
Diss. ETH No. ???

Factorization Homology as a Fully Extended Topological
Field Theory

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZÜRICH
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Abstract

Given an En-algebra A we explicitly construct a fully extended n-dimensional
topological field theory which is essentially given by factorization homology.
Under the cobordism hypothesis, this is the fully extended n-TFT correspond-
ing to the En-algebra A, considered as an object in a suitable Morita-p8, nq-
category Algn. We first give a precise definition of a fully extended n-dimensional
topological field theory using complete n-fold Segal spaces as a model for
p8, nq-categories. This involves developing an n-fold Segal space Bordn of n-
dimensional bordisms and endowing it with a symmetric monoidal structure.
Exploiting the equivalence between En-algebras and locally constant factoriza-
tion algebras proven by Lurie we use locally constant factorization algebras on
stratified spaces to construct an p8, nq-category with En-algebras as objects,
(pointed) bimodules as 1-morphisms, (pointed) bimodules between bimodules
as 2-morphisms, etc. and endow it with a symmetric monoidal structure. Fi-
nally, given an En-algebra we construct a morphism of n-fold Segal spaces from
Bordn to Algn given by a suitable pushforward of the factorization algebra ob-
tained by taking factorization homology. We show that this map respects the
symmetric monoidal structure.
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Zusammenfassung

Für eine En-Algebra A geben wir eine explizite Konstruktion einer vollständig
erweiterten n-dimensionalen topologischen Feldtheorie, die im Wesentlichen
durch Faktorisierungshomologie gegeben ist. Unter Verwendung der Kobordismus-
Hypothese entspricht diese der vollständig erweiterten n-TFT, die durch die
En-Algebra A, als Objekt einer geeigneten Morita-p8, nq-Kategorie Algn betra-
chtet, bestimmt ist. Als Modell für p8, nq-Kategorien benutzen wir vollständige
n-fache Segalräume und geben zunächst eine präzise Definition einer vollständig
erweiterten n-dimensionalen topologischen Feldtheorie. Diese benötigt die Kon-
struktion eines n-fachen Segalraumes n-dimensionaler Bordismen Bordn und
einer symmetrisch monoidalen Struktur darauf. Motiviert durch die Äquivalenz
zwischen En-Algebren und lokal konstanten Faktorisierungsalgebren, die von
Lurie bewiesen wurde, verwenden wir lokal konstante Faktorisierungsalgebren
auf stratifizierten Räumen um eine p8, nq-Kategorie, deren Objekte En-Algebren,
1-Morphismen (punktierte) Bimoduln, 2-Morphismen (punktierte) Bimoduln
zwischen Bimoduln, etc. sind, und eine symmetrisch monoidalen Struktur da-
rauf zu definieren. Schließlich konstruieren wir, in Abhängigkeit einer En-
Algebra, einen Morphismus n-facher Segalräume von Bordn nach Algn, der
durch einen gewissen Pushout der Faktorisierungsalgebra, die mittels Fak-
torisierungshomologie erhalten wird, gegeben ist. Wir zeigen, dass diese Ab-
bildung die symmetrisch monoidale Struktur respektiert.
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Résumé

Étant donné une algèbre En, nous construisons explicitement une théorie des
champs topologiques pleinement étendue de dimension n, essentiellement donnée
par l’homologie de factorisation. D’après l’Hypothèse du Cobordisme il s’agit
de la n-TFT pleinement étendue qui correspond à l’algèbre En A, considérée
comme un objet dans une p8, nq-catégorie appropriée de Morita Algn. Nous
donnons dans un premier temps une définition précise d’une théorie des champs
topologiques pleinement étendue de dimension n en utilisant les espaces de
Segal complets n-uples comme un modèle pour les p8, nq-catégories. Pour
cela nous construisons un espace de Segal complet n-uple Bordn de bordismes
de dimension n et lui donnons une structure monöıdale symétrique. En ex-
ploitant ensuite l’équivalence, démontrée par Lurie, entre les algèbres En et les
algèbres de factorisation localement constantes, nous utilisons des algèbres de
factorisation localement constantes sur des espaces stratifiés pour construire
une p8, nq-catégorie ayant les algèbres En pour objets, les bimodules (pointés)
pour 1-morphismes, les bimodules entre bimodules pour 2-morphismes, etc...
lui donnons une structure monöıdale symétrique. Finalement, étant donné une
algèbre En, nous construisons un morphisme entre espaces de Segal n-uples
depuis Bordn vers Algn, donné par un pushforward de l’algèbre de factorisation
obtenue par l’homologie de factorisation. Nous montrons que cette construction
préserve la structure monöıdale symétrique.
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Introduction

Motivation

Topological field theories

Topological field theories (TFTs) arose as toy models for physical quantum
field theories, and have proven to be of mathematical interest, notably be-
cause they are a fruitful tool for studying topology. Inspired by Witten’s paper
[Wit82] relating supersymmetry and Morse theory, they were first axiomatized
by Atiyah in [Ati88]. An n-dimensional TFT is a symmetric monoidal functor
from the category of bordisms, which has closed pn´ 1q-dimensional manifolds
as objects and n-dimensional bordisms as morphisms, to any other symmetric
monoidal category, which classically is taken to be the category of vector spaces
or chain complexes. In particular it assigns topological invariants to closed n-
dimensional manifolds, which has turned out to be very useful in the study of
low-dimensional topology. Early results by Witten in [Wit89] showed that the
Jones polynomial of knot theory arises from the 3-dimensional Chern-Simons
theory, which is a TFT. Interesting 4-dimensional examples are Donaldson in-
variants of 4-dimensional manifolds which arise from a twisted 4-dimensional
supersymmetric gauge theory, [Wit88], and the related Seiberg-Witten invari-
ants [Wit94, SW94a, SW94b].

A classification of 1- and 2-dimensional TFTs follows from classification the-
orems for 1- and 2-dimensional compact manifolds with boundary. In the 1-
dimensional case, a 1-TFT is fully determined by its value at a point, which is a
dualizable object in the target category and conversely, every dualizable object
in the target gives rise to a 1-TFT. In the 2-dimensional case, a classification,
given by the value at a circle, was proven by Abrams in [Abr96]. The question
of a classification result for larger values of n appears naturally and raises the
question of a suitable replacement of the classification of compact n-manifolds
with boundary used in the low-dimensional cases. In [BD95], Baez and Dolan
explain the need for higher categories of cobordisms for a classification of n-
dimensional extended topological field theories. Here extended means that we
need to be able to evaluate the n-TFT not only at n- and pn´ 1q-dimensional
manifolds, but also at pn ´ 2q-,...1-, and 0-dimensional manifolds. In light of
the hope of computability of the invariants determined by an n-TFT, e.g. by

xv



xvi INTRODUCTION

a triangulation, it is natural to include this data. They conjectured that ex-
tended n-TFTs are fully determined by their value at a point, calling this the
cobordism hypothesis. A proof of a classification theorem of extended TFTs
for dimension 2 and in particular a definition of a suitable bicategory of 2-
cobordisms was given in [SP09].

In his expository manuscript [Lur09b], Lurie explained the need for p8, nq-
categories for a proof of the cobordism hypothesis in arbitrary dimension n
and gave a detailed sketch of such a proof using a suitable p8, nq-category of
cobordisms, which, informally speaking, has zero-dimensional manifolds as ob-
jects, bordisms between objects as 1-morphisms, bordisms between bordisms
as 2-morphisms, etc., and for k ą n there are only invertible k-morphisms.
Finding an explicit model for such a higher category poses one of the difficul-
ties in rigorously defining these n-dimensional TFTs, which are called “fully
extended”. His result shows that evaluation at a point gives a bijection, or
more precisely an equivalence of 8-groupoids, between (isomorphism classes
of) fully extended n-TFTs with values in a target symmetric monoidal p8, nq-
category C and (isomorphism classes of) “fully dualizable” objects in C. Thus
any fully dualizable object in the target category determines a fully extended
n-TFT. Full dualizability is a finiteness condition generalizing the condition of
being a dualizable object in the 1-dimensional case.

Factorization homology and factorization algebras

Inspired by Segal’s approach to conformal field theories in [Seg04] and Atiyah’s
axioms for TFTs mentioned above, there have been several approaches to de-
scribe (topological) quantum field theories in an axiomatic way. Factorization
homology and factorization algebras are two such approaches which were de-
veloped and studied by many people, among them Beilinson-Drinfeld, Lurie,
Francis, Costello-Gwilliam.

Factorization homology, also called topological chiral homology, was first de-
fined by Jacob Lurie in [Lur]. It is a homology theory for topological manifolds
satisfying a generalization of the Eilenberg-Steenrod axioms for ordinary ho-
mology, see [Fra12, AFT12]. The construction depends on the data of an
En-algebra in a suitable symmetric monoidal p8, 1q-category S, which is an
algebra in S for the operad En, which in turn is equivalent to the little cubes
operad in dimension n. In the case n “ 1, E1-algebras are equivalent to as-
sociative algebras up to homotopy, i.e. A8-algebras, and in the case of n “ 2,
E2-algebras in the category of categories are braided monoidal categories. In
the special case that S is the p8, 1q-category of chain complexes, any commuta-
tive differential graded algebra A is in particular also an En-algebra and it was
shown in [GTZ10] that factorization homology recovers the (higher) Hochschild
homology of A. Factorization homology for manifolds with boundary yields an
n-TFT, as was shown by Horel in [Hor14].

Factorization algebras are algebraic structures encoding the structure of the
observables of a quantum field theory (henceforth QFT), as was shown in
[CG] for perturbative QFTs. One can think of them as a multiplicative, non-
commutative version of cosheaves and they turn out to be a tool useful for
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describing well-known algebraic structures such as En-algebras ([Lur09b]) and
bimodules between algebras ([Gin]). Factorization algebras and factorization
homology are related in a local-to-global way: in [GTZ10] it was shown that
considering factorization homology locally on a given manifold M yields a fac-
torization algebra on M whose global sections are the factorization homology
of M .

Overview of the thesis

Lurie’s cobordism hypothesis gives a “recipe” for producing a fully extended
n-TFT. Namely one first needs to find a suitable target, which is a symmetric
monoidal p8, nq-category, and then one needs to pick a fully dualizable object.
However, this construction is not explicit in the sense that one might like to
be able to actually compute the values of the n-TFT. The goal of this the-
sis was to, avoiding the use of the cobordism hypothesis, explicitly construct
a family of examples of fully extended n-dimensional TFTs, which is essen-
tially given by factorization homology with coefficients in a given En-algebra
A. Under the cobordism hypothesis this fully extended n-TFT corresponds
to the En-algebra A, which is a fully dualizable object in a suitable Morita-
p8, nq-category Algn. Informally it can be thought of as a higher category
with En-algebras as objects, bimodules in En´1-algebras as 1-morphisms, bi-
modules between bimodules as 2-morphisms, etc. In fact, this p8, nq-category

is the truncation of an p8, n` 1q-category ĆAlgn whose pn` 1q-morphisms are
morphisms in S. Our construction allows to compute the topological invariants
given by the TFT by taking global sections of a factorization algebra, and the
gluing condition (locality) of the factorization algebra allows this to be com-
puted locally. This extends the excision property of factorization homology
proved by Ayala, Francis, and Tanaka in [AFT12].

The first two chapters aim to give a precise definition of a fully extended n-
dimensional topological field theory. In the third chapter we define the target
category of En-algebras and the final chapter contains the construction of the
fully extended n-TFT as a morphism of n-fold Segal spaces. We now give a
more detailed overview of the chapters.

Symmetric monoidal complete n-fold Segal spaces

First, in chapter 1 we recall the necessary tools from higher category the-
ory needed to define fully extended TFTs. We explain the model for p8, nq-
categories given by complete n-fold Segal spaces. Moreover, we give two pos-
sible definitions of symmetric monoidal structures on complete n-fold Segal
spaces, once as a Γ-object in complete n-fold Segal spaces following [TV09]
and once as a tower of suitable pn ` kq-fold Segal spaces with one object,
1-morphism,..., pk´1q-morphism for k ě 0 following the Stabilization Hypoth-
esis.

Definition of a fully extended n-TFT

Chapter 2 deals with the symmetric monoidal p8, nq-category of bordisms.
Lurie gives a formal definition of this p8, nq-category using complete n-fold
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Segal spaces, however, as we explain in section 2.3.6, this actually is not an
n-fold Segal space. In our definition 2.3.1, we propose a stronger condition on
elements in the levels of the Segal space and show that this indeed yields a
n-fold Segal space PBordn. Its completion Bordn defines an p8, nq-category
of n-cobordisms and thus is a corrigendum to Lurie’s n-fold simplicial space of
bordisms from [Lur09b].

Instead of using manifolds with corners and gluing them, Lurie’s idea was
to conversely use embedded closed (not necessarily compact) manifolds and
to specify points where they are cut into bordisms of which the embedded
manifold is a composition. Whitney’s embedding theorem ensures that every
n-dimensional manifold M can be embedded into some large enough vector
space and suitable versions for manifolds with boundary can be adapted to
obtain an embedding theorem for bordisms, see 2.5.1. Moreover, the rough idea
behind the definition of the levels of PBordn is that the pk1, . . . , knq-level of our
n-fold Segal space PBordn should be a classifying space for ki-fold composable
n-bordisms in the ith direction. Lurie’s idea was to use the fact that the space
of embeddings of M into R8 is contractible to justify the construction.

We base our construction of PBordn on a simpler complete Segal space Int
of closed intervals, which is defined in section 2.1. The closed intervals corre-
spond to places where we are allowed to cut the manifold into the bordisms it
composes. The fact that we prescribe closed intervals instead of just a point
corresponds to fixing collars of the bordisms.

In section 2.2 we study a version of a time-dependent Morse lemma which
serves as a motivation for our definition of the spatial structure of the levels
of PBordn. As we explain in 2.3.2, the spatial structure we define is almost
obtained by taking differentiable chains of the space of embeddings, but we add
the data of a semi-group of diffeomorphisms between bordisms along a simplex.
The time-dependent Morse lemma shows that this yields the same paths.

Section 2.3 is the central part of this chapter and consists of the construction
of the complete n-fold Segal space Bordn of cobordisms. It is endowed with a
symmetric monoidal structure in section 2.4, both as a Γ-object and as a tower.

In section 2.5 we show that its homotopy (bi)category is what one should
expect, namely the homotopy category of its pn´ 1q-fold looping Ln´1pBordnq
gives back the classical cobordism category nCob and the homotopy bicategory
of Bord2 is Schommer-Pries’ bicategory 2Cobext from [SP09].

Finally, in section 2.6 we consider bordism categories with additional structure
such as orientations, denoted by Bordorn , and framings, denoted by Bordfrn ,
which allows us to define fully extended n-dimensional topological field theories
in section 2.7.

The target: En-algebras

In chapter 3 we define the target of our fully extended n-TFT, namely a sym-
metric monoidal Morita-p8, nq-category Algn “ AlgnpSq of En-algebras. By
an En-algebra, we mean an En-algebra object in a suitable symmetric monoidal
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p8, 1q-category S. Main examples we will be interested in are the category of
chain complexes over a ring R, S “ ChR, or the category of (Lagrangian)
correspondences S “ pLagqCorr.

To define this as a complete n-fold Segal space, we exploit the equivalence of
p8, 1q-categories between En-algebras and locally constant factorization alge-
bras on Rn – p0, 1qn (proven by Lurie in [Lur09b]) and define the objects of
the n-fold Segal space to be locally constant factorization algebras on p0, 1qn.
Furthermore, following the observation that the data of a factorization algebra
on p0, 1q which is locally constant with respect to a stratification of the form
p0, 1q Ą tpu for any p P p0, 1q are equivalent to the data of a pointed (homo-
topy) bimodule, we model the “levels” of the n-fold Segal space as factorization
algebras on p0, 1qn which are locally constant with respect to certain stratifi-
cations. For the existence of the factorization algebras we need the following
assumption on S.

Assumption 1. Let S be a symmetric monoidal p8, 1q-category which admits
all small colimits.

As with Bordn, we base the construction on a simpler complete Segal space
Covers which we construct in section 3.1. The data given by Covers determine
the stratification with respect to which the factorization algebras are locally
constant.

Section 3.2 contains the main construction of the p8, nq-category, i.e. the n-fold

Segal space, Algn. In fact, it is the truncation of an p8, n` 1q-category ĆAlgn
given by an n-fold Segal object in Segal spaces. These Segal spaces, i.e. the
levels, are p8, 1q-categories of locally constant factorization algebras on p0, 1q
which are locally constant with respect to a stratification of a particular form.
The simplicial structure of Algn essentially comes from the simplicial structure
of the Segal space Covers and is given by the pushforward of the factorization
algebra along a suitable collapse-and-rescale map. With this definition compo-
sition in the homotopy category corresponds to sending two bimodules AMB

and BNC to their tensor product pAMBq bB pBNCq.

The fact that factorization algebras naturally lead to pointed objects has an
important consequence. Namely, it implies that, under a mild assumption on
S, the n-fold Segal space Algn is complete. This is shown in section 3.2.8. The
assumption on S needed is flatness:

Assumption 2. Let all objects in the symmetric monoidal p8, 1q-category S
be flat for the monoidal structure.

In section 3.3 we endow Algn with a symmetric monoidal structure, both as a
Γ-object and as a tower.

Finally we show in section 3.4 that the homotopy category of Alg1 is the Morita
category, whose objects are (homotopy) algebras and whose morphisms are
isomorphism classes of pointed (homotopy) bimodules.
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Construction of the fully extended n-dimensional topological
field theory

The final chapter, chapter 4 connects the two previous chapters. It contains
the construction of the fully extended n-TFT as a morphism of n-fold Segal
spaces. As we want this to essentially be given by factorization homology, we
need an extra assumption on S:

Assumption 3. Let S be a symmetric monoidal p8, 1q-category which admits

small colimits and such that for each s P S, the functor S bs
ÝÝÑ S preserves

filtered colimits and geometric realizations.

The construction of the functor proceeds in two steps: we first define an aux-
illary symmetric monoidal complete n-fold Segal space Factn of factorization
algebras on p0, 1qn in section 4.2, which, like Bordn is based on the Segal space
Int. It translates the properties of PBordfrn via a map given by factorization
homology with coefficients in a fixed En-algebra A,

ż

p´q

A : Bordfrn ÝÑ Factn,

M V ˆ p0, 1qn

p0, 1qn

ι

π ÞÝÑ π˚p
ş

M
Aq,

which is defined in section 4.3. However, this map is just a morphism of the
underlying n-fold simplicial sets as it fails to extend to the spatial structure of
the levels.

In a second step, in section 4.4, we define a map to an n-fold Segal space
FAlgn Ě Algn of factorization algebras on p0, 1qn which have certain locally
constancy properties, but do not lead to bimodules,

V : Factn ÝÑ FAlgn .

