoting B = [ i, [t%.(s), 1} (s)],

My +———— 7, (ps,2(B))

7 T
7/’5% _ ws,t- Jﬂ't

Ms D I— 71-3_1(3) <ps7t(B)

(0,1)" «+————B

Remark 2.3.6. The condition that the diffeomorphisms ), ; intertwine with
the composed bordisms in the elements of the family means that 15 ; induces
diffeomorphisms of the composed bordisms in the family and the rescaling data
remembers to which choice of cutoffs the specified diffeomorphism restricts.

Remark 2.3.7. In the above definition we let the intervals vary as s € |Al|
varies. In practice, when dealing with a fixed element of an [-simplex, we can
assume that these intervals are fixed as s varies by choosing a fixed vertex
to € |Allyp and composing each ¢, with ¢g 4, : (0,1)™ — (0,1)" and keeping the
intervals constant at I} (to). This new path is connected by a homotopy to the
original one.

The space (PBord,)k,.... k.,

We now lift the spatial structure of Int,fl’fm’k" to (PBord,)g, ... k., -

Fix k > 0 and let f : [m] — [I] be a morphism in the simplex category A, i.e. a
(weakly) order-preserving map. Then let |f] : |[A™| — |A!| be the induced map

between standard simplices.

Let f2 be the map sending an l-simplex in (PBord), ), ., to the m-simplex
which consists of

1. for s € |A™],
M|f|(s) cV x (0, 1) ;

2. for 1 <i < n, the m-simplex in Inty, obtained by applying 2,

A (Ié(s) <. < I;i(s),goi,t>;
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3. for s,t e |AIFL|]

Visiesy 1) - Migis) — Mgy

Since this structure essentially comes from the spatial structure of Inty, and
the simplicial structure of N(A), we have the following

Proposition 2.3.8. (PBord) )i, . . is a space.

Notation 2.3.9. We denote the spatial face and degeneracy maps of (PBord! Vg, . k.
byde andsf‘ for0<j <l

So far the definition depends on the choice of the vector space V. However,
in the bordism category we need to consider all (not necessarily compact) n-
dimensional manifolds. By Whitney’s embedding theorem any such manifold
can be embedded into some V x (0, 1)™ for some finite dimensional vector space
V', so we need to allow big enough vector spaces.

Definition 2.3.10. Fix some (countably) infinite dimensional vector space,
e.g. R®. Then

PBord, = lim PBord) .
VcR*

Example: Cutoff path

We now construct an example of a path which will be used several times later
on. It shows that cutting off part of the collar of a bordism yields an element
which is connected to the original one by a path.

Let (M) = (M <V x (0,1)",(I} < - < I}i,~)z‘=1>..<7n) € (PBordy)k,,... k., -
We show that cutting off a short enough piece at an end of an element of
(PBordy, )k, ...k, leads to an element which is connected by a path to the orig-
inal one. Explicitly, for € small enough, we show that there is a 1-simplex with
underlying 0-simplices

(ts s My =V x (0,1)", (Ig(s) < - < I}, (9))izy) € (PBordy i, ..k,

such that M, = p;'((se,1)) and Ii(s) = ps(I}), where p, : (se,1) — (0,1) is

s, and

the affine rescaling map = —

idX ps

Ls: My SV x (0,1)" 1 x (sg,1) =225V x (0,1)".

Fix 1 <i <n and let ¢ < b). Let N be the manifold [0,1] x M < [0,1] x V x
(0,1)™ endowed with the induced metric, and view p; as a function on N by
setting p;(s,y) = pi(y). Choose a smooth cutoff function g : [0,1] x (0,1) > R
such that g = 1 in a neighborhood Uy of {(s, 2) : z € [se, se + 15%)} and g = 0

on Uy = [0,1] x (3:£,1) and extend g to N by setting g(s,y) = g(s,pi(y))-
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¥
‘m

Consider the vector field on N given by

Vypi
V= (68,€g|vyypi|2),

where V,, denotes the gradient on M. Note that over U, V = (é’s,alvvzpp%lz)
uPi

and over Uy, V = 0. We now show that the flow along the vector field V' exists
for (s,y) such that se < p;(x) <1,

For ¢ < 135, (s,se + ) € U., and, defining p; — s¢ + £ to be the function
(S,y) le(y) _86—’_5 on Na

Vypi
|Vypil?

For o # i and &, € (0, 1), since all components of V' except for the ith are 0,

V- (pa - 504) =0, (2.2)

where again we view p, — &, as a function on N. Let

Veilpi—(se+¢&)=—-c+e¢ (pi — (se + &) =0. (2.1)

—

6 : [Oa 1] - [O’ 1] X (07 1)n7 s = (53613 s aﬁi—l: se + €7£i+1a s 7§n)
Equations 2.1 and 2.2 imply that the flow of V preserves the sets

e=1{(s:9) 1 7(y) = £(s)} = (idpoy x ) (graph ).

—_
—
—

The graph of E is closed and therefore compact as it is a closed subset of
[0,1] x {&1} - x [€,e+&] x -+ x {&,}. Since 7 is proper, id x 7 is proper, and
thus Eg is compact. Hence in

1-¢
{(s,y) 15 <pily) < e+ ——}
the flow exists for all s € [0,1].

In Uy, the flow is of the form U(t — s, (s,y)) = (¢,y) and so it also exists for
s€[0,1].
For points (sg,y) € N such that p;(y) € [soe + 1%5, %], the flow preserves the
set

Eg = (id[o,1] * 7)~ ! (graph§),
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where g PS5 (8,517' .. ,Ei—lagi(s)agH—lw .. 7577.)7 and 5(80) =Y and gz(s) is
a solution at points in Z¢ of the ordinary differential equation with smooth
coefficients

0 = V-(pi—&)

—0s&; + €905 £l|v yp1|2( gz)
yPi

= 765@- + €g.

By Picard-Lindel6f, this ordinary differential equation has a unique, a priori
local, solution. Similarly, the flow exists locally. Furthermore, the preimage of
the proper map (idpg1] x 7) of the compact set [0, 1] x [1;35, 2%] is compact.
Since =3 is a subset of this preimage, we are looking for solutions of the above
differential equation on this compact manifold. By compactness, they exist

globally and therefore the flow exists for all s € [0, 1].

Piecing this together, the flow takes on the form

\Il(t - Svy) = (t7¢s,t(y))

for se < p;(y) and exists for all s € [0,1]. This gives the desired family of
diffeomorphisms ), ¢ : p; *((se,1)) — p; *((te,1)). The rescaling data ¢g; :
(0,1)™ — (0,1)™ is the identity on coordinates except for the ith, where it is
given by

ps(xs + (t— s)e), formy < se+ 152,

@i,t(fﬂs) = ps(ms)a forxs > 27?’;57

ps(&i(t)), for se + 15 <z, < <,

where &; is the integral curve through z, which is the solution to the differential
equation above.

Remark 2.3.11. In the above example we constructed a path from an element
n (PBord! )i, ..k, toits “cutoff”, where we cut off the preimage of p; *((0, ¢])
for suitably small €. Note that the same argument holds for cutting off the
preimage of p; '([1 — 4,1)) for suitably small §. Moreover, we can iterate the

process and cut off €;,d; strips in all ¢ directions. Choosing &; = %,51- = -t
yields a path to its “cutoff” with underlying submanifold

n

cut(M (1_[1)26 ak )

=1

The map 7 : M — (0,1)™ is proper, which implies that W_l(H;;l[%, ag’]) -
cut(M) is compact and thus bounded in the V-direction. Thus, any element
n (PBordx Vk1,....k, 18 connected by a path to an element whose underlying

submanifold is bounded in the V-direction.

Variants of the spatial structure

There are two other alternative approaches to defining the spatial structure of
(PBordY )y,
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. One could make (PBord! )z, . &, into a topological space (instead of a

simplicial set) by endowing it with the following topology coming from
the Whitney topology.

On the set Sub(V x (0,1)™) of closed (not necessarily compact) subman-
ifolds M < V x (0,1)", a neighborhood basis at M is given by

{(N>Vx0,1)":NnK=jM)nK,jeW},

where K <€ V x (0,1)" is compact and W < Emb(M,V x (0,1)") is
a neighborhood of the inclusion M < V x (0,1)" in the Whitney C*-
topology (see [Galll]). Using the standard topology on R and the product
topology gives a topology on

n k}l
Sub(V x R™) x U U{aj—,bé;l €[0,1]: aé- < b;}
i=1j

j=1

We take the quotient topology of this topology with respect to the relation
identifying elements (Mo, I}(0)’s), (My, Ii(1)’s) if the preimages of the
boxes B(l) = [b§(1), ay, (1)] x -+ x [bg(1),ap. (1)] for I = 0,1, respectively,
under their composition with the projection to (0,1)™ coincide, i.e.

T (B(0) = m3 H(B(1)),

where for [ = 0,1, 7, : M <> V x R" — R™. Finally, (PBord )¢, .k, is
a subspace thereof.

However, the reason for our choice of using simplicial sets instead of
spaces is that we eventually want to construct a fully extended topolog-
ical field theory and the levels of our target which we construct in the
next chapter will be naturally modelled as simplicial sets. Thus it is more
natural to also model the levels of our source category, the bordism cat-
egory, as simplicial sets. If one would rather have topological spaces as
the spatial structure of the levels, one can apply geometric realization to
the simplicial sets.

. To model the levels of the bordism category as simplicial sets, we could
start with the above version as a topological space and take singular or,
even better, differentiable chains of this space to obtain a simplicial set.
Then, the [-vertices would consist of smooth submanifolds

I:A"x M — Al x V x (0,1)",
where I commutes with the projections to A, such that Vs e |Al|,

(M, =Im(I(s,—)) € Vx(0,1)", (Ii(s) < ... < I} (5))iz1

,,,,,

Note that as abstract manifolds, My = M, but as submanifolds, they
are diffeomorphic images of the same abstract manifold along the path.
Thus, there are diffeomorphisms

ws,t My — M,
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as in our definition. Moreover, for [ = 1, proposition 2.3.12 below, which
is a corollary of proposition 2.2.2, the time-dependent Morse lemma, im-
plies that there exists such a family of diffeomorphisms and some rescaling
data which intertwine. So paths in this simplicial set and in ours are the
same. Moreover, it implies that for [ > 0, given any two fixed points
s,t € |Al], we obtain a diffeomorphism v ; and a rescaling function ¢y,
by applying the lemma to any path between s and ¢ and defining 5+ =
Yo,1, st = wo,1. However, the collections (vs.¢)s ieial|, (¥s,¢)s,teja1] do
not necessarily form multiparameter families, since they do not necessar-
ily satisfy the condition that 1y, 0 ¥ = s .. For this statement, we
would need a higher dimensional version of proposition 2.3.12, but the
naive generalization of the proof fails. Nevertheless, we believe that the
two simplicial sets are weakly equivalent under the map simply forgetting
the family of diffeomorphisms.

Proposition 2.3.12. Consider a smooth one-parameter family of embeddings
(I:[0,1] x M — [0,1] x V x (0,1)™,[0,1] 3 s — (L{(s) < ... < I} (8))iz1,....n),

which gives rise to

(M) = (M <25 v % (0,1)", (Ti(s) < ... < T} (8))iz1,..m)

—_

in (PBordy )k, ...k, - Then there is a rescaling data (g5 : (0,1)™ — (0,1)"), tef0
and a family of diffeomorphisms (s : M — M) 4e[0,1] which intertwines with
the rescaling data.

]

s

Proof. For 1 <i<n,let 0<j; <k; —1. Let
. I(s,—) n n
st M —5V x(0,1)" - (0,1)

and denote by (p;)s : M — (0, 1) the composition of 7y with the projection to
the ith coordinate. Note that by condition 3 in definition 2.3.1, the function
(pi)s does not have a critical point in I5(s) U ... U I} (s).

We cannot quite apply the the time-dependent Morse lemma 2.2.2 to (p;)s,
because we only have properness of the individual 7, and moreover, this would
ensure intertwining only in the ith direction. However, we can adapt the proof
to our situation.

Choosing the metric on M coming from I(0, —), and following the proof of the
proposition 2.2.2, for each ¢ we get a vector field

Vi = (as’ Z (gjas(aj) +hj(}s(bj)*(}s(pz)) Vy(ipz)s ) =: <65,Hz($,y)|vvy(pl)s >

0<j<k IVy(pi)s|? y(pi)s|?

We combine them to obtain a new vector field on [0,1] x M,

) n Vy i)s
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The projections (p;)o and (p;)o are orthogonal with respect to the metric on M
induced by the embedding I(0, —), and moreover, (p;)s, (p;)s stay orthogonal
along the path, because the change of metric on M induced by the change of
embedding respects orthogonality on (0,1)™. This implies that

vy(pz)s
B T
IV, (po)s 277~

and so V still is tangent to the respective C! in each direction and thus its flow,
if it exists globally, will give rise to the desired diffeomorphisms and rescaling
data.

The global existence follows from the special form of the vector field. Given a
point (t,y:) € N, the flow will preserve a set of the form

{(87y) : 7rS(yS) = (Colco (S), AR c;cLO (8)) = (51(8)7 s afn(s))}7

where the right hand side is in the notation of example 2.3.2, and ¢, () =
&(t) = y;. Similarly to in the example, one can show that this set lies in a
compact part of N and thus the flow exists globally. O

2.3.3 The n-fold simplicial set (PBord,,).,... e

In the next two subsections we will make the collection of spaces (PBord,,)e, ...
into an n-fold simplicial space by lifting the simplicial structure of Intf:f”,. In

this section we define the structure on O-simplices, which makes (PBord,, ), ...

)

into an n-fold simplicial set. In the next subsection we extend the structure to
l-vertices of the levels to obtain an n-fold simplicial space (PBord,,).,. .. .

Fixing 1 <7 < n, we first need to extend the assignment

[ki] — (PBordy)k,,... .k

n

to a functor from A°. Let f : [m;] — [k;] be a morphism in the simplex
category A, i.e. a (weakly) order-preserving map. Then we need to define the
map

%
(PBord, )k, ... r.k, > (PBordn )iy moo o -

i

Notation 2.3.13. Recall that the map f* : Inty, — Int,,, is defined using an
affine rescaling map py : R — R which sends a;(o) to 0 and b;(m) to 1 and thus

restricts to a diffeomorphism py : Dy = (alj}(o),b}(m)) — (0,1). By abuse of
notation, we again denote by p¢ the map

pr:V x H(o, 1) x (a%g)s bymy) = V x (0, 1),
a#1

which is p; in the ith component of (0,1)™ and the identity otherwise.

Definition 2.3.14. Let f: [m;] — [k;] be a morphism in A. Then
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applies f* to the ith tuple of intervals and perhaps cuts the manifold and
rescales. Explicitly, it sends an element

(M):=(:M—=Vx(0,1)" (5 <--<Ig )o_1)

a=1

to
(Pf Ouy-1(p,y 1P (Dy) > Vo (0,1)" (I§ < -+ < I )i, f*(Ig < -+ < I,

Remark 2.3.15. In the following, we will omit explicitly writing out the re-
striction of ¢ to p; '(Dy) for readability.

Notation 2.3.16. We denote the (simplicial) face and degeneracy maps by
dj : (PBordy)k,, .. .k, — (PBordn)k,,  ki—1,..k, and sj : (PBord,)k,, .k, —
(PBords)ky ... ki+1,... k, for 0 < j < k.

n

Proposition 2.3.17. (PBord,,).,.. . is an n-fold simplicial set.

Proof. This follows from the fact that Int, is a simplicial set and rescalings
behave functorially. O

Remark 2.3.18. Recall from remark 2.3.2 that for k1, ..., k, = 0, one should
think of an element in the set (PBord,, )k, ...k, as a collection of ky - - - k,, com-
posed bordisms with k; composed bordisms with collars in the ith direction.
These composed collared bordisms are the images under the maps

D(j1,..., %) : (PBordy)k,,...k, — (PBordy)1,..1

for (1 < j; < k;i)1<i<n arising as compositions of face maps, i.e. D(j1,...,jk)
is the map determined by the maps

(1] = [k], (0<1)— (i—1<i)

in the category A of finite ordered sets. This should be thought of as sending
an element to the (41, ..., ji)-th collared bordism in the composition.

2.3.4 The full structure of (PBord,).,.. . as an n-fold
simplicial space

In this subsection, we show that the maps defined in the previous paragraph are
compatible with the structure of the levels as simplicial sets, i.e. for a morphism
f 2 [mi] — [ki] in the simplex category A, we will define compatible maps f* for
l-simplices of the simplicial set (PBord,, )k, ... k,. They will be defined similarly
as on vertices, namely by applying the map f* to each underlying 0-simplex
and by perhaps restricting the rescaling data and the diffeomorphisms. For the
face and degeneracy maps, this will amount to the following.

e Degeneracy maps arise from the degeneracy maps of Int’f’_“y, by repeating
one of the families of intervals I} (s).

Fix1<i<n.
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e For 0 < j < k; the jth face map d; arises from the face map of Int:.__
by deleting the jth family of intervals I; (s) in the ith direction.

,®

e Face maps for j = 0, k; require cutting and rescaling;:

Notation 2.3.19. Recall that for a morphism f of the simplex category A,
we have a rescaling map ps : R — R which restricts to a diffeomorphism
ps : Dy — (0,1), with Dy = (ay),bfm)). By abuse of notation, we also
denote by py the diffeomorphism py : [],.;(0,1) x Dy — (0,1)" which is
ps in the ith coordinate and the identity otherwise. Moreover, denote by
pyr(s) be the analog of the map ps associated to the sth underlying 0-simplex
(Tj(s) < -+ < I, (s)) € Inty,.

Definition 2.3.20. Let f : [m;] — [k;] be a morphism in the simplex category
A, i.e. a (weakly) order-preserving map. Consider an I-simplex of (PBord,, ), ...k,
consisting of

(Ls : Ms — V x (07 ]-)nv (IS(S) SRS Ili,;(s))?:l)se‘All )
(‘PS,t 2 (0,1)" — (0, 1)n)s,te|Al‘ , and ('(/Js,t My — Mt)s,te\A’\ .

Let f* send it to the I-simplex of (Bord,)k,,... k;—1,.. .k, consisting of the fol-
lowing data.

1. The underlying O-simplices of the image are the images of the underlying
0-simplices under f*, i.e. for s € |Al|,
My SV x (0,1)", (1i(s) < -+ < I, (5)) =
— (pr(®) otala, s N V x (0,1
(U5 (8) < -+ < I (D) FHUIG0) < -+ S TLE)),
where Ny = (ps); *(Dy(s)).

2. The underlying [-simplex in Inty, is sent to its image under f*, i.e. its
rescaling data is f*(¢s,). Recall from section 2.1.3 that this is

f*((p&t) = pf(s) o L)05,15|Df(s) o pf(s)_l : (0’ l)n - (Oa 1)n.

3. Since the diffeomorphisms 5 ; intertwine with the composed bordisms
with respect to the rescaling data ¢, ¢, for every s,t € Al we have diffeo-
morphisms

¢s,t|Ns : Ng — Ny,
which intertwine with the (new) composed bordisms with respect to with
the (new) rescaling data.

Proposition 2.3.21. The spatial and simplicial structures of (PBord,)e, ..
are compatible, i.e. for g : [l] — [p], fa : [Mma] = [ka], and fz : [mg] — [ks],
for 1 < a < B <n, the induced maps

9%, [, and 3

commute. We thus obtain an n-fold simplicial space (PBordy,)e ... a-
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Proof. By construction, ¢g® commutes with the simplicial structure. Moreover,
the maps f*, fg‘ commute since they modify different parts of the structure. [

2.3.5 The complete n-fold Segal space Bord,
Proposition 2.3.22. (PBord,)....... is an n-fold Segal space.
Proof. We need to prove the following conditions:

1. The Segal condition is satisfied. For clarity, we explain the Segal condition
in the following case. The general proof works similarly. We will show
that

(PBordn)kl1-~~727~~~7kn — (PBordn)kl,.--J

vk

We will omit the indices and corresponding intervals for a # ¢ for clarity.
Our goal is to construct a map glue such that glue o (dy x d2) ~ id,
(do x dg) o glue ~ id,

glue
h
(PBord, )y x  (PBord,), O (PBord,,)»
do X d2
Let
(M)Z(LIMQVX(0,1)",(0,b]<[a,1)), h
(V) = (i 0 V x (0,1)7, (0,5] < [a,1)) © FBordn)r > | (PBorda)s.

We will construct their image under glue, which is an element in (PBord,, ),
essentially by glueing them.

We saw in example 2.3.2 that cutting off a short enough piece at an end
of an element of (PBord,); leads to an element which is connected by a
path to the original one, ie. (¢ : M — V x (0,1)",(0,b] < [a,1)) ~ (¢ :
P ((0,1—¢€)) < V x (0,1)",(0,b] < [a,1 —¢)), composed with suitable
rescalings, for 0 < € < a. So if the source of our glued element is such a
“cutoff”, there is a path to the original (M).

By definition, there is a path between the target of the first, N = t((M)),
and the source of the second, N = s((M)). Composing this path with the
inverse of the path connecting ¢((M)) and its cutoff as described above
gives a path between the “cutoff” and (N).

Let us now assume that we have rescaled the embeddings and intervals
such that they fit into (0, d) respectively (¢, 1), and moreover, (a,1) and
(0,b) are sent to (c,d). Now we glue the embeddings along (d — ¢,d)
for e = %(d — ¢) using a partition of unity subordinate to the cover

{(0,d — £),(d — ¢,1)}. This gives a new embedded manifold 7 : M =
V x (0,1)" and together with the intervals (0,b] < [c, 3(d — ¢)] < [a,1)
they form an element in (PBord,,)s.
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T~
T
-

This construction extends to I-simplices and thus gives the desired map
glue.

2. For everyi and every ky, ..., ki—1, the (n—i)-fold Segal space (PBordy )k, ... ki 10,0, e
18 essentially constant.

We show that the degeneracy inclusion map
(PBordn)kl,...,ki,l,(),O,...,O e (PBordn)kl,...,ki,l,O,kHl ,,,,, kn

admits a deformation retraction and thus is a weak equivalence.

For s € [0, 1], consider the map 7, sending an element in (PBordy, )k, ,... ki_1,0,kis1,....kn
represented by

(M) i= (M € Vx(0,1)", (1§ <+ < I D1<peis (0,1), (I < -+ < T Jiasn)

to

(M), = (M €V x (0,1)", (1] <+ < I )1<<i: (0, 1),
(5 (5) < -+ < I, ())ian ).

where for a > i, a§(s) = (1 — s)a§ and b (s) = (1 — s)b§ + s. Note that
for s =0, I§(0) = I, I$*(0) = I* and for s = 1, I#(1) = (0,1).

The maps 7 form a homotopy between the degeneracy inclusion and the
identity on (PBordy)k,,... ks 1,0,kis1,....k, Provided that every -, indeed

s

maps to (PBordy,)k, ... ks 1,0,kis1,....kn- 1t suffices to check condition (3)

in definition 2.3.1 for ’(M)é Since (M) € (PBordn )iy, ...ks—1,0,kis1,0rkon s
this reduces to checking

For everyi<a<mn and 0 < j < ky, at every x € p{;}(I;‘(s)),
the map pyq,...ny 1s submersive.

Condition (3) on (M) for i implies that py; ., is a submersion in
p{_ﬁ((o, 1)=Mn> p{_(j}(Ij‘?‘(s)), SO Pya,...,n} i submersive there as well.

O
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Remark 2.3.23. An interesting property of PBord,, is that it also satisfies
the strict Segal condition and furthermore, the equivalence in the strict Segal
condition is even a homeomorphism,

(PBord,);, — (PBord,); x --- x  (PBordy)i,
(PBordy, )o (PBordy, )o

where as above, we omit all indices except for the ith. This follows from the
fact that we can glue the embedded manifolds along open sets.

The last condition necessary to be a good model for the (oo, n)-category of
bordisms is completeness, which PBord,, in general does not satisfy. However,
we can pass to its completion Bord,,.

Definition 2.3.24. The (o0, n)-category of cobordisms Bord,, is the n-fold com-
pletion PBord,, of PBord,,, which is a complete n-fold Segal space.

Remark 2.3.25. For n > 6, PBord,, is not complete, see the full explanation
in [Lur09b], 2.2.8. For n = 1 and n = 2, by the classification theorems of one-
and two-dimensional manifolds, PBord,, is complete, and therefore Bord, =
PBord,,.

2.3.6 Variants of Bord,, and comparison with Lurie’s
definition

Bounded submanifolds, cutting points, and R as a parameter space

..... n)

we constructed a path to its cutoff, whose underlying submanifold
n

cut(M) = w—l(ﬂ(%, ag ))

i=1

is bounded in the V-direction. This construction extends to I-simplices and
yields a map of n-fold simplicial spaces

cut : PBord,, — PBord,,,

sending an element to its “cutoff”. Its image lands in PBordl,’Ld c PBord,,
the sub n-fold Segal space of elements for which the underlying submanifold is
bounded in the V-direction. Moreover, it induces a strong homotopy equiva-
lence between PBordZd and PBord,,.

Cutting points Another variant of an n-fold Segal space of cobordisms can
be obtained by replacing the intervals I} in definition 2.3.1 of PBord,, by spec-
ified “cutting points” t; € (0,1), which correspond to where we cut our com-
position of bordisms. Equivalently, we can say that in this case the intervals
are replaced by intervals consisting of just one point, i.e. a} = by =: t%. The
levels of this n-fold Segal space PBord!, can made into spaces as we did for
PBord,,, but we now need to impose the extra condition that elements of the
levels are connected by a path if they coincide inside the “box” of t’s, i.e. over
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[to:th, ] > -+ x [t§, 1} ]. However, for PBord), the Segal condition is more dif-
ficult to prove, as in this case we do specify the collar along which we glue.
Since the space of collars is contractible, sending an interval I = [a,b] n (0, 1)
to its midpoint ¢t = %(a +b) induces a level-wise weak equivalence from PBord,,
to PBord’,.

R as a parameter space There also is a version of PBord,, replacing the
closed intervals I ]’ < (0,1) by closed intervals in R. We impose conditions on
elements in this n-fold Segal space PBord,, which are analogous to (1)—(3) in

definition 2.3.1 of PBord,,. This amounts to using the identification (0, 1) AR
However, in this case the face and degeneracy maps d;, s§» for j = 0,k; are
more complicated to write down since they require the use of rescaling maps
po : (a}, ) — R, respectively pg, : (—o0,bj, _;) — R. In this case, sending an
interval to its midpoint as above leads to an variant with cutting points and R
as a parameter space PBord;’OO.

Comparison with Lurie’s definition of cobordisms

In [Lur09b], Lurie defined the n-fold Segal space of cobordisms as follows:

Definition 2.3.26. Let V be a finite dimensional vector space. For every n-
tuple ki, ...k, =0, let (PBord”"™), .. &, be the collection of tuples (M, (t}) <
... < t};i)i=1,..,n), where

.....

1. M is a closed n-dimensional submanifold of V' x R",
2. the composition 7 : M — V x R™ — R"” is a proper map,

3. for every S < {1,...,n} and for every collection {j;};cs, where 0 < j; <
k;, the composition pgs : M 5 R™ — RS does not have (tji)iGS as a
critical value.

4. for every @ € M such that pgy(x) € {t§,...,t,}, the map pgy1 .y is
submersive at z.

It is endowed with a topology coming from the Whitney topology similar to
what we described in remark 2.3.2, which we will not repeat here. Similarly to
before, we define
PBordﬁ = lim PBordZ’L
e
VcR®

Comparing this definition with definition 2.3.1 and PBord"* from above, note
that our condition (3) on PBord;® is replaced by the two strictly weaker

conditions (3) and (4) on PBord’, which are implied by (3).

However, Lurie’s n-fold simplicial space PBordﬁ is not an n-fold Segal space
as we will see in the example below. Thus, our PBordﬁL’OO is a corrigendum of
Lurie’s PBord from [Lur09b).
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Example 2.3.27.
Consider the 2 dimensional torus 7' in R x R2, and consider the

tuple (T — R x R%,¢{,13 < ... < 12 ), where t} is indicated in
to the picture of the projection plane R* below. Then, because of
"1-7>~. condition (3), t§ < ... < t}, can be chosen everywhere such that
C) ‘; any (tj,t7) is not a point where the vertical (ty-)line intersects
\ -~/ the two circles in the picture. Thus, the space of these choices is

-- not contractible. However, it satisfies the conditions (1), (2), (3),
and (4) in the definition of (PBord})os,, so (PBords)g. is not
essentially constant.

2.4 The symmetric monoidal structure on Bord,

The (o0, n)-category Bord,, is symmetric monoidal with its symmetric monoidal
structure essentially arising from taking disjoint unions. In this section we
endow Bord,, with a symmetric monoidal structure in two ways. In section
2.4.1 the symmetric monoidal structure arises from a I'-object. In section 2.4.2
a symmetric monoidal structure is defined using a tower of monoidal i-hybrid
(n + 7)-fold Segal spaces.

2.4.1 The symmetric monoidal structure arising as a
I'-object

We construct a sequence of n-fold Segal spaces (Bord), [m])... . which form a
I'-object which endows Bord,, with a symmetric monoidal structure as defined
in section 1.6.

Definition 2.4.1. Let V be a finite dimensional vector space. For every
ki,...,kn, let (PBord) [m])k, ..k, be the collection of tuples

(Mly sy M’ma (Ié <. Ilii)iZI,..A,n)a

where Mj, ... M, are disjoint n-dimensional submanifolds of V' x (0,1)", and
each (Mg, (I§ < ... < I/Zi)izl,...n) is an element of (PBordZ)kh___7k It can

be made into a simplicial set similarly to PBord,‘l/ . Moreover, similarly to the
definition of Bord,,, we take the limit over all V' < R* and complete to get an
n-fold complete Segal space Bord,,[m].

Proposition 2.4.2. The assignment

I' — SSpace,,,

[m] — Bord,,[m]

extends to a functor and endows Bord,, with a symmetric monoidal structure.

Proof. By lemma 1.6.6 it is enough to show that the functor sending [m] to
PBord,,[m] and a morphism f : [m] — [k] to the morphism

PBord,,[m] — PBord,, [%],

(My,..., My, I's)— (] Mg,..., [] MsTs),
Bef=1(1) pef=1(k)
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is a functor I' — SSpace,, with the property that

[T 7s:PBord,[m] — (PBord,[1])™

1<B<n

is an equivalence of n-fold Segal spaces.

The map [, s<n 78 1s an inclusion of n-fold Segal spaces and we show that

level-wise it is a weak equivalence of spaces. Let ((Ml), cee (Mn)) € (PBord,[1])™.
We construct a path to an element in the image of [, <i<n Y Which induces a
strong homotopy equivalence between the above spaces. First, there is a path
to an element for which all (M,,) have the same specified intervals by composing
all except one with a suitable smooth rescaling. Secondly, there is a path with
parameter s € [0,1] given by composing the embedding M, — V x (0,1)"
with the embedding into R x V' x (0,1)" given by the map V. — R x V|
v — (sa,v). O

2.4.2 The monoidal structure and the tower

Our goal for this section is to endow Bord,, with a symmetric monoidal struc-
ture arising from a tower of monoidal I-hybrid (n + [)-fold Segal spaces Bord")
for [ = 0.

The (o0, n + [)-category of n-bordisms for [ > —n

We now define an (n + I)-fold Segal space whose (n + [)-morphisms are n-
bordisms for [ > —n.

Definition 2.4.3. Let V be a finite dimensional vector space and let n >

0,1 = —n. For every n-tuple ki,...,k,1; = 0, we let (PBordi{V)kl,wan be

the collection of tuples (M — V x(0,1)"* (I§ < ... <1} )i=1,...ns1) satisfying
conditions analogous to (1)-(3) in definition 2.3.1, i.e.

1. M is a closed n-dimensional submanifold of V x (0,1)"*, and I’ < (0,1)
are closed intervals in (0, 1) with endpoints a§» < b;, ab =0, b}“ =1, and
I} < Ij iff a}, < af, b} < b,

2. the composition 7 : M < V x (0,1)"*! — (0,1)"*! is a proper map,

3. for every S < {1,...,n + I} let ps be the composition pg : M

(0,1)"*! — (0,1)%. Then for every 1 < i < n+1and 0 < j; < ki,
at every x € p{fli(IJ’l), the map py; . 44y is submersive.

We make (PBord;’V)klw’an into a space similarly to (PBord) ), . ., and
again we take the limit over all finite dimensional vector spaces in a given
infinite dimensional vector space, say R%:

PBord), = lim PBord}" .
VcR®

Proposition 2.4.4. (PBord,). .. . is an (n + 1)-fold Segal space.
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Proof. The proof is completely analogous to the proof of Proposition 2.3.22. [

Definition 2.4.5. For [ < 0let Bord!, be the (n+1)-fold completion of PBord.,,
the (o0, n + I)-category of n-bordisms.

Remark 2.4.6. For [ > 0, the underlying submanifold of objects of PBordiL,
i.e. elements in (PBordiL)o _____ 0, are n-dimensional manifolds M which have a
submersion onto (0,1)"*!. This implies that M = . Thus, the only ob-
ject is (,(0,1),...,(0,1)). Similarly, (PBordL)07k27,,,7an has only one el-
ement, which is the image of compositions of the degeneracy maps. Thus,
(PBord,)g..... is the point viewed as a constant (n — 1)-fold Segal space.
Similarly, (PBordﬁl)1,,__1170,.1_”’., with (I — 1) 1’s, is the point viewed as a con-
stant (n — [)-fold Segal space. Thus for [ > 0 it makes sense and is more useful
to use the I-hybrid completion of PBordiL.

Definition 2.4.7. For [ > 0 let Bordgf) be the I-hybrid completion of PBord’,.

Loopings of PBord,

In any PBord!,, there is the distinguished object &5 = (&, (0,1)) in PBord.,,
the unit for the monoidal structure. Recall from definition 1.5.7 the k-fold
iterated loopings of PBord; for k<n+1,

Ly (PBord,) = L(Ly—1(PBord,, &), &), Ly(Bord,) = L(Ly_1(Bord,, &), &).
Proposition 2.4.8. Forn+ 1>k > 0, there are weak equivalences

u

/_\
"\_/
L

Li(PBord!) PBord! " .

Proof. We show that L(PBord!) = Hompgo,q (F, ) ~ PBord' ! . The state-
ment for general k follows by induction. '

We define a map
u: L(PBord’) = PBord! !

by sending an element in Hompgo,qi (&, @)ks,.. o

(Ml) = (M cVx (07 1)n+l7 (Ovbé] < [Cl%, 1)7 (Ié <0 S Ilii)i:l...,n-&-l) € (PBOI‘d%n)17k27___7kn+l

to

(My—1) = (M < (V x (0,1)) x (0, 1)" ™1 (I} < -+ < I )ico,. 1),
[ S
-V
so it “forgets” the first specified intervals. First of all, we need to check that
this map is well-defined, that is, that (M;_;) € (PBord}, ")y, Note that

in the above, we view V = V x (0,1) as a vector space using the identification

-7kn+l'

(0,1) 2 R. The condition we need to check is the second one, i.e. we need
to check that M < V x (0,1)"*=1 — (0,1)"*~! is proper. We know that
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M — (0,1)"*! is proper, and moreover, since p; *((0,4)) = p;*((a},1)) = &,
we know that M is bounded in the direction of the first coordinate, since
M = py'([b},al]). Together this implies the statement. Note that the map u
we just constructed actually is defined by a system of maps

uy : L(PBord:") —> PBord""
where V = V @ (v).

To construct a map in the other direction we will also need to change the vector
space V, but this time we need to "delete” a direction. To make this procedure
precise, we fix the following notations. In the definition of PBorle;V we let
V vary within a fixed countably infinite dimensional space. Choose R* with
a countable basis consisting of vectors vy, vs,... In taking the limit is enough
to consider the finite dimensional subspaces V; spanned by the first d vectors
v1,...,0q. Then the map u we constructed above was defined as an inductive
system of maps

ug : L(PBord:") — PBord} "¢+,
(M < Vax (0,1) x (071)n+l_1) — (M S ( (v @, va41)) X (0,1)"*“1)7
~—— T
~(0,1) ~V,

where we use the canonical morphisms (0,1) = R = (v1) and {(va,...,v4+1) —
Vd, Up — Up—1-

In remark 2.3.11, we constructed a path from an element in PBord,, to its “cut-

oft”, whose underlying submanifold is 71'_1(]_[;;1(%, %)), which is bounded
in the V-direction. We saw in section 2.3.6 that this map gives rise to a strong
homotopy equivalence

cut : PBord,, — PBorded.
Similarly, we obtain equivalences of n-fold Segal spaces
cut : PBord' — PBord! ' cut : L(PBord!) — L(PBord4").
Note that ug restricts to a map between the bounded versions,
ul? . L(PBord} ") — PBord!;Ve+1:b4

It suffices to show that this map induces a strong homotopy equivalence, with
homotopy inverse given by the following inductive system of maps

054 PBord! bVartbd 1 (PBord’Y4).

Start with an element (M;_1) = (M S Vap x (0, )" < - < I}ii)z‘=2,...,n+l) €
PBordifl’Vd“’bd. Since it is bounded in the V-direction, there are A, B such
that
B <7, (M) < A,
where T, 1 M S (Cv1) ® v, ...,va41)) x (0,1)"H1 — (v;) = Ruy. Let
B be the supremum of such B and let A be the infimum of such A. Let
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B = g7f~1 = A1 Now let b,a € (0,1) = R correspond to B, A, B. Finally, we

(M) = (M < (vg,...,vap1y % (0,1) x(0,1)" 1 (0,8] < [a, 1), (I§ < -+ < I},
—_—
=Vy =(v1)
By construction,
O oug ~ id, ug o 5 = id,

where (%% o ug just changes the first two intervals I} < I and thus is homotopy
equivalent to the identity. O

Definition 2.4.9. The map ¢ in the proof is called the looping and u the
delooping map.
Recall from remark 1.5.8 that looping commutes with completion. Taking the
appropriate completions, we obtain the following corollary.
Corollary 2.4.10. Let k > 0.

1. Ifl— k>0,

Li(Bord®) ~ Bord (™% . (2.3)
2. Ifk=21l>0andn+1—-k>=0,

Li(Bord") ~ Bord! % . (2.4)

3. Ifl<0and Forn+1l>2k=0,n+1l—-k >0,

L (Bord') ~ Bord! " (2.5)

The tower and the symmetric monoidal structure

Recall from definition 2.4.7 that Bordg) is the [-hybrid completion of PBord;.
By remark 2.4.6 and (2.3) in corollary 2.4.10, proposition 2.4.8 has an imme-
diate corollary.

Corollary 2.4.11. The (n+1)-fold Segal spaces Bord,(f) are l-hybrid and endow
Bord,, with the structure of a symmetric monoidal n-fold Segal space.

2.5 The homotopy (bi)category
2.5.1 The homotopy category hi(L,_1(Bord,))
The symmetric monoidal structure on hi(L,_1(Bord,))

The (n — 1)-fold looping Ly,_1(Bord,,) ~ Bord;, "~ is a (o0, 1)-category with
a symmetric monoidal structure defined in two ways similarly to that of Bord;.

Both induce a symmetric monoidal structure on the homotopy category hy(L,—_1(Bord,,)) ~

hy (Bord;; 1),
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...coming from a I'-object We can either obtain the symmetric monoidal
structure as a [-object on L,,_;(Bord,,) ~ Bord;("_l) by iterating the con-
struction of the symmetric monoidal structure on the looping from example
1.6.11 or by constructing a functor from an assignment [m] — Bord;, "~V [m].
In the second case, Bord, " V[m] arises, similarly to Bord,[m], from the
spaces (PBord”~ """V [m]), . k., which as a set is the collection of tuples

(M17"'7MM7(IO S <Ik))a

where My, ... M, are disjoint n-dimensional submanifolds of V' x (0,1)", and
each (Mg, (In < ... < Iy)) € (PBord"~(""1),
We saw in example 1.6.9 that a I'-object endows the homotopy category of its
underlying Segal space with a symmetric monoidal structure. Explicitly, in the
second case, it comes from the following maps.

Bord, "*Y[1] x Bord;, "*V[1] S Bord; ™*Y[2] X Bord, "V[1],
Y1 X2
(M17I7S)7(M27I’S) A — (Ml,MQ,I’S) — (Ml UMQ,I’S)

...coming from a tower The understand the symmetric monoidal structure
on hy(L,—1(Bord,,)) coming from a symmetric monoidal structure as a tower,
we use that L,_1(Bord,) ~ Bord; ™V and that Bord,, =Y has a symmetric
monoidal structure coming from the collection of I-hybrid (I + 1)-fold Segal
spaces given by the [-hybrid completion of PBordifnﬂ, the completion in the
last index. This symmetric monoidal structure induces one on the homotopy
category hy(Bord;, " 1) ~ hy(L,_1(Bord,)), which we will explain explicitly.
Since completion is a Dold-Kan equivalence, see 1.2.3, it is enough to under-
stand the symmetric monoidal structure on h;(PBord;, ("_1)).

Essentially, the monoidal structure is given by composition in PBordif(’“D7

the next layer of the tower PBordif(”fl) gives a braiding and the higher layers

show that it is symmetric monoidal. Consider the diagram

(PBord~ ™1, ,x (PBord:~ ™), , «—— (PBord: " V), L (PBord! ™"V, ..

LI )
dgxdy

Using the fact from remark 1.6.18 that L(PBord:~"~1), = (PBord~™~Y), ,,
we find that (PBord}~™~Y), , ~ (PBord;, 1), which induces a map

h1(PBord,, "~V) x hy (PBord,, ") — hy(PBord,, "~V).

This is a monoidal structure on h; (PBord,; ("_1)). We can explicitly construct
this map. Consider two objects or 1-morphisms (M) and (N) in (PBord;; ™1,
fork=0or k=1,

(M)=(McVx(0,1),Ip<---<1Ip), (N)=(N<CVx(0,1),Ih<---<1I).
Without loss of generality V =V = Vg, and (M), (N) € (Bord}%)s.
Under the map 5 : Bord}? — L(Bord; %) from proposition 2.4.8, (M) and
(N) are sent to

(My) = (M = Vg1 x (0,1)%,(0,b] < [a,1),1o < -+ < I),
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(N1) = (N € Vaoq x (0,1)%,(0,8] < [a,1),[o < -+ < I).