This map can be understood as “collapsing” parts of the factorization algebra
and then rescaling. It arises from a map v : Int Ñ Covers of the simpler Segal
spaces on which Factn and FAlgn are based, which determines a collapse-and-
rescale map % : p0, 1qn Ñ p0, 1qn. Then the map V is given by the pushforward
of the factorization algebra along %.

One should think of this process as collapsing the part of the factorization
algebra in which the factorization algebra might change along a path, or an
even higher simplex in Bordfrn . The global sections of this part do not change,
as the data of a higher simplex in Bordn include diffeomorphisms between
bordisms along this simplex. Following this argument we show in section 4.5
that the composition of the two constructed maps V ˝

ş

p´q
A is a morphism of

n-fold Segal spaces and its image in fact lands in Algn,

FHnpAq : PBordfrn ÝÑ Algn .
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By the universal property of the completion, this map extends to a map of
complete n-fold Segal spaces,

FHnpAq : Bordfrn ÝÑ Algn .

To conclude that FHnpAq is the desired fully extended topological field theory
we show in 4.6 that it extends to the symmetric monoidal structure for both
structures.

PBordfrn Factn FAlgn

Bordn Algn

ş

p´q V

FHnpAq

Guide to the reader

Parts of this thesis contain rather technical constructions of suitable (n-fold)
Segal spaces, so let us explain which parts can be left aside on a first reading.

The first chapter mostly contains a recollection on complete n-fold Segal spaces
as a model for p8, nq-categories. The only original part in this section is that
of the definition of a symmetric monoidal structure on an n-fold Segal space
following the Stabilization Hypothesis in subsection 1.6.2 using the notion of k-
hybrid n-fold Segal spaces, which are a suitable interpolation between complete
n-fold Segal spaces and Segal n-categories.

The second and third chapters are mostly independent of each other. In both,
one can first brush over the rather technical constructions of the underlying
simpler Segal spaces Int and Covers in sections 2.1 and 3.1 and go straight to
the main constructions of the p8, nq-categories Bordn and Algn in sections 2.3
and 3.2.

The forth chapter contains the heart of this thesis. The fully extended TFT is
constructed within this chapter.

Warning. In chapter 1 we define an p8, nq-category to be a complete n-fold
Segal space. We try to be consistent with this definition throughout the thesis,
but at times have to switch to different models for p8, nq-categories, usually
for p8, 1q-categories. We will usually state this explicitly where necessary.

Conventions. We will use the following conventions throughout this thesis.

• By space, we will mean a simplicial set. This is to distinguish the n
simplicial “directions” of the n-fold Segal space from the simplicial set
of the “levels”, which we call spatial direction. The p8, 1q-category of
spaces will be denoted by Space.

• We fix a diffeomorphism p0, 1q
χ
– R. This will endow p0, 1q with the

structure of a vector space. Whenever we write “p0, 1q – R” we will
mean this fixed diffeomorphism.
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• To simplify notation, if we write ra, bs Ď p0, 1q, we allow a “ 0 or b “ 1
and mean ra, bs X p0, 1q.

• We denote t1, . . . , nu by n.



Chapter 1

Preliminaries: symmetric monoidal
p8, nq-categories

A higher category, say, an n-category for n ě 0, has not only objects and (1-
)morphisms, but also k-morphisms between pk ´ 1q-morphisms for 1 ď k ď
n. Strict higher categories can be rigorously defined, however, most higher
categories which occur in nature are not strict. Thus, we need to weaken
some axioms and coherence between the weakenings become rather involved
to formulate explicitly. Things turn out to become somewhat easier when
using a geometric definition, in particular when furthermore allowing to have
k-morphisms for all k ě 1, which for k ě n are invertible. Such a higher
category is called an p8, nq-category. There are several models for such p8, nq-
categories, e.g. Segal n-categories (cf. [HS98]), Θn-spaces (cf. [Rez10]), and
complete n-fold Segal spaces, which all are equivalent in an appropriate sense
(cf. [Toë05, BS11]). For our purposes, the latter model turns out to be well-
suited and in this section we recall some basic facts about complete n-fold Segal
spaces as higher categories. This is not at all exhaustive, and more details can
be found in e.g. [BR13, Zha13].

1.1 The homotopy hypothesis and p8, 0q-categories

The basic hypothesis upon which higher category theory is based is the follow-
ing

Hypothesis 1.1.1 (Homotopy hypothesis). Topological spaces are models for
8-groupoids, also referred to as p8, 0q-categories.

Given a topological space X, its points are thought of as objects of the p8, 0q-
category, 1-morphisms as paths between points, 2-morphisms as homotopies
between paths, 3-morphisms as homotopies between homotopies, and so forth.
With this interpretation, it is clear that all n-morphisms are invertible up to
homotopies, which are higher morphisms.

We take this hypothesis as the basic definition.

Definition 1.1.2. An p8, 0q-category is a topological space.

1
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1.2 Complete Segal spaces as models for
p8, 1q-categories

A good overview on different models for p8, 1q-categories can be found in
[Ber10]. Here we would just like to mention one particularly simple and quite
rigid model, namely that of topologically enriched categories.

Definition 1.2.1. A topological category is a category enriched in topological
spaces (or simplicial sets, depending on the purpose).

Topological categories are discussed and used in [Lur09a, TV05]. However, for
our applications, complete Segal spaces, first introduced by Rezk in [Rez01]
as models for p8, 1q-categories, turn out to be very well-suited. We recall the
definition in this section.

1.2.1 Segal spaces

Definition 1.2.2. A (1-fold) Segal space is a simplicial space X “ X‚ which
satisfies the Segal condition, i.e. for any n,m ě 0,

Xm`n Xm

Xn X0

induced by the maps rms Ñ rm ` ns, p0 ă ¨ ¨ ¨ ă mq ÞÑ p0 ă ¨ ¨ ¨ ă mq, and
rns Ñ rm`ns, p0 ă ¨ ¨ ¨ ă nq ÞÑ pm`1 ă ¨ ¨ ¨ ă m`nq, is a homotopy pullback
square. In other words,

Xm`n ÝÑ Xm

h
ˆ
X0

Xn,

is a weak equivalence.

Defining a map of Segal spaces to be a map of the underlying simplicial spaces
gives a category of Segal spaces, SSpaces “ SSpaces1.

Remark 1.2.3. Following [Lur09b] we omit the Reedy fibrant condition which
often appears in the literature. In particular, this condition would guarantees
in particular that the canonical map

Xm ˆ
X0

Xn ÝÑ Xm

h
ˆ
X0

Xn

is a weak equivalence. This explains the different appearance of the Segal
condition.

Example 1.2.4. Let C be a small topological category, i.e. a small category
enriched over topological spaces. Then its nerve NpCq is a Segal space.
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Segal spaces as p8, 1q-categories

The above example motivates the following interpretation of Segal spaces as
models for p8, 1q-categories. If X‚ is a Segal space then we view the set of
0-simplices of the space X0 as the set of objects. For x, y P X0 we view

HomXpx, yq “ txu ˆ
h
X0

X1 ˆ
h
X0
tyu

as the p8, 0q-category, i.e. the space, of arrows from x to y. More generally, we
view Xn as the p8, 0q-category, i.e. the space, of n-tuples of composable arrows
together with a composition. Note that given an n-tuple of composable arrows,
there is a contractible space of compositions. Moreover, one can interpret paths
in the space X1 of 1-morphisms as 2-morphisms, which thus are invertible up
to homotopies, which themselves are 3-morphisms, and so forth.

Definition 1.2.5. We will later refer to the spaces Xn as the levels of the
Segal space.

1.2.2 The homotopy category of a Segal space

To a higher category one can intuitively associate an ordinary category, its ho-
motopy category, having the same objects, with morphisms being 2-isomorphism
classes of 1-morphisms. For Segal spaces, one can realize this idea as follows.

Definition 1.2.6. The homotopy category h1pXq of a Segal space X “ X‚ has
as set of objects the set of vertices of the space X0 and as morphisms between
objects x, y P X0,

Homh1pXqpx, yq “ π0 pHomXpx, yqq

“ π0

ˆ

txu
h
ˆ
X0

X1

h
ˆ
X0

tyu

˙

.

For x, y, z P X0, the following diagram induces the composition of morphisms,
as weak equivalences induce bijections on π0.

ˆ

txu
h
ˆ
X0

X1

h
ˆ
X0

tyu

˙

ˆ

ˆ

tyu
h
ˆ
X0

X1

h
ˆ
X0

tzu

˙

ÝÑ txu
h
ˆ
X0

X1

h
ˆ
X0

X1

h
ˆ
X0

tzu

»
ÐÝ txu

h
ˆ
X0

X2

h
ˆ
X0

tzu

ÝÑ txu
h
ˆ
X0

X1

h
ˆ
X0

tzu .

Example 1.2.7. Given a small (ordinary) category C, the homotopy category
of its nerve, viewed as a simplicial space with discrete levels, is equivalent to
C,

h1pNpCqq » C.

1.2.3 Complete Segal spaces

In our definition of the homotopy category h1pXq of a Segal space X “ X‚ as
well as in our interpretation of X as an p8, 1q-category, we do not seem to use
the information coming from the topology of X0. Loosely speaking, we would
like that the topology of X0 encodes the 8-groupoid of invertible 1-morphisms
in our p8, 1q-category.
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Definition 1.2.8. An element f P X1 with source and target x and y, i.e. the
two faces of f are x and y, is invertible if its image under

txuˆ
X0

X1ˆ
X0

tyu ÝÑ txu
h
ˆ
X0

X1

h
ˆ
X0

tyu ÝÑ π0

ˆ

txu
h
ˆ
X0

X1

h
ˆ
X0

tyu

˙

“ Homh1pXqpx, yq ,

is an invertible morphism in h1pXq.

Denote by Xinv
1 the subspace of invertible arrows and observe that the map

X0 Ñ X1 factors through Xinv
1 , since the image of x P X0 under X0 Ñ X1 Ñ

Homh1pXqpx, xq is idx, which is invertible.

Definition 1.2.9. A Segal space X‚ is complete if the map X0 Ñ Xinv
1 is a

weak equivalence.

Complete Segal spaces are p8, 1q-categories

Rezk explained in [Rez01] that complete Segal spaces are a good model for
p8, 1q-categories. This justifies the following definition.

Definition 1.2.10. An p8, 1q-category is a complete Segal space.

Remark 1.2.11. The completeness condition says that all invertible mor-
phisms essentially are just identities up to the choice of a path. So strictly
speaking, complete Segal spaces should be called skeletal, or, according to
[Joy], reduced p8, 1q-categories.

Completion of Segal spaces

Rezk showed in [Rez01] that Segal spaces can always be completed. He showed
that there is a completion functor which to every Segal space X associates a
complete Segal space pX together with a map iX : X Ñ pX, which is a Dwyer-
Kan equivalence, which is defined below. Moreover, pX is universal among
complete Segal spaces Y together with a map X Ñ Y .

Definition 1.2.12. An map f : X Ñ Y of Segal spaces is a Dwyer-Kan
equivalence if

1. the induced map h1pfq : h1pXq Ñ h1pY q on homotopy categories is an
equivalence of categories, and

2. for each pair of objects x, y P X0 the induced function on mapping spaces
HomXpx, yq Ñ HomY pfpxq, fpyqq is a weak equivalence.

Relative categories and the classification diagram

In this section we recall a construction due to Rezk [Rez01] which produces a
complete Segal space from a simplicial closed model category. More generally,
Barwick and Kan proved in [BK11] that this construction also gives a complete
Segal space for so-called partial model categories.



1.3. COMPLETE n-FOLD SEGAL SPACES AS MODELS FOR
p8, nq-CATEGORIES 5

Definition 1.2.13. Let pC,Wq be a relative category, i.e. a category C with
a distinguished subcategory W. Consider the simplicial object in categories
C‚ given by Cn :“ Fun

`

rns, Cq. It has a subobject CW‚ , where CWn Ă Cn is the
subcategory having the same objects and morphisms consisting only of those
from W. Taking its nerve we obtain a simplicial space NpC,Wq‚ with

NpC,Wqn “ NpCWn q

called the relative/simplicial nerve or the classification diagram.

Example 1.2.14. Let C be a small category. Then it is straightforward to see
that NpC, Iso Cq is a complete Segal space. Alternatively, if C has finite limits
and colimits, it can be made into a closed model category in which the weak
equivalences are the isomorphisms and all maps are fibrations and cofibrations.
Then the above result also shows that the classification diagram is a complete
Segal space, cf. [Rez01].

1.2.4 Segal categories

A second way to avoid the problem that in a Segal space and its homotopy
category we do not use the topology on X0 is to impose that X0 is discrete.
By this we obtain the notion of Segal categories, which are another model for
p8, 1q-categories and briefly mention here. More details and references can be
found in the above mentioned [Ber10].

Definition 1.2.15. A Segal (1-)category is a Segal space X “ X‚ such that
X0 is discrete.

(Reedy fibrant) complete Segal spaces and Segal categories are the fibrant ob-
jects of certain model categories which are Quillen equivalent. For our purposes,
complete Segal spaces turn out to be the “right” model.

1.3 Complete n-fold Segal spaces as models for
p8, nq-categories

As a model for p8, nq-categories, we will use complete n-fold Segal spaces,
which were first introduced by Barwick in his thesis and appeared prominently
in Lurie’s [Lur09b].

1.3.1 n-fold Segal spaces

An n-fold Segal space is an n-fold simplicial space with certain extra conditions.

Definition 1.3.1. An n-fold simplicial space X‚,...,‚ is essentially constant if
there is a weak homotopy equivalence of n-fold simplicial spaces Y Ñ X, where
Y is constant.

Definition 1.3.2. An n-fold Segal space is an n-fold simplicial space X “

X‚,...,‚ such that
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(i) For every 1 ď i ď n, and every k1, . . . , ki´1, ki`1, . . . , kn ě 0,

Xk1,...,ki´1,‚,ki`1,...,kn

is a Segal space.

(ii) For every 1 ď i ď n, and every k1, . . . , ki´1 ě 0,

Xk1,...,ki´1,0,‚,...,‚

is essentially constant.

Defining a map of n-fold Segal spaces to be a map of the underlying n-fold
simplicial spaces gives a category of n-fold Segal spaces, SSpacesn.

Remark 1.3.3. Alternatively, one can formulate the conditions iteratively.
First, an n-iterated Segal space is a simplicial object Y‚ in pn ´ 1q-fold Segal
spaces which satisfies the Segal condition. Then, an n-fold Segal space is an
n-iterated Segal space such that Y0 is essentially constant (as an pn ´ 1q-fold
Segal space). To get back the above definition, the ordering of the indices is
crucial: Xk1,...,kn “ pYk1qk2,...,kn .

Interpretation as higher categories

An n-fold Segal space can be thought of as a higher category in the following
way.

The first condition means that this is an n-fold category, i.e. there are n different
“directions” in which we can “compose”. An element of Xk1,...,kn should be
thought of as a composition consisting of ki composed morphisms in the ith
direction.

The second condition imposes that we indeed have a higher n-category, i.e. an
n-morphism has as source and target two pn´ 1q-morphisms which themselves
have the “same” (in the sense that they are homotopic) source and target.

For n “ 2 one can think of this second condition as “fattening” the objects in
a bicategory. A 2-morphism in a bicategory can be depicted as

ó

The top and bottom arrows are the source and target, which are 1-morphisms
between the same objects.

In a 2-fold Segal space X‚,‚, an element in X1,1 can be depicted as

X
0,0
Q

P
X

0,
0

X
0,
0
Q

P
X
0,0

ó

X1,0

P
Q

X1,0

X0,0 » X0,1 Q P X0,1 » X0,1
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The images under the source and target maps in the first direction X1,1 Ñ X1,0

are 1-morphisms which are depicted by the horizontal arrows. The images
under the source and target maps in the second direction X1,1 Ñ X0,1 are 1-
morphisms, depicted by the dashed vertical arrows, which are essentially just
identity maps, up to homotopy, since X0,1 » X0,0. Thus, here the source
and target 1-morphisms (the horizontal ones) themselves do not have the same
source and target anymore, but up to homotopy they do.

The same idea works with higher morphisms, in particular one can imagine
the corresponding diagrams for n “ 3. A 3-morphism in a tricategory can be
depicted as

V

whereas a 3-morphism, i.e. an element in X1,1,1 in a 3-fold Segal space X can
be depicted as

V

Here the dotted arrows are those in X0,1,1 » X0,0,1 » X0,0,0 and the dashed
ones are those in X1,0,1 » X1,0,0.

Thus, we should think of the set of 0-simplices of the space X0,...,0 as the
objects of our category, and elements of X1,...,1,0,...,0 as i-morphisms, where
0 ă i ď n is the number of 1’s. Pictorially, they are the i-th “horizontal”
arrows. Moreover, the other “vertical” arrows are essentially just identities of
lower morphisms. Similarly to before, paths in X1,...,1 should be thought of
as pn` 1q-morphisms, which therefore are invertible up to a homotopy, which
itself is an pn` 2q-morphism, and so forth.

1.3.2 Complete and hybrid n-fold Segal spaces

As with (1-fold) Segal spaces, so far we have not used the topology on X0.
Again, there are several ways to include its information.

Definition 1.3.4. Let X be an n-fold Segal space and 1 ď i, j ď n. It is said
to satisfy

CSSi if for every k1, . . . , ki´1 ě 0,

Xk1,...,ki´1,‚,0,...,0
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is a complete Segal space.

SCj if for every k1, . . . , kj´1 ě 0,

Xk1,...,kj´1,0,‚,...,‚

is discrete, i.e. a discrete space viewed as a constant pn´ j`1q-fold Segal
space.

Definition 1.3.5. An n-fold Segal space is

1. complete, if for every 1 ď i ď n, X satisfies (CSSi).

2. a Segal n-category if for every 1 ď j ď n, X satisfies (SCj).

3. m-hybrid for m ě 0 if condition (CSSi) is satisfied for i ą m and condi-
tion (SCj) is satisfied for j ď m.

Denote the full subcategory of SSpacesn of complete n-fold Segal spaces by
CSSpacesn.

Remark 1.3.6. Note that an n-hybrid n-fold Segal space is a Segal n-category,
while an n-fold Segal space is 0-hybrid if and only if it is complete.

For our purposes, the model of complete n-fold Segal spaces is well-suited, so
we define

Definition 1.3.7. An p8, nq-category is an n-fold complete Segal space.

Completion

In light of the iterative definition of an n-fold Segal space, i.e. viewing an n-
fold Segal space as an pn´ 1q-fold Segal space, condition (CSSi) above means
that the ith iteration is a complete Segal space object. Thus, given an n-fold
Segal space X‚,...,‚, one can apply the completion functor iteratively to obtain

a complete n-fold Segal space pX‚,...,‚, its (n-fold) completion. There is a map

X Ñ pX, the completion map, which is universal among all maps to complete
n-fold Segal spaces. Also, if an n-fold Segal space X‚,...,‚ satisfies (SCj) for
j ď m, we can apply the completion functor just to the last pn´mq indices to

obtain an m-hybrid n-fold Segal space pXm
‚,...,‚, its m-hybrid completion.