In the proof of the Segal condition for PBord,, proposition 2.3.22 we explicitely
constructed a homotopy inverse glue to d§ x di. Similarly one can obtain such
a homotopy inverse for PBordiL, which applied to (M;) and (N7) gives

(MuN s Vay x (0,1)2,(0,68] < [a}, b1 < [ad, 1), [y < - < fk) ,
since d}((My)) = dy((N1)) = . The third face map sends it to
(MuN o Vay x (0,1)2,(0,08] < [ab, 1), [p < -+ < fk)
which by uf? : L(Bord}*) — Bord}? is sent to

(MUNHde(o,l),fo<~-~< }c).

The homotopy category and nCob

The homotopy category of Bord; turns out to be what we expect, namely 1Cob.
We can show even more, namely that our higher categories of cobordisms also
give back the ordinary categories of n-cobordisms, as we see in the following
proposition.

Proposition 2.5.1. There is an equivalence of symmetric monoidal categories
between the homotopy category of the (n — 1)-fold looping of Bord,, and the
category of n-cobordisms,

hi(Ly—1(Bord,)) =~ nCob.
Proof. We first show that there is an equivalence of categories h (L, 1 (Bord,)) ~
nCob and then show that it respects the symmetric monoidal structures.

Rezk’s completion functor is a Dwyer-Kan equivalence of Segal spaces, and thus
by definition induces an equivalence of the homotopy categories. Moreover,
completion commutes with looping, so it is enough to show that

hi(L,—1(PBord,,)) ~ nCob.
We define a functor
F : hi(Ly,—1(PBord,)) — nCob

and show that it is essentially surjective and fully faithful.

Definition of the functor By definition,

h h
(Ln_1(PBord,))x = & X (Ln—2(PBordy))1 & X
(Ln_2(PBord,,))o.k (Ln—2(PBordy))o,k

and, iterating this process, we find that an element in L,_;(PBord,); is an
element (M) of (PBordy)i,....1,x such that for every i # n, d’((M)) has & as

.....
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its underlying manifold, i.e. in every direction except for the nth direction, the
source and target both have ¢ as its underlying manifold.

So an object in hy(L,—1(PBord,)) is an element (M) € (PBord,)1,... 1,0 such
that for ¢ # n, the underlying manifold ofdé-((M )) is . We let the functor F
send (M) to

R (I ad] o x B x ().

Since 3 is a regular value of p(,y, F((M)) is an (n — 1)-dimensional manifold,
and since 7 is proper, it is compact. Moreover its boundary is empty. This
follows from

(M) =V x [Bhal] x - [~ af ] % ()

which implies that
1 1 n—1 n—1 1
R () = F(O) 0 (V x Bhal] % B a1 ¢ (5))

and since for every i # n, the underlying manifold of d’((M)) is .

So, as an abstract manifold, F'((M)) is a closed compact (n — 1)-dimensional
manifold, i.e. an object in nCob.

Similarly, the functor F' sends a morphism in hj(L,—;(PBord,)), which is
an element in 7o (L,_1(PBord, );) which is represented by an element (M) €
(PBord,,)1,... 1,1 such that for ¢ # n, the underlying manifold of d;((M)) is &,
to the isomorphism class of

M = T‘—_l([b(lhaﬂ XX [bg_lva?_l] x [ 87(1711])
This is an n-dimensional manifold with boundary
7 ([bgy ag) x - < [og T et T ] x {bg ) um T  ([bg, ag] x - x [bg T et T ] x {at ).

This is well-defined, since a path in L, _1(PBord,,); by definition gives diffeo-
morphism g1 : My — M, which intertwines with the composed bordisms and
thus restricts to diffeomorphisms of the images defined above.

The functor is an equivalence of categories Whitney’s embedding the-
orem shows that F' is essentially surjective. Moreover, it is injective on mor-
phisms: Let ¢ : My — V x (0,1)" and ¢g : M7 — V x(0,1)™ be representatives
of two 1-morphisms which have diffeomorphic images. This means that there
is a diffeomorphism 9 : My — M;, which can be extended to their collars,
i.e. we get a diffeomorphism ¢ : My — M;. Since Emb(M7;,R® x (0,1)") is
contractible, the quotient Emb(M7, R* x (0,1)™)/Diff (M;) is path-connected,
so there is a path of embedded submanifolds 7s : My <> R® x (0,1)" such that
t1 = 11 is the given one and 7y = ¢y o ¥. Note that iy and ¢g give the same
submanifold. By lemma 2.3.12, this family ¢s determines a rescaling data and
a family of diffeomorphisms 1), ; which intertwine and thus a path in PBord,,
which by construction lies in L,,_;(Bord,). It remains to show that F' is full.
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In the case n = 1,2 this is easy to show, as we have a classification theorem
for 1- and 2-dimensional manifolds with boundary. In the 1-dimensional case
it is enough to show that an open line, the circle and the half-circle, once
as a bordism from 2 points to the empty set and once vice versa, lie in the
image of the map, which is straightforward. In the two dimensional case, the
pair-of-pants decomposition tells us how to embed the manifold.

For general n we first embed the manifold with boundary into R x R?" us-
ing a variant of Whitney’s embedding theorem for manifolds with boundary,
cf. [Lau00]. Then the boundary of the halfspace is J(RT x R?") = R?", We
want to transform this embedding into an embedding into (0,1) x R?" such
that the incoming boundary is sent into {e} x R?" and the outgoing boundary
is sent into {1 — €} x R?",

We first show that the boundary components can be separated by a hyperplane
in R?". The boundary components are compact so they can be embedded
into balls B?". By perhaps first applying a suitable “stretching” transforma-
tion, one can assume that these balls do not intersect. Now, since 2n > 1,
7o(Conf(B?",R?")) = x, there is a transformation to a configuration in which
the boundary components are separated by a hyperplane, without loss of gen-
erality given by the equation {z; = 0} = R?*",

Consider the (holomorphic) logarithm function on (R* xR)\{(0,0)} =~ H\0 = C
with branch cut —iR*. It is a homeomorphism to {(z,y) € R? : 0 < y < «}.
We can apply log xidgen—1 to (RT x R,,) x R?"~! and, composing this with
a suitable rescaling, obtain an embedding into (e, 1 — €) x R?". Now choose a
collaring of the bordism to extend the embedding to (0,1) x R?".

The functor is a symmetric monoidal equivalence Explicitly analyzing
the two symmetric monoidal structures on hq(Bord;, ("_1)), one sees that they
both send two elements (represented by)

(M) = (M < Vgx(0,1),Ip <---<Ij), (N)=(NcVyx(0,1),Ip<---<1I)

for k =0 or k = 1 to an embedding of M 11 N into V1, which sends M and
N to different heights in the extra (d + 1)st direction.

In the case of the structure coming from a I'-object, one can similarly to in the
previous paragraph define an equivalence of categories

F[m] : Bord; ™Y [m] — nCob™.

Then one can easily check that the following diagram commutes.

Bord; ™ Y[1] x Bord; V1] — Bord; "1 [2] —— Bord;; ""V[1]

e = ¥

nCob xnCob =——= nCob xnCob —2— nCob

For the case of the structure coming from a tower, we explicitly saw that
the symmetric structure on h;(Bord,; (”_1)) sends two objects or 1-morphisms
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determined by
(M)=(McVx(0,1),Ip<--<I), (N)=(N<Vx(0,1),Ip<---<1I)

to
(M1N) = (MLINHf/d x (0,1), I < ---<fk),

where the embedding of M is changed by a rescaling. This change of rescaling
is precisely such that under the functor F' the element (M 11 N) is sent to
F((M)) 1 F((N)). 0

2.5.2 The homotopy bicategory hy(Bords) and comparison
with 2Cob®*!

C. Schommer-Pries defined a symmetric monoidal bicategory nCob®* of n-
dimensional cobordisms in his thesis [SP09]. In this section we show that
the homotopy bicategory of our (o0, 2)-category of 2-dimensional bordisms is
symmetric monoidally equivalent to this bicategory.

The bicategory 2Cob®*!
We first briefly recall the definition of 2Cob®"".
Definition 2.5.2. The bicategory 2Cob®*" has

e (-dimensional manifolds as objects,
e l-morphisms are 1-bordisms between objects, and

e 2-morphisms are isomorphism classes of 2-bordisms between 1-morphisms,
where

1. a I-bordism between two 0-dimensional manifolds Yy, Y7 is a smooth com-
pact 1-dimensional manifold with boundary W with a decomposition and
isomorphism

OW = 0y, W 0py W = Yo 11 Yy

2. a 2-bordism between two 1-bordisms Wy, W7 between objects Yy, Y; is a
compact 2-dimensional <2>-manifold S equipped with

- a decomposition and isomorphism
00S = 0p.inS 1 0y outS —> Wo Ll Wy,
- a decomposition and isomorphism
1S = 01,inS U1 oS — Yo x [0,1]11Y; x [0,1].

Recall that a <2 >-manifold is a manifold with faces X with a pair of
faces (0pX, 01 X) such that

0o X U X =0X, 00X N 01X is a face.
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3. Two 2-bordisms S, S’ are isomorphic if there is a diffeomorphism h : S —
S’ compatible with the boundary data.

Vertical and horizontal compositions of 2-morphisms are defined by choosing
collars and gluing. This is well-defined because 2-morphisms are isomorphism
classes of 2-bordisms, and thus the composition doesn’t depend on the choice of
the collar. However, composition of 1-morphisms requires the use of a choice of
a collar, which requires the axiom of choice, and then composition is defined by
the unique gluing. However, this gluing is associative only up to non-canonical
isomorphism of 1-bordisms which gives a canonical isomorphism class of 2-
bordisms realizing the associativity of horizontal composition in the axioms of
a bicategory.

It is symmetric monoidal, with symmetric monoidal structure given by taking
disjoint unions. For the exact details we refer to the above mentioned thesis
[SP09].

The symmetric monoidal structure on hy(Bords)
The symmetric monoidal structure on Bords arising as a I'-object gives us
Bords,[1] x Bordy[1] <— Bordy[2] — Borda[1]

which induces
ha(Bords) x ha(Bords) — ha(Bords).

This makes hy(Bords) into a symmetric monoidal bicategory, where the asso-
ciativity follows from the equivalence Bords[3] — Borda[1]*3.

The homotopy bicategory and 2Cob“**

In this section we show that our (o0, 2) category of 2-cobordisms indeed gives
back the bicategory 2Cob®* as its homotopy bicategory.

Proposition 2.5.3. There is an equivalence of symmetric monoidal bicate-
gories between hy(Bordy) and 2Cob™*.

Proof. By Whitehead’s theorem for symmetric monoidal bicategories, see [SP09],
theorem 2.21, it is enough to find a functor F' which is

1. essentially surjective on objects, i.e. F' induces an isomorphism
7o (ha(Bordy)) = 7 (2Cob®™"),

2. essentially full on 1-morphisms, i.e. for every x,y € Obhy(Bords), the
induced functor Fj , : ho(Bords)(x,y) — 2Cob***(Fx, Fy) is essentially
surjective, and

3. fully-faithful on 2-morphisms, i.e. for every z,y € Obha(Bords), the in-
duced functor F, , : ha(Bordy)(x,y) — 2Cob®**(Fz, Fy) is fully-faithful.

First of all, recall from remark 2.3.25 that for n = 2, PBord, is a complete
2-fold Segal space, so Bords = PBords.
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Definition of the functor Let

F : hy(Bordy) — 2Cob"*
be the functor defined as follows:
On objects,

(M SV xR (0,1),(0,1) € (Bords)oy —> 7! ((; ;)> :

where the image is thought of as an abstract manifold. This is well-defined, be-
cause as 7 is proper and (%7 %) is a regular value of 7, the preimage 7+ ((%, %))
is compact and O-dimensional, so it is a finite disjoint union of points. Note
that because of condition (3) in the definition of Bords = PBords, we could
have taken the fiber over any other point in (0,1)? and would have gotten a

diffeomorphic image.

On 1-morphisms,
1
(M =V xR? (0,b] < [a},1),(0,1)) € (Bordg)y o —— 7" ([b}),a}] x {2}) :

The point % is a regular value of the projection map py : M — V x (0,1)% —

(0,1), som~* ([b§,ai] x {3}) is a 1-dimensional manifold with boundary. More-
over, the decomposition of the boundary of the image is given by

(b ) ur ().

Note that again, we could have taken the preimage 7! ([c,d] x {t}) for any
t € [0,1], ¢ € (0,b}], and d € [a},1) and would have gotten a diffeomorphic
image.

On 2-morphisms, the functor F' comes from the assignment
(M < VxR, (0,b4] < [af, 1), (0, 53] < [a3, 1)) = 7" (b, al] x [83,a]) =: S.

As 7 is proper, S is a compact 2-dimensional manifold with corners and more-
over has the structure of a 2-manifold coming from the decomposition of the
boundary coming from the inverse images under 7 of the sides of the rectangle
(b5, ai] x [5, ai],

208 = 7" ([bbead] x (B3}) 11t ([bh,al] x {ad})

and
615 =7 ({8} x [, ad]) " ({ah} x 33, a3]).

By condition (3) in definition 2.3.1,
7L ({0} (8B a3]) = 7t ((8hB2)) x B3, 3]

and
w1 ({ab} x (83, a2T) = 7 ((abo2) (83, a2l



58 CHAPTER 2. THE (o0, n)-CATEGORY OF COBORDISMS

This makes S into a 2-bordism between the images under F' of the source and
target of our 2-bordism.

This assignment descends to 2-morphisms which are elements in my((Bords)1,1),
as any path in (Bordz);1 by definition induces a diffeomorphism v 1 : My —
M, which intertwines with the composed bordisms and thus induces an iso-
morphism of the images under F' defined above.

The functor is an equivalence of bicategories We check (1)-(3) of White-
head’s theorem.

For (1), the point is the image of the plane (M = (0,1)?2 A (0,1)2,(0,1),(0,1)).
For k points, we can take k disjoint parallel planes in (0,1) x (0,1)? which
intersect V = R in k different points, e.g. 0,...,k — 1 and the intervals I} =
12 = (0,1).

For (2), we use the classification of 1-dimensional manifolds with boundary.
Any connected component can be cut into pieces diffeomorphic to straight
lines and left and right half circles. These all lie in the image of F' in a very
simple way, e.g. a straight line is the image of

<M = (07 1)2 £ (07 1)27 (07 %] < [%, 1)7 (Oa 1)) )

and the right and left half circles are the images of the following embeddings
(0,1)2 — R x (0, 1)? with suitable choices of intervals.

Y /4

By gluing these preimages in a suitable way, we get an element whose image is
diffeomorphic to the connected component we started with.

For (3), to show that it is full on 2-morphisms, we use the classification theorem
3.33 of Schommer-Pries in [SP09]. He gives a set of generating 2-morphisms
of 2Cob*™* for which one easily sees that they all are the image of an element
in (Bordsz); 1. Moreover, the preimages can be glued. For faithfullness, a
similar argument as in the proof of proposition 2.5.1 works: we use the fact
that Emb(M,R® x (0,1)™) is contractible, so Emb(M,R* x (0,1)™)/Diff (M)
is path connected. Using lemma 2.3.12, an isomorphism of 2-bordisms will give
rise to a path in (Bords)q 1.
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The functor is a symmetric monoidal equivalence Similarly to in the
previous subsection, the equivalence of bicategories

F : hy(Bordy) — 2Cob***

respects the symmetric monoidal structures. This can been seen by explicitly
writing out the symmetric monoidal structure for hs(Bords). O

Remark 2.5.4. In [SP09], Schommer-Pries also defined a bicategory nCob®**
with objects being (n — 2)-dimensional manifolds, 1-morphisms being (n — 1)-
cobordisms, and 2-morphisms being equivalence classes of 2-bordisms, which
are suitable n-dimensional (2)-manifolds. A similar argument should show that
ho(Ly,_2(Bord,)) ~ nCob®"’. However, one would need a suitable embedding
theorem for cobordisms between cobordisms. One should be able to adapt
the embedding theorem for (2)-manifolds from [Lau00], similarly to how we
adapted the embedding theorem for manifolds with boundary.

2.6 Cobordisms with additional structure: orientations
and framings

In the study of fully extended topological field theories, one is particularly
interested in manifolds with extra structure, especially that of a framing. In this
section we explain how to define the (o0, n)-category of structured n-bordisms,
in particular for the structure of an orientation or a framing.

2.6.1 Structured manifolds

We first need to recall the definition of structured manifolds and the topology
on their morphism spaces making them into a topological category. In the
next subsection we will see that the simplicial set of chains on these topological
spaces essentially will give rise to the spatial structure of the levels of the n-
fold Segal space of structured bordisms similarly to the construction in section
2.3.2.

Throughout this subsection, let M be an n-dimensional (smooth) manifold.

Definition 2.6.1. Let X be a topological space and E — X a topological n-
dimensional vector bundle which corresponds to a (homotopy class of) map(s)
e : X — BGL(R"™) from X to the classifying space of the topological group
GL(R"™). More generally, we could also consider a map e : X — BHomeo(R™)
to the classifying space of the topological group of homeomorphisms of R™, but
for our purposes vector bundles are enough. An (X, E)-structure or, equiv-
alently, an (X, e)-structure on an n-dimensional manifold M consists of the
following data:

1. amap f: M — X, and
2. an isomorphism of vector bundles

triv: TM = f*(E).
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Denote the set of (X, E)-structured n-dimensional manifolds by Man&X’E ).

An interesting class of such structures arises from topological groups with a
morphism to O(n).

Definition 2.6.2. Let G be a topological group together with a continuous
homomorphism e : G — O(n), which induces e : BG — BGL(R"™). As usual,
let BG = EG/G be the classifying space of G, where EG is total space of
its universal bundle, which is a weakly contractible space on which G acts
freely. Then consider the vector bundle £ = (R" x EG)/G on BG. A (BG, E)-
structure or, equivalently, a (BG, e)-structure on an n-dimensional manifold M
is called a G-structure on M. The set of G-structured n-dimensional manifolds
is denoted by Mang.

For us, the most important examples will be the following three examples.

Example 2.6.3. If G is the trivial group, X = BG = % and E is trivial. Then
a G-structure on M is a trivialization of T'M, i.e. a framing.

Example 2.6.4. Let G = O(n) and e = idp(,). Then, since the inclusion
O(n) — Diff (R™) is a deformation retract, an O(n)-structured manifold is just
smooth manifolds.

Example 2.6.5. Let G = SO(n) and e : SO(n) — O(n) is the inclusion. Then
an SO(n)-structured manifold is an oriented manifold.

Definition 2.6.6. Let M and N be (X, E)-structured manifolds. Then let the
space of morphisms from M to N be

h
Map ) (M, N) = Emb(M, N) x Map, x (M, N).
Map/BHomoo([K")(MvN)

Taking (singular or differentiable) chains leads to a space, i.e. a simplicial set
of morphisms from M to N. Thus we get a topological (or simplicial) category
Man5E) of (X E)-structured manifolds. Disjoint union gives Man(") a

symmetric monoidal structure.

Remark 2.6.7. For G = O(n) we recover Emb(M, N), and for G = SO(n), the
space of orientations on a manifold is discrete, so an element in Mapso(”) (M,N)
is an orientation preserving map.

If G is the trivial group we saw above that a G-structure is a framing. In this
case, the above homotopy fiber product reduces to

h
Map™ ) (M, N) = Emb(M, N) X Map(M, N).
Map p,(q) (Fr(TM),Fr(TN))

Thus, a framed embedding is a pair (f, k), where f : M — N lies in Emb(M, N)
and h is a homotopy between between the trivialization of TM induced by the
framing of M and that induced by the pullback of the framing on N.
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2.6.2 The (o0,n)-category of structured cobordisms

Fix a type of structure given by the pair (X, E). In this subsection we define
the n-fold (complete) Segal space of (X, E)-structured cobordisms Bord %),

n

Compared to definition 2.3.1 we add an (X, F)-structure to the data of an
element in a level set.

Definition 2.6.8. Let V be a finite dimensional vector space. For every n-
tuple k1,...,k, = 0, let (PBordng’E)’V) be the collection of tuples

(M, f, triv, (Ié SN I]ii)z':l,...,n)a where

k1, kn

L (M, (I§ <--- <Ij)i,) is an element in the set (PBord! )x, ..., , and
2. (f,triv) is an (X, E)-structure on the (abstract) manifold M.
Remark 2.6.9. Note that there is a forgetful map
U: (PBord(PV) - — (PBordy ).k,
forgetting the (X, E)-structure.
Definition 2.6.10. An [-simplex of (PBord;X’E)’V)kl,m’kn consists of the

following data:

1. A family of elements
(Mg, fs,trivs) = (MS CV x (0,1)", fs, triv,, (I3(s) < --- < I}c(s))Z:ln)

in (PBord(“"V), -

derlying (X, E) _structured 0-simplices;

indexed by s € |A!|, which are called the un-

2. For every 1 <i < k;,
CHORSEES S O) N
is an [-simplex in Inty, with rescaling datum ¢ ; : (0,1) — (0,1);
3. A family of elements in Man;X’E)(M&Mt) with underlying diffeomor-

phisms
1l)s,t My — Mh

indexed by s,t € |A!];

such that the triple
U(Ms, fs,trivs),  (@st)seiat)s  (¥s,t)sie|al

is an [-simplex in (PBord! )a, .. k.-
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Similarly as for PBord,, the levels can be given a spatial structure with the
above [-simplices and then the collection of levels can be made into a complete
n-fold Segal space Bord%X )

Moreover, Bord%X’E) has a symmetric monoidal structure given by (X, E)-
structured versions of the I'-object and of the tower giving Bord,, a symmetric
monoidal structure.