Weak equivalences

There is a model category structure on the category of simplicial spaces sSpacesn.
Since SSpacesn and CSSpacesn are full subcategories of sSpacesn, they in-
herit a subcategory of weak equivalences. One can prove that they are exactly
the Dwyer-Kan equivalences, the analogous notion to definition 1.2.12 for n “ 1.
More details can be found e.g. in [Zha13].
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1.4 The homotopy bicategory of a 2-fold Segal space

To any higher category one can intuitively associate a bicategory having the
same objects and 1-morphisms, and with 2-morphisms being 3-isomorphism
classes of the original 2-morphisms.

Definition 1.4.1. The homotopy bicategory h2pXq of a 2-fold Segal space
X “ X‚,‚ is defined as follows: objects are the points of the space X0,0 and

Homh2pXqpx, yq “ h1

`

HomXpx, yq
˘

“ h1

ˆ

txu
h
ˆ
X0,‚

X1,‚

h
ˆ
X0,‚

tyu

˙

as Hom categories. Horizontal composition is defined as follows:
ˆ

txu
h
ˆ
X0,‚

X1,‚

h
ˆ
X0,‚

tyu

˙

ˆ

ˆ

tyu
h
ˆ
X0,‚

X1,‚

h
ˆ
X0,‚

tzu

˙

ÝÑ txu
h
ˆ
X0,‚

X1,‚

h
ˆ
X0,‚

X1,‚

h
ˆ
X0,‚

tzu

Ð̃Ý txu
h
ˆ
X0,‚

X2,‚

h
ˆ
X0,‚

tzu

ÝÑ txu
h
ˆ
X0,‚

X1,‚

h
ˆ
X0,‚

tzu .

The second arrow happens to go in the wrong way but it is a weak equivalence.
Therefore after taking h1 it turns out to be an equivalence of categories, and
thus to have an inverse (assuming the axiom of choice).

1.5 Constructions of n-fold Segal spaces

We describe several intuitive constructions of p8, nq-categories in terms of
(complete) n-fold Segal spaces.

1.5.1 Truncation

Given an p8, nq-category, for k ď n its p8, kq-truncation is the p8, kq-category
obtained by discarding the non-invertible m-morphisms for k ă m ď n.

In terms of n-fold Segal spaces, there is a functor of n-fold Segal spaces sending
X “ X‚,...,‚ to its k-truncation, the k-fold Segal space

τkX “ X‚, . . . , ‚
loomoon

k times

,0, . . . , 0
loomoon

n´k times

.

Remark 1.5.1. Note that if X is m-hybrid then so is τkX by the definition
of the conditions (CSSi) and (SCj).

Warning. Truncation does not behave well with completion, i.e. the trunca-
tion of the completion is not the completion of the truncation. However, we
get a map in one direction.

τkpXq τkp pXq

{τkpXq
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In general, we do not expect this map to be an equivalence.

Thus in general one should always complete an n-fold Segal space before trun-
cating it, as

X 1,...,1
loomoon

k

,0,...,0 ãÑ X 1,...,1
loomoon

m

,0,...,0

are the invertible m-morphisms for k ă m ď n if and only if X satisfies (1.3.4)
for k ă i ď n. For example, if X “ X‚ is a (1-fold) Segal space then X0 is the
underlying 8-groupoid of invertible morphisms if and only if X is complete.

1.5.2 Extension

Any p8, nq-category can be viewed as an p8, n`1q-category with only identities
as pn` 1q-morphisms.

In terms of iterated Segal spaces, any n-fold Segal space can be viewed as a
constant simplicial object in n-fold Segal spaces, i.e. an pn`1q-fold Segal space
which is constant in the first index. Explicitly, if X‚,...,‚ is an n-fold Segal
space, then εpXq‚,...,‚ is the constant pn ` 1q-fold Segal space such that for
every k ě 0,

εpXqk,‚,...,‚ “ X‚,...,‚

with identities as face and degeneracy maps.

Lemma 1.5.2. If X is complete, then εpXq is complete.

Proof. Since X is complete, it satisfies (CSSi) for i ą 1. For i “ 0, we have to
show that εpXq‚,0,...,0 is complete. This is satisfied because

pεpXq1,0,...,0q
inv “ εpXq1,0,...,0 “ X0,...,0 “ εpXq0,0,...,0,

since morphisms between two elements x, y in the homotopy category of εpXq‚,k2,...,kn
are just connected components of the space of paths in Xk2,...,kn , and thus are
always invertible.

We call ε the extension functor, which is left adjoint to τ1. Moreover, the unit
id Ñ τ1 ˝ ε of the adjunction is the identity.

1.5.3 The higher category of morphisms and loopings

Given two objects x, y in an p8, nq-category, morphisms from x to y should
form an p8, n´1q-category. This can be realized for n-fold Segal spaces, which
is one of the main advantages of this model for p8, nq-categories.

Definition 1.5.3. Let X “ X‚,¨¨¨ ,‚ be an n-fold Segal space. As we have
seen above one should think of objects as vertices of the space X0,...,0. Let
x, y P X0,...,0. The pn´ 1q-fold Segal space of morphisms from x to y is

HomXpx, yq‚,¨¨¨ ,‚ “ txu
h
ˆ

X0,‚,¨¨¨ ,‚

X1,‚,¨¨¨ ,‚

h
ˆ

X0,‚,¨¨¨ ,‚

tyu .
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Remark 1.5.4. Note that if X is m-hybrid, then HomX‚px, yq is pm ´ 1q-
hybrid.

Example 1.5.5 (Compatibility with extension). Let X be an p8, 0q-category,
i.e. a space, viewed as an an p8, 1q-category, i.e. a constant (complete) Segal
space εpXq‚, εpXqk “ X. For any two objects x, y P εpXq0 “ X the p8, 0q-
category, i.e. the topological space, of morphisms from x to y is

HomεpXqpx, yq “ txu
h
ˆ

εpXq0

εpXq1
h
ˆ

εpXq0

tyu “ txu
h
ˆ
X
tyu “ PathXpx, yq ,

the path space in X, which coincides with what one expects by the interpreta-
tion of paths, homotopies, homotopies between homotopies, etc. being higher
invertible morphisms.

Definition 1.5.6. Let X be an n-fold Segal space, and x P X0 an object in
X. Then the looping of X at x is the pn´ 1q-fold Segal space

LpX,xq‚,...,‚ “ HomXpx, xq‚,...,‚ “ txu ˆ
h
X0,‚,...,‚

X1,‚,...,‚ ˆ
h
X0,‚,...,‚

txu.

In the following, it will often be clear at which element we are looping, e.g. if
there essentially only is one element, or at a unit for the monoidal structure.
Then we omit the x from the notation and just write

LX “ LpXq “ LpX,xq.

Note that even if there is not a unique unit, this will be independent of the
choice of unit.

We can iterate this procedure as follows.

Definition 1.5.7. Let L0pX,xq “ X. For 1 ď k ď n, let the k-fold iterated
looping be the pn´ kq-fold Segal space

LkpX,xq “ LpLk´1pX,xq, xq,

where we view x as a trivial k-morphism via the degeneracy maps, i.e. an
element in Lk´1pX,xq0...,0 Ă X1,...,1,0,...,0, with k 1’s.

Remark 1.5.8. We remark that looping commutes with taking the ordinary
or the m-hybrid completion, since completion is taken index per index.

1.6 Symmetric monoidal n-fold Segal spaces

1.6.1 as a Γ-object

Following [Toe, TV09], we define a symmetric monoidal n-fold Segal space in
analogy to so-called Γ-spaces.

Definition 1.6.1. Segal’s category Γ is the category whose objects are the
finite sets

xmy “ t0, . . . ,mu,
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for m ě 0 which are pointed at 0. Morphisms are pointed functions, i.e. for
k,m ě 0, functions

f : xmy ÝÑ xky, fp0q “ 0.

For every m ě 0, there are m canonical morphisms

γβ : xmy ÝÑ x1y, j ÞÝÑ δij

for 1 ď β ď m, called the Segal morphisms.

Remark 1.6.2. Segal’s category Γ is the skeleton of the category of finite
pointed sets.

Recall from section 1.2.3 that for a small category C with W “ Iso C or for a
partial model category C with weak equivalences W the classification diagram
NpC,Wq is a complete Segal space.

Definition 1.6.3. Let W denote the weak equivalences in pCqSSpacen. A
symmetric monoidal (complete) n-fold Segal space is a functor of p8, 1q-categories,
i.e. complete Segal spaces,

A : NpΓ, Iso Γq ÝÑ NppCqSSpacen,Wq

such that for every m ě 0, the induced map

A
`

ź

1ďβďm

γβ
˘

: Axmy ÝÑ pAx1yqm

is an equivalence of n-fold (complete) Segal spaces.

The (complete) n-fold Segal space X “ Ax1y is called the (complete) n-fold
Segal space underlying A, and by abuse of language we will sometimes call a
(complete) n-fold Segal space X symmetric monoidal, if there is a symmetric
monoidal (complete) n-fold Segal space A such that Ax1y “ X.

Remark 1.6.4. The above condition should be understood as follows. The
1-morphism

A
`

ź

1ďβďm

γβ
˘

P NppCqSSpacen,Wq1

by definition of the classification diagram is a map of n-fold (complete) Segal
spaces with source Axmy and target pAx1yqm, and require it to be a weak
equivalence. Note that in particular, for m “ 0, this implies that Ax0y is a
point, viewed as a constant n-fold Segal space.

Definition 1.6.5. There is an p8, 1q-category, i.e. a Segal space, of functors
NpΓ, Iso Γq Ñ NppCqSSpacen,Wq. It has a full sub-p8, 1q-category of sym-
metric monoidal (complete) n-fold Segal spaces. A 1-morphism in this category
is called a symmetric monoidal functor of p8, nq-categories.

Since the completion map X Ñ pX is a weak equivalence, we obtain the follow-
ing
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Lemma 1.6.6. If A : NpΓ, Iso Γq ÝÑ NpSSpacen,Wq is a symmetric monoidal
n-fold Segal space, then

pA : NpΓ, Iso Γq ÝÑ NpCSSpacen,Wq,

xmy ÞÝÑ {Axmy

is a symmetric monoidal complete n-fold Segal space.

Remark 1.6.7. In the following, all our symmetric monoidal structures will
arise from functors (of actual categories)

Γ ÝÑ SSpacen,

and our symmetric monoidal functors from (strict) natural transformations of
such. However, in the homotopy theoretic setting, one should allow our more
flexible definition above.

Remark 1.6.8. For more details on this definition and a definition of monoidal
n-fold Segal spaces, see [Zha13].

Example 1.6.9. Let A : Γ ÝÑ SSpace1 be a symmetric monoidal Segal
space. Consider the product of maps γ1ˆ γ2 and the map induced by the map
γ : x2y Ñ x1y; 1, 2 ÞÑ 1,

Ax1y ˆAx1y
»

ÐÝÝÝÝÝÝÝÝ
Apγ1qˆApγ2q

Ax2y
Apγq
ÝÑ Ax1y.

Passing to the homotopy category, we obtain a map

h1pAx1yq ˆ h1pAx1yq ÝÑ h1pAx1yq.

Toën and Vezzosi showed in [TV09] that this is a symmetric monoidal structure
on the category h1pAx1yq. Roughly speaking, this uses functoriality of A.
Associativity uses the Segal space Ax3y, Ax0y corresponds to the unit, and the
map c : x2y Ñ x2y; 1 ÞÑ 2, 2 ÞÑ 1 induces the commutativity constraint.

Example 1.6.10. Truncation and extension are symmetric monoidal of sym-
metric monoidal p8, n)-categories again are symmetric monoidal. Let A be a
symmetric monoidal n-fold Segal space. Then we can define

τkpAqxmy “ τkpAxmyq, εpAqxmy “ εpAxmyq.

Note that τk and ε are functors of n-fold Segal spaces which preserves weak
equivalences. Thus, these assignments can be extended to functors τkpAq and
εpAq, and the images of A

`
ś

1ďβďm γβ
˘

are again weak equivalence.

Example 1.6.11. For every m ě 0 there is a unique map x0y Ñ xmy, and
since Ax0y is the point as a constant (complete) n-fold Segal space, this in-
duces, for every m ě 0, a distinguished object 1xmy P Axmy. The looping
of a symmetric monoidal n-fold Segal space A with respect this object also is
symmetric monoidal, with

LpAqxmy “ LpAxmy,1xmyq,

which extends to an appropriate functor similarly to in the previous example.
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Example 1.6.12. Important examples come from the classification diagram
construction. Let C be a small symmetric monoidal category and letW “ Iso C.
As we saw in section 1.2.3, this gives a complete Segal space C‚ “ NpC,Wq.
The symmetric monoidal structure of C endows C‚ with the structure of a
symmetric monoidal complete Segal space:

First note that Wˆm “ IsopCˆmq for every m. On objects, let A : Γ ÝÑ

CSSpace1 be given by Axmy “ NpCˆm,Wˆmq‚. We explain the image of the
map x2y Ñ x1y; 1, 2 ÞÑ 1, which should be a map Ax2y Ñ Ax1y. The image of
an arbitrary map xmy Ñ xly can be defined analogously.

An l-simplex in Ax2y 0 “ NpC ˆ C,W ˆWq0 is a pair

C0
w1
ÝÝÑ ¨ ¨ ¨

wl
ÝÑ Cl, D0

w11
ÝÝÑ ¨ ¨ ¨

w1l
ÝÑ Dl,

and is sent to

C0 bD0
w21
ÝÝÑ . . .

w2l
ÝÝÑ Cl bDl,

where w2i : Ci´1 bDi´1

wibidDi´1
ÝÝÝÝÝÝÝÑ Ci bDi´1

idCibw
1
i

ÝÝÝÝÝÑ Ci bDi is in W. More
generally, an l-simplex in

Ax2yk “ NpC ˆ C,W ˆWqk

is a pair of diagrams

C0,0 C1,0 . . . Ck,0 D0,0 D1,0 . . . Dk,0

C0,1 C1,1 . . . Ck,1 D0,1 D1,1 . . . Dk,1

...
...

...
...

...
...

C0,l C1,l . . . Ck,l D0,l D1,l . . . Dk,l

f10

w01

f20

w11

fk0

wk1

g10

v01

g20

v11

gk0

vk1

f11

w02

f21

w21

fk1

wk2

g11

v02

g21

v21

gk1

vk2

w0l w1l wkl v0l v1l vkl

f1l f2l fk,l g1l g2l gk,l

which is sent to the diagram

C0,0 bD0,0 C1,0 bD1,0 . . .

C0,1 bD0,1 C1,1 bD1,1 . . .

...
...

f10bg10 f20bg20

f11bg11 f21bg21

where the vertical maps are defined as for the objects.
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Finally, we need to check that A
`
ś

1ďβďm γβ
˘

is a weak equivalence. This
follows from the fact that

pAxmyqk “ NpCˆm,Wˆmqk “
`

NpC,Wqk
˘ˆm

“
`

Ax1yk
˘m
.

Remark 1.6.13. If we start with a symmetric monoidal relative category
pC,Wq (a definition can e.g. be found in [Cam14]) such that all NpCˆm,Wˆmq

are (complete) Segal spaces, then the above construction for pC,Wq yields a
symmetric monoidal (complete) Segal space NpC,Wq.

1.6.2 Symmetric monoidal n-fold Segal spaces as a tower of
pn` iq-fold Segal spaces

Our motivation for the following definition of a (k-)monoidal complete n-fold
Segal space comes from the Delooping Hypothesis, which is inspired by the
fact that a monoidal category can be seen as a bicategory with just one object.
Similarly, a k-monoidal n-category should be a pk`nq-category (whatever that
is) with only one object, one 1-morphism, one 2-morphism, and so on up to
one pk ´ 1q-morphism.

Hypothesis 1.6.14 (Delooping Hypothesis). k-monoidal p8, nq-categories can
be identified with pk´jq-monoidal, pj´1q-simply connected p8, n`jq-categories
for any 0 ď j ď k, where pj´ 1q-simply connected means that any two parallel
i-morphisms are equivalent for i ă j. In particular, monoidal p8, nq-categories
can be identified with p8, n` 1q-categories with (essentially) one object.

Monoidal n-fold complete Segal spaces

We use the last statement in the delooping hypothesis as the motivation for
the following definition. However, first we need to explain what “having (es-
sentially) one object” means.

Definition 1.6.15. An n-fold Segal space X is called pointed or 0-connected,
if

X0,‚,...,‚,

is weakly equivalent to the point viewed as a constant n-fold Segal space.

Definition 1.6.16. A monoidal complete n-fold Segal space is a 1-hybrid pn`
1q-fold Segal space Xp1q which is pointed. We say that this endows the n-fold
complete Segal space

X “ LpXp1q, ˚q

with a monoidal structure and that Xp1q is a delooping of X.

Remark 1.6.17. Note that as Xp1q is 1-hybrid, X
p1q
0,‚,...,‚ is discrete. Thus,

to be pointed implies that X
p1q
0,‚,...,‚ is equal to the point viewed as a constant

n-fold Segal space.

Without the completeness condition, we could define a monoidal n-fold Segal
space as an pn` 1q-fold Segal space Xp1q which is pointed. Then LpXp1q, ˚q “
HomXp1qp˚, ˚q is independent of the choice of point ˚ P X0,...,0 and we can
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say that this endows the n-fold Segal space X “ LpXp1qq “ LpXp1q, ˚q with a
monoidal structure.

However, a complete Segal space will not have a contractible space as X0,...,0.
Thus, we need to introduce a model for p8, n ` kq-categories which can have
a point as the set of objects, 1-morphisms, et cetera, which motivates our use
of hybrid Segal spaces.

Remark 1.6.18. Let X be an m-hybrid n-fold Segal space with m ą 0 which
is pointed. Then X0,‚,...,‚ “ ˚, and the looping is

LpXq‚,...,‚ “ t˚u
h
ˆ
˚
X1,‚,...,‚

h
ˆ
˚
t˚u “ X1,‚,...,‚.

A similar definition works for hybrid Segal spaces.

Definition 1.6.19. A monoidal m-hybrid n-fold Segal space is an pm ` 1q-
hybrid pn`1q-fold Segal space Xp1q which is pointed. We say that this endows
the m-hybrid n-fold Segal space

X “ LpXp1qq

with a monoidal structure and that Xp1q is a delooping of X.

Example 1.6.20. Let C be a small monoidal category and let W “ Iso C. As
we saw in section 1.2.3, this gives a complete Segal space C‚ “ NpC,Wq. The
monoidal structure of C endows C‚ with the structure of a monoidal complete
Segal space:

Let Cm,n “ Cbmn be the category which has objects of the form

C01 b ¨ ¨ ¨ b C0m ¨ ¨ ¨ Cn0 b ¨ ¨ ¨ b Cnm
c1 cn

and morphisms of the form

C01 b ¨ ¨ ¨ b C0m ¨ ¨ ¨ Cn0 b ¨ ¨ ¨ b Cnm

D01 b ¨ ¨ ¨ bD0m ¨ ¨ ¨ Dn0 b ¨ ¨ ¨ bDnm,

c1

f0

cn

fn

d1 dn

where c1, . . . , cn, d1, . . . , dn, and f0, . . . , fn are morphisms in C.

Consider its subcategory CWm,n Ă Cm,n which has the same objects, and vertical
morphisms involving only the ones in W “ Iso C, i.e. f0, . . . , fn are morphisms
in W.

Now let
Cp1qm,n “ NpCWm,nq,

the (ordinary) nerve. By a direct verification one sees that the collection Cp1q‚,‚
is a 2-fold Segal space. Moreover,
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1. Cp1q0,n “ NpCb0
n q “ ˚, so Cp1q0,‚ is discrete and equal to the point viewed as a

constant Segal space, and

2. for every m ě 0, Cp1qm,‚ “ NpCWm,‚q “ NppCbm‚ qWq, which is a complete
Segal space.

Summarizing, Cp1q is a 1-hybrid 2-fold Segal space which is pointed and endows
LpCp1qq‚ “ C‚ with the structure of a monoidal complete Segal space.

k-monoidal n-fold complete Segal spaces

To encode braided or symmetric monoidal structures, we can push this defini-
tion even further.

Definition 1.6.21. An n-fold Segal space X is called j-connected if for every
i ă j,

X 1,...,1,
loomoon

i

0,‚,...,‚

is weakly equivalent to the point viewed as a constant n-fold Segal space.

Definition 1.6.22. A k-monoidal m-hybrid n-fold Segal space is an pm` kq-
hybrid pn ` kq-fold Segal space Xpkq which is pj ´ 1q-connected for every 0 ă
j ď k.

Remark 1.6.23. Note that as Xpkq is pm ` kq-hybrid, X
pkq
1,...,1,
loomoon

i

0,‚,...,‚ is dis-

crete. Thus, to be pj´1q-connected implies that X
pkq
1,...,1,
loomoon

i

0,‚,...,‚ is equal to the

point viewed as a constant pn´ i` 1q-fold Segal space.

By the following proposition this definition satisfies the delooping hypothesis.
In practice this allows to define a k-monoidal n-fold complete Segal space step-
by-step by defining a tower of monoidal i-hybrid pn ` iq-fold Segal spaces for
0 ď i ă k.

Proposition 1.6.24. The data of a k-monoidal n-fold complete Segal space is
the same as a tower of monoidal i-hybrid pn ` iq-fold Segal spaces Xpi`1q for
0 ď i ă k together with weak equivalences

Xpjq » LpXpj`1qq

for every 0 ď j ă k ´ 1.

Remark 1.6.25. We say that these equivalent data endow the complete n-fold
Segal space

X “ Xp0q » LpXp1qq

with a k-monoidal structure. The pn` i` 1q-fold Segal space Xpi`1q is called
an i-fold delooping of X.

Before we prove this proposition, we need some lemmas:
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Lemma 1.6.26. If X is a k-monoidal m-hybrid n-fold Segal space, and 0 ď
l ď k, then X is also an l-monoidal pm ` k ´ lq-hybrid pn ` k ´ lq-fold Segal
space.

Proof. Since X is a k-monoidal m-hybrid n-fold Segal space, X is a pm ` kq-
hybrid pn` kq-fold Segal space such that for every 0 ď i ă k,

X 1,...,1,
loomoon

i

0,...,0 “ ˚,

so in particular, this also holds for 0 ď i ă l.

Lemma 1.6.27. Let X be a k-monoidal m-hybrid n-fold Segal space. Then
HomXp˚, ˚q is a pk ´ 1q-monoidal pm´ 1q-hybrid n-fold Segal space.

Proof. This follows from

pHomXp˚, ˚qq‚,...,‚ “ t˚u ˆ
h
X0,‚,...,‚

X1,‚,...,‚ ˆ
h
X0,‚,...,‚

t˚u “ X1,‚,...,‚,

since X0,‚,...,‚ is a point.

Proof of Proposition 1.6.24. LetX be a k-monoidal n-fold complete Segal space.
By Lemma 1.6.26 Xpkq “ X is a monoidal pk´ 1q-hybrid pn`k´ 1q-fold Segal
space.

Now let Xpk´1q “ LpXpkqq. By Lemmas 1.6.27 and 1.6.26, this is a monoidal
pk ´ 2q-hybrid pn` k ´ 2q-fold Segal space.

Inductively, define Xpiq “ LpXpi`1qq for 1 ď i ď k ´ 1. Similarly to above, by
Lemmas 1.6.27 and 1.6.26, this is a monoidal pi ´ 1q-hybrid pn ` i ´ 1q-fold
Segal space.

Conversely, assume we are given a tower Xpiq as in the proposition. Since
X “ Xpkq is a monoidal pk ´ 1q-hybrid pn` k ´ 1q-fold Segal space,

X0,‚,...,‚ “ X
pkq
0,‚,...,‚ “ ˚. (1.1)

Since Xpk´1q is a monoidal pk ´ 2q-hybrid pn` k ´ 2q-fold Segal space and by
(1.1),

X1,0,‚,...,‚ “ X
pkq
1,0,‚,...,‚ “ t˚u ˆ

h

X
pkq
0,0,‚,...,‚

X
pkq
1,0,‚,...,‚ ˆ

h

X
pkq
0,0,‚,...,‚

t˚u

“

´

Hom
pkq
X p˚, ˚q

¯

0,‚,...,‚

» X
pk´1q
0,‚,...,‚ “ ˚.

(1.2)

Since Xpkq is k-hybrid, X1,0,‚,...,‚ is discrete and so X1,0,‚,...,‚ “ ˚.
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Inductively, for 0 ď i ă k, since Xpk´iq is a monoidal pk ´ i ´ 1q-hybrid
pn` k ´ i´ 1q-fold Segal space and by (1.1), (1.2),. . .

X 1,...,1,
loomoon

i

0,‚,...,‚ “ X
pkq
1,...,1,
loomoon

i

0,‚,...,‚

“ t˚u ˆh
X
pkq
0, 1,...,1,
loomoon

i´1

0,‚,...,‚

X
pkq
1,...,1,
loomoon

i

0,‚,...,‚ ˆ
h

X
pkq
0, 1,...,1,
loomoon

i´1

0,‚,...,‚

t˚u

“

´

Hom
pkq
X p˚, ˚q

¯

1,...,1,
loomoon

i´1

0,‚,...,‚

» X
pk´1q
1,...,1,
loomoon

i´1

0,‚,...,‚ “ . . . » X
pk´iq
0,‚,...,‚ “ ˚.

Again, sinceXpkq is k-hybrid, X 1,...,1,
loomoon

i

0,‚,...,‚ is discrete and soX 1,...,1,
loomoon

i

0,‚,...,‚ “

˚.

Symmetric monoidal n-fold complete Segal spaces

The Stabilization Hypothesis, first formulated in [BD95], states that an p8, nq-
category which is monoidal of a sufficiently high degree cannot be made “more
monoidal”, and thus it makes sense to call it symmetric monoidal.

Hypothesis 1.6.28 (Stabilization Hypothesis). For k ě n ` 2, a k-monoidal
p8, nq-category is the same thing as an pn` 2q-monoidal p8, nq-category.

Thus, in light of Proposition 1.6.24, the following definition implements the
Stabilization Hypothesis.

Definition 1.6.29. A symmetric monoidal structure on a complete n-fold Se-
gal space X is a tower of monoidal i-hybrid pn` iq-fold Segal spaces Xpi`1q for
i ě 0 such that if we set X “ Xp0q, for every i ě 0,

Xpiq » LpXpi`1qq.





Chapter 2

The p8, nq-category of cobordisms

To rigorously define fully extended topological field theories we need a suitable
p8, nq-category of cobordisms, which, informally speaking, has zero-dimensional
manifolds as objects, bordisms between objects as 1-morphisms, bordisms be-
tween bordisms as 2-morphisms, etc., and for k ą n there are only invertible
k-morphisms. Finding an explicit model for such a higher category, i.e. defining
a complete n-fold Segal space of bordisms, is the main goal of this chapter. We
endow it with a symmetric monoidal structure and also consider bordism cat-
egories with additional structure, e.g. orientations and framings, which allows
us, in section 2.7, to rigorously define fully extended topological field theories.

2.1 The n-fold Segal space of closed intervals in p0, 1q

In this section we define a Segal space Int‚ of closed intervals in p0, 1q which
will form the basis of the n-fold Segal space of cobordisms. First we define
the sets of vertices, i.e. of 0-simplices, of the levels. Then we define the spatial
structure of the levels. Next we endow the collection of sets pIntkqk with a
simplicial structure which we then extend to the l-simplices of the levels in
a compatible way, giving the simplicial structure. Finally, we show that this
construction yields a Segal space.

Definition 2.1.1. For an integer k ě 0 let

Intk “ tI0 ď ¨ ¨ ¨ ď Iku

be the set consisting of ordered pk ` 1q-tuples of intervals Ij Ď p0, 1q with
left endpoints aj and right endpoints bj such that Ij has non-empty interior,
is closed in p0, 1q, and a0 “ 0, bk “ 1. By “ordered” we mean that the left
endpoints, denoted by aj , and the right endpoints, denoted by bj , are ordered.

2.1.1 The spatial structure of the levels Intk

The l-simplices of the space Intk

An l-simplex of Intk consists of

21
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1. a smooth family of underlying 0-simplices, i.e. for every s P |∆l|,

pI0psq ď ¨ ¨ ¨ ď Ikpsqq P Intk,

depending smoothly on s;

2. a rescaling datum, which is a smooth family of strictly monotonically
increasing diffeomorphisms

pϕs,t : p0, 1q Ñ p0, 1qqs,tP|∆l|

such that

a) ϕs,s “ id, ϕt,u ˝ ϕs,t “ ϕs,u, and

b) for 0 ď j ă k such that for every s P |∆l| the intersection Ijpsq X
Ij`1psq is empty or for every s P ∆l the intersection Ijpsq X Ij`1psq
contains only one element, we require

bjpsq
ϕs,t
ÞÝÝÑ bjptq, aj`1psq

ϕs,t
ÞÝÝÑ aj`1ptq;

s

t

10

ϕ0,1

ϕs,t

10 b0p0q

b0p1q

a1p0q

a1p1q

b1p0q

b1p1q

a2p0q

a2p1q

b2p0q

b2p1q

a3p0q

a3p1q

Remark 2.1.2. Note that in particular for l “ 0 an l-simplex in this sense is
an underlying 0-simplex together with ϕs,s “ id : p0, 1q Ñ p0, 1q, so, by abuse
of language we call both a 0-simplex.

The space Intk

The spatial structure arises similarly to that of the singular set of a topological
space.

Fix k ě 0 and let f : rms Ñ rls be a morphism in the simplex category ∆, i.e. a
(weakly) order-preserving map. Then let |f | : |∆m| Ñ |∆l| be the induced map
between standard simplices and let f∆ be the map sending an l-simplex in Intk
given by

pI0psq ď ¨ ¨ ¨ ď IkpsqqsP|∆l|,
`

ϕs,t : p0, 1q Ñ p0, 1q
˘

s,tP|∆l|
,

to the m-simplex in Intk given by

I0p|f |psqq ď . . . ď Ikp|f |psqqsP|∆m|,
`

ϕ|f |psq,|f |ptq : p0, 1q ÝÑ p0, 1q
˘

s,tP|∆m|
.

This gives a functor ∆op Ñ Set and thus we have the following
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Lemma 2.1.3. Intk is a space, i.e. a simplicial set.

Notation 2.1.4. We denote the spatial face and degeneracy maps of Intk by
d∆
j and s∆

j for 0 ď j ď l.

We will need the following lemma later for the Segal condition.

Lemma 2.1.5. Each level Intk is contractible.

Proof. For every k ě 0, consider the composition of degeneracy maps, which
is the inclusion of the point pp0, 1q ď ¨ ¨ ¨ ď p0, 1qq P Intk. A deformation
retraction of Intk onto its image is given by

ppI0 ď ¨ ¨ ¨ ď Ikq, sq ÞÝÑ pI0psq ď ¨ ¨ ¨ ď Ikpsqq,

where ajpsq “ p1 ´ sqaj , bjpsq “ p1 ´ sqbj ` s for s P r0, 1s. Thus, Intk is
contractible.

2.1.2 The simplicial set Int‚

In this subsection, the collection of sets Intk is endowed with a simplicial struc-
ture by extending the assignment

rks ÞÝÑ Intk

to a functor from ∆op.

Let f : rms Ñ rks be a morphism in the simplex category ∆, i.e. a (weakly)
order-preserving map. Then, let

Intk
f˚

ÝÑ Intm,

I0 ď ¨ ¨ ¨ ď Ik ÞÝÑ ρf pIfp0q ď ¨ ¨ ¨ ď Ifpmqq,

where the rescaling map ρf is the unique affine transformation RÑ R sending
afp0q to 0 and bfpmq to 1.

Lemma 2.1.6. The collection of sets pIntkqk is a simplicial set.

Proof. Given two maps rms
f
Ñ rks

g
Ñ rps, and I0 ď ¨ ¨ ¨ ď Ip, the rescaling

map ρg˝f and the composition of the rescaling maps ρg ˝ ρf both send ag˝fp0q
to 0 and bg˝fppq to 1 and, since affine transformations R Ñ R are uniquely
determined by the image of two points, this implies that they coincide. Thus,
this gives a functor ∆op Ñ Set.

Notation 2.1.7. We denote the (simplicial) face and degeneracy maps by
dj : Intk Ñ Intk´1 and sj : Intk Ñ Intk`1 for 0 ď j ď k.

Explicitly, they are given by the following formulas. The jth degeneracy map
is given by inserting the jth interval twice,

Intk
sj
ÝÑ Intk`1,

I0 ď ¨ ¨ ¨ ď Ik ÞÝÑ I0 ď ¨ ¨ ¨ ď Ij ď Ij ď ¨ ¨ ¨ ď Ik.
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The jth face map is given by deleting the jth interval and, for j “ 0, k, by
rescaling the rest linearly to p0, 1q. For j “ 0, the rescaling map is the affine
map ρ0 sending pa1, 1q to p0, 1q, ρ0pxq “

x´a1
1´a1

and for j “ k, it is the affine
map ρk : p0, bk´1q Ñ p0, 1q, ρkpxq “

x
bk´1

. Explicitly,

Intk
dj
ÝÑ Intk´1,

I0 ď ¨ ¨ ¨ ď Ik ÞÝÑ

$

’

&

’

%

I0 ď ¨ ¨ ¨ ď Îj ď ¨ ¨ ¨ ď Ik, j ‰ 0, k,

p0, b1´a11´a1
s ď ¨ ¨ ¨ ď r

ak´a1
1´a1

, 1q, j “ 0,

p0, b0
bk´1

s ď ¨ ¨ ¨ ď r
ak´1

bk´1
, 1q, j “ k.

2.1.3 The Segal space Int‚

The simplicial space Int‚

We first extend the assignment f ÞÑ pf˚ : Intk Ñ Intmq to l-simplices in a
compatible way. Essentially, f˚ arises from applying f˚ to each of 0-simplices
underlying the l-simplex.

Let f : rms Ñ rks be a morphism in the simplex category ∆, i.e. a (weakly)
order-preserving map.

Recall that given pI0 ď ¨ ¨ ¨ ď Ikq P Intk we have an affine rescaling map
ρf : R Ñ R which sends afp0q to 0 and bfpmq to 1. Given a smooth family
pI0psq ď ¨ ¨ ¨ ď IkpsqqsP|∆l|, denote by ρf psq the rescaling map associated to
the sth underlying 0-simplex pI0psq ď ¨ ¨ ¨ ď Ikpsqq. Moreover, denote by
Djpsq “ pafp0qpsq, bfpmqpsqq.

Let f˚ send an l-simplex of Intk

pI1psq ď ¨ ¨ ¨ ď IkpsqqsP|∆l| pϕs,tqs,tP|∆l|

to the following l-simplex of Intm.

1. The underlying 0-simplices of the image are the images of the underlying
0-simplices under f˚, i.e. for s P |∆l|,

f˚ pI0psq ď ¨ ¨ ¨ ď Ikpsqq ;

2. its rescaling data is

f˚pϕs,tq “ ρf ptq ˝ ϕs,t|Djpsq ˝ ρf psq
´1 : p0, 1qn Ñ p0, 1qn.

Using the fact that the rescaling maps behave functorially, we obtain the fol-
lowing lemma.

Lemma 2.1.8. The collection of spaces pIntkqk is a simplicial space.
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The complete Segal space Int‚

Proposition 2.1.9. Int‚ is a complete Segal space.

Proof. We have seen in lemma 2.1.5 that every Intk is contractible. This ensures
the Segal condition, namely that

Intk
»
ÝÑ Int1

h
ˆ

Int0
¨ ¨ ¨

h
ˆ

Int0
Int1,

and completeness.

Definition 2.1.10. Let

Intn‚,...,‚ “ pInt‚q
ˆn.

Lemma 2.1.11. The n-fold simplicial space Intn‚,...,‚ is a complete n-fold Segal
space.

Proof. The Segal condition and completeness follow from the Segal condition
and completeness for Int‚. Since every Intk is contractible by lemma 2.1.5,
pInt‚q

ˆn satisfies essential constancy, so Intn is an n-fold Segal space.

2.2 A time-dependent Morse lemma

2.2.1 The classical Morse lemma

The following theorem is classical Morse lemma, as can be found e.g. in [Mil63].

Theorem 2.2.1 (Morse lemma). Let f be a smooth proper real-valued function
on a manifold M . Let a ă b and suppose that the interval ra, bs contains no
critical values of f . Then Ma “ f´1pp´8, asq is diffeomorphic to M b “

f´1pp´8, bsq.

We repeat the proof here since later on in this section we will adapt it to the
situation we need.

Proof. Choose a metric on M , and consider the vector field

V “
∇yf
|∇yf |2

,

where ∇y is the gradient on M . Since f has no critical value in ra, bs, V is
defined in f´1ppa´ε, b`εqq, for suitable ε. Choose a smooth function g : RÑ R
which is 1 on pa´ ε

2 , b`
ε
2 q and compactly supported in pa´ ε, b` εq. Extend

g to a function g : M Ñ R by setting gpyq “ gpfpyqq. Then

V “ g
∇yf
|∇yf |2
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is a compactly supported vector field on M and hence generates a 1-parameter
group of diffeomorphisms

ψt : M ÝÑM.