2.6.3 Example: Objects in Bordgr are 2-dualizable

In dimension one, a framing is the same as an orientation. Thus the first
interesting case is the two-dimensional one. In this case, the existence of a
framing is a rather strong condition. However, we will see that nevertheless, any
object in Bordgr is 2-dualizable. Being 2-dualizable means that it is dualizable
with evaluation and coevaluation maps themselves have adjoints, see [Lur09b].

Consider an object in Bordgr, which, since in this case Bordgr = PBordgr by
remark 2.3.25, is an element of the form

(M SV x (0,12, F,(0,1),(0,1)),

where F' is a framing of M. By the submersivity condition 3 in the definition
2.3.1 of PBords, M is a disjoint union of manifolds which are diffeomorphic to
(0,1)2. Thus, it suffices to consider an element of the form

((0,1)> < (0,1)%, F, (0,1), (0,1)),

where F is a framing of (0,1)?. Depict this element by

One should think of this as a point together with a 2-framing,
2
-

We claim that its dual is the same underlying unstructured manifold together

with the opposite framing
/.—, 1
2

An evaluation 1-morphism ev between them is given by the element in

2
1

(Bordgr)l,o which is a strip, i.e. (0,1)?, with the framing given by slowly ro-
tating the framing by 180°, and is embedded into R x (0, 1)? by folding it over
once as depicted further down.
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7 Nl N

A coevaluation coev , is given similarly by rotating the framing along the

1
strip in the other direction, by -180°.

The composition

1 1

/e
v

is connected by a path to the flat strip with the following framing given by
pulling at the ends of the strip to flatten it.

o VN N 2

This strip is homotopic to the same strip with the trivial framing. Thus the
composition is connected by a path to the identity and thus is the identity in
the homotopy category. Similarly,

ev ®id o (id ® coev ~id .
( 2% 421) ( 2% 421) 2%

In the above construction, we used ev , and coev , which arose from
1 1

strips with framing rotating by +£180°. A similar argument holds if you use for

the evaluation any strip with the framing rotating by an for any odd integer
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a and for the coevaluation rotation by 7 for any odd . Denoting these by
ev(a) and coev(f3), they will be adjoints to each other if a + 3 = 2.

The counit of the adjunction is given by the cap with the framing coming from
the trivial framing on the (flat) disk.

Similarly, the unit of the adjunction is given by a saddle with the framing com-
ing from the one of the torus which turns by 27 along each of the fundamental

loops.

Then the following 2-bordism also is framed and exhibits the adjunction.

2.7 Fully extended topological field theories

Now that we have a good definition of a symmetric monoidal (o0, n)-category
of bordisms modelled as a symmetric monoidal complete n-fold Segal space,
we can define fully extended topological field theories a la Lurie.
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2.7.1 Definition

Definition 2.7.1. A fully extended unoriented n-dimensional topological field
theory is a symmetric monoidal functor of (00, n)-categories with source Bord,,.

Remark 2.7.2. Consider a fully extended unoriented n-dimensional topolog-
ical field theory
Z : Bord,, — C,

where C is a symmetric monoidal complete n-fold Segal space. We have seen
in section 2.5 that hq(L,—_1(Bord,)) ~ nCob. The Z induces a symmetric
monoidal functor

nCob ~ hy(L,_1(Bord,)) — h1(L,—1(C, Z(%))),

i.e. an ordinary n-dimensional topological field theory. The converse for n > 1
is not always true and poses interesting questions whether a theory can be
“extended down”.

Similarly, a fully extended unoriented 2TFT with target C yields an extended
2TFT
2Cob*" ~ hy(Bordy) — ha(C).

Additional structure Recall from the previous section that there are vari-
ants of Bord,, which require that the underlying manifolds of their elements to
be endowed with some additional structure, e.g. an orientation or a framing.
These variants lead to the following definitions.

Definition 2.7.3. A fully extended n-dimensional framed topological field the-
ory is a symmetric monoidal functor of (c0,n)-categories with source Bord/".

Definition 2.7.4. A fully extended n-dimensional oriented topological field
theory is a symmetric monoidal functor of (o0, n)-categories with source Bord?'.

Remark 2.7.5. We will sometimes be imprecise when specifying the type of
fully extended TFT. From now on, if we do not specify explicitly that it is
unoriented or oriented, we will usually mean that it is framed.

2.7.2 nTFT yields kTFT

We will see that every fully extended n-dimensional (unoriented, oriented,
framed) TFT yields a fully extended k-dimensional (unoriented, oriented, framed)
TFT for any k < n by truncation from subsection 1.5.1.

Note that for k£ < n, we have an equivalence of n-fold Segal spaces

PBordy — 7(PBord,,) = (PBord,)e e0.....0
i e e

induced by sending (M — V x (0,1)%, (I}’s);_,) € PBordy to

(M > (0,1)" % =V x (0,1)", (I}'s)f_y, (0, 1),...,(0,1)).
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The completion map PBord,, — Bord, induces a map on the truncations.
Precomposition with the above equivalence yields a map of (in general non-
complete) n-fold Segal spaces

PBord, — 7, (PBord,,) — 71(Bord,,).

Recall from 1.5.1 that since 7%(Bord,,) is complete, by the universal property
of the completion we obtain a map Bordy — 7x(Bord,,). This ensures that
any fully extended n-dimensional (unoriented, oriented, framed) TFT with
values in a complete n-fold Segal space C, Bord,, — C leads to a k-dimensional
(unoriented, oriented, framed) TFT given by the composition

Bordy, — 71 (Bord,,) — 7%(C)

with values in the complete k-fold Segal space 74 (C).

2.7.3 Cobordism Hypothesis a la Baez-Dolan-Lurie and
outlook

In his seminal paper [Lur09b], Lurie gave a detailed sketch of proof of the
Cobordism Hypothesis, which in its simplest form says that a fully extended
framed TFT is fully determined by its value at a point. Conversely, any ob-
ject in the target category which satisfies a suitable finiteness condition can
be obtained in this way. The finiteness condition in question is called fully
dualizability, which we will not explain here. For a full definition, we refer to
[Lur09b).

Theorem 2.7.6 (Cobordism Hypothesis, [Lur09b] Theorem 1.4.9). Let C be a
symmetric monoidal (c0,n)-category. The evaluation functor Z — Z(x) deter-
mines a bijection between (isomorphism classes of ) symmetric monoidal func-
tors Bord!" — C and (isomorphism classes of) fully dualizable objects of C.

Thus to construct a fully extended n-dimensional framed TFT, it suffices to find
a fully dualizable object in the target C, and the cobordisms hypothesis does
the rest for us. However, fully dualizability is a condition which in general is not
completely straightforward to check. Moreover, even though the proof of the
cobordism hypothesis tells you that the (00, n)-category Bord,, of cobordisms
is freely generated by the point, it does not give you a simple algorithm with
which one can compute all values of the fully extended n-TFT.

Our goal in this thesis is precisely this, namely, for a very special fully extended
TFT, to explicitly construct it without invoking the cobordism hypothesis. In
the next chapter we will construct our target, a symmetric monoidal (oo, n)-
category Alg,, of F,-algebras, and in the last chapter we will, given any object
A in Alg,,, build a fully extended n-TFT by defining a strict functor of n-fold
Segal spaces

FHn(A) : Bord/" — Alg,,,

whose evaluation at the point is A. By the cobordism hypothesis, this in
particular shows that any object in Alg,, is fully dualizable.



CHAPTER 3

The Morita (o0, n)-category of
E,-algebras

In this chapter, we define the target category for our fully extended n-dimensional
topological field theory, which is a symmetric monoidal Morita (o0, n)-category
Alg, = Alg, (S) of E,-algebras. By an E,-algebra, we mean an E,-algebra
object in a suitable symmetric monoidal (o0, 1)-category S. In [Lur], Lurie
proved that there is an equivalence of (o0, 1)-categories between E,-algebras

and locally constant factorization algebras on (0, 1)" 2 R™, see theorem 3.2.11.
We will use this equivalence to define the objects of our (oo, n)-category of
FE,-algebras as a suitable space of locally constant factorization algebras on
(0,1)™. As (higher) morphisms we essentially use factorization algebras which
are locally constant with respect to a certain stratification to model the Morita
category of F,-algebras as a complete n-fold Segal space Alg, = Alg, (S). In-
formally speaking, it Alg,, is the (o0, n)-category with FE,-algebras as objects,
pointed (A, B)-bimodules in E,,_;-algebras as 1-morphisms in Hom(A, B), and
SO on.

For the existence of factorization algebras we need the following assumption
onS.

Assumption 1. Let S be a symmetric monoidal (o0, 1)-category which admits
all small colimits.

3.1 The n-fold Segal space of closed covers in (0, 1)

In this section, we construct a (1-)fold Segal space Covers, of covers of (0, 1) by
closed intervals, which we will later enhance by suitable spaces of factorization
algebras to give the desired complete n-fold Segal space of F,-algebras. Before
we begin with its construction, we introduce a family of collapse-and-rescale
maps 0% which will be used to define the simplicial structure.

3.1.1 Collapse-and-rescale maps

We first define collapse-and-rescale maps % : [0,1] — [0, 1] which delete the
interval (b, a] and rescale the rest back to [0,1].

67
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Definition 3.1.1. Let 0 < b,a < 1 such that (b,a) # (0,1). If a < b, let
al

bo_ b
0 = idjo,1}- If b < a,let g, : [0,1] — [0,1],
X
= TS0
b b
ou(z) = Tl b<z<a,
z—(a—b)
T—(ab)> OST
0 1
( b a )
t : - )
\ //
\\ // ‘Qg
\ s
\ e
\ 7/
< . >
0 17(2717) 1

-
o
o

=~

To simplify notation, we define the following composition of collapse-and-
rescaling maps.

Definition 3.1.2. Let 0 < d,c,b,a < 1. Then let

b
d
of + of = 0% (% o ol

Remark 3.1.3. Note that if (b,a) S (d,c), o? * o = 0¢.

The following lemma shows that if the intervals (d,c) and (b,a) are disjoint,
the composition of the respective collapse-and-rescale maps is independent of
order in which we delete and rescale and so is determined by the data of the
intervals which are collapsed.

Lemma 3.1.4. Let 0 < d,c,b,a <1 such that (d,c) # (0,1) # (b,a). Further-
more, let (d,c) n (b,a) = . Then

0w 0b = ob % ol

min(d,c)

Moreover, if b= c or a = d, the above composition is equal to Omax(b.a)*

Proof. Note that ¢% and o? are monotonically increasing and piecewise linear
functions. We first consider the cases in which one of the functions in the
composition is the identity.
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1. Ifd > ¢, 0°(d) = 0%(c) and so ¢? = id = ggggg)) Thus,

d b
oD 0 b = o = ofill) oot

Ifb =g g:g;((iz)) = gmax(b o = anax(b_’a) = ¢°, since if max(b,a) # a,
a<b,and @b =id = gb.

d
2. If b > a, similarly, o® = id = 9538 and

d b
ggﬁéc)) 00 =0l = QQCE Dol

Ifb=c, gﬁi((db’i)) = anin(d’c) = Qrcmn(d’c) = o¢, since if min(d,c) # d,
c<d,and o = id = o°.

Since Qg and Q‘i are piecewise linear functions their composition again is piece-
wise linear. Thus in the remaining case it suffices to compute their value at
the “break points”. The computation of the composition in between the break
points is essentially the same so we include it as well.

3. In the remaining case we can assume wlog that ¢ < b and thus d < ¢ <
b < a. This implies that

QZ(d) = #ﬁ*b)’ QZ(C) = ﬁa
dl(b) = =65, al) = =0

1—(c—b)’ 1—(c—b)"
Ifex<d
20 (d) | _ z 1
%o © %) = T e
_ x
1—(a—b)—(c—d)
_ x 1
1—(c—d a—(c=d) _ b—(c=d)
(C ) 1- (1—(c—d) - 1—(c—d)>
d(b
— of5i) 0 0l(x).
Ifd<z<e,
oh(d) | by d _ k)
QQZ(C)OQG(LL')— 1—(a—b)—(c—d) =@ 04(a) QC(.%').
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If ce<x <b,

c—d

b(d 1— 2717 T 1-(a—b
Qigg(‘)) © QZ(Z') - (1 ) cfd( )
=)
_ x—(c—d)
“1—(a—b)—(c—d)
z—(c—d)
_ 1—(c—d)
1— (af(cfd) _ bf(cfd))
1—(c—d) 1—(c—d)
N0
— 0% © 0l(x).
Ifb<x<a,
oh(d) | by b—(c—d) _ o) a4
Ogh(0) © 0al®) = 77 (@—b)—(c—d) Zeil@ "0 (@)
Ifa <z,
b z—(a=b) _ _ c—d
d 1—(a—b 1—(a—b
Giigon@ - g
1—(a—b)
_z—(a—0b)—(c—d)
 1—(a—b)—(c—d)
z—(c—d) (af(cfd) B bf(cfd)>
_ 1—(c—d) 1—(c—d) 1—(c—d)
o 1— (af(cfd) B bf(cfd))
1—(c—d) 1—(c—d)
4(b
= ol 0 dl(@).
If b =c,
d d b—(c—d)

1-(a—b—(c—d) 1-(a—d) 1—(a—b)—(c—d)’
so the composition reduces to

d _ min(d,c)
Oq = max(b,a)’

O

In the following, since the intervals we consider lie in (0,1) we often use the
restriction of o2 to the domain D(g%), which is defined as follows.

Definition 3.1.5. Let 0 < b,a < 1 such that (b,a) # (0,1). Let

0,1), ba<1,
D(d%) =< (a,1), b=0,
0,b), a=1
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We might like to restrict to an even smaller domain to get a partial inverse.

Definition 3.1.6. The restriction of the collapse-and-rescale map 0% to D% =
(0,0] U (a,1) = D(}),

bl b1o() 2 Dy — (0, 1),
is injective. We call DY its domain of injectivity. In the following, let (o2)~!
be the inverse of this restriction, (0%|ps)~" : (0,1) — D}.
3.1.2 The sets Coversy,
We first define O-simplices of the levels Covers;, as sets.
Definition 3.1.7. For an integer k = 0 let
Coversy = {Ip < -+ < I}

be the set consisting of ordered (k + 1)-tuples of intervals I; < (0,1) such that
I; has non-empty interior, is closed in (0,1) and U?:o I; = (0,1). Asin the
definition of Inty in 2.1, by “ordered” we mean that the left endpoints, denoted
by a;, and the right endpoints, denoted by b;, are ordered.

Remark 3.1.8. Note that the condition that the intervals form a cover,
Uj_oZj = (0,1), implies that ag = 0 and by, = 1.

3.1.3 The spatial structure of Coversy,

The [-simplices of the space Coversy

An [-simplex of Coversy, consists of

1. a collection of underlying 0-simplices, i.e. for every t = 0,...,1[,

(I1(t) < -+ < I(t)) € Coversy;

2. a rescaling datum, which is a collection of strictly monotonically increas-
ing homeomorphisms

(¢¢:(0,1) = (0,1))1<tu

which sends the common endpoint of non-overlapping intervals at ¢t — 1
to the corresponding endpoint at t, i.e. for 0 < j < k such that for every
t=0,...,1 the intersection I;(t) n I;41(t) contains exactly one element,
we require

bi(t—1) = azer(t — 1) 25 bi(t) = aja (b).

0 bo(t—1)=a1(t—1) bi(t—1) =az(t—1) 1
( T T )
{ i) 1 ]
A\
A
ld’t AN
0 \\ 1
( T [

[

\ iR L
bo(t) = ao(t) az(t) b1(t)
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Remark 3.1.9. Note that in particular for [ = 0 an [-simplex in this sense is
an underlying O-simplex together with ¢¢ = id : (0,1) — (0, 1), so, by abuse of
language we call both a 0-simplex.

The space Coversy,

The spatial structure arises similarly to that on Inty.
Fix k = 0 and let f : [m] — [I] be a morphism in the simplex category A,

i.e. an order-preserving map. Then let f* be the map sending an [-simplex in
Coversy, given by

(o) < < Beosiar, (@05 (0,1) = (0,1)),_,.,)

to the m-simplex in Coversy given by

(Io(f(t)) << T(f())ost<ms (¢ = (0,1) — (0, 1))1@@”)'

This gives a functor A°? — Set and thus we have the following
Lemma 3.1.10. Coversy is a space, i.e. a simplicial set.

Remark 3.1.11. Coversy is the nerve of the category whose objects are the
points of Covers, and whose morphisms are the paths, i.e. the 1-simplices, of
Coversy,.

Notation 3.1.12. We denote the spatial face and degeneracy maps by 5]4 and
ajA for0<j<l.

We will need the following lemma later for the Segal condition.

Lemma 3.1.13. Fach level Coversy, is contractible.

Proof. For every k > 0, consider the composition of degeneracy maps, which
is the inclusion of the point ((0,1) < --- < (0,1)) € Covers;. A deformation
retraction of Inty onto its image is given by

(Lo < -+ < Ig),s) = (Io(s) < -+ < Ix(s)),

where a;(s) = (1 — s)aj, bj(s) = (1 — s)b; + s for s € [0,1]. Thus, Coversy, is
contractible. O

3.1.4 The simplicial set Covers,

In this section, we make the collection of sets Covers, (ignoring the spatial
structure we just constructed) into a simplicial set by defining degeneracy and
face maps, which use the family of collapse-and-rescale maps o’ : (0,1) — (0,1)
defined in subsection 3.1.1.



3.1. THE n-FOLD SEGAL SPACE OF CLOSED COVERS IN (0,1) 73

Definition 3.1.14. The jth degeneracy map is given by inserting the jth
interval twice,

o
Covers, —> Coversyyi,
<<y — L<--<L<;<- <.

The jth face map is given by deleting the jth interval, collapsing what now is
not covered, and rescaling the rest linearly to (0,1). Explicitly,

5
Covers, —2 Covers;_1,

) b1 7 )
Ip<--<Iy — o i(Io) n(0,1) < -+ < od i () < -+ < ot (1) 0 (0,1),
where gf;-;l;ll is the collapse-and-rescale map associated to b;_1,a;41 from the
previous section.

Proposition 3.1.15. Covers, is a simplicial set.

Proof. We need to show that the simplicial relations are satisfied. Two condi-
tions are obviously fulfilled, namely o;0; = 01107 for I < j and

id, l=j,j+1,
(5l(fj = O’j_151, l < j,
Jj5l_1 l>j+1.

It remains to check that

5j6l = 0;—16; for j <lI.

Let Iy < --- < I be an element in Coversg. Since the same intervals are
deleted in both compositions, it is enough to show that the compositions of the
respective collapse-and-rescale maps coincide on both sides. This follows from
lemma 3.1.4 with

d=bj_1, c=aj1, b=b_1, a=ap;1,
given that (bj_1,a;j41) N (bi—1,a1+1) = &, which requires that
ajy1 =C <b= blfl.
Assume the opposite, that is, that b;_1 < a;41. By definition, aj41 < bj11 < by
for @ > j, so this implies that [ — 1 < j. Since we need to check the identity

for j < I, this implies that [ = j + 1. The intervals (I;); must form a cover of
(0,1), so bj_1 = a; = a;j4+1 and therefore a1 = bj—_1. So in any case

aj+1 = C < b="b_1.
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3.1.5 The Segal space Covers,
Face and degeneracy maps on [-simplices

We first need to extend the (simplicial) face and degeneracy maps d,,0; to
[-simplices in a compatible way. They essentially arise from applying the face
and degeneracy maps d;,0; to each of the O-simplices underlying the I-simplex.

Notation 3.1.16. Let

(([o(t) < < (1)) i=o,.. 0 (¢t)t:1,...,z)

be an [-simplex of Coversg. For ¢t = 0,...,1, denote by gbj’l (t) = gbj’l(t) the

i+l aj+1(t)
collapse-and-rescale map associated to the tth underlying O—Simplexj(fo(t) <
- < Ii(t)) of the above l-simplex, and by D%(t) = (0,b;_1(t)] U (aj+1(t),1)
its domain of injectivity.

Degeneracy maps on [-simplices For 0 < j < k the jth degeneracy map
o; sends an [-simplex of Coversy,

(Go® <+ < Be@im0ts (G-,

to the l-simplex of Coversy,1 given by

(Uj(fo(t) < - < () e=o,. .0, (qbt)t:l,“.,l)

This is well-defined, since the condition on the ¢; stays the same.

Face maps on [-simplices For 0 < j < k the jth face map §; sends an
l[-simplex of Coversy,

((Io(t) < < Tg(t))i—o,. 0, ((bt)t:l,..‘,l)

to the following [-simplex of Coversg_1.

1. The underlying O-simplices of the image are the images of the underlying
O-simplices under §;, i.e. for t = 0,...,1,

6 (lo(t) < - < Ii(1)) 5
2. Its rescaling datum is
55(61) = &2 (1) 0 dulpny © (=17 (0,1)" — (0,1)".
The complete Segal space Covers,

Proposition 3.1.17. Covers, is a complete Segal space.
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Proof. That the simplicial and spatial face and degeneracy maps commute
follows directly from the definition. Furthermore, we have seen in lemma 2.1.5
that every Coversy is contractible. This ensures the Segal condition, namely
that

~ h h
Coversy, —> Covers; x ---  x  Coversy,
Coversg Coversg
and completeness. O

Definition 3.1.18. Let
Covers, , = (Covers,)™".

Lemma 3.1.19. The n-fold simplicial space Covers, , is a complete n-fold
Segal space.

Proof. The Segal condition and completeness follow from the Segal condition
and completeness for Covers,. Since every Coversy is contractible by lemma
2.1.5, (Covers,)*"™ satisfies essential constancy, so Covers” is an n-fold Segal
space. O]

3.2 The Morita (o0, n)-category of E,-algebras Alg,

This section contains the main construction of the complete n-fold Segal space
Alg, = Alg,, (S). We first recall the definition of an E, -algebra.

3.2.1 Structured disks and FE,-algebras

As in section 2.6.1, let X be a topological space and E — X a topological n-
dimensional vector bundle which corresponds to a (homotopy class of) map(s)
e : X — BGL(R"™) from X to the classifying space of the topological group
GL(R™).

Definition 3.2.1. The symmetric monoidal topological category Diskng’E) of
(X, E)-structured disks is the full topological subcategory of /\/lansLX ) whose
objects are disjoint unions of (X, E)-structured n-dimensional Euclidean disks

R™.

Example 3.2.2. Recall from section 2.6.1 that interesting examples of (X, E)-
structures arise from a topological group G together with a continuous homo-
morphism e : G — O(n) by setting X = BG and e : BG — BGL(R™). In this
case, we refer to (BG, e)-structured disks as G-structured disks and use the
notation Dlskf = Di.sK;BG’e).

Definition 3.2.3. Let S be a symmetric monoidal (o, 1)-category. The (0, 1)-
category Diskng’E) -Alg(S) of ’Disng’E)—algebms is the (0, 1)-category of sym-
metric monoidal functors Fun®(Di5k£lX’E), S).

Remark 3.2.4. Recall from section 1.2 that topological categories are a model

for (oo, 1)-categories. By perhaps changing to a different, suitable, model of
(o0, 1)-categories, the above definition makes sense.
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The most common examples are the following three special cases.

Example 3.2.5. If G is the trivial group, then X = BG = *, and the topo-
logical category Dtskf is denoted by Diskfbr. Using the fixed diffeomorphism
X : (0,1) @ R it is equivalent to the topological category Cube,, whose objects
are disjoint unions of (0,1)™ and whose spaces of morphisms are the spaces of
embeddings [[;(0,1)" — [[,(0,1)™ which are rectilinear on every connected
component. As Cube,-algebras are equivalent to E,-algebras, the category
Dis&',ff -Alg(S8) is equivalent to the usual category of E,-algebras in S.

Remark 3.2.6. Note that morphisms in the category Dis&ir -Alg(S) are mor-
phisms of E,-algebras, i.e. natural transformations of functors. In the Morita-
category we will construct in this section morphisms will be bimodules of F,,-
algebras.

Example 3.2.7. If G = O(n), the topological category Dtskf is denoted
by Disk, . We call Disk, "-algebras unoriented E,-algebras. Similarly to in
the previous example Disk. " is equivalent to the topological category Cube!™
whose objects are disjoint unions of (0,1)™ and whose spaces of morphisms are

the spaces Cube, (],(0,1)",11,(0,1)") x O(n)*”.

Example 3.2.8. If G = SO(n) and X = BG, the topological category
m&ﬁLX’E) is denoted by Disk, . We call DisKng’E)—algebras oriented E,,-algebras.
Again similarly to above Disk is equivalent to the topological category Cube’”

whose objects are disjoint unions of (0,1)™ and whose spaces of morphisms are
the spaces Cube, (] [;(0,1)",11,(0,1)™) x SO(n)*”.

3.2.2 Stratifications and locally constant factorization
algebras

The full definition of locally constant factorization algebras on a (stratified)
space can be found in [Gin]. In this paper, we will only deal with stratifications
of a very special type, so we recall the definition in an easier setting suitable
for the factorization algebras appearing in this thesis here.

Definition 3.2.9. Let X be an n-dimensional manifold. By a stratification of
X we mean a filtration

F=X_,cXpcXic- X, =X,

where X, is an a-dimensional closed submanifold of X,,1. The connected
components of X,\X,—_1 are called the dimension a-strata of X. An open disk
D in X is said to have index o, if Dn X, # & and D < X\X,_1. We say that
a disk D is a good neighborhood at X, if « is the index of D and D intersects
only one connected component of X,\Xqn—1.

Definition 3.2.10. Let & = X_; c Xg c X; < --- < X,, = X be a stratifica-
tion of an n-dimensional manifold X. A factorization algebra F on X is called
locally constant with respect to the stratification if for any inclusion of disks
U — V such that both U and V are good neighborhoods at X, for the same
index a € {0,...,n}, the structure map F(U) — F(V) is a weak equivalence.
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A factorization algebra F on X is called locally constant if it is locally constant
with respect to the stratification given by X, = ¢J for every a # n, i.e.

g c X.

FE,-algebras as locally constant factorization algebras

We will base our construction on factorization algebras which are locally con-
stant with respect to certain stratifications. That our objects, which will be
locally constant factorization algebras on (0,1)", indeed are F,,-algebras as de-
fined in the previous section follows from the following theorem due to Lurie
for which we need to introduce some notation.

Let X be a topological space and S be a symmetric monoidal (oo, 1)-category
with all small colimits. Then the category Fact x(S) of factorization algebras
on X with values in § is itself a symmetric monoidal (0o, 1)-category, see [CG].
Let Fact’s be the full sub-(00, 1)-category of Fact x (S) whose objects are locally
constant factorization algebras.

Theorem 3.2.11 (Lurie, [Lur], Theorem 5.3.4.10). There is an equivalence of
(00, 1)-categories
Disk!" -Alg(S) => Factls..

Remark 3.2.12. In fact, the equivalence in the proof is given by factorization
homology, i.e. the image of an F,,-algebra A is its factorization homology SRn A,
which we will construct in the next chapter, in section 4.1.

The choice of diffeomorphism y : (0,1) = R yields the following corollary, see
also [Gin], Remark 23, or [Cal].

Corollary 3.2.13. There is an equivalence of (00, 1)-categories

E,-Alg(S) — Tactl(%ﬁl)n.

Bimodules as locally constant factorization algebras

Our second motivation for using factorization algebras is the following. For
more details, see [Gin].

Let A, B be associative algebras in &, M a pointed (A, B)-bimodule, with
pointing 1 5 M. Then the following assignment extends to a factorization
algebra Fp; on (0,1): Let 0 < s < 1. For open intervals U, V, and W in (0,1)
as in the picture

g’:(/l

we set

Ur— Fu(U) = A, V— Fu(V) =B,
pEW'—>.7:]y[(W) =M.
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The structure maps of the factorization algebra are given by the bimodule
structure and by

ARB~AR1®B - M.

This special case comes from the fact that factorization algebras naturally are
pointed, as we can always include the empty set into any other open set. The
inclusion ¢ € W induces a map

1— M.

In the case where & = Chy, is the (00, 1)-category of chain complexes over a
field k, the pointing is a map k — M which is determined by the image of
lek,

1—— me M.

In this case the structure map of U1V < (0,1) is given by

A®B — M, (a,b)— amb.

The factorization algebra Fj; defined by a bimodule M as above is locally
constant with respect to the stratification

g < {s} = (0,1).

Conversely, any factorization algebra F which is locally constant with respect
to a stratification of the above form determines a homotopy bimodule M over
homotopy algebras A, B as we show in the following lemma.

Lemma 3.2.14. Let 0 < s < 1 and let F be a factorization algebra on (0,1)
which is locally constant with respect to the stratification

g < {s} < (0,1).

Then M = F((0,1)) is, up to homotopy, a pointed (A, B)-bimodule for the
(E1-)algebras A = F((0,s)) and B = F((s,1)) and pointing 1 — M induced
by the structure map for the inclusion & < (0,1).

Proof. Since U < (0,s) and V' < (s, 1) are weak equivalences, the structure map
of the factorization algebra associated to the inclusion of open sets ULIV < (0,1)
as in the picture above induces the homotopy bimodule structure. O

Corollary 3.2.15. The data of a homotopy bimodule over Ey-algebras is the

same as the data of a factorization algebra on (0,1) which is locally constant
with respect to a stratification of the form

g c{s} = (0,1)

for some 0 < s < 1.
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Locally constant factorization algebras on products

We will need the following theorem later on, which is proposition 18 and corol-
lary 6 in [Gin].

Theorem 3.2.16. Let X, Y be stratified manifolds with finitely many dimen-
sion a-strata for every a.

1. The pushforward along the projection pri : X xY — X induces an
equivalence

pri, : Factxxy — Factx(Facty).
2. Consider the stratification on the product X x'Y given by
(X xY) = U X;xY;c X xY.
i+j=k
The equivalence from 1 induces a functor
pri, Fact'ey — Fact's (Fact's)

between the subcategories of factorization algebras which are locally con-
stant with respect to the stratifications of the respective spaces.

3.2.3 The level sets (Alg, )k, ... k.,

For S < {1,...,n} we denote the projection from (0,1)™ onto the coordinates
indexed by S by 7g : (0,1)" — (0,1)° and for 1 < i < n, we abbreviate 7y to
;.

Definition 3.2.17. For every ki, ..., k, = 0,let (Alg, )k, ... k, be the collection
of tuples
(F, Ly < - < It im1,m),

satisfying the following conditions:

1. F is a factorization algebra on (0,1)™.

2. For1 <i<n,
(Iy < --- < Iy, ) € Coversy,.

i

3. F is locally constant with respect to the stratification defined inductively
by
X, =(0,1)" and X, =X, iy1nY;

for 1 < i < n, where, denoting by (I})° = (a},b}) the interior of the

interval I ji,

ki

ki
Yi =m0, 0\ [ (ad,08)) = (0, )"\ | 77t (1))

=0 =0
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Remark 3.2.18. Given an element in (Alg, )g, ...k, let 0 < s} <...<s] <1
be the points such that

=

St={s!,... 51} U a],b;

enY; = w1 (S?) is a disjoint union of parallel hyperplanes an
Then Y; = 7r; *(S? d f parallel h 1 d
Xn—i=Y,n---nY;
-1 1 i
= U T, }(531""753‘7:)

(1<ja<ka)i_;

=9l x... xS x (O, 1){i+1,...,n}-

The stratification has the form

00"> | == U iy 0 7 s

1< <k 1<ji<ky (A<ji<ki)j
1<ja<ks

Remark 3.2.19. In fact, the data of the points in S? is the essential one in
the sense that they are the information of (I§ < --- < I}, ) € Coversy, we use.
It might thus seem more natural to basing our construction on a Segal space of
points instead of Covers,. However, the points alone do not form a simplicial
space because degeneracy maps cannot be defined. The extra information
coming from the fact that points come from endpoints of intervals allows to
define the missing structure.

Example 3.2.20. For n = 1, objects, which are elements in (Alg,)q, are
locally constant factorization algebras on (0,1) =~ R, which in turn by the
above mentioned equivalence 3.2.11 are Fj-algebras. Morphisms, i.e. elements
in Map(A, B) = {A} x ?Algl)o (Algy)1 X?Algl)o {B}, are pointed homotopy (A4, B)-
bimodules as we have seen in lemma 3.2.14. For example, an element in (Alg; )4
could have a cover of the form

ag bp =a1 a2 by = a3 bz = ag by

o T 11 T 1

and therefore factorization algebras F which are locally constant with respect
to a stratification of the following form

51 52 53
0 ) ) D) 1

Since F(o,s,) is locally constant on (0, s1) ~ (0,1) it equivalent to the data of
an Fj-algebra Ag. Similarly, F determines Fj-algebras Ay, ..., A3. Moreover,
the restriction F/(g ,,) determines a pointed homotopy (Ao, A1)-bimodule M;
and similarly, F determines bimodules My, Ms3:



3.2. THE MORITA (w0,n)-CATEGORY OF E,-ALGEBRAS Alg,, 81

0 M1 M2 M3

o1
Ao A, Ay As

One may think of the overlapping intervals as also giving a point of the stratifi-
cation, but one which is “degenerate”, and thus gives a “degenerate” bimodule,
by which we mean an F4-algebra viewed as a bimodule over itself.

0 My Ay Mo M3
Ap Aq Aq Ay Az

1

Remark 3.2.21. One should be a bit careful with the interpretation of the
degenerate points of the stratification, as this data does not behave well with
respect to the simplicial structure. As we explained above, this is the reason
we do not use this as a definition, but keep track of the intervals instead.

Example 3.2.22. For n = 2, stratifications which appear in the definition of
Alg, give pictures as in the left picture below. A 2-morphism, i.e. an element in
(Algy)1,1, leads to a bimodule C between bimodules M and N of Es-algebras
A and B which are the images of open disks as in the right picture below.

1

1 1 1.1
57 53 83 848

5

For n = 3, stratifications which appear in the definition of Algs give pictures
of the following type:
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3.2.4 The spaces (Alg, )k, .. k.,

The level sets (Alg,)k,,...k, form the underlying set of O-simplices of a space
which we construct in this section.

The space of factorization algebras

We first need suitable spaces of factorization algebras.

Recall from [CGlthat the category Factx(S) of factorization algebras on X
with values in S is a symmetric monoidal (oo, 1)-category. For our construc-
tion, by perhaps changing the model, will realize the underlying symmetric
monoidal (o0, 1)-category S as a symmetric monoidal relative category S with
weak equivalences W for which the classification diagram as explained in sec-
tion 1.2.3 of Factx (S) with its level-wise weak equivalences gives a symmetric
monoidal complete Segal space N (Factx(S), W) of factorization algebras.

The objects of this Segal space form a space of factorization algebras. Explic-
itly, if we begin with a relative category, this space of factorization algebras is
the nerve of the category of factorization algebras with weak equivalences as
morphisms, i.e. a k-simplex is a sequence

w w w
Fo -5 F = - 25 F

A slight modification of this construction gives the level sets of our n-fold Segal
space a spatial structure.

The spatial structure of (Alg,,)k,.. k.,

consists of the following

n

Definition 3.2.23. An [-simplex of (Alg, )k, .k
data:

1. A collection of underlying 0-simplices, which is a collection of elements
(Fo, (L(t) < -+ < L, ()im1) € (Algy )k ..ok,
indexed by t =0,...,;

2. For every 1 < i < n, a rescaling datum (gbi :(0,1) — (0, 1))t:0 making

penl
(Io(t) <+ < T (D),
into an [-simplex in Coversy,;
3. A collection of weak equivalences
(¢1)sFio1 —> Fy

for t = 1,...,1, where ¢, = (¢1)™_; : (0,1)® — (0,1)" is the product of
the rescaling data.
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Remark 3.2.24. 1. This space is a subspace of a “twisted” nerve of the
category of factorization algebras with weak equivalences as morphisms.

The “twist” is given by the rescaling maps. It is still 2-skeletal, as it is a
subspace of the nerve of the category whose objects are pairs (F, (I§ <

- < I, )) and whose morphisms are weak equivalences (¢;)«F;—1 R

Fi, where ¢; is some rescaling data associated to the respective I-tuples.

2. One should think of an [-simplex as a chain of weak equivalences
_7:0&,_7:1&...&,]:[’

where the F;’s are rescaled to have the same intervals. By abuse of
notation we will often write an /-simplex this way. Note that ¢; is this
rescaling map and should be thought of as an analog to the map ¢;_1 ¢
in definition 2.3.5.

Spatial face and degeneracy maps arise from the face and degeneracy maps of
the nerve of a category, i.e. by inserting an identity respectively by forgetting
or by composition of morphisms.

Definition 3.2.25. The jth spatial degeneracy map ajA from [-simplices to

(1+1)-simplices of (Alg,,)x, .k, sends a chain (F) = Fy =5 F; <5 ... 2L 7
to

Fot ML F M E ML,

The jth spatial face map (514 from [-simplices to (I—1)-simplices of (Alg,, )k, ... k. s
for j # 0,1, sends a chain (F) to

w wj—1 Wj410W; Wj42 wy
Fo—b o L Fjg L Fip — o 5 .
For j = 0,1, it sends (F) to
w w w w! wi—1
Fi = % F, resp. Fyg—> F = - — Fig.

Since the face and degeneracy maps come from the structure of the nerve of a
category, we have the following proposition.

Proposition 3.2.26. (Alg, )k, .. &, i a space.

3.2.5 The n-fold simplicial set Alg,

In the next two sections, we make the collection of spaces (Alg,,)s... o into an
n-fold simplicial space by defining suitable face and degeneracy maps. They
essentially arise from the face and degeneracy maps of the n-fold simplicial set
Covers, , of covers of (0,1)" by products of closed intervals. In this section
we define faces and degeneracies on 0-simplices, which makes (Alg,, )., ... o into
an n-fold simplicial set, ignoring the spatial structure of the levels. We will lift
the n-fold simplicial set to an n-fold simplicial space using the spatial structure
of the levels in the next section.

Before giving the full definition of the face and degeneracy maps of the n-fold
simplicial set Alg, , we first demonstrate them for n = 1.
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Example 3.2.27. For n = 1, elements in (Alg;); consist of a factorization al-
gebra F on (0,1) and two intervals (0, b] and [a, 1) such that a < b. The source
and target maps (Alg,); =3 (Alg;)o are given by restricting the factorization
algebra which then is rescaled back to (0,1). Explicitly, the source map pushes
forward the restriction of the factorization algebra F to (0,b) by the collapse-
and-rescale map o} to (0, 1), which is the unique affine bijection (0, ) — (0, 1).
Similarly the target map pushes forward the restriction of the factorization
algebra F to (a,1) by the collapse-and-rescale map oY to (0,1). We saw in
example 3.2.20 that elements in (Alg;); can be viewed as pairs (4, B) of Fj-
algebras and a pointed homotopy (A, B)-bimodule M. The source and target
maps (Alg;)1 = (Alg,)o map M to the source A, respectively the target B.

The degeneracy map (Alg,)o — (Alg,); sends a pair (F,(0,1)) consisting of
a locally constant factorization algebra F on (0, 1) to the element (F, (0,1) <
(0,1)). In the language of algebras and bimodules, it sends an Ej-algebra A
to itself, now viewed as an (A, A)-bimodule.

Two of the face maps, 6g,d2 : (Alg;)s = (Alg,); are defined similarly, by
“forgetting” part of the data, i.e. by restricting the factorization algebra and
rescaling. In the language of modules, the map do, which corresponds to the
“source map”, sends an element consisting of a triple (A, B, C) of Ej-algebras
and a pair (4Mp,p N¢) of bimodules to (A4, B) and 4Mp. The “target map”
do sends the same element to (B,C) and gpMc. The third map 1, which
corresponds to composition, sends an element (F, Iy < I; < I3) to the push-
forward along the collapse-and-rescale map QZ‘; : (0,1) — (0,1), illustrated in
the following picture for the case by = a;.

ag =0 bg = a1 ag by by =1
[ T [ ] )
\ I P ] ]
\ // b
\\ // l@a%
0 N
[ T’ \
\ 1 ]
bo
1—(az—b0)

If by = a9, then gf’lg = id. Moreover, either A = B and 4Mp = gBpg, or
B = C and gN¢ = B (or both). In the first case §; sends (5Bp,p M¢) to just
sMc. In the second case d; sends (4 Mp,5 Bp) to just 4Mp.

If by < as, the gluing axiom of factorization algebras implies that the homotopy
bimodule associated to image under §; of the pair of homotopy bimodules
(aMp,p N¢) is the tensor product (4Mp) ®p (pN¢), i.e. composition sends
an element consisting of Fy-algebras A, B, C' and bimodules 4 Mp and gN¢ to
A, C and the bimodule (4 Mp) ®p (5N¢).

The two degeneracy maps og,071 : (Alg;)1 =3 (Algy)2 send (F,Iy < I1) to
O'Q(.F,Io S Il) = (.F,IO < IO < 11)7 0'1(./—"710 < Il) = (f,[o S Il < Il)
In the language of modules, they send an (A, B)-bimodule 4Mp to the pairs
(aAa,a Mp) respectively (4 Mp,5 Bp).
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(0] 1 (0] 1
( A B ) ( A B )
M M
oo o]
0 1 0 ) 1
— 7 > ( = 2 >
A A B A B B

Notation 3.2.28. Before we start defining the face and degeneracy maps,
recall that we used collapse-and-rescale maps g% to define the simplicial struc-

ture on Covers,. More precisely, the jth face map was defined using g’;gjl For

simplicity of notation, we will denote this map by g; in the following and its
domain of injectivity by D;.