Viewing f ´ pa ` tq as a function on R ˆM , pt, yq ÞÑ fpyq ´ pa ` tq, we find
that in f´1ppa´ ε

2 , b`
ε
2 qq,

Btpf ´ pa` tqq “ 1 “
∇yf
|∇yf |2

¨ pf ´ pa` tqq “ V ¨ pf ´ pa` tqq,

and so the flow preserves the set

tpt, yq : fpyq “ a` tu.

Thus, the diffeomorphism ψb´a restricts to a diffeomorphism

ψb´a|Ma : Ma ÝÑM b.

2.2.2 The time-dependent Morse lemma

In Lemma 3.1 in [GWW] Gay, Wehrheim, and Woodward prove a time-dependent
Morse lemma which shows that a smooth family of composed cobordisms in
their (ordinary) category of (connected) cobordisms gives rise to a diffeomor-
phism which intertwines with the cobordisms. We adapt this lemma to a vari-
ant which will be suitable for our situation in the higher categorical setting.

Proposition 2.2.2. Let M be a smooth manifold and let pfs : M Ñ p0, 1qqsPr0,1s
be a smooth family of smooth functions which give rise to a smooth proper func-
tion f : N “ r0, 1s ˆM Ñ p0, 1q. Let pI0psq ď ¨ ¨ ¨ ď IkpsqqsPr0,1s be a smooth
family of closed intervals in p0, 1q such that for every s P r0, 1s, the function fs
has no critical value in I0psqY¨ ¨ ¨YIkpsq. Then there is a rescaling datum pϕs,t :
p0, 1q Ñ p0, 1qqs,tPr0,1s which makes pI0psq ď ¨ ¨ ¨ ď IkpsqqsPr0,1s into a 1-simplex
in Intk, and a smooth family of diffeomorphisms pψs,t : M Ñ Mqs,tPr0,1s such
that for

tjpsq P Ijpsq : ϕs,tptjpsqq P Ijptq, and
tlpsq P Ilpsq : ϕs,tptlpsqq P Ilptq,

ψs,t restricts to diffeomorphisms

ψs,t|f´1
s prtj ,tlsq

: f´1
s prtj , tlsq ÝÑ f´1

t prϕs,tptjq, ϕs,tptlqsq.

Proof. The main strategy of the proof is the same as for the classical Morse
lemma. Namely, we will construct a suitable vector field whose flow gives the
desired diffeomorphisms.

Step 1: disjoint intervals

First assume that for all 0 ď j ď k and for every s P r0, 1s we have

Ijpsq X Ij`1psq “ H.
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Fix a metric on M . Denote the endpoints of the intervals by ajpsq, bjpsq as
before, which yield smooth functions aj , bj : r0, 1s Ñ p0, 1q, and let

Aj “
ď

sPr0,1s

tsu ˆ f´1
s pajpsqq, Bj “

ď

sPr0,1s

tsu ˆ f´1
s pbjpsqq.

Now for 0 ď j ď k consider the vector fields

Vj “

ˆ

Bs, Bspajpsq ´ fsq
∇yfs
|∇yfs|2

˙

, Wj “

ˆ

Bs, Bspbjpsq ´ fsq
∇yfs
|∇yfs|2

˙

,

where ∇y is the gradient on M . Since fs has no critical value in Ijpsq, the
vector fields Vj and Wj are defined on f´1pUjq, where Uj is a neighborhood of
Ť

sPr0,1stsu ˆ Ijpsq. Moreover, viewing aj : ps, yq ÞÑ ajpsq as a function on N ,

Vjpf´ajq “ Bspf´ajq`Bspaj´fq
∇yf
|∇yf |2

pf´ajq “ Bspf´ajq`Bspaj´fq “ 0,

So the the vector field Vj is tangent to Aj and similarly, Wj is tangent to Bj .

We would now like to construct a vector field V on N which for every 0 ď j ď k,
at Aj restricts to Vj and at Bj restricts to Wj , and such that there exists a
family of functions

`

cx : r0, 1s Ñ p0, 1q
˘

xPIjp0q
such that

- cxp0q “ x, cxpsq P Ijpsq,

- the graphs of cx for varying x partition
Ť

sPr0,1stsu ˆ rajpsq, bjpsqs, and

- V is tangent to Cx “
Ť

sPr0,1stsu ˆ f
´1
s pcxpsqq.

We will use cx to define ϕ0,spxq “ cxpsq and ϕs,t “ ϕ0,t ˝ ϕ
´1
0,s. Moreover, the

diffeomorphisms ψs,t will arise as the flow along V.

Fix smooth functions gj , hj : r0, 1s ˆ p0, 1q Ñ R which satisfy the following
conditions:

1. gj , hj are compactly supported in Uj ,

2. gj “ 1 in a neighborhood of graph aj “ tps, ajpsqq : s P r0, 1su,
hj “ 1 in a neighborhood of graph bj

3. gj ` hj “ 1 in
Ť

sPr0,1stsu ˆ Ijpsq, and the supports of the gj ` hj are
disjoint.

By abuse of notation, extend the functions gj , hj to functions gj , hj : N “

r0, 1s ˆM Ñ R by setting gjps, yq :“ gjps, fspyqq. Then consider the following
vector field on N :

Vj “
ˆ

Bs, pgjBspajq ` hjBspbjq ´ Bspfqq
∇yf
|∇yf |2

˙
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This vector field is supported on the support of gj ` hj and thus extends to
a vector field on N . Note that for ps, yq P Aj , Vjps, yq “ Vjps, yq, and for
ps, yq P Bj , Vjps, yq “Wjps, yq.

Now let V be the vector field on N constructed by combining the above vector
fields as follows:

V “

˜

Bs,
ÿ

0ďjďk

pgjBspajq ` hjBspbjq ´ Bspfqq
∇yfs
|∇yfs|2

¸

.

Note that in
Ť

sPr0,1stsu ˆ f
´1
s pIjpsqq, it restricts to Vj .

In order for V to be tangent to Cx, the functions cx must satisfy the following
equation at points in Cx.

0
!
“ Vjpf ´ cxq

“ Bspf ´ cxq ` pgjBspajq ` hjBspbjq ´ Bspfqq
∇f
|∇f |2

pf ´ cxq

“ ´Bspcxq ` gjBspajq ` hjBspbjq.

This leads to the ordinary differential equation with smooth coefficients on
r0, 1s,

Bspcxqpsq “ gjps, cxpsqqBspajqpsq ` hjps, cxpsqqBspbjqpsq,

cxp0q “ x.

By Picard-Lindelöf, it has a unique a priori local solution. To see that it extends
to s P r0, 1s, consider the smooth function F : N Ñ r0, 1s ˆ p0, 1q, F ps, yq “
ps, fps, yqq “ ps, fspyqq. Since f is proper, so is F . Moreover, Cx “ F´1pgraph cxq.
For fixed x, we can show that Cx lies in a compact part of N “ r0, 1s ˆM
similarly to the argument given in example 2.3.2, and thus the local solution
exists for all s P r0, 1s.

We now define our rescaling data essentially by following the curve cx. Ex-
plicitly, let ϕ0,s : p0, 1q Ñ p0, 1q be defined on rajp0q, bjp0qs by sending x0 to
cx0
psq. Note that by construction, it sends ajp0q, bjp0q to ajpsq, bjpsq. Since the

solution cx of the ODE varies smoothly with respect to the initial value x this
map is a diffeomorphism. So we can define ϕs,t : p0, 1q Ñ p0, 1q on rajpsq, bjpsqs
by sending xs “ cx0

psq to cx0
ptq. We extend ϕs,t to a diffeomorphism in be-

tween these intervals in the following way. Let g̃j , h̃j : rbjp0q, aj`1p0qs Ñ R
be a partition of unity such that g̃j is strictly decreasing, g̃jpbjpsqq “ 1, and

h̃jpaj`1psqq “ 1. Then, for x0 P rbjp0q, aj`1p0qs set

cx0
psq “ g̃jpx0qcbjp0qpsq ` h̃jpx0qcaj`1p0qpsq and ϕs,tpcx0

psqq “ cx0
ptq.

As mentioned above, we obtain the diffeomorphisms ψs,t by flowing along the
vector field V. Since V is tangent to the sets Cx “

Ť

sPr0,1stsuˆ f
´1
s pcxpsqq for

x P I0p0qY¨ ¨ ¨YIkp0q, the flow preserves Cx, and
Ť

sPr0,1stsuˆf
´1
s prbjpsq, aj`1psqsq

in between. Again, this implies that the flow exists for all s P r0, 1s. It is of
the form Ψpt´ s, ps, yqq “ pt, ψs,tpyqq for 0 ď s ď t ď 1, where pψs,tqs,tPr0,1s is
a family of diffeomorphisms and intertwines with the composed bordisms with
respect to the rescaling data ϕs,t.
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Step 2: common endpoints

Now consider the case that for 0 ď j ď k we have that either for every s P r0, 1s,
Ijpsq X Ij`1psq “ H as in the previous case or for every s P r0, 1s we have

|Ijpsq X Ij`1psq| “ 1.

In this case, one can modify the above argument. We explain for the case of
two intervals with one common endpoint, i.e. bjpsq “ aj`1psq.

Instead of choosing smooth functions gj , hj , gj`1, hj`1 : r0, 1sˆp0, 1q Ñ R such
that the supports of gj ` hj and gj`1 ` hj`1 are disjoint (which now is not
possible), we fix three smooth functions fj , gj , hj : r0, 1s ˆ p0, 1q Ñ R which
satisfy the following conditions:

1. fj , gj , hj are compactly supported in Uj Y Uj`1,

2. fj “ 1 in a neighborhood of graph aj “ tps, ajpsqq : s P r0, 1su,
gj “ 1 in a neighborhood of graph bj “ graph aj`1,
hj “ 1 in a neighborhood of graph bj`1,

3. fj ` gj `hj “ 1 in
Ť

sPr0,1stsuˆ pIjpsqY Ij`1psqq, and the support of the
fj ` gj ` hj is disjoint to the sums associated to the other intervals.

Now continue the proof similarly to above.

Step 3: overlapping intervals

It remains to consider the case when for some 0 ď j ď k and some s P r0, 1s,

Ijpsq X Ij`1psq

has non-empty interior.

Intervals always overlap. First, if Ijpsq X Ij`1psq has non-empty interior
for every s P r0, 1s, then one can do the above construction with the intervals
Ijpsq, Ij`1psq replaced by the interval Ijpsq Y Ij`1psq.

Intervals do not always overlap. If Ijpsq X Ij`1psq sometimes has non-
empty interior, but not for every s P r0, 1s, we can combine the cases treated
so far.

We explain the process in the case that there is an s̃ such that for s ă s̃,
Ijpsq X Ij`1psq “ H and for s ě s̃, Ijpsq X Ij`1psq ‰ H. In this case, x̃ “
bjps̃q “ aj`1ps̃q, which is a regular value of fs̃. Since f is smooth, there is
an open ball Uj centered at ps̃, x̃q in r0, 1s ˆ p0, 1q such that for ps, xq P U , x
is a regular value of fs. Let ˜̃s ă s̃ be such that for every ˜̃s ď s ď s̃, the set
tsuˆrajpsq, bj`1psqs is covered by U Y

`

tsuˆpIjpsqYIj`1psqq
˘

. Choose s0 and

t0 such that ˜̃s ď s0 ă t0.
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s0
t0

bjp0q

bjp1q

aj`1p0q

aj`1p1q

In r0, t0s, we are in the situation of disjoint intervals and can use the first

construction to obtain c
p2q
x psq and Vp2qps, yq for s ď t0.

In rs0, 1s, we apply the construction from step 1 to the intervals Ijpsq and

Ij`1psq replaced by the interval rajpsq, bj`1psqs to obtain c
p2q
x psq and Vp2qps, yq

for s ě s0.

Now choose a partition of unity G,H : r0, 1s Ñ R such that G|r0,s0s “
1, H|rt0,1s “ 1, and G is strictly decreasing on rs0, t0s. For s ă t define

cxpsq “ Gpsqcp1qx psq`Hpsqc
p2q
x psq, Vps, yq “ GpsqVp1qps, yq`HpsqVp2qps, yq.

Then define ϕs,t and ψs,t as before.

2.3 The p8, nq-category of bordisms Bordn

In this section we define an n-fold Segal space PBordn in several steps. How-
ever, it will turn out not to be complete. By applying the completion functor we
obtain a complete n-fold Segal space, the p8, nq-category of bordisms Bordn.

Let V be a finite dimensional vector space. We first define the levels relative to
V with elements being certain submanifolds of the (finite dimensional) vector
space V ˆ p0, 1qn – V ˆRn. Then we let V vary, i.e. we take the limit over all
finite dimensional vector spaces lying in some fixed infinite dimensional vector
space, e.g. R8. The idea behind this process is that by Whitney’s embedding
theorem, every manifold can be embedded in some large enough vector space,
so in the limit, we include representatives of every n-dimensional manifold. We
use V ˆ p0, 1qn instead of V ˆRn as in this case the spatial structure is easier
to write down explicitly.

2.3.1 The level sets pPBordnqk1,...,kn

For S Ď t1, . . . , nu denote the projection from p0, 1qn onto the coordinates
indexed by S by πS : p0, 1qn Ñ p0, 1qS .

Definition 2.3.1. Let V be a finite dimensional vector space. For every n-
tuple k1, . . . , kn ě 0, let pPBordVn qk1,...,kn be the collection of tuples pM, pIi0 ď
¨ ¨ ¨ ď Iikiqi“1,...,nq, satisfying the following conditions:
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1. M is a closed n-dimensional submanifold of V ˆ p0, 1qn and the compo-
sition π : M ãÑ V ˆ p0, 1qn � p0, 1qn is a proper map.

2. For 1 ď i ď n,

pIi0 ď ¨ ¨ ¨ ď Iikiq P Intki .

3. For every S Ď t1, . . . , nu, let pS : M
π
ÝÑ p0, 1qn

πS
ÝÝÑ p0, 1qS be the com-

position of π with the projection πS onto the S-coordinates. Then for
every 1 ď i ď n and 0 ď ji ď ki, at every x P p´1

tiupI
i
ji
q, the map pti,...,nu

is submersive.

Remark 2.3.2. For k1, . . . , kn ě 0, one should think of an element in pPBordnqk1,...,kn
as a collection of k1 ¨ ¨ ¨ kn composed bordisms, with ki composed bordisms with
collars in the ith direction. They can be understood as follows.

• Condition 3 in particular implies that at every x P p´1
tnupI

n
j q, the map ptnu

is submersive, so if we choose tnj P I
n
j , it is a regular value of ptnu, and so

p´1
n pt

n
j q is an pn´ 1q-dimensional manifold. The embedded manifold M

should be thought of as a composition of n-bordisms and p´1
n pt

n
j q is one

of the pn´ 1q-bordisms in the composition.

• At x P p´1
tn´1upI

n´1
j q, the map ptn´1,nu is submersive, so for tn´1

l P In´1
l ,

the preimage

p´1
tn´1,nu

´

ptn´1
l , tnj q

¯

is an pn ´ 2q-dimensional manifold, which should be thought of as one
of the pn ´ 2q-bordisms which are connected by the composition of n-
bordismsM . Moreover, again since ptn´1,nu is submersive at p´1

tn´1upI
n´1
l q,

the preimage p´1
tn´1upt

n´1
l q is a trivial pn´1q-bordism between the pn´2q-

bordisms it connects.

• Similarly, for ptkjk , . . . , t
n
jn
q P Ikjk ˆ ¨ ¨ ¨ ˆ I

n
jn

, the preimage

p´1
tk,...,nu

´

ptkjk , . . . , t
n
jnq

¯

is a pk ´ 1q-dimensional manifold, which should be thought of as one of
the pk´1q-bordisms which is connected by the composition of n-bordisms
M .

• Moreover, the following proposition shows that different choices of “cut-
ting points” tij P I

i
j lead to diffeomorphic bordisms. One should thus

think of the n-bordisms we compose as π´1p
śn
i“1rb

i
j , a

i
j`1sq, and the

preimages of the specified intervals as collars of the bordisms along which
they are composed.

We will come back to this interpretation in section 2.5 when we compute ho-
motopy (bi)categories.
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Proposition 2.3.3. For 1 ď i ď n let uij , v
i
j P I

i
j and uij`1, v

i
j`1 P I

i
j`1. Then

there is a diffeomorphism

p´1
tiupru

i
j , u

i
j`1sq ÝÑ p´1

tiuprv
i
j , v

i
j`1s.

Proof. Since the map ptiu is submersive in Iij and Iij`1, we can apply the Morse
lemma 2.2.1 to ptiu twice to obtain diffeomorphisms

p´1
tiupru

i
j , u

i
j`1sq ÝÑ p´1

tiuprv
i
j , u

i
j`1sq ÝÑ p´1

tiuprv
i
j , v

i
j`1sq.

Applying the proposition successively for i “ 1, . . . , n yields

Corollary 2.3.4. Let B1, B2 Ď p0, 1qn be products of closed intervals with
endpoints lying in the same Iij’s. Then there is a diffeomorphism

π´1pB1q ÝÑ π´1pB2q.

2.3.2 The spaces pPBordnqk1...,kn

The level sets pPBordVn qk1,...,kn form the underlying set of 0-simplices of a space
which we construct in this subsection.

The l-simplices of the space pPBordVn qk1...,kn

Let |∆l| denote the standard geometric l-simplex.

Definition 2.3.5. An l-simplex of pPBordVn qk1,...,kn consists of the following
data:

1. A smooth family of underlying 0-simplices, which is a smooth family of
elements

`

Ms Ď V ˆ p0, 1qn, pIi0psq ď ¨ ¨ ¨ ď Iikipsqqi“1,...,n

˘

P pPBordVn qk1,...,kn

indexed by s P |∆l|. By this we mean that
Ť

sP|∆l|tsu ˆMs Ď |∆l| ˆ

V ˆ p0, 1qn is a smooth submanifold with corners, and that the endpoint
maps aij , b

i
j of the intervals are smooth;

2. For every 1 ď i ď n, a rescaling datum
`

ϕis,t : p0, 1q Ñ p0, 1q
˘

s,tP|∆l|

making
`

Ii0psq ď ¨ ¨ ¨ ď Iikipsq
˘

sP|∆l|

into an l-simplex in Intki ;

3. A smooth family of diffeomorphisms

pψs,t : Ms ÝÑMtqs,tP|∆l|,

such that ψs,s “ idMs
and ψt,u ˝ ψs,t “ ψs,u, which intertwine with the

composed bordisms with respect to the product of the rescaling data
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ϕs,t “ pϕis,tq
n
i“1 : p0, 1qn Ñ p0, 1qn. By this we mean the following.