Since 1 < 7 < n will be fixed throughout the constructions, by abuse of no-
tation, we also denote by g; the map QZ’J: used for the jth face map in the
ith direction of the n-fold simplicial structure of Covers, , and its domain of
injectivity by D; = (0,b5_1) U (aj;1,1).

By even more abuse of notation we again denote by p; the map
Q5 : (07 1)” - (07 1)%7

which is ¢; in the ¢th coordinate and the identity otherwise. By g;l we mean
the inverse of

0ilari(p,y ™ (D) = [ J0.1) x D; — (0, 1)".
aF1

Degeneracy maps Fix 1 <i¢ < n. For 0 < j < k; the jth degeneracy map

ol (Alg, )y, — (Al ks, kit 1,

applies the jth degeneracy map of Covers, to the ith tuple of intervals, i.e. it
repeats the jth specified interval in the ith direction, I7,

(F 5 < < I am) — (F UG < S I aginoj(li <0 < I)) =
(FoI§ < < Ig)an 1 < << <
Since this does not change the stratification with respect to which F must be

locally constant this map is well-defined.

Face maps Fix 1 <i<n. For 0 < j < k; the jth face map

85+ (Mg, )kyokn = (AL kb= 1,

applies the jth face map d; of Covers, to the ith tuple of intervals, which
forgets the jth interval I; and applies the collapse-and-rescale map o; to the
other intervals, and pushes the factorization algebra, restricted to m; '(D;),
forward along the map o;. Explicitly, (F, (I§ <--- < I )5_;) is sent to

(@) ity (I <+ S T s (I < - < 1))

This is well-defined since the restriction of the factorization algebra and the
stratification with respect to which it must be locally constant are rescaled by
the same rescaling map.
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Remark 3.2.29. In the following, we will omit explicitly writing out the re-
striction of F to m; '(D;) for readability.

Proposition 3.2.30. The face and degeneracy maps defined above define an
n-fold simplicial set (Alg,)e. . -

Proof. This follows from the fact that Covers, is a simplicial set and pushfor-
ward of factorization algebras is a functor. O

3.2.6 The full structure of Alg, as an n-fold simplicial space

In this section we “extend” the simplicial face and degeneracy maps &%, 0% to

VAR
the [-simplices of (Alg,)k,....k, in a way that they commute with the face
and degeneracy maps 5lA, alA

of the space (Alg, )k, ...k, This gives Alg, the
structure of an n-fold simplicial space.

Degeneracy maps on [-simplices. Fix 1 < ¢ < n. For 0 < j < k; the
jth degeneracy map o’ sends an I-simplex of (Alg, )k, .., to the I-simplex
of (Alg,)ky,... ki+1,..k, defined by applying the degeneracy map 0’;- to each
underlying 0-simplex,

o5 (Fo, (L5(t) < -+ < T (1)) € (Alg)ky ki1

and keeping the same rescaling data ¢; and weak equivalences (¢;)sFy_1 —o
Fi.

Face maps on [-simplices. Fix 1 <i < n.

For 0 < j < k; the jth face map 5;'- sends an I-simplex of (Alg,, )k, ... k, consisting
of

(Fo (13(0) < -+ < T (1)) s

=0,...,0
(¢¢: (0,1)" — (O, 1)n)t=1,...,l’ and ((¢t)*ff—1 -5 ft)t:l,“.,l
to the I-simplex of (Alg,, )k, ....ki—1,....k, consisting of the following data.

Denote by p;(t) be the analog of the above map g, associated to the tth un-
derlying O-simplex (I§(t) < --- < I}, (t)) € Coversy, .

1. The underlying O-simplices of the image are the images of the underlying
O-simplices under d%, i.e. for t = 0,...,1,
05 (Foo (I5(1) < - < I, (1)) =
(03 () Fel.., (Ig (1) < -+ < I (8))ara, 65 (L5 (1) < -+ < I, (1))

where we omit writing down the precise restriction domain from now on.
It can be checked easily that they match up where needed.
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2. The underlying I-simplex in Coversy, is sent to its image under 5;, i.e. its
rescaling data is 5}((;5,5). Recall from section 3.1.5 that this is the map

35(¢) = 0j(t) 0 ¢l... 0 0;(t = 1)1+ (0,1)" — (0,1)".

3. Pushforward along g, (t) is an endofunctor of the category of factorization
algebras on (0,1)" which preserves weak equivalences, so for every ¢ =
1,...,l we have the following weak equivalences

5;(¢t)*(9j(t)*ft|...) = Qj(t)*(ﬁét“..)*}-t“.. M’ Qj(t)*]:i#l“.n

Proposition 3.2.31. The degeneracy and face maps J§,5§ defined above and
the degeneracy and face maps maps o, 52 of the simplicial sets (Alg, )k, . k.
satisfy the simplicial relations and commute. We thus obtain an n-fold simpli-
cial space (Alg,))e,... o

Proof. Since the maps O'ZA, (5lA arise from the degeneracy and face maps of the
nerve of a category, they commute with the other degeneracy and face maps.
It remains to show that the maps o¥,d} defined above satisfy the simplicial
relations. They do so since we showed in lemma 3.1.19 that Covers] _, is an
n-fold Segal space, in particular, we proved that the rescaling maps commute

in the appropriate way. O
3.2.7 The n-fold Segal space Alg,

Proposition 3.2.32. (Alg,).... . is an n-fold Segal space.
Proof. We need to prove the following conditions:

1. The Segal condition is satisfied. For clarity, we explain the Segal condition
in the following case. The general proof works similarly. We will show
that

- h
(Alg, k.2 by — (Alg ) kr, 1,k X (Alg, k.1, o -

To simplify notation, we omit the indices and the specified points in all
directions except for the ¢th one, as this procedure only depends on this
specified direction. We construct a map

h’ ue
(Alg,)1 x (Alg,): 25 (Alg,,)s
(Alg,,)o

which is a deformation retraction, i.e. glueo(dg x d2) = id, (dp x d2)oglue ~
id.

An element in (Alg, ), X?Alg ) (Alg,,); consists of two factorization al-

0

gebras G and G on (0,1)", specified intervals (0,b] < [a1,1), (0,b] <
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[@1,1) in the i-th direction, rescaling data, and a path, i.e. a weak equiv-
alence, between their target and source d;(G) > 6o(G). Here again, we
omit the rescaling in the notation. We glue them to an element in (Alg,, )2
in the following way. By first applying a piecewise linear rescaling, we
can assume that 1 —a; = bg.

0 bo = a1

([ T \

\ 1 J }
[ [ ] \
\ L ] ]
0 ai l;o =1—a;y

[ T r 1 \

\ 1 L ] ]

0 _bo  _ _ay aj b _ l—ay 1

T+ay = T+a 1+ar  T¥ay = TFag

Send the above data to the factorization algebra F on (0,1)™ defined by G
on (0, Lﬁ—oal) X [ [oi(0,1) and G on (1957 1) x [ [4:(0,1) using rescaling
maps which, again, we will omit for clarity of notation. It remains to

“glue” them together using the weak equivalence w. On an interval (a, b)

such that {$4- < a < 1?:‘311 < b, F((a,b)) := G((a,b)). Moreover, we

define the factorization algebra structure by

0 g c d e f h 1

O T
11«111 1_?_?11
G((c,d)) G((es 1))

G(e,d)) ® G(lef)) — Glg.h)

Note that this way the factorization algebra is defined on a factorizing
cover and can be extended by the gluing condition.

This construction extends to the spatial structure and by construction,
glue o (6g x d2) = id. Moreover, the weak equivalence w gives (dg X d2) ©
glue ~ id.

2. For every i and every ki, ..., ki—1, (Alg,)ky ...k 1.0, 15 €ssentially
constant.

An element in (Alg, )k, ks 1,0,kis1,...,k, 1S Of the form

(FIg<...<Ii,... I, '<..<Ii 7", (0,1),

i—1’

i+1 i+1 n n
I <...<L7 ... Iy <...<I}),
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so by definition the stratification with respect to which F is locally con-
stant reduces to

(0,1)" = X, 2 Xp 12 2 X;p1 2 X, = Xmmr;ii((o, 1)\(0, 1))) - .

Since the stratification only depends on the first ¢ — 1 tuples of intervals
we can freely move the remaining intervals I3 for a > ¢ and still have a
well-defined element in (Alg, )k, ... ki 1,0,kis1,....k,- 1D particular, we can
move them to I§ = --- = I = (0,1), which is in the image of the
composition of degeneracy maps S. We can chose the endpoints to move
linearly (by setting a$(t) = (1 —t)a§ and b (t) = (1 —t)b§ + 1), so this
construction extends to a homotopy. Hence

S (Algn)kl 7777 ki—1,0,...,0 = (Algn)kl,n-akiflyoakiﬁ»l ,,,,, kn

is a weak equivalence.

Remark 3.2.33. One can alternatively show the Segal condition by showing
that the source and target maps s,t: (Alg,)k,,...1,..k, — (Alg,)ky.....0,. .k, are
Serre fibrations and then showing that

(Algy )by b = (Algp )y o1 o x x (Alg, )by, -
(Alg, ) k.00 kn (Al kg, 0, kn

One can show the homotopy lifting property for cubes I* for s,t explicitly by
constructing a lift. This construction is similar to the construction of the map
glue above. The second “strict Segal” condition follows from the fact that
factorization algebras satisfy a descent condition, see e.g. 4.3.5 in [Gin].

3.2.8 Completeness of Alg, and the Morita (w0, n)-category of
E,-algebras

Factorization algebras with values in a symmetric monoidal relative category
with all coproducts S are pointed in the sense that given a factorization algebra
F, for any open set U the inclusion of the empty set ¢J «— U gives a map 1 —
F(U), where 1 is the unit for the monoidal product of the symmetric monoidal
structure of S. In this subsection we show that if we assume that all objects
in S are flat for the monoidal structure, this pointing ensures completeness of

Alg,,.

Assumption 2. Let all objects in the symmetric monoidal (o0, 1)-category S
be flat for the monoidal structure.

We will first explain the argument for n = 1 using the language of algebras and
bimodules following corollary 3.2.15, and then give the general argument.

Proposition 3.2.34. Under assumption 2, the Segal space Alg,(S) is com-
plete, i.e.

s0 : (Alg;(S))o — (Alg, (S)1™

s a weak equivalence.
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Proof. An element in (Alg,)™ is a pointed (A, B)-bimodule 1 > M such
that there is a pointed (B, A)-bimodule 1 *> N and weak equivalences

A— > M®sN, and B—0s N@4 M
p— ®p N, an — ®a M,

of (A, A), respectively (B, B)-bimodules. We need to show that A ~ B ~ M.
This implies that there is a path from s Mpg to 4 A4. This construction extends
to a homotopy, since a weak equivalence from 4 Mp to a different bimodule
coNp includes the data of a weak equivalence from A to C.

First note that

A MidM@nM@)BN(;A,

1t m m@n+———1

are maps of (A4, A)-bimodules, and induce the identity A — A in the homotopy
category h1S of S.

Consider all following maps in h;S, in particular the mapsa: A — B,;b: B —
A given by the following diagram:

e -— ida
AT M~ M B 2% M@y N A M M@ N A
.H a b ﬂ
B T T TT T TP TP
B M~AQui M — " N@s M B M NQiM——B
m n® id ~ m n® id ~

Their composition is equal to the composition of the dashed arrows, which
are identities, so boa = id4. Similarly, a 0o b = idg, so A and B are weakly
equivalent. Moreover, A - M — M ®p N ~ A is the identity, so A — M
is a monomorphism and M — A is an epimorphism. Similarly, A — N is a
monomorphism.

Since all objects are flat for the monoidal structure, M — M ®g N ~ A is a
monomorphism, and thus an isomorphism (all in ~1S). Similarly for N. O

Proposition 3.2.35. Under assumption 2 the n-fold Segal space Alg, (S) is

complete.

Proof. The statement for general n follows from the statement for n = 1, which
is porposition 3.2.34.
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Let n = {1,...,n}. Factorization algebras on (0,1)2\{"} form a relative cate-
gory S satisfying the assumptions 1 and 2. Elements in (Alg,,)k,,...1,....k, are
modules in S over Ej-algebra objects in S, so we can apply proposition 3.2.34
which proves the statement. O

Definition 3.2.36. The Morita (o0, n)-category of E,-algebras is the complete
n-fold Segal space Alg,,.

3.3 The symmetric monoidal structure on Alg,

3.3.1 The symmetric monoidal structure arising as a
I'-object

Similarly to Bord,, we can endow Alg, with a symmetric monoidal structure
arising as a I'-object. It essentially comes from the fact that factorization
algebras have a symmetric monoidal structure as a relative category.

Definition 3.3.1. For every ki,...,ky, let (Alg,[m])k, ...k, be the collection
of tuples , ,

(flv e af’ma (18 <0< I],Lci)i:L.A.,nL
where for every 1 < 8 < m, (Fp,(I§ < -+ < Ij Ji=1,...n) € (Alg,)ky, . k-

Similary to Alg, this can be made into a complete n-fold Segal space.
Proposition 3.3.2. The assignment

I' — SSpace,,
[m] — Alg,[m]

extends to a functor and endows Alg, with a symmetric monoidal structure.

Proof. The functor sends a morphism f : [m] — [k] to

(Fioeo s Fons (L)i) — (R Faoeoy & Fao (1))
Bef=1(1) Bef~1(k)

Here the tensor product is the tensor product of factorization algebras with
values in the given symmetric monoidal category (defined level-wise). This is
well-defined as every Fg, and therefore also the tensor product of several F3’s
are locally constant with respect to the same stratification.

To show that
[T v Alg,[m] — (Alg[1])™
1<p<n

is an equivalence of n-fold complete Segal spaces we need to show that for any
element in the right hand side we can rescale the intervals (I ]’)” so that they
coincide. This follows from the fact that rescaling (0,1)™ by some suitable
rescaling data ¢ leads to a weak equivalence of factorization algebras given by
pushforward along ¢. This rescaling yields a path in the right hand space to
an element in the image of [ ], p<n V8 and the collection of these paths form
a homotopy. O
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3.3.2 The monoidal structure and the tower

Our goal for this section is to endow Alg, with a symmetric monoidal structure
arising from a tower of monoidal I-hybrid (n + I)-fold Segal spaces Algﬁf) for
[>0.

The deloopings Algg)

Our construction of the (oo, n)-category of E,-algebras Alg, (S) relies on a
symmetric monoidal (o, 1)-category S. Independent of which model for sym-
metric monoidal (oo, 1)-categories we choose there is a distinguished object in
S, the unit 1 for the symmetric monoidal structure. This object naturally is
an FE,-algebra, the constant factorization algebra on R™ with value 1, which
determines an object (I, (0,1),...,(0,1)) in (Alg,)o,. .0

The first layer of the tower

Definition 3.3.3. Let Alg'! be the fiber of Alg, | over 1p = 1 in the first di-

rection, i.e. (Alggtl))khm,kn+1 is the fiber over 1%1+1 e ((Algn+1)(),k2,.u,k’n+l)k1+1
of the map

k1+1
(Algn+1)k1 ,,,,, kny1 — ((Algn+1)0,k2 ,,,,, kn+1) '

which is the product of the (k1 + 1) different possible compositions of face maps

Y

(Algn+1)k17---7kn,+1 : (Algn+1)07k2,--~7kn+1 .

Proposition 3.3.4. Alggll) is a monoidal complete n-fold Segal space.

Proof. By construction the (n + 1)-fold Segal space Alg(" is 1-hybrid and
pointed. O

Remark 3.3.5. It may seem unnatural to take the actual fiber here instead of
a homotopy fiber. This is needed as we need hybridness which requires certain
spaces to be equal to a point and not just contractible. As explained in re-
mark 3.2.33, the maps s,t : (Alg,)k,,...1,..kn — (Alg,)ky, .0, .k, are fibrations.
Thus, in this case, the homotopy fiber and the fiber actually coincide.

The higher layers Similarly, we define the higher layers of the tower.

Assume that we have defined Algg)) = Algn,AlgS), o ,Algﬂfl) for every n
such that Alg!® is a k-hybrid (n+k)-fold Segal space which is (j — 1)-connected
for every 0 < j < k. Note that, via the degeneracy maps, 1 can be viewed as

a trivial [-morphism in any Algglk) for any 1 <! < n+k, i.e. an element

...........

Definition 3.3.6. Let Alg) be the fiber of Alg! "1 over 1, 4, i.e. (Alg)p, k..,
is the fiber over 1;_; € (Alg, 1 ;)1,...,1,0,k11,...ki.,, Of the product of all different
possible compositions of face maps

—

-1 -1
(Algg-kl))khm,kn-;-z =, ((Alg51+l))17~~a1,07kl+17-~~:kl+n'
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Proposition 3.3.7. Alg(l) is a k-monoidal complete n-fold Segal space.

Proof. Again by construction the (n + [)-fold Segal space Alg( )is 1- hybrid and
(j — 1)-connected for every 0 < j < . O
The tower and the symmetric monoidal structure

The monoidal complete n-fold Segal space Alg,(zl) turns out to be a delooping
of Alg,,. The following proposition shows that the collection of the [-monoidal

complete n-fold Segal spaces (Algg))l forms the tower which gives Alg, a

symmetric monoidal structure.

Proposition 3.3.8. For n,l > 0, there are weak equivalences
U
/_\
\_/
¢

L(Alg!, 1) Algl=),

defined as follows.

1. The map u sends an element (F) = (F, (0,b4] < [af, 1), (I}
L(Alg"y to

N

< I €

(W(F)) = (u(F), (Ig < - < I)iT),

where u(F) = (T2, ni1y)+F 15 the pushforward of F along the projec-
tion s, pay ¢ (0, 1)t — (0, 1) (2t

N

2. The map £ sends an element (G) = (G, (I§ < I )t e Alg=Y o
(U9) = (19, (0.3] < [5.1).(If < -+ < )i%)
where £(G) = 14(G) is the pushforward of G along the inclusion

e (0, D)™ 0, 1) (20, ) — (%, Xy ey Tptl)-
The map £ is called the looping and u the delooping map.

We will need a refinement of theorem 3.2.16 suitable for our situation.

Definition 3.3.9. Let M be a topological space and N © M be a closed
subspace. Then a factorization algebra on M is said to be supported on N, if

}—lM\N =1.

Recall from theorem 3.2.16 that there is a functor pri, s Facty vy — Factx (Facty)
given by the pushforward along the projection pry : X xY — X.
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Lemma 3.3.10. Let X = (0,1) with stratification X > {s} > & for s € X
and let Y be a stratified manifold with stratification Y =Y, oY, 1 DYy D
Y_1 = . Consider the stratification on X XY given by

XxYo{s}xYo{s}xY, 10 --D{s}xY;>{s} xYy> T,

which is coarser than the one from theorem 3.2.16. Then factorization algebras
on X lying in Fact's(Fact'S) which are supported on {s} arise from factoriza-
tion algebras on X x'Y which are locally constant with respect to this coarser
stratification and are supported on {s} x Y wvia the functor pri. Moreover, this
is a one-to-one correspondence. o

Proof. Note that factorization algebras which are locally constant with respect
to this coarser stratification (the space of which is denoted by Fact's*3*"*¢) also
are locally constant with respect to the finer stratification from 3.2.16. We need

to show that the composition of the inclusion ,’Factl)?i(g‘/"se — Fact's, with

pri, yields an equivalence between elements supported on {s} x Y < X x Y
and elements supported on {s} c X.

First, let F € Fact'?%%%" be supported on {s} x Y. We need to check that its
image is supported on {s}. By definition, pry - 18 the factorization algebra on
X such that

X2U — Fy, .FU:V*—>]'—U(V)=.F(UXV),

and Fy is a factorization algebra on Y. Let U ¢ X\{s}, i.e. s ¢ U. Then for
every VoY, UxV c (X xY)\({s} xY), and since F is supported on {s} x Y

Fo(V)=FUxV)=1.
Conversely, consider an element in Fact's (Fact's) which is supported in {s}.
From theorem 3.2.16, 1 we know that it arises from a factorization algebra
F € Factx«y. We need to check that F is supported on {s} x Y and that it is
locally constant with respect to the coarse stratification. It is enough to check

the conditions on a factorizing basis, so it is enough to check them on products
of open sets.

Let UxV < (X x Y)\({s} xY), then U = X\{s}, and
FU V) =Fy(V) = 1.
Now let U x V < U’ x V' be an inclusion of disks such that both U x V and
U’ x V' are good neighborhoods at « for the same index « € {0,...,n + 1}.
fa=n+1thenU xV cU x V' c (X xY)\({s} xY) and by the above,
FUxV)=1=FU x V).

fo<a<n,then (UxV)n({s}xY)#Fand (U xV')n{s} xY # &, so
we get
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1. The inclusion U < U’ is a weak equivalence and the intersections U n {s}
and U’ n {s} are not empty, so they are disks of the same index for X,

2. Both V and V' are disks of index « for the same «.

Then ) )
FUXxV)=Fy(V)~Fu (V)2 Fpu(V')=FU x V).

The main step in the proof of proposition 3.3.8 is the following observation.

Lemma 3.3.11. Let X = (0,1) and s € (0,1). Then the data of a factorization
algebra F on X with values in S which is locally constant with respect to the
stratification X D {s} D & and is supported on s is equivalent to the data of
its global sections F(X) € S. It can be recovered from its global sections by
pushforward along the map * — (0,1),% — s.

Proof. We showed in corollary 3.2.15 that factorization algebras on Y which
are locally constant with respect to a stratification of the form Y o {s} > (¥
are equivalent to (homotopy) bimodules. The fact that F is supported on s
implies that F is equivalent to a (1, 1)-bimodule which is the data of an object
in S. O

Proof of Proposition 3.3.8. Let

u: L(Alg!)) — Alg! Y,

N

- <

where u(F) = (T2, n41})+F is the pushforward of F along the projection
mi2,...n+1} ¢ (0, 1){heont1l 5 (0, 1)o7+ forgetting the first coordinate. So
it “forgets” the data associated to the first coordinate, which includes the first
specified intervals.

Note that setting X = (0,1) as in the lemmas above and Y = (0, 1){Z--n+,
u(F) = (T2,.nsy)sf = pra (F)(X).

By lemma 3.3.10, pry_ (F) is locally constant on X, supported on {b}}, and

its global sections u(F) is locally constant with respect to the stratification on
Y = (0,1)2n+} Hence u is well-defined.

Conversely, let

0: Algt=b — £(A1gY)
(G) = (G, (I < - < L})i%) — (U9) = (€9), (0, 5] < [5,1), (I

N
N

I
where £(G) = 14(G) is the pushforward of G along the inclusion

L (0, 1)n+l—1 - (07 1)n+l7 ('CL.Q? e 7xn+l) = (%7‘%2) cee 7xn+l)~

i \n+l
I}.)i%s

)i%2)
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By appyling first lemma 3.3.11 and then lemma 3.3.10, the map ¢ is well-
defined. Moreover, by definition, uo ¢ = id. It remains to show that £ou ~ id.

Given an element (F) € (L(Alggf)))l,k%._,knﬂ, note that the associated strati-
fication on X = (0, 1) is given by (0,1)\((0,}) U (a},1)) either is empty or is
equal to a point s = b} = a}. This data is lost when applying u. By the lemmas
above, the factorization algebra is recovered under ¢ o u except for the data of
s, which in the definition of £ we chose to be s = % However, a homotopy
from £ o w to the identity is given by the following construction. Let £ € [0, 1].
Send an element (F) to its pushforward along fe, which is the (restriction to

(0,1) of the) unique piecewise affine map R — R such that

1
0~ 0, sr—>s£+(1—s)§, 1+ 1.

O

Corollary 3.3.12. The [-monoidal complete n-fold Segal spaces Algg) endow
Alg,, with a symmetric monoidal structure.

3.4 The homotopy category of Alg, and the Morita
category

The idea behind our construction of Alg; was to model an (o, 1)-category
of algebras and (pointed) bimodules between them. Indeed, the homotopy
category of Alg, turns out to be what we expect.

Definition 3.4.1. Let Mor; be the category whose objects are algebras and
whose morphisms from an algebra A to an algebra B are equivalences classes of
(A, B)-bimodules 4 Mp, where s Mp is equivalent to 4 Mp, if A~ A", B~ B,
M~ M.

Remark 3.4.2. Keep in mind that we are considering algebra and bimodule
objects in some symmetric monoidal relative category S, e.g. S = Chy. If we
choose § = Vecty, with isomorphisms as weak equivalences, we get the classical
category of algebras and bimodules. If we want to specify which relative cat-
egory the algebra and module objects take values in, we write Mor;(S). The
symmetric monoidal structure comes from the one on S, which sends (4, A)
to their tensor product AQ A’ in S and (4 Mp, ¢Np) to agceM ® Npgp.

Proposition 3.4.3. There is an equivalence of symmetric monoidal categories

hi(Alg,) ~ Mor .

Proof. We have seen in examples 3.2.20 and 3.2.27 using 3.2.11 that objects
of Alg,, and thus also of hq(Alg;) are equivalent to (homotopy) algebras. A
(1-)morphisms in Alg; from A to B is a factorization algebra F on R which
gives the data of an (A, B)-bimodule 4 Mp. The extra information it encodes
is a choice of intervals (0,b] < [a,1) which corresponds to choosing where on
(0,1) the module is located. The space of this extra information is the space
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of s € (0,1) and thus contractible. Moreover, paths from 4Mp to 4 My, by
definition are the data of weak equivalences A ~ A", B~ B, M ~ M’. Thus, a
connected component of the space of (1-)morphisms in Alg; from A to B is an
equivalence class of (A, B)-bimodules M. Summarizing, there is an equivalence
of categories

F : hi(Alg;) — Mory,

which sends an object (F, (0,1)) € (Algy)o to F((0,1)) and a 1-morphism rep-
resented by (F, (0,5] < [a,1)) to the (]—'((0, b)), F((a, 1)))—bimodule F((0,1)).

We saw in example 1.6.9 that the symmetric monoidal structure on Alg; in-
duces one on the ordinary category hj(Alg;) coming from the diagram

Algy[1] x Alg;[1] «—— Alg, [2] — Algy[1],
Y1 X72
where the first arrow is an equivalence of complete Segal spaces. By the def-
inition of the map =, it is clear that the equivalence of categories F' respects
the monoidal structure. O

3.4.1 The (0,n + 1)-category of E,-algebras

As mentioned above, starting with a symmetric monoidal (o0, 1)-category S
with all products, factorization algebras on any space X with values in § again
form a symmetric monoidal (oo, 1)-category. Thus, Alg, can be extended to
an n-fold complete Segal object in (o0, 1)-categories fA\lén, and from this one
can extract an (00, n + 1)-category, which is moreover symmetric monoidal. In
the full (00, n + 1)-category every object is dualizable, but there are fewer fully
dualizable objects. This construction will explained in more detail in [JFS].

In the case of n = 1 we saw in the previous section that the homotopy category
of Alg, is just the Morita category Mor; of algebras and equivalence classes of
bimodules. This equivalence can be extended to an equivalence of the homotopy
bicategory of the (co,2)-category Alg; with the full bicategory of algebras,
bimodules, and intertwiners, which one might want to call the full “Morita
bicategory Mor; of F-algebras”.

3.4.2 An unpointed version

Note that in our construction we use factorization algebras and weak equiva-
lences to model objects, 1-morphisms, and 2-morphisms. As we discussed in
section 3.2.8, factorization algebras are pointed, with pointing coming from the
monoidal unit 1 of the underlying category S. This pointing leads to pointed
bimodules and intertwiners.

For applications one might be interested in an unpointed version to obtain a
category with unpointed bimodules as morphisms, which leads to the usual
Morita category. For such a construction an unpointed version of factorization
algebras which are locally constant with respect to the same stratifications
is needed. Such “unpointed factorization algebras” can be defined using an
operad similar to the one used in the definition of factorization algebras, but
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allowing only certain inclusions of empty sets. However, there is no reason for
such an unpointed version of an (00, n)-category of E,-algebras to be complete.



CHAPTER 4

Factorization homology as a fully
extended topological field theory

Recall that the main task of this thesis is the following. Given any E,-algebra
A, i.e. any object in Alg,,, we would like to define a map of symmetric monoidal
n-fold Segal spaces .

FHn(A): Bord!" — Alg,,

essentially given by taking factorization homology of A. As complete n-fold
Segal spaces are models for (00, n)-categories, this defines a fully extended
topological field theory with values in C = Alg,, .

This chapter deals with the construction of this functor. For better overview
we split the construction in two steps. First we construct a map, which is just
a map of n-fold simplicial sets, to an auxillary complete n-fold Segal space
of factorization algebras which is essentially given by factorization homology.
Then we construct a map which can be understood as “collapsing” and then
“rescaling” a factorization algebra. Their composition yields the desired map
of n-fold Segal spaces. The construction can be summarized in the following
diagram. We indicate in which section the individual maps are constructed.

PBord/" —23 Fact, —2> FAlg,

T \ ]4.4.2

Bord,, A Alg,,

This map extends to the symmetric monoidal structures and yields the desired
fully extended topological field theory.

4.1 Factorization Homology

Inspired by an algebro-geometric version by Beilinson and Drinfeld in [BD04]
and a similar construction by Salvatore in [Sal01], Lurie introduced factor-
ization homology in [Lur] calling it topological chiral homology. It has been

99
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studied, amongst others, in [Fral2, Fral3, AFT12, GTZ10, GTZ12, Horl4].
We briefly recall the definition and the most important properties we will use
in this chapter.

Assumption 3. From now on, we will require that the symmetric monoidal
(00, 1)-category S which we required to have all small colimits in the previous
section to additionally be tensored over spaces.

Remark 4.1.1. For this, by [AFT12], it suffices that for each s € S, the

functor S &% S preserves filtered colimits and geometric realizations. Then
in particular, for each object s € S and each space, i.e. simplicial set K, the
constant map K 2> S admits a colimit, which we denote by K ® s. The map
— @ — : Space xS — S exhibits S as tensored over spaces.

Again, as in sections 2.6.1 and 3.2.1, let X be a topological space and F — X
a topological n-dimensional vector bundle which corresponds to a (homotopy
class of) map(s) e : X — BGL(R") from X to the classifying space of the
topological group GL(R™).

Recall from definition 3.2.3 that a DzlsKELX’E)—algebra in § is a symmetric monoidal
(covariant) functor

A:Disk P — s

Now consider an (X, F)-structured n-dimensional manifold M. Since DisKSlX’E) c

/\/lanng E) it yields a contravariant functor

M: (Dis&éX’E))"p — Space,
[ R — EmbE)(] [R™, M).
I I

Definition 4.1.2. Let the factorization homology of M with coefficients in A

be the homotopy coend of the functor M x A — Space xS -®, S and denote
it by

f A=M@pycem A.
y §

Remark 4.1.3. Recall that we required S to contain all small colimits. This
ensures the existence of the coend.

In [GTZ10] it was proven that if we consider this construction locally on M for
X = BG, where G is the trivial group, we obtain a locally constant factorization
algebra on M.
Theorem 4.1.4 ([GTZ10], Proposition 13). Given an E,-algebra A, i.e. a
Diskﬁr—algebm, the rule
v |
U

for open subsets U € M with the induced framing extends to a locally constant
factorization algebra on M.
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Remark 4.1.5. By abuse of notation, we will denote this factorization algebra
by SM A, i.e. for an open subset U € M,

(| Hw) :JUA:Q®M£,.A65.

4.2 The auxillary (oo, n)-category Fact,

The main idea for our functor is that, given an F,,-algebra A, we define a map ,
also called S(i) A, which should be given by first taking factorization homology
to obtain a factorization algebra on the manifold M and then pushing it forward
to obtain a factorization algebra on (0, 1), i.e.

M=V oy
\l St ﬂ*(f A).
M

(0’ 1)71

We define an auxillary complete n-fold Segal space Fact,, by translating the
properties 1.-3. in the definition of PBord,, to conditions on the factorization
algebra. We will show that this is the correct translation in section 4.3.

Similarly as to in the definition of Alg,,, for S < {1,...,n}, denote by wg :
R™ — R® the projection onto the coordinates indexed by S.

Definition 4.2.1. Let elements in (Fact,, ), ...k, be pairs
(F, (15 < -+ < Tj)im1,m);

satisfying the following conditions:

1. F is a factorization algebra on (0,1)".

2. For 1 <i<n,
(Iy < --- < I,) € Inty,.

N

3. For 1 < i < n, the factorization algebra F is an E,,_; i-algebra in fac-
torization algebras on (0,1)#~1} in a neighborhood of m; *(I§ U ... U
I ) < (0,1)"

Remark 4.2.2. In condition 3 we first use theorem 3.2.16 to view F as a

factorization algebra on (0,1)%4,...,n} in the (oo, 1)-category of factorization
algebras on (0,1)#*~1} and then require that this factorization algebra on
(0,1){i,...,n} is locally constant. This is translated to saying that it is an

E, _;t+1-algebra by using theorem 3.2.11.

4.2.1 The spaces (Fact,)g, .k,

The spatial structure of (Fact, )k, ...k, is a mixture of that on Bord,,, essentially
coming from the one on the spaces Inty,, and that on Alg,,.
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Definition 4.2.3. An [-simplex in (Facty)k, ...k, is given by the data of

n

1. underlying 0-simplices, i.e. for every s € |Al],

(Fs: (I(s) < -+ < T, (5)) € (Factn ), h,
2. for every 1 < i < ky,
(Ii(s) <--- < Ilii(s))semq
is an [-simplex in Inty, with rescaling datum ¢!, : (0,1) — (0,1);

3. for every s,t € |Al], weak equivalences

(Sps,t)*]:s Lst) ]:ta
where ¢s¢ = (¢4 )iy (0,1)™ — (0,1)™ is the product of the rescaling
data.

The spatial face and degeneracy maps 5lA, alA arise from the face and de-

generacy maps of (A!) similarly to those of PBord,, and we obtain a space
(Fa'Ctn)k?h'n;kn'

4.2.2 The n-fold Segal space Fact,,.

We now define face and degeneracy maps on the 0-simplices of the levels of
Fact, o essentially coming from those of the n-fold Segal space (Int)y , =
Inte x - - x Int,. They are similar to those of Alg,,, but use the rescaling maps
pj coming from Int, instead of the collapse-and-rescale maps 0% coming from
Covers,. Recall that for j = 0 orj = k, in the usual notation they are the
linear rescaling maps

po:Do=(a1,1) = (0,1), z— =2 pp:Dp=(0,bp—1) — (0,1), z— 3=

1—ay’ bg—1"

Since 1 < ¢ < n will be fixed throughout the following constructions, by abuse
of notation we define

Pj :W;I(Dj) = H(071) x Dj — (0,1)",
a#i

which is p; in the ith coordinate and the identity otherwise.

Degeneracy maps on O-simplices Fix 1 <i < n. For 0 < j < k; the jth
degeneracy map

55+ (Factn )y, b = (FACH)ky o kit 1,

applies the jth degeneracy map of Int, to the ith tuple of intervals, i.e. it
repeats the jth interval in the ith direction,

I Jarirsi(Iy < -+

<
I Joaris N << <<
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Face maps on 0-simplices Fix 1 <t < n. For 0 < j < k; the jth face map
d;- : (Facty,)g,

applies the jth face map of Int, to the ith tuple of intervals, which forgets
the jth interval, and, if necessary, rescales them and pushes the factorization
algebra forward along the rescaling map p;. Explicitly, for j # 0, k;, the 0-
simplex (F) = (F, (I§ <--- < I )n_y) is sent to

(F,(I§ <+ < I,;"L)W,d (IE<---<1Ii)) =
= (]—",(IO < - <I,§:)a¢z,lo << <I,<--<I).
For j = 0 or j = k;, the 0-simplex (F) is sent to
((03)5F =1 (pyys U6 < o S I arin di (I < - < I,))).
The full structure as an n-fold Segal space Face and degeneracy maps

on [-simplices are defined analogous to for Alg, , by which we obtain an n-fold
simplicial space Fact,,.

Proposition 4.2.4. (Facty,)s. .. . is an n-fold Segal space.

.....

Proof. The proof of the Segal condition works similarly as for Alg,, and essen-
tially follows from the fact that paths of objects arise from weak equivalences
and rescaling, which we can use to glue.

It remains to check that for every i and every k1, ..., k;_1, the (n—1)-fold Segal
space (Facty)k,,... k1.0, is essentially constant.

We claim that the composition of degeneracy maps
(FaCtn)kl,--»’kz‘flyo,m,o — (FaCtn) ki—1,0,ki 41,0 kn
is a deformation retract.

For s € [0,1], consider the path v, in (Facty)k,, .. ki 1,0kis1,...kn Sending an
element represented by

(F)i= (F (1) < < I Do 00, U5 <+ < I )icacn)
to

o

(F)o = (FoI < < T Diapess 00, (5 () < -+ < T, (9))ican ).
where for o > i, a]( s) = (1 —s)a§ and b§(s) = (1 — s)b§ + s. Note that for
S—O,IO(O)—IO, £(0) = Iy andfors—l I$(1) = (0, 1).

The collection of paths 75 form a deformation retraction provided that each

path is well-defined, i.e. indeed maps to (Facty)i, ... k;_1,0,kir1,....kn- 1t suffices

to check condition (3) in definition 4.2.1 for (F),. Since (F) € (Facty )k, .. ki 1,0,kis1s.kns
this reduces to checking
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For every i < a < n, F is an E,_,41-algebra in factorization
algebras on (0,1){12=1} in a neighborhood of 7 (I (s) U ... U
I (s)) < (0,1)™.

Condition (3) on (F) for ¢ implies that in particular, F is an E,,_;,1-algebra
in factorization algebras on (0, 1)~} in (a neighborhood of) 7; 1((0,1)) =
(0,1)".

This in turn implies that for every a > i, F is an E,,_,1-algebra in factor-
ization algebras on (0,1){++*=1} in a neighborhood of 71((0,1)) = (0,1)" 2
ng(fg(s)u...ufgj(s)). O

4.2.3 Completeness of Fact,.
We now show that the auxillary n-fold Segal space of factorization algebras

Fact,, always is complete, and thus is an (o0, n)-category.

Proposition 4.2.5. The n-fold Segal space Fact,, is complete.

Proof. We need to show that for any kq,...,k;—1,ki+1,- .., kn, the degeneracy
map

S0 inv
(FaCtn)kl7---aki71;07ki+17---;kn ? (FaCtn)kl,.4.,ki,1,1,ki+1,.4.,kn
is a weak equivalence.

For any element in the right hand side
(F) = (F b < T (I < - < I Do)

there is another element

(F) = (F Iy < I, (05 < < T Jans)

which, in the homotopy category, is an inverse of (F). The composition in the
homotopy category is represented by an element

@) = @Iy < I (5 <+ < I )ars)

which, for some 0 < ¢ < d < 1, where the pair (¢,d) is not equal to (1,0),
on m; 1 ((0,d)) restricts to (the rescaled) F and on m; *((c, 1)) restricts to (the
rescaled) F. Moreover, there is a path to the E,,_;+1-algebra in factorization
algebras on (0,1)~1=1 which is the source di(F) of F which in turn is

weakly equivalent to the target do(F) of F, i.e. there is a weak equivalence
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As a factorization algebra on (0,1){" with values in factorization algebras on
(0,1)2V, d;(F) is locally constant and and therefore weakly equivalent to its
restrictions to (0,d) and (¢, 1). Since G ~ d;(F) and F and F are its restrictions
to (0,d) and (c,1),

F ~ d1 (]:)

This construction yields a deformation retraction. O

4.2.4 The symmetric monoidal structure on Fact,

Fact,, has a symmetric monoidal structure defined by a I'-object which arises
similarly to the structure of Alg,, as a I'-object.

Definition 4.2.6. For every ky,...,k, and m > 0, let (Fact,[m])k,,.  k, be
the collection of tuples

(]:1,. .. ,]:m, (Ié <0< I}ii)i=1,‘..,n)7

where for every 1 < 8 < m, (Fg,(I§ < -+ < If )i=1,..n) € (Facty)r,, . k,-

Similarly to Fact,, this can be made into a complete n-fold Segal space.
Proposition 4.2.7. The assignment

I' — SSpace,,

[m] — Fact,[m]

extends to a functor and endows Fact,, with a symmetric monoidal structure.

Proof. Just as for Alg,,, a morphism f : [m] — [k] is sent to the functor
Fact,[m] — Fact,[k],

(Fiyoo s Fm, I's) — ( ® Fayonn, ® ]—};,I’s).
Bef=1(1) pef~t(k)

O

Remark 4.2.8. It is not quite as straightforward to write down the symmetric
monoidal structure as a tower and we will not need it later on.



CHAPTER 4. FACTORIZATION HOMOLOGY AS A FULLY
106 EXTENDED TFT

4.3 The map of n-fold simplicial sets S(_) A

In this section, given a fixed E,,-algebra A, we define a map of n-fold simplicial
sets

J A : PBord!" — Fact,,
=)

from the framed bordism category to the auxillary category of factorization
algebras. This map essentially translates the properties of the bordisms to
factorization algebras on (0, 1). It thus in a certain sense encodes the geometry
of the embedded manifold. It will not, however, be a map of n-fold Segal spaces
as it does not extend to the simplicial structure of the “levels”, as we explain
below in problem 4.3.4.