Denoting by πs the compositionMs ãÑ Vˆp0, 1qn � p0, 1qn, for 1 ď i ď n
and 0 ď ji, li ď ki let

tijipsq P I
i
ji
psq : ϕs,tpt

i
ji
psqq P Iijiptq, and

tilipsq P I
i
li
psq : ϕs,tpt

i
li
psqq P Iiliptq.

Then ψs,t restricts to a diffeomorphism

π´1
s

˜

n
ź

i“1

rtijipsq, t
i
lipsqs

¸

ψs,t
ÝÝÑ π´1

s

˜

n
ź

i“1

rϕs,tpt
i
jipsqq, ϕs,tpt

i
lipsqqs

¸

,

i.e. denoting B “
śn
i“1rt

i
ji
psq, tilipsqs,

Mt π´1
t pϕs,tpBqq

Ms π´1
s pBq ϕs,tpBq

p0, 1qn B

πtψs,t

πs πs

ψs,t

ϕs,t

Remark 2.3.6. The condition that the diffeomorphisms ψs,t intertwine with
the composed bordisms in the elements of the family means that ψs,t induces
diffeomorphisms of the composed bordisms in the family and the rescaling data
remembers to which choice of cutoffs the specified diffeomorphism restricts.

Remark 2.3.7. In the above definition we let the intervals vary as s P |∆l|

varies. In practice, when dealing with a fixed element of an l-simplex, we can
assume that these intervals are fixed as s varies by choosing a fixed vertex
t0 P |∆

l|0 and composing each ιs with ϕs,t0 : p0, 1qn Ñ p0, 1qn and keeping the
intervals constant at Iijpt0q. This new path is connected by a homotopy to the
original one.

The space pPBordnqk1,...,kn

We now lift the spatial structure of Intˆnk1,...,kn to pPBordnqk1,...,kn .

Fix k ě 0 and let f : rms Ñ rls be a morphism in the simplex category ∆, i.e. a
(weakly) order-preserving map. Then let |f | : |∆m| Ñ |∆l| be the induced map
between standard simplices.

Let f∆ be the map sending an l-simplex in pPBordVn qk1,...,kn to the m-simplex
which consists of

1. for s P |∆m|,
M|f |psq Ď V ˆ p0, 1qn;

2. for 1 ď i ď n, the m-simplex in Intki obtained by applying f∆,

f∆
´

Ii0psq ď ¨ ¨ ¨ ď Iikipsq, ϕ
i
s,t

¯

;
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3. for s, t P |∆l`1|,

ψ|f |psq,|f |ptq : M|f |psq ÝÑM|f |ptq.

Since this structure essentially comes from the spatial structure of Intki and
the simplicial structure of Np∆q, we have the following

Proposition 2.3.8. pPBordVn qk1,...,kn is a space.

Notation 2.3.9. We denote the spatial face and degeneracy maps of pPBordVn qk1,...,kn
by d∆

j and s∆
j for 0 ď j ď l.

So far the definition depends on the choice of the vector space V . However,
in the bordism category we need to consider all (not necessarily compact) n-
dimensional manifolds. By Whitney’s embedding theorem any such manifold
can be embedded into some V ˆp0, 1qn for some finite dimensional vector space
V , so we need to allow big enough vector spaces.

Definition 2.3.10. Fix some (countably) infinite dimensional vector space,
e.g. R8. Then

PBordn “ lim
ÝÑ
VĂR8

PBordVn .

Example: Cutoff path

We now construct an example of a path which will be used several times later
on. It shows that cutting off part of the collar of a bordism yields an element
which is connected to the original one by a path.

Let pMq “ pM Ď V ˆ p0, 1qn, pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq P pPBordnqk1,...,kn .
We show that cutting off a short enough piece at an end of an element of
pPBordnqk1,...,kn leads to an element which is connected by a path to the orig-
inal one. Explicitly, for ε small enough, we show that there is a 1-simplex with
underlying 0-simplices

`

ιs : Ms ãÑ V ˆ p0, 1qn, pIi0psq ď ¨ ¨ ¨ ď Iikipsqq
n
i“1

˘

P pPBordVn qk1,...,kn

such that Ms “ p´1
i ppsε, 1qq and Iijpsq “ ρspI

i
jq, where ρs : psε, 1q Ñ p0, 1q is

the affine rescaling map x ÞÑ x´sε
1´sε , and

ιs : Ms Ď V ˆ p0, 1qn´1 ˆ psε, 1q
idˆρs
ÝÝÝÝÑ V ˆ p0, 1qn.

Fix 1 ď i ď n and let ε ă bi0. Let N be the manifold r0, 1s ˆM Ď r0, 1s ˆ V ˆ
p0, 1qn endowed with the induced metric, and view pi as a function on N by
setting pips, yq “ pipyq. Choose a smooth cutoff function g : r0, 1s ˆ p0, 1q Ñ R
such that g “ 1 in a neighborhood Uε of tps, zq : z P rsε, sε` 1´ε

3 qu and g “ 0
on U1 “ r0, 1s ˆ p

2`ε
3 , 1q and extend g to N by setting gps, yq “ gps, pipyqq.
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ε

sε sε ` 1´ε
3

2`ε
3

g “ 1 g “ 0

Consider the vector field on N given by

V “ pBs, εg
∇ypi
|∇ypi|2

q,

where ∇y denotes the gradient on M . Note that over Uε, V “ pBs, ε
∇ypi
|∇ypi|2 q

and over U1, V “ 0. We now show that the flow along the vector field V exists
for ps, yq such that sε ă pipxq ă 1,

For ξ ă 1´ε
3 , ps, sε ` ξq P Uε, and, defining pi ´ sε ` ξ to be the function

ps, yq ÞÑ pipyq ´ sε` ξ on N ,

V ¨ ppi ´ psε` ξqq “ ´ε` ε
∇ypi
|∇ypi|2

ppi ´ psε` ξqq “ 0. (2.1)

For α ‰ i and ξα P p0, 1q, since all components of V except for the ith are 0,

V ¨ ppα ´ ξαq “ 0, (2.2)

where again we view pα ´ ξα as a function on N . Let

~ξ : r0, 1s Ñ r0, 1s ˆ p0, 1qn, s ÞÑ ps, ξ1, . . . , ξi´1, sε` ξ, ξi`1, . . . , ξnq.

Equations 2.1 and 2.2 imply that the flow of V preserves the sets

Ξ~ξ “ tps, yq : πpyq “ ~ξpsqu “ pidr0,1s ˆ πq
´1pgraph ~ξq.

The graph of ~ξ is closed and therefore compact as it is a closed subset of
r0, 1s ˆ tξ1u ¨ ¨ ¨ ˆ rξ, ε` ξs ˆ ¨ ¨ ¨ ˆ tξnu. Since π is proper, idˆ π is proper, and
thus Ξ~ξ is compact. Hence in

tps, yq : sε ă pipyq ă ε`
1´ ε

3
u

the flow exists for all s P r0, 1s.

In U1, the flow is of the form Ψpt ´ s, ps, yqq “ pt, yq and so it also exists for
s P r0, 1s.

For points ps0, yq P N such that pipyq P rs0ε`
1´ε

3 , 2`ε
3 s, the flow preserves the

set
Ξ~ξ “ pidr0,1s ˆ πq

´1pgraph ~ξq,
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where ~ξ : s ÞÑ ps, ξ1, . . . , ξi´1, ξipsq, ξi`1, . . . , ξnq, and ~ξps0q “ y, and ξipsq is
a solution at points in Ξξ of the ordinary differential equation with smooth
coefficients

0
!
“ V ¨ ppi ´ ξiq

“ ´Bsξi ` εgBsξi
∇ypi
|∇ypi|2

ppi ´ ξiq

“ ´Bsξi ` εg.

By Picard-Lindelöf, this ordinary differential equation has a unique, a priori
local, solution. Similarly, the flow exists locally. Furthermore, the preimage of
the proper map pidr0,1s ˆ πq of the compact set r0, 1s ˆ r 1´ε3 , 2`ε

3 s is compact.
Since Ξ~ξ is a subset of this preimage, we are looking for solutions of the above
differential equation on this compact manifold. By compactness, they exist
globally and therefore the flow exists for all s P r0, 1s.

Piecing this together, the flow takes on the form

Ψpt´ s, yq “ pt, ψs,tpyqq

for sε ă pipyq and exists for all s P r0, 1s. This gives the desired family of
diffeomorphisms ψs,t : p´1

i ppsε, 1qq Ñ p´1
i pptε, 1qq. The rescaling data ϕs,t :

p0, 1qn Ñ p0, 1qn is the identity on coordinates except for the ith, where it is
given by

ϕis,tpxsq “

$

’

&

’

%

ρspxs ` pt´ sqεq, forxs ă sε` 1´ε
3 ,

ρspxsq, forxs ą
2`ε

3 ,

ρspξiptqq, for sε` 1´ε
3 ď xs ď

2`ε
3 ,

where ξi is the integral curve through xs, which is the solution to the differential
equation above.

Remark 2.3.11. In the above example we constructed a path from an element
in pPBordVn qk1,...,kn to its “cutoff”, where we cut off the preimage of p´1

i pp0, εsq
for suitably small ε. Note that the same argument holds for cutting off the
preimage of p´1

i pr1 ´ δ, 1qq for suitably small δ. Moreover, we can iterate the

process and cut off εi, δi strips in all i directions. Choosing εi “
bi0
2 , δi “

aiki
2

yields a path to its “cutoff” with underlying submanifold

cutpMq “ π´1
´

n
ź

i“1

p
bi0
2
,
aiki
2
q

¯

.

The map π : M Ñ p0, 1qn is proper, which implies that π´1p
śn
i“1r

bi0
2 ,

aiki
2 sq Ą

cutpMq is compact and thus bounded in the V -direction. Thus, any element
in pPBordVn qk1,...,kn is connected by a path to an element whose underlying
submanifold is bounded in the V -direction.

Variants of the spatial structure

There are two other alternative approaches to defining the spatial structure of
pPBordVn qk1,...,kn :
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1. One could make pPBordVn qk1,...,kn into a topological space (instead of a
simplicial set) by endowing it with the following topology coming from
the Whitney topology.

On the set SubpV ˆ p0, 1qnq of closed (not necessarily compact) subman-
ifolds M Ď V ˆ p0, 1qn, a neighborhood basis at M is given by

tN ãÑ V ˆ p0, 1qn : N XK “ jpMq XK, j PW u,

where K Ď V ˆ p0, 1qn is compact and W Ď EmbpM,V ˆ p0, 1qnq is
a neighborhood of the inclusion M ãÑ V ˆ p0, 1qn in the Whitney C8-
topology (see [Gal11]). Using the standard topology on R and the product
topology gives a topology on

SubpV ˆ Rnq ˆ
n
ď

i“1

k1
ď

j“1

taij , b
i
j´1 P r0, 1s : aij ă biju.

We take the quotient topology of this topology with respect to the relation
identifying elements pM0, I

i
jp0q’s), pM1, I

i
jp1q’sq if the preimages of the

boxes Bplq “ rb10plq, a
1
k1
plqs ˆ ¨ ¨ ¨ ˆ rbn0 plq, a

n
kn
plqs for l “ 0, 1, respectively,

under their composition with the projection to p0, 1qn coincide, i.e.

π´1
1 pBp0qq “ π´1

2 pBp1qq,

where for l “ 0, 1, πl : M ãÑ V ˆ Rn � Rn. Finally, pPBordVn qk1,...,kn is
a subspace thereof.

However, the reason for our choice of using simplicial sets instead of
spaces is that we eventually want to construct a fully extended topolog-
ical field theory and the levels of our target which we construct in the
next chapter will be naturally modelled as simplicial sets. Thus it is more
natural to also model the levels of our source category, the bordism cat-
egory, as simplicial sets. If one would rather have topological spaces as
the spatial structure of the levels, one can apply geometric realization to
the simplicial sets.

2. To model the levels of the bordism category as simplicial sets, we could
start with the above version as a topological space and take singular or,
even better, differentiable chains of this space to obtain a simplicial set.
Then, the l-vertices would consist of smooth submanifolds

I : ∆l ˆM ãÑ ∆l ˆ V ˆ p0, 1qn,

where I commutes with the projections to ∆l, such that @s P |∆l|,

pMs “ ImpIps,´qq Ď Vˆp0, 1qn, pIi0psq ď . . . ď Iikipsqqi“1,...,nq P pPBordVn qk1,...,kn .

Note that as abstract manifolds, Ms “ M , but as submanifolds, they
are diffeomorphic images of the same abstract manifold along the path.
Thus, there are diffeomorphisms

ψs,t : Ms ÝÑMt
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as in our definition. Moreover, for l “ 1, proposition 2.3.12 below, which
is a corollary of proposition 2.2.2, the time-dependent Morse lemma, im-
plies that there exists such a family of diffeomorphisms and some rescaling
data which intertwine. So paths in this simplicial set and in ours are the
same. Moreover, it implies that for l ą 0, given any two fixed points
s, t P |∆l|, we obtain a diffeomorphism ψs,t and a rescaling function ϕs,t,
by applying the lemma to any path between s and t and defining ψs,t “
ψ0,1, ϕs,t “ ϕ0,1. However, the collections pψs,tqs,tP|∆l|, pϕs,tqs,tP|∆l| do
not necessarily form multiparameter families, since they do not necessar-
ily satisfy the condition that ψt,u ˝ ψs,t “ ψs,u. For this statement, we
would need a higher dimensional version of proposition 2.3.12, but the
naive generalization of the proof fails. Nevertheless, we believe that the
two simplicial sets are weakly equivalent under the map simply forgetting
the family of diffeomorphisms.

Proposition 2.3.12. Consider a smooth one-parameter family of embeddings

pI : r0, 1sˆM ãÑ r0, 1sˆV ˆp0, 1qn, r0, 1s Q s ÞÑ pIi0psq ď . . . ď Iikipsqqi“1,...,nq,

which gives rise to

pMsq “ pM
Ips,´q
ãÝÝÝÝÑ V ˆ p0, 1qn, pIi0psq ď . . . ď Iikipsqqi“1,...,nq

in pPBordnqk1,...,kn . Then there is a rescaling data pϕs,t : p0, 1qn Ñ p0, 1qnqs,tPr0,1s
and a family of diffeomorphisms pψs,t : M ÑMqs,tPr0,1s which intertwines with
the rescaling data.

Proof. For 1 ď i ď n, let 0 ď ji ď ki ´ 1. Let

πs : M
Ips,´q
ãÝÝÝÝÑ V ˆ p0, 1qn � p0, 1qn

and denote by ppiqs : M Ñ p0, 1q the composition of πs with the projection to
the ith coordinate. Note that by condition 3 in definition 2.3.1, the function
ppiqs does not have a critical point in Ii0psq Y . . .Y I

i
ki
psq.

We cannot quite apply the the time-dependent Morse lemma 2.2.2 to ppiqs,
because we only have properness of the individual πs, and moreover, this would
ensure intertwining only in the ith direction. However, we can adapt the proof
to our situation.

Choosing the metric on M coming from Ip0,´q, and following the proof of the
proposition 2.2.2, for each i we get a vector field

Vi “

˜

Bs,
ÿ

0ďjďk

pgjBspajq ` hjBspbjq ´ Bsppiqq
∇yppiqs
|∇yppiqs|2

¸

“:

ˆ

Bs,Πips, yq
∇yppiqs
|∇yppiqs|2

˙

.

We combine them to obtain a new vector field on r0, 1s ˆM ,

Ṽ “

˜

Bs,
n
ÿ

i“1

Πips, yq
∇yppiqs
|∇yppiqs|2

¸

.
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The projections ppiq0 and ppjq0 are orthogonal with respect to the metric on M
induced by the embedding Ip0,´q, and moreover, ppiqs, ppjqs stay orthogonal
along the path, because the change of metric on M induced by the change of
embedding respects orthogonality on p0, 1qn. This implies that

∇yppiqs
|∇yppiqs|2

pj “ δij ,

and so Ṽ still is tangent to the respective Cix in each direction and thus its flow,
if it exists globally, will give rise to the desired diffeomorphisms and rescaling
data.

The global existence follows from the special form of the vector field. Given a
point pt, ytq P N , the flow will preserve a set of the form

tps, yq : πspysq “ pc
1
x0
psq, . . . , cnx0

psqq “ pξ1psq, . . . , ξnpsqqu,

where the right hand side is in the notation of example 2.3.2, and ~cx0ptq “
~ξptq “ yt. Similarly to in the example, one can show that this set lies in a
compact part of N and thus the flow exists globally.

2.3.3 The n-fold simplicial set pPBordnq‚,¨¨¨ ,‚

In the next two subsections we will make the collection of spaces pPBordnq‚,...,‚
into an n-fold simplicial space by lifting the simplicial structure of Intˆn‚,...,‚. In
this section we define the structure on 0-simplices, which makes pPBordnq‚,...,‚
into an n-fold simplicial set. In the next subsection we extend the structure to
l-vertices of the levels to obtain an n-fold simplicial space pPBordnq‚,...,‚.

Fixing 1 ď i ď n, we first need to extend the assignment

rkis ÞÝÑ pPBordnqk1,...,kn

to a functor from ∆op. Let f : rmis Ñ rkis be a morphism in the simplex
category ∆, i.e. a (weakly) order-preserving map. Then we need to define the
map

pPBordnqk1,...,ki,...kn
f˚

ÝÑ pPBordnqk1,...,mi,...kn .

Notation 2.3.13. Recall that the map f˚ : Intki Ñ Intmi is defined using an
affine rescaling map ρf : RÑ R which sends aifp0q to 0 and bifpmq to 1 and thus

restricts to a diffeomorphism ρf : Df “ paifp0q, b
i
fpmqq Ñ p0, 1q. By abuse of

notation, we again denote by ρf the map

ρf : V ˆ
ź

α‰i

p0, 1q ˆ paifp0q, b
i
fpmqq Ñ V ˆ p0, 1qn,

which is ρf in the ith component of p0, 1qn and the identity otherwise.

Definition 2.3.14. Let f : rmis Ñ rkis be a morphism in ∆. Then

pPBordnqk1,...,ki,...kn
f˚

ÝÑ pPBordnqk1,...,mi,...kn .
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applies f˚ to the ith tuple of intervals and perhaps cuts the manifold and
rescales. Explicitly, it sends an element

pMq :“ pι : M ãÑ V ˆ p0, 1qn, pIα0 ď ¨ ¨ ¨ ď Iαkαq
n
α“1q

to
´

ρf ˝ ι|p´1
i pDf q

: p´1
i pDf q ãÑ V ˆ p0, 1qn, pIα0 ď ¨ ¨ ¨ ď Iαkiqα‰i, f

˚pIi0 ď ¨ ¨ ¨ ď Iikiq
¯

.

Remark 2.3.15. In the following, we will omit explicitly writing out the re-
striction of ι to p´1

i pDf q for readability.

Notation 2.3.16. We denote the (simplicial) face and degeneracy maps by
dij : pPBordnqk1,...,kn Ñ pPBordnqk1,...,ki´1,...,kn and sij : pPBordnqk1,...,kn Ñ
pPBordnqk1,...,ki`1,...,kn for 0 ď j ď ki.

Proposition 2.3.17. pPBordnq‚,...,‚ is an n-fold simplicial set.

Proof. This follows from the fact that Int‚ is a simplicial set and rescalings
behave functorially.

Remark 2.3.18. Recall from remark 2.3.2 that for k1, . . . , kn ě 0, one should
think of an element in the set pPBordnqk1,...,kn as a collection of k1 ¨ ¨ ¨ kn com-
posed bordisms with ki composed bordisms with collars in the ith direction.
These composed collared bordisms are the images under the maps

Dpj1, . . . , jkq : pPBordnqk1,...,kn ÝÑ pPBordnq1,...,1

for p1 ď ji ď kiq1ďiďn arising as compositions of face maps, i.e. Dpj1, . . . , jkq
is the map determined by the maps

r1s Ñ rkis, p0 ă 1q ÞÑ pji ´ 1 ă jiq

in the category ∆ of finite ordered sets. This should be thought of as sending
an element to the pj1, . . . , jkq-th collared bordism in the composition.

2.3.4 The full structure of pPBordnq‚,¨¨¨ ,‚ as an n-fold
simplicial space

In this subsection, we show that the maps defined in the previous paragraph are
compatible with the structure of the levels as simplicial sets, i.e. for a morphism
f : rmis Ñ rkis in the simplex category ∆, we will define compatible maps f˚ for
l-simplices of the simplicial set pPBordnqk1,...,kn . They will be defined similarly
as on vertices, namely by applying the map f˚ to each underlying 0-simplex
and by perhaps restricting the rescaling data and the diffeomorphisms. For the
face and degeneracy maps, this will amount to the following.

• Degeneracy maps arise from the degeneracy maps of Intn‚,...,‚ by repeating

one of the families of intervals Iijpsq.

Fix 1 ď i ď n.
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• For 0 ă j ă ki the jth face map dij arises from the face map of Intn‚,...,‚
by deleting the jth family of intervals Iijpsq in the ith direction.

• Face maps for j “ 0, ki require cutting and rescaling:

Notation 2.3.19. Recall that for a morphism f of the simplex category ∆,
we have a rescaling map ρf : R Ñ R which restricts to a diffeomorphism
ρf : Df Ñ p0, 1q, with Df “ pafp0q, bfpmqq. By abuse of notation, we also
denote by ρf the diffeomorphism ρf :

ś

α‰ip0, 1q ˆ Df Ñ p0, 1qn which is
ρf in the ith coordinate and the identity otherwise. Moreover, denote by
ρf psq be the analog of the map ρf associated to the sth underlying 0-simplex
pIi0psq ď ¨ ¨ ¨ ď Iikipsqq P Intki .

Definition 2.3.20. Let f : rmis Ñ rkis be a morphism in the simplex category
∆, i.e. a (weakly) order-preserving map. Consider an l-simplex of pPBordnqk1,...,kn
consisting of

`

ιs : Ms ãÑ V ˆ p0, 1qn, pIi0psq ď ¨ ¨ ¨ ď Iikipsqq
n
i“1

˘

sP|∆l|
,

pϕs,t : p0, 1qn ÝÑ p0, 1qnqs,tP|∆l|
, and pψs,t : Ms ÝÑMtqs,tP|∆l|

.

Let f˚ send it to the l-simplex of pBordnqk1,...,ki´1,...,kn consisting of the fol-
lowing data.

1. The underlying 0-simplices of the image are the images of the underlying
0-simplices under f˚, i.e. for s P |∆l|,

f˚
`

Ms Ď V ˆ p0, 1qn, pIi0psq ď ¨ ¨ ¨ ď Iikipsqq
˘

“

“

´

ρf psq ˝ ιs|Ns : Ns ãÑ V ˆ p0, 1qn,

pIα0 ptq ď ¨ ¨ ¨ ď Iαkαptqqα‰i, f
˚pIi0ptq ď ¨ ¨ ¨ ď Iikiptqq

¯

,

where Ns “ ppsq
´1
i pDf psqq.

2. The underlying l-simplex in Intki is sent to its image under f˚, i.e. its
rescaling data is f˚pϕs,tq. Recall from section 2.1.3 that this is

f˚pϕs,tq “ ρf psq ˝ ϕs,t|Df psq ˝ ρf psq
´1 : p0, 1qn Ñ p0, 1qn.

3. Since the diffeomorphisms ψs,t intertwine with the composed bordisms
with respect to the rescaling data ϕs,t, for every s, t P ∆l we have diffeo-
morphisms

ψs,t|Ns : Ns Ñ Nt,

which intertwine with the (new) composed bordisms with respect to with
the (new) rescaling data.

Proposition 2.3.21. The spatial and simplicial structures of pPBordnq‚,...,‚
are compatible, i.e. for g : rls Ñ rps, fα : rmαs Ñ rkαs, and fβ : rmβs Ñ rkβs,
for 1 ď α ă β ď n, the induced maps

g∆, f˚α , and f˚β

commute. We thus obtain an n-fold simplicial space pPBordnq‚,¨¨¨ ,‚.
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Proof. By construction, g∆ commutes with the simplicial structure. Moreover,
the maps f˚α , f

˚
β commute since they modify different parts of the structure.

2.3.5 The complete n-fold Segal space Bordn

Proposition 2.3.22. pPBordnq‚,...,‚ is an n-fold Segal space.

Proof. We need to prove the following conditions:

1. The Segal condition is satisfied. For clarity, we explain the Segal condition
in the following case. The general proof works similarly. We will show
that

pPBordnqk1,...,2,...,kn
„
ÝÑ pPBordnqk1,...,1,...,kn

h
ˆ

pPBordnqk1,...,0,...,kn

pPBordnqk1,...,1,...,kn .

We will omit the indices and corresponding intervals for α ‰ i for clarity.
Our goal is to construct a map glue such that glue ˝ pd0 ˆ d2q „ id,
pd0 ˆ d2q ˝ glue „ id,

pPBordnq1
h
ˆ

pPBordnq0

pPBordnq1 pPBordnq2

glue

d0 ˆ d2

Let

pMq “ pι : M ãÑ V ˆ p0, 1qn, p0, bs ď ra, 1qq,

pM̃q “ pι̃ : M̃ ãÑ V ˆ p0, 1qn, p0, b̃s ď rã, 1qq
P pPBordnq1

h
ˆ

pPBordnq0

pPBordnq1.

We will construct their image under glue, which is an element in pPBordnq2,
essentially by glueing them.

We saw in example 2.3.2 that cutting off a short enough piece at an end
of an element of pPBordnq1 leads to an element which is connected by a
path to the original one, i.e. pι : M ãÑ V ˆ p0, 1qn, p0, bs ď ra, 1qq „ pι :
p´1
i pp0, 1´ εqq ãÑ V ˆ p0, 1qn, p0, bs ď ra, 1´ εqq, composed with suitable

rescalings, for 0 ă ε ă a. So if the source of our glued element is such a
“cutoff”, there is a path to the original pMq.

By definition, there is a path between the target of the first, N “ tppMqq,
and the source of the second, Ñ “ sppM̃qq. Composing this path with the
inverse of the path connecting tppMqq and its cutoff as described above
gives a path between the “cutoff” and pÑq.

Let us now assume that we have rescaled the embeddings and intervals
such that they fit into p0, dq respectively pc, 1q, and moreover, pa, 1q and
p0, bq are sent to pc, dq. Now we glue the embeddings along pd ´ ε, dq
for ε “ 1

2 pd ´ cq using a partition of unity subordinate to the cover

tp0, d ´ ε
2 q, pd ´ ε, 1qu. This gives a new embedded manifold ˜̃ι : ˜̃M ãÑ

V ˆ p0, 1qn and together with the intervals p0, bs ď rc, 1
2 pd ´ cqs ď rã, 1q

they form an element in pPBordnq2.



2.3. THE p8, nq-CATEGORY OF BORDISMS Bordn 43

10 b c d ãd ´ ε “ 1
2
pd ` cq

d ´ ε
2

This construction extends to l-simplices and thus gives the desired map
glue.

2. For every i and every k1, . . . , ki´1, the pn´iq-fold Segal space pPBordnqk1,...,ki´1,0,‚,¨¨¨ ,‚

is essentially constant.

We show that the degeneracy inclusion map

pPBordnqk1,...,ki´1,0,0,...,0 ãÝÑ pPBordnqk1,...,ki´1,0,ki`1,...,kn

admits a deformation retraction and thus is a weak equivalence.

For s P r0, 1s, consider the map γs sending an element in pPBordnqk1,...,ki´1,0,ki`1,...,kn

represented by

pMq :“ pM Ď Vˆp0, 1qn,
´

Iβ0 ď ¨ ¨ ¨ ď Iβkβ q1ďβăi, p0, 1q, pI
α
0 ď ¨ ¨ ¨ ď Iαkαqiăαďn

¯

to

pMqs :“
´

M Ď V ˆ p0, 1qn, pIβ0 ď ¨ ¨ ¨ ď Iβkβ q1ďβăi, p0, 1q,

pIα0 psq ď ¨ ¨ ¨ ď Iαkαpsqqiăαďn

¯

,

where for α ą i, aαj psq “ p1´ sqa
α
j and bαj psq “ p1´ sqb

α
j ` s. Note that

for s “ 0, Iα0 p0q “ Iα0 , Iαj p0q “ Iαj and for s “ 1, Iαj p1q “ p0, 1q.

The maps γs form a homotopy between the degeneracy inclusion and the
identity on pPBordnqk1,...,ki´1,0,ki`1,...,kn provided that every γs indeed
maps to pPBordnqk1,...,ki´1,0,ki`1,...,kn . It suffices to check condition (3)
in definition 2.3.1 for pMqs. Since pMq P pPBordnqk1,...,ki´1,0,ki`1,...,kn ,
this reduces to checking

For every i ă α ď n and 0 ď j ď kα, at every x P p´1
tαupI

α
j psqq,

the map ptα,...,nu is submersive.

Condition (3) on pMq for i implies that pti,...,nu is a submersion in

p´1
tiupp0, 1qq “M Ą p´1

tαupI
α
j psqq, so ptα,...,nu is submersive there as well.
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Remark 2.3.23. An interesting property of PBordn is that it also satisfies
the strict Segal condition and furthermore, the equivalence in the strict Segal
condition is even a homeomorphism,

pPBordnqk
–
ÝÑ pPBordnq1 ˆ

pPBordnq0

¨ ¨ ¨ ˆ
pPBordnq0

pPBordnq1,

where as above, we omit all indices except for the ith. This follows from the
fact that we can glue the embedded manifolds along open sets.

The last condition necessary to be a good model for the p8, nq-category of
bordisms is completeness, which PBordn in general does not satisfy. However,
we can pass to its completion Bordn.

Definition 2.3.24. The p8, nq-category of cobordisms Bordn is the n-fold com-

pletion {PBordn of PBordn, which is a complete n-fold Segal space.

Remark 2.3.25. For n ě 6, PBordn is not complete, see the full explanation
in [Lur09b], 2.2.8. For n “ 1 and n “ 2, by the classification theorems of one-
and two-dimensional manifolds, PBordn is complete, and therefore Bordn “
PBordn.

2.3.6 Variants of Bordn and comparison with Lurie’s
definition

Bounded submanifolds, cutting points, and R as a parameter space

Bounded submanifolds Recall from 2.3.11 that for every element in pPBordVn qk1,...,kn ,
we constructed a path to its cutoff, whose underlying submanifold

cutpMq “ π´1
´

n
ź

i“1

p
bi0
2
,
aiki
2
q

¯

is bounded in the V -direction. This construction extends to l-simplices and
yields a map of n-fold simplicial spaces

cut : PBordn ÝÑ PBordn,

sending an element to its “cutoff”. Its image lands in PBordbdn Ď PBordn,
the sub n-fold Segal space of elements for which the underlying submanifold is
bounded in the V -direction. Moreover, it induces a strong homotopy equiva-
lence between PBordbdn and PBordn.

Cutting points Another variant of an n-fold Segal space of cobordisms can
be obtained by replacing the intervals Iij in definition 2.3.1 of PBordn by spec-

ified “cutting points” tij P p0, 1q, which correspond to where we cut our com-
position of bordisms. Equivalently, we can say that in this case the intervals
are replaced by intervals consisting of just one point, i.e. aij “ bij “: tij . The

levels of this n-fold Segal space PBordtn can made into spaces as we did for
PBordn, but we now need to impose the extra condition that elements of the
levels are connected by a path if they coincide inside the “box” of t’s, i.e. over
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rt10, t
1
k1
s ˆ ¨ ¨ ¨ ˆ rtn0 , t

n
kn
s. However, for PBordtn the Segal condition is more dif-

ficult to prove, as in this case we do specify the collar along which we glue.
Since the space of collars is contractible, sending an interval I “ ra, bs X p0, 1q
to its midpoint t “ 1

2 pa`bq induces a level-wise weak equivalence from PBordn
to PBordtn.

R as a parameter space There also is a version of PBordn replacing the
closed intervals Iij Ď p0, 1q by closed intervals in R. We impose conditions on
elements in this n-fold Segal space PBord8n which are analogous to (1)–(3) in

definition 2.3.1 of PBordn. This amounts to using the identification p0, 1q
χ
– R.

However, in this case the face and degeneracy maps dij , s
i
j for j “ 0, ki are

more complicated to write down since they require the use of rescaling maps
ρ0 : pai1,8q Ñ R, respectively ρki : p´8, biki´1q Ñ R. In this case, sending an
interval to its midpoint as above leads to an variant with cutting points and R
as a parameter space PBordt,8n .

Comparison with Lurie’s definition of cobordisms

In [Lur09b], Lurie defined the n-fold Segal space of cobordisms as follows:

Definition 2.3.26. Let V be a finite dimensional vector space. For every n-
tuple k1, . . . , kn ě 0, let pPBordV,Ln qk1,...,kn be the collection of tuples pM, pti0 ď
. . . ď tikiqi“1,...nq, where

1. M is a closed n-dimensional submanifold of V ˆ Rn,

2. the composition π : M ãÑ V ˆ Rn � Rn is a proper map,

3̃. for every S Ď t1, . . . , nu and for every collection tjiuiPS , where 0 ď ji ď
ki, the composition pS : M

π
Ñ Rn Ñ RS does not have ptjiqiPS as a

critical value.

4̃. for every x P M such that ptiupxq P tt
i
0, . . . , t

i
nu, the map pti`1,...,nu is

submersive at x.

It is endowed with a topology coming from the Whitney topology similar to
what we described in remark 2.3.2, which we will not repeat here. Similarly to
before, we define

PBordLn “ lim
ÝÑ
VĂR8

PBordV,Ln

Comparing this definition with definition 2.3.1 and PBordt,8n from above, note
that our condition (3) on PBordt,8n is replaced by the two strictly weaker
conditions p3̃q and p4̃q on PBordLn , which are implied by (3).

However, Lurie’s n-fold simplicial space PBordLn is not an n-fold Segal space
as we will see in the example below. Thus, our PBordt,8n is a corrigendum of
Lurie’s PBordLn from [Lur09b].
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Example 2.3.27.

t10

Consider the 2 dimensional torus T in R ˆ R2, and consider the
tuple pT ãÑ R ˆ R2, t10, t

2
0 ď . . . ď t2k2q, where t10 is indicated in

the picture of the projection plane R2 below. Then, because of
condition p3̃q, t20 ď . . . ď t2k2 can be chosen everywhere such that
any pt10, t

2
j q is not a point where the vertical (t10-)line intersects

the two circles in the picture. Thus, the space of these choices is
not contractible. However, it satisfies the conditions (1), (2), p3̃q,
and p4̃q in the definition of pPBordL2 q0,k2 , so pPBordL2 q0,‚ is not
essentially constant.

2.4 The symmetric monoidal structure on Bordn

The p8, nq-category Bordn is symmetric monoidal with its symmetric monoidal
structure essentially arising from taking disjoint unions. In this section we
endow Bordn with a symmetric monoidal structure in two ways. In section
2.4.1 the symmetric monoidal structure arises from a Γ-object. In section 2.4.2
a symmetric monoidal structure is defined using a tower of monoidal i-hybrid
pn` iq-fold Segal spaces.

2.4.1 The symmetric monoidal structure arising as a
Γ-object

We construct a sequence of n-fold Segal spaces pBordVn rmsq‚,...,‚ which form a
Γ-object which endows Bordn with a symmetric monoidal structure as defined
in section 1.6.

Definition 2.4.1. Let V be a finite dimensional vector space. For every
k1, . . . , kn, let pPBordVn rmsqk1,...,kn be the collection of tuples

pM1, . . . ,Mm, pI
i
0 ď . . . ď Iikiqi“1,...,nq,

where M1, . . .Mm are disjoint n-dimensional submanifolds of V ˆ p0, 1qn, and
each pMβ , pI

i
0 ď . . . ď Iikiqi“1,...nq is an element of pPBordVn qk1,...,kn . It can

be made into a simplicial set similarly to PBordVn . Moreover, similarly to the
definition of Bordn, we take the limit over all V Ă R8 and complete to get an
n-fold complete Segal space Bordnrms.

Proposition 2.4.2. The assignment

Γ ÝÑ SSpacen,

rms ÞÝÑ Bordnrms

extends to a functor and endows Bordn with a symmetric monoidal structure.

Proof. By lemma 1.6.6 it is enough to show that the functor sending rms to
PBordnrms and a morphism f : rms Ñ rks to the morphism

PBordnrms ÝÑ PBordnrks,

pM1, . . . ,Mm, I
1sq ÞÝÑ p

ž

βPf´1p1q

Mβ , . . . ,
ž

βPf´1pkq

Mβ , I
1sq,
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is a functor Γ Ñ SSpacen with the property that
ź

1ďβďn

γβ : PBordnrms ÝÑ pPBordnr1sq
m

is an equivalence of n-fold Segal spaces.

The map
ś

1ďβďn γβ is an inclusion of n-fold Segal spaces and we show that

level-wise it is a weak equivalence of spaces. Let
´

pM1q, . . . , pMnq

¯

P pPBordnr1sq
m.

We construct a path to an element in the image of
ś

1ďiďn γβ which induces a
strong homotopy equivalence between the above spaces. First, there is a path
to an element for which all pMαq have the same specified intervals by composing
all except one with a suitable smooth rescaling. Secondly, there is a path with
parameter s P r0, 1s given by composing the embedding Mα ãÑ V ˆ p0, 1qn

with the embedding into R ˆ V ˆ p0, 1qn given by the map V Ñ R ˆ V ,
v ÞÑ psα, vq.

2.4.2 The monoidal structure and the tower

Our goal for this section is to endow Bordn with a symmetric monoidal struc-
ture arising from a tower of monoidal l-hybrid pn` lq-fold Segal spaces Bordplqn
for l ě 0.

The p8, n` lq-category of n-bordisms for l ě ´n

We now define an pn ` lq-fold Segal space whose pn ` lq-morphisms are n-
bordisms for l ě ´n.

Definition 2.4.3. Let V be a finite dimensional vector space and let n ě
0, l ě ´n. For every n-tuple k1, . . . , kn`l ě 0, we let pPBordl,Vn qk1,...,kn`l be
the collection of tuples pM ãÑ V ˆp0, 1qn`l, pIi0 ď . . . ď Iikiqi“1,...,n`lq satisfying
conditions analogous to (1)-(3) in definition 2.3.1, i.e.

1. M is a closed n-dimensional submanifold of V ˆp0, 1qn`l, and Iij Ď p0, 1q

are closed intervals in p0, 1q with endpoints aij ă bij , a
i
0 “ 0, biki “ 1, and

Iij ď Iil iff aij ď ail, b
i
j ď bil,

2. the composition π : M ãÑ V ˆ p0, 1qn`l � p0, 1qn`l is a proper map,

3. for every S Ď t1, . . . , n ` lu let pS be the composition pS : M
π
Ñ

p0, 1qn`l Ñ p0, 1qS . Then for every 1 ď i ď n ` l and 0 ď ji ď ki,
at every x P p´1

tiupI
i
ji
q, the map pti,...,n`lu is submersive.

We make pPBordl,Vn qk1,...,kn`l into a space similarly to pPBordVn qk1,...,kn , and
again we take the limit over all finite dimensional vector spaces in a given
infinite dimensional vector space, say R8:

PBordln “ lim
VĂR8

PBordl,Vn .

Proposition 2.4.4. pPBordlnq‚,¨¨¨ ,‚ is an pn` lq-fold Segal space.
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Proof. The proof is completely analogous to the proof of Proposition 2.3.22.

Definition 2.4.5. For l ď 0 let Bordln be the pn`lq-fold completion of PBordln,
the p8, n` lq-category of n-bordisms.

Remark 2.4.6. For l ą 0, the underlying submanifold of objects of PBordln,
i.e. elements in pPBordlnq0,...,0, are n-dimensional manifolds M which have a
submersion onto p0, 1qn`l. This implies that M “ H. Thus, the only ob-
ject is pH, p0, 1q, . . . , p0, 1qq. Similarly, pPBordlnq0,k2,...,kn`l has only one el-
ement, which is the image of compositions of the degeneracy maps. Thus,
pPBordlnq0,‚,...,‚ is the point viewed as a constant pn ´ 1q-fold Segal space.

Similarly, pPBordlnq1,...,1,0,‚,...,‚, with pl ´ 1q 1’s, is the point viewed as a con-
stant pn´ lq-fold Segal space. Thus for l ą 0 it makes sense and is more useful
to use the l-hybrid completion of PBordln.

Definition 2.4.7. For l ą 0 let Bordplqn be the l-hybrid completion of PBordln.

Loopings of PBordln

In any PBordln, there is the distinguished object H “ pH, p0, 1qq in PBordln,
the unit for the monoidal structure. Recall from definition 1.5.7 the k-fold
iterated loopings of PBordln for k ď n` l,

LkpPBordlnq “ LpLk´1pPBordln,Hq,Hq, LkpBordlnq “ LpLk´1pBordln,Hq,Hq.

Proposition 2.4.8. For n` l ě k ě 0, there are weak equivalences

LkpPBordlnq PBordl´kn .

u

`

Proof. We show that LpPBordlnq “ HomPBordln
pH,Hq » PBordl´1

n . The state-
ment for general k follows by induction.

We define a map
u : LpPBordlnq

»
ÝÑ PBordl´1

n

by sending an element in HomPBordln
pH,Hqk2,...,kn`l ,

pMlq “
`

M Ď V ˆ p0, 1qn`l, p0, b10s ď ra
1
1, 1q, pI

i
0 ď ¨ ¨ ¨ ď Iikiqi“2,...,n`l

˘

P pPBordlnq1,k2,...,kn`l

to

pMl´1q “ pM Ď pV ˆ p0, 1q
loooomoooon

“Ṽ

q ˆ p0, 1qn`l´1, pIi0 ď ¨ ¨ ¨ ď Iikiqi“2,...,n`lq,

so it “forgets” the first specified intervals. First of all, we need to check that
this map is well-defined, that is, that pMl´1q P pPBordl´1

n qk2,...,kn`l . Note that

in the above, we view Ṽ “ V ˆ p0, 1q as a vector space using the identification

p0, 1q
χ
– R. The condition we need to check is the second one, i.e. we need

to check that M ãÑ Ṽ ˆ p0, 1qn`l´1 � p0, 1qn`l´1 is proper. We know that
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M Ñ p0, 1qn`l is proper, and moreover, since p´1
1 pp0, b10qq “ p´1

1 ppa1
1, 1qq “ H,

we know that M is bounded in the direction of the first coordinate, since
M “ p´1

1 prb10, a
1
1sq. Together this implies the statement. Note that the map u

we just constructed actually is defined by a system of maps

uV : LpPBordl,Vn q ÝÑ PBordl,Ṽn ,

where Ṽ “ V ‘ xvy.

To construct a map in the other direction we will also need to change the vector
space V , but this time we need to ”delete” a direction. To make this procedure
precise, we fix the following notations. In the definition of PBordl,Vn we let
V vary within a fixed countably infinite dimensional space. Choose R8 with
a countable basis consisting of vectors v1, v2, . . . In taking the limit is enough
to consider the finite dimensional subspaces Vd spanned by the first d vectors
v1, . . . , vd. Then the map u we constructed above was defined as an inductive
system of maps

ud : LpPBordl,Vdn q ÝÑ PBordl,Vd`1
n ,

´

M Ď Vd ˆ p0, 1q ˆ p0, 1q
n`l´1

¯

ÞÝÑ

´

M Ď
`

xv1y
loomoon

–p0,1q

‘xv2, . . . , vd`1y
looooooomooooooon

–Vd

˘

ˆ p0, 1qn`l´1
¯

,

where we use the canonical morphisms p0, 1q – R – xv1y and xv2, . . . , vd`1y Ñ

Vd, vβ ÞÑ vβ´1.

In remark 2.3.11, we constructed a path from an element in PBordn to its “cut-

off”, whose underlying submanifold is π´1p
śn
i“1p

bi0
2 ,

aiki
2 qq, which is bounded

in the V -direction. We saw in section 2.3.6 that this map gives rise to a strong
homotopy equivalence

cut : PBordn ÝÑ PBordbdn .

Similarly, we obtain equivalences of n-fold Segal spaces

cut : PBordl´1
n ÝÑ PBordl´1,bd

n , cut : LpPBordlnq ÝÑ LpPBordl,bdn q.

Note that ud restricts to a map between the bounded versions,

ubdd : LpPBordl,Vd,bdn q ÝÑ PBordl,Vd`1,bd
n

It suffices to show that this map induces a strong homotopy equivalence, with
homotopy inverse given by the following inductive system of maps

`bdd : PBordl´1,Vd`1,bd
n ÝÑ LpPBordl,Vdn q.

Start with an element pMl´1q “
`

M Ď Vd`1 ˆ p0, 1q
n`l´1, pIi0 ď ¨ ¨ ¨ ď Iikiqi“2,...,n`l

˘

P

PBordl´1,Vd`1,bd
n . Since it is bounded in the V -direction, there are A,B such

that
B ă πv1pMq ă A,

where πv1 : M Ď
`

xv1y ‘ xv2, . . . , vd`1y
˘

ˆ p0, 1qn`l´1 � xv1y “ Rv1. Let

B̃ be the supremum of such B and let Ã be the infimum of such A. Let
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˜̃B “ B̃
2 ,

˜̃A “ Ã`1
2 . Now let b, a P p0, 1q – R correspond to ˜̃B, ˜̃A,B. Finally, we

send pMl´1q to

pMlq “

´

M Ď xv2, . . . , vd`1y
looooooomooooooon

–Vd

ˆ p0, 1q
loomoon

–xv1y

ˆp0, 1qn`l´1, p0, bs ď ra, 1q, pIi0 ď ¨ ¨ ¨ ď Iikiqi“2,...,n`l

¯

.

By construction,
`bdd ˝ ud „ id, ud ˝ `

bd
d “ id,

where `bdd ˝ud just changes the first two intervals I1
0 ď I1

1 and thus is homotopy
equivalent to the identity.

Definition 2.4.9. The map ` in the proof is called the looping and u the
delooping map.

Recall from remark 1.5.8 that looping commutes with completion. Taking the
appropriate completions, we obtain the following corollary.

Corollary 2.4.10. Let k ě 0.

1. If l ´ k ą 0,
LkpBordplqn q » Bordpl´kqn . (2.3)

2. If k ě l ą 0 and n` l ´ k ě 0,

LkpBordplqn q » Bordl´kn . (2.4)

3. If l ď 0 and For n` l ě k ě 0, n` l ´ k ě 0,

LkpBordlnq » Bordl´kn . (2.5)

The tower and the symmetric monoidal structure

Recall from definition 2.4.7 that Bordplqn is the l-hybrid completion of PBordln.
By remark 2.4.6 and (2.3) in corollary 2.4.10, proposition 2.4.8 has an imme-
diate corollary.

Corollary 2.4.11. The pn`lq-fold Segal spaces Bordplqn are l-hybrid and endow
Bordn with the structure of a symmetric monoidal n-fold Segal space.

2.5 The homotopy (bi)category

2.5.1 The homotopy category h1pLn´1pBordnqq

The symmetric monoidal structure on h1pLn´1pBordnqq

The pn´ 1q-fold looping Ln´1pBordnq » Bord´pn´1q
n is a p8, 1q-category with

a symmetric monoidal structure defined in two ways similarly to that of Bord1.
Both induce a symmetric monoidal structure on the homotopy category h1pLn´1pBordnqq »

h1pBord´pn`1q
n q.
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...coming from a Γ-object We can either obtain the symmetric monoidal
structure as a Γ-object on Ln´1pBordnq » Bord´pn´1q

n by iterating the con-
struction of the symmetric monoidal structure on the looping from example
1.6.11 or by constructing a functor from an assignment rms ÞÑ Bord´pn´1q

n rms.

In the second case, Bord´pn´1q
n rms arises, similarly to Bordnrms, from the

spaces pPBordV,´pn´1q
n rmsqk1,...,kn , which as a set is the collection of tuples

pM1, . . . ,Mm, pI0 ď . . . ď Ikqq,

where M1, . . .Mm are disjoint n-dimensional submanifolds of V ˆ p0, 1qn, and

each pMβ , pI0 ď . . . ď Ikqq P pPBordV,´pn´1q
n qk1,...,kn .

We saw in example 1.6.9 that a Γ-object endows the homotopy category of its
underlying Segal space with a symmetric monoidal structure. Explicitly, in the
second case, it comes from the following maps.

Bord´pn`1q
n r1s ˆ Bord´pn`1q

n r1s
»

ÐÝÝÝÝ
γ1ˆγ2

Bord´pn`1q
n r2s

γ
ÝÑ Bord´pn`1q

n r1s,

pM1, I’sq, pM2, I’sq ÐÝÝÝÝp pM1,M2, I’sq ÞÝÑ pM1 >M2, I’sq

...coming from a tower The understand the symmetric monoidal structure
on h1pLn´1pBordnqq coming from a symmetric monoidal structure as a tower,

we use that Ln´1pBordnq » Bord´pn´1q
n and that Bord´pn´1q

n has a symmetric
monoidal structure coming from the collection of l-hybrid pl ` 1q-fold Segal
spaces given by the l-hybrid completion of PBordl´n`1

n , the completion in the
last index. This symmetric monoidal structure induces one on the homotopy
category h1pBord´pn´1q

n q » h1pLn´1pBordnqq, which we will explain explicitly.
Since completion is a Dold-Kan equivalence, see 1.2.3, it is enough to under-
stand the symmetric monoidal structure on h1pPBord´pn´1q

n q.

Essentially, the monoidal structure is given by composition in PBord1´pn´1q
n ,

the next layer of the tower PBord2´pn´1q
n gives a braiding and the higher layers

show that it is symmetric monoidal. Consider the diagram

pPBord1´pn´1q
n q1,‚ˆpPBord1´pn´1q

n q1,‚
»

ÐÝÝÝÝ
d10ˆd

1
2

pPBord1´pn´1q
n q2,‚

s11
ÝÑ pPBord

n´pn´1q
1 q1,‚.

Using the fact from remark 1.6.18 that LpPBord1´pn´1q
n q‚ “ pPBord1´pn´1q

n q1,‚,

we find that pPBord1´pn´1q
n q1,‚ » pPBord´pn´1q

n q‚, which induces a map

h1pPBord´pn´1q
n q ˆ h1pPBord´pn´1q

n q ÝÑ h1pPBord´pn´1q
n q.

This is a monoidal structure on h1pPBord´pn´1q
n q. We can explicitly construct

this map. Consider two objects or 1-morphisms pMq and pNq in pPBord´pn´1q
n qk

for k “ 0 or k “ 1,

pMq “ pM Ď V ˆp0, 1q, I0 ď ¨ ¨ ¨ ď Ikq, pNq “ pN Ď Ṽ ˆp0, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩkq.

Without loss of generality V “ Ṽ “ Vd, and pMq, pNq P pBordbd1 qk.

Under the map `bdd : Bordbd1 Ñ LpBord1,bd
1 q from proposition 2.4.8, pMq and

pNq are sent to

pM1q “ pM Ď Vd´1 ˆ p0, 1q
2, p0, bs ď ra, 1q, I0 ď ¨ ¨ ¨ ď Ikq,
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pN1q “ pN Ď Ṽd´1 ˆ p0, 1q
2, p0, b̃s ď rã, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩkq.

In the proof of the Segal condition for PBordn proposition 2.3.22 we explicitely
constructed a homotopy inverse glue to d1

0ˆ d
1
2. Similarly one can obtain such

a homotopy inverse for PBordln, which applied to pM1q and pN1q gives

´

M >N ãÑ Ṽd´1 ˆ p0, 1q
2, p0, b10s ď ra

1
1, b

1
1s ď ra

1
2, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩk

¯

,

since d1
1ppM1qq “ d1

0ppN1qq “ H. The third face map sends it to

´

M >N ãÑ Ṽd´1 ˆ p0, 1q
2, p0, b10s ď ra

1
2, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩk

¯

which by ubdd : LpBord1,bd
1 q Ñ Bordbd1 is sent to

´

M >N ãÑ Ṽd ˆ p0, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩk

¯

.

The homotopy category and nCob

The homotopy category of Bord1 turns out to be what we expect, namely 1Cob.
We can show even more, namely that our higher categories of cobordisms also
give back the ordinary categories of n-cobordisms, as we see in the following
proposition.

Proposition 2.5.1. There is an equivalence of symmetric monoidal categories
between the homotopy category of the pn ´ 1q-fold looping of Bordn and the
category of n-cobordisms,

h1pLn´1pBordnqq » nCob .

Proof. We first show that there is an equivalence of categories h1pLn´1pBordnqq »
nCob and then show that it respects the symmetric monoidal structures.

Rezk’s completion functor is a Dwyer-Kan equivalence of Segal spaces, and thus
by definition induces an equivalence of the homotopy categories. Moreover,
completion commutes with looping, so it is enough to show that

h1pLn´1pPBordnqq » nCob .

We define a functor

F : h1pLn´1pPBordnqq ÝÑ nCob

and show that it is essentially surjective and fully faithful.

Definition of the functor By definition,

pLn´1pPBordnqqk “ H
h
ˆ

pLn´2pPBordnqq0,k

pLn´2pPBordnqq1,k
h
ˆ

pLn´2pPBordnqq0,k

H,

and, iterating this process, we find that an element in Ln´1pPBordnqk is an
element pMq of pPBordnq1,...,1,k such that for every i ‰ n, dijppMqq has H as
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its underlying manifold, i.e. in every direction except for the nth direction, the
source and target both have H as its underlying manifold.

So an object in h1pLn´1pPBordnqq is an element pMq P pPBordnq1,...,1,0 such
that for i ‰ n, the underlying manifold ofdijppMqq is H. We let the functor F
send pMq to

π´1prb10, a
1
1s ˆ ¨ ¨ ¨ ˆ rb

n´1
0 , an´1

1 s ˆ t
1

2
uq.

Since 1
2 is a regular value of ptnu, F ppMqq is an pn´ 1q-dimensional manifold,

and since π is proper, it is compact. Moreover its boundary is empty. This
follows from

F ppMqq ãÑ V ˆ rb10, a
1
1s ˆ ¨ ¨ ¨ rb

n´1
0 , an´1

1 s ˆ t
1

2
u

which implies that

BF ppMqq “ F ppMqq X B

ˆ

V ˆ rb10, a
1
1s ˆ ¨ ¨ ¨ rb

n´1
0 , an´1

1 s ˆ t
1

2
u

˙

and since for every i ‰ n, the underlying manifold of dijppMqq is H.

So, as an abstract manifold, F ppMqq is a closed compact pn ´ 1q-dimensional
manifold, i.e. an object in nCob.

Similarly, the functor F sends a morphism in h1pLn´1pPBordnqq, which is
an element in π0pLn´1pPBordnq1q which is represented by an element pMq P
pPBordnq1,...,1,1 such that for i ‰ n, the underlying manifold of dijppMqq is H,
to the isomorphism class of

M̄ “ π´1prb10, a
1
1s ˆ ¨ ¨ ¨ ˆ rb

n´1
0 , an´1

1 s ˆ rbn0 , a
n
1 sq.

This is an n-dimensional manifold with boundary

π´1prb10, a
1
1sˆ¨ ¨ ¨ˆrb

n´1
0 , an´1

1 sˆtbn0 uq>π
´1prb10, a

1
1sˆ¨ ¨ ¨ˆrb

n´1
0 , an´1

1 sˆtan1 uq.

This is well-defined, since a path in Ln´1pPBordnq1 by definition gives diffeo-
morphism ψ0,1 : M0 ÑM1 which intertwines with the composed bordisms and
thus restricts to diffeomorphisms of the images defined above.

The functor is an equivalence of categories Whitney’s embedding the-
orem shows that F is essentially surjective. Moreover, it is injective on mor-
phisms: Let ι0 : M0 ãÑ V ˆp0, 1qn and ι0 : M1 ãÑ V ˆp0, 1qn be representatives
of two 1-morphisms which have diffeomorphic images. This means that there
is a diffeomorphism ψ