Recall from definition 2.3.1 that for an element (M) in PBord!" we used the
following notation, where S < {1,...,n}:

The following proposition shows that the third condition on factorization al-
gebras in Fact,, is the exact translation via the map 7, (S(f) A) of the third

condition on elements in PBord{;T‘

Proposition 4.3.1. Let A be an E,-algebra and let M be an n-dimensional
framed manifold. For S < {1,...,n}, let ps : M — (0,1)% be submersive
at x € pgl((to‘)aeg), Then F := W*(SM A) is an Eg|-algebra in factorization
algebras on (0,1)2\% in a neighborhood of mg'((t*)acs)-

Proof. F is a factorization algebra on (0,1)", so by theorem 3.2.16 it is a fac-
torization algebra on (0, 1)% with values in factorization algebras on (0,1)2\5,
We denote it by F : U — Fy for U < (0,1)%, where

Fu: W F(U x W) for W < (0,1)2\9,

We need to show that F is locally constant in a neighborhood of (t*)aes- Take
V < U < (0,1)% two sufficiently small open sets containing (t*);cs such that
U ~ V. The the structure map Fy — Fy is a weak equivalence if for every
open set W < (0,1)2\5 the map Fy (W) — Fy(W) is a weak equivalence.
Consider

Fu(W)=FUx W) = W*(JM AU xW)=(| A)(r~H U x W),

M

Fv(W)=F(V xW) = W*(JM AV x W) = (fM A)(rH(V x W)).
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Since A is locally constant, it is enough to show that the inclusion 7 YV x
W) ca Y (U x W) is a weak equivalence. Since

NV x W) =pg(V) mp;\ls(W) and 7 (U x W) = pg'(U) mp;\ls(W),

it is enough to show that pg' (V) = pg'(U) is a weak equivalence. This holds
because we assumed that V ~ U and that pg is a submersion at pgl ((t;i)ies),
so locally a projection map.

Definition 4.3.2. Let A be an E,-algebra. Let

f A : PBord!" — Fact,,
(=)

send

to

<7T*(f A)’ (Ié S s Ifiri)i17~-7”> € (FaCt”)kl,m,kn’
M
where, as in the previous sections, 7 : M — V x (0,1)™ — (0,1)™.

Proposition 4.3.3. S(_) A is a well-defined map of n-fold simplicial sets.

Proof. By the above proposition, (S(_) A) ((M)) is an element in (Facty, )k, ... &, -
Moreover, S(f) A commutes with the face and degeneracy maps d;-, s; and 5;-, O’;-
of the n-fold simplicial sets (PBordeT).7.,_7. and (Fact, ). o by construction.

O

Problem 4.3.4. S(_) A does not extend to a map between [-simplices of the
levels, i.e. (S(f) Ak, ...k, is not a map of simplicial sets

------

as can be seen in the following example.

Consider the following 1-simplex in (Bord; )y, which is given by a smooth defor-
mation of the standard embedding of the circle, [0,1] x ST < [0,1] xR x (0, 1),
and the pair of intervals (0,b] < [a, 1).
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The factorization algebra 7y = (1)« ({4 A) associated to s = 1 is not weakly
equivalent to that associated to s = 0 (even after any rescaling of (0, 1)), as its
value on the open set U as given in the picture is

Fi(U) = A®2 @ (A7)®2,
but Fo = (7o)« ({51 A) on intervals takes on values 1, A, A%, or A® A.

4.4 Collapsing the factorization algebra and FAlg,
In this section, we explain how to “collapse” a factorization algebra in Fact,,.
We define a map of n-fold simplicial sets
V : Fact,, — FAlg,,
to an n-fold Segal space FAlg, 2 Alg, of factorization algebras on (0,1)",

which have certain locally constancy properties, but do not lead to bimodules.

We first define a collapse-and-rescale map ¥ : Int, — Covers, given by applying
a collapse-and-rescale map Q% : (0,1) — (0,1) to a tuple of intervals with
endpoints a,b. This map is lifted to a map V : Fact,, — FAlg, by pushing
forward the factorization algebra along the product of the collapse-and-rescale
maps.

4.4.1 The collapse-and-rescale map ¥ : Int, — Covers,

. on the levels

Informally speaking, we first collapse the complement of all intervals and then
rescale the rest to (0,1). We saw in lemma 3.1.4 that the collapse-and-rescale



4.4. COLLAPSING THE FACTORIZATION ALGEBRA AND FAlg, 109

maps o’ commute in a suitable way. This ensures that we can define the
b : o bs
collapse-and-rescale map gg can be defined as a successive application of g}’s.

Definition 4.4.1. Let Iy,...,I; be closed intervals in (0,1) with non-empty
interior and endpoints a = (ag, ..., ar), b = (bg,...,bx). Then, let

Oa = 00 * Oy % 0oh
Note that since by definition (aq,bs) # &, (ba-1,04) N (basa+1) = &. So
we can apply lemma 3.1.4 and the map g% is independent of the order of maps
ggzﬂ. In the following, we will apply this to (ly < --- < Ij) € Inty.

0 bp a1 a3 by bo as 1
[ ] [T ] ] [ )
3 T T T T ]
: J )
. o2
{ T 7 1T \
\ 1T ] 1 ]
0 bp=ay ao by by =as 1

Notation 4.4.2. For Iy, ..., I} as above let {ji1,...,51} € {0,...,k—1} be the
b
indices for which b;, < a;, 41, i.e. Q“Jj/js“ # id. Then, similarly as we saw for

b
ga)

for D% = (0, bj,Ju(aj, +1,b5,]u---U(aj,+1,1) is bijective. We denote its inverse
by

(ca) ™" = (ealpp) ™t : (0,1) — Dy

St

ol

. as a map of complete Segal spaces

Proposition 4.4.3. The map

h'A
Int;, =% Coversy,

(Io< - < Iy) — (6E(Io) < - < (1)),

extends to a map of complete Segal spaces.

Proof. We first need to show that the map v extends to a map of spaces
v : Intp — Coversy, i.e. we need to define it on [-simplices and show that
it commutes with the spatial face and degeneracy maps slA,dlA of Inty and
crlA, 5lA of Coversg. Finally we need to show that all v together form a map of
simplicial spaces, i.e. they commutes with the simplicial face and degeneracy

maps s;,d; of Int, and o;,d; of Covers,.
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on [-simplices Consider an [-simplex in Inty consisting of underlying
0-simplices (I1(s) < - < Ix(5))sejar and a rescaling datum (¢, : (0,1) —
(0,1))s,1ejat|- It is sent to the [-simplex in Coversy, defined as follows:

1. for 0 <t <[, the tth underlying 0-simplex of the image is
(Qg(lo(t)) <--- < Q%(Ik(t))) € Coversy;

2. for 1 <t <, the rescaling datum is

b b(t—1)\—
or = %((tt)) o sot*LtlDi(tfl) o (Q;((tt—l))) 1. (O7 1) — (0, 1).

... commutes with the spatial degeneracy and face maps The map
¥ commutes with spatial degeneracy and face maps since these come from the
degeneracy and face maps of the simplicial set (Al);.

commutes with the simplicial degeneracy and face maps This
essentially follows from the behaviour of the collapse-and-rescale maps o?. We
need to show that the following diagram commutes

Yk+1
Intg, 1 —— Coversg 1

o

hva
Int, —=— Coversy

bl

YEg—1
Int,_y —— Coversg_1

The collapse-and-rescaling maps on the top and in the middle coincide, since
QZJJ = id and therefore

d;(b) b b, b; b
Qd;(a) = Qajj tx Qajj * ‘Qa]j+1 = Oa-

Thus the top diagram commutes.

For the lower diagram, we need to compare the composition of the (collapse-
and-)rescaling maps.

b
ob
Int;, —— Covers;,

. bi_
id Or pjl Jgaﬂﬁll
gb

Intg_; —— Coversg_;
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The upper right composition o; o ¥, has as rescaling map gaJ] L= Qa Using
lemma 3.1.4 and remark 3.1.3 we obtain

b _ 1 bo b1 | br—1
QGJ+1 Qa - QGJJJA * (Qal *0Qqy " ¥ Qay )
3.1.4 b bi_ b
ey j—1 j—1 J
o ajir ¥ (‘Qaj *Oaji, * ki1 ‘Qaa+1)
bi1 b
= (et wobit)w ol obe
a1+1 aj Aj+1 atj—1,j Aa+1
3.1.3 b
=" (e 0y, ) * o
( a3+1 a]+1) a#ti—1,j Ao+1
3.1.3 bj—1 ba
I
314 p, 2 1 +1 br—1
- Oq, * " * Qa] ¥ Qa7+1 * QaJH_g Tk Qak
_
- Qaja
. ~j
~) _
where a’ = (ao, ey A1, Q541 e, ak) and b = (b(), ey bj—la bj+1, ceey bk)

For j # 0,k, we have that s;(a) = @ and s;(b) = " and thus the lower left
composition ¥ ;_; 0s; has as rescaling map

Sj b Ej
QSJEQ)) = Qi
For j = 0 or j = k we have that s;(a) = ,Dj(/\j) = Qa1+1(aj) and s;(b) =

p; (EJ) = QZJ] - (b ) and thus the lower left composition ¥ ;_; oo; has as rescal-

ing map

s;(b) b’
o)) = O &3,

bo J 2 bi_1 bit1 br_1
(Q ok 072 Qa}+1 0T ek 0k ) * Qa,+1
b(J 2 1 1 -
= EREE J % * J+ ek
Q Q QaJ+1 Qaj+ Qak
E.?‘
= Qaja

since similarly to above, by lemma 3.1.4 we can first reorder the terms in
the parentheses, use 927;11 * Qaj o= QZ "1 by remark 3.1.3, and then reorder
again. O

4.4.2 The “faux” Alg,, the n-fold Segal space FAlg,

Recall that in definition 3.2.17, given (I§ < -+ < I} )i=1,....n € (Covers”")x, . k,,
we inductively defined a stratification of (0, 1) by

n — (Oa l)na Xn—i = Xn—i+1 N }/i7

for 1 < i < n, where

s
Y, =7 H(8%) for §' = U (a,b5) = )\

7=0

(Iz)

<.
Il ( 5
o
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and (I})O = (a?, b;) is the interior of the interval I; Note that the set X\Y; =
U?;O(aé-, b;) x (0,1)2V is a disjoint union of products of the form

(0,8%) x (0,1)2V,  (sk,s%,1) x (0,1)2V, or (s},1) x (0,1)2V.

We now define a “faux” n-fold Segal space FAlg,, of E, -algebras, whose objects
are F,-algebras, but the morphisms do not behave like modules.

Definition 4.4.4. For every ki, ..., k, = 0, let (FAlg, )&, ...k, be the collection
of tuples _ _
(-F7 (Ié < e < I]ﬁ;i)i:L...,n)7

satisfying the following conditions:

1. F is a factorization algebra on (0,1)".

2. Forl1<i<n

)

(Ig < --- < I},,) € Coversy,,

i

3. For 1 < i < n, on every connected component of X\Y;, the factorization
algebra F is an F,,_;,1-algebra in factorization algebras on (0, 1){1-¢=1},

We make the collection (FAlg, )., . . into an n-fold Segal space similarly to
(Algn)',~~~7"

Remark 4.4.5. Similarly to definition 4.2.1 we use theorem 3.2.16 to formulate
the condition on the factorization algebra F.

Example 4.4.6. For n =1, (FAlg, ), consists of elements of the form
(F,Ip < ...< 1),

where F is a factorization algebra on (0,1) and is locally constant everywhere
except at the points S = {s1,...,s} = (0,1)\({p U ... U I). In particular,
(FAlg,)o = (Algy)o and consists of locally constant factorization algebras on
(0,1), i.e. Ej-algebras. However, for k > 1, (Alg;)x is the proper subset of
(FAlg, )y of elements which furthermore satisfy the condition that if U, V are
intervals containing the same point s;, F(U) ~ F(V).

Proposition 4.4.7. There is an inclusion of n-fold Segal spaces

Alg, < FAlg,, .

Proof. Recall from definition 3.2.17 that
X, o= Sl % - §% x (0’ 1){a+1,...,n}'
Thus, the stratification induces a stratification on X\Y; of the form

(X\Y;) N Xneg = ST x - x §% x (0, 1)1 =1 5 ((0,1)\S7) x (0, 1)1+ 1-m}
= Xp_q % (0,1)liFLm}
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where

Xpa =8 % x 8% x (0, 1)latlim1h ((0,1)\S%).

for0 <a <.

Let (F,(I§ < -+ < I} )i<i<n) € (Alg,)k,, .k, The restriction F|x\y, is lo-
cally constant with respect to the stratification (X\Y;) n X,,_,. Thus, as a
factorization algebra on (0, 1){+1+"} with values in factorization algebras on
(0, 1)1 it is locally constant. O

4.4.3 The collapsing map V : Fact,, — FAlg,

We can now lift the collapsing map v : Int — Covers to a collapsing map
VY : Fact,, — FAlg,,.

Notation 4.4.8. Let (I < --- < I} )i=1,.n) € Int}}, ;. For1 <i<n
denote the collapse-and-rescale map associated to (I < --- < I ) € Inty, by
&

a’l.,

and denote their product by

1

E b b'Vl
0z = (Qél’ e, Qén) :(0,1)" — (0,1)™.

Note that

b b b"
QE:Q 1 O"'oga",
where as before we again denote by Q " the map (0,1)" — (0,1)™ which is Q ;

in the ith coordinate and the identity otherwise, and the order in the above
composition does not matter.

Proposition 4.4.9.
v
(FaCtn)kl,-~~kn, - (FAlgn)kl
(Fo (g <o < I hisn) — ((2)alF), (L)

N
N
]

18 a map of n-fold Segal spaces.

Proof. As we have seen in the previous section that the (collapse-and-)rescaling
maps behave well with respect to face and degeneracy maps of the simplicial
space, it is enough to show that V indeed maps to FAlg,, .

We need to check the third condition in definition 4.4.4, i.e. that for 1 <i < n,
on

k;
X\Y; =7t U i (I%)°

(g%)*}" is an F,,_; 1 -algebra in factorization algebras on (0, 1){1-#=1},

For this it is enough to show that for every 0 < j < k;, we have

((Q )*]:>|7ri_1(gy *(]'-Lr;l(lji)O)

a7

ISTISal
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is an E,_;1-algebra in factorization algebras on (0, 1){1""’i*1}.

Since (F,(I§ < -+ < I! )i<i<n) € (Facty)k, . ks ]-"|7T;1(1;)0 is an E,_jq1-

algebra in factorization algebras on (0,1)*~1} so the following lemma fin-
ishes the proof. O

Lemma 4.4.10. Let G be a locally constant factorization algebra on (0,1) and
let o2 be a collapse-and-rescaling map. Then (o2)+G is locally constant on
(0,1).

Proof. This follows from the fact that preimages of intervals under o’ again
are intervals. O

4.5 The functor of (w0, n)-categories FH,

We now show that, given an FE,-algebra A, the composition ¥ o S(f) A lands
in Alg,, and thus yields a map

FH, = FH,(A) : PBord!" — Alg,, .

Proposition 4.5.1. Let (M) = (M SV x (0,1)", (I < < I/ii)lgsn) .
(PBordy,)ky,..k, - Then

(o j( ) A) (D) € (Al .

Proof. Let m: M — V x (0,1)™ — (0,1)" and as usual denote the endpoints
of the interval I J’ by aé, b; We need to show that the underlying factorization
algebra of FH, ((M)), which is

b
Fry = (Q&)M*J A,
- M
is locally constant with respect to the stratification associated to the intervals

(ng (Ié) SRR :Qgt (Ilzrb));n:l

Let V < U be good neighborhoods at X,,_ = S* x --- x §% x (0, 1){at+1n}
from definition 3.2.17 respectively remark 3.2.18. We can assume that they are
boxes, i.e. products of intervals

U=U'x---xU", V=Vix...xV"
and meet exactly one connected component
()31 x (0, )fectbee)
of Xy,_o. We need to show that the structure map Far)(V) — Fpn(U) is a
weak equivalence. By definition,

f<M><v>:<fMA><w—1<V>> and  Foan (U) = ( JMA><7T-1<U>),
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where V = (gg)*l(V) and U = (g%)*l(U). Since §,, A is locally constant, it is

enough to show that the inclusion 7Y (V) — 71 (U) is a weak equivalence.

The open sets V and U are boxes of open intervals,
V= (e f1)xox (e ) and U = (c!,d") x---(c",d")

where (¢!, d") = (,_ogi)_l(U") and (e, %) = (ggi)_l(V"). The endpoints ¢' and
€', respectively d’ and f?, either lie in the same closed specified interval I; or
in ones connected by a chain of overlapping intervals. An argument similar
to that in corollary 2.3.4 or, if an endpoint is 0 or 1, example 2.3.2 gives a
diffeomorphism

7 U) — 7 (V).

Definition 4.5.2. Let

FHp=FHp(A) =V o | A:PBord!" — Alg,,,
)

FHa((M)) = (Far, (25 < - < L)) L),

where F(y) = (Q%)*ﬂ'* SM A. By the universal property of the completion it
extends to a map of complete n-fold Segal spaces

FHp = FHn(A) : Bord!" — Alg,, .

4.6 The fully extended topological field theory FH,

To obtain a fully extended topological field theory the functor FH,,(A) needs to
be symmetric monoidal. In this section we extend it to a symmetric monoidal
functor, both by defining a natural transformation of I'-objects and by defining
compatible functors between the layers of the towers.

4.6.1 Symmetric monoidality via ['-objects

We extend the map F#H,(A) to a natural transformation between functors
I — SSpacey, [m] — PBord!"[m], Alg, [m].

Proposition 4.6.1. For every object [m] € T, let FHp[m] = FH,(A)[m] be
the map of n-fold Segal spaces

PBord!"[m] — Alg,, [m],
(My, .o, Mo, (I§ < ... S L)1) — (Foanyys - Foa) X (15 < . < IL)E).

This assignment endows the functor FH,(A) of (00,n)-categories with a sym-
metric monoidal structure.
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Proof. The map FH,[m] is well-defined since the the image of the left-hand
element under the inclusion PBord,, [m] < (PBord,,[1])™ is the collection of

(Mg, (I§ < ... < Ii,)i=1) € (PBordf"V )y, k.,

which under FH,,(A) are sent to elements in (Alg, )k, ... k, with underlying fac-
torization algebras J(,7,) and the same underlying element in (Covers™)x, .

n

n

i=1"

(x(If<...<1))

Thus the collection of the images lies in the image of the inclusion Alg,,[m] <
(Alg[1])™. The map FH,[m] is a map of n-fold Segal spaces by the same
argument as for FH,,.

To see that this assignment defines a natural transformation, let f : [m] — [k],
and 1 < o<k Letm=n[l]U---Ux[m]: MyL---UM, — (0,1)”. By the
following lemma we have

W*J A= @ ﬂ[ﬂ]*J- A,
Upes=1(a) Ms Bef~1(a) Mg

and thus the following diagram commutes.

PBord/"[m] FHnlml, Alg, [m]

L

PBord!"[k] =1, Alg [4]

O

Lemma 4.6.2. Let f : X — Z, g: Y — Z be continuous maps of topological
spaces and let F be a factorization algebra on X 11Y. Then

(fLIg)*]:z f*]'—|X®g*]:|Y-

Proof. Let U < Z be open. Then (f11g)"Y(U) = f~1(U)11g=*(U) and by the
gluing property of F, we have

FUTHO)ug™ (U) = F(fHU) @ Flg~ ' (U)).

4.6.2 Symmetric monoidality via the tower

In this section we extend the map to the layers of the tower in a compatible
way.

On the [th layer the extension .7-"’}—[511) is the composition of maps S(f) A and

v® analogous to those for [ = 0. For simplicity, instead of defining the layers
for the auxillary spaces Fact,, and FAlg, we define ]—"H,(f) directly.
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Proposition 4.6.3. For every l > 0, the assignment

PBord/™ — AlgV,

(7D M — (0, )" (I < ... < )M — (Fyo, 2 (I < ... < I )M,

where Fya)y = (g%)*(w(l))* SM A, is a map of n-fold Segal spaces ]:Hff) =

Fﬂg)(A). It comgmtes with the looping and delooping maps u,{ from propo-
sitions 2.4.8 and 3.3.8.

Proof. We need to check:

1. ]-'Hg) 1s well-defined, i.e. its image indeed lies in Algs).

Similarly to propositions 4.4.9 and 4.5.1 one can show that F,,) is locally

constant with respect to the stratification associated to ¥ (I§ < ... <
[,i);fll, and thus ]:Hgf) maps to Alg, ;. Moreover, as noted in remark

2.4.6, (PBordff’l)17___,170’.,_”,., with (I — 1) 1’s, is the point viewed as a
constant (n — [)-fold Segal space. This implies that ]:Hgf) indeed maps
to Algg) c Alg,, ;.

2. ]-'7-[;1) commutes with the looping and delooping maps wu,{ from proposi-
tions 2.4.8 and 3.3.8, i.e. the following diagram commutes:

PBord/"™ — 7 Ajg®)

() )

(1+1)

L(PBord!™+1y Ty p(A1gHY)

It is straightforward to see from the constructions of u that the diagram
for u commutes. The commutativity for ¢ follows from the properties of
the collapse-and-rescale maps.

By the universal property of the (I-hybrid) completion, we obtain maps
FHY : Bord!™ — Al

which endow the functor FH,,(A) : Bord!" — Alg,, of (o0, n)-categories with a
symmetric monoidal structure.

Corollary 4.6.4. The maps }"Hg) make the functor
FHn(A): Bord/" — Alg,,

into a fully extended topological field theory.
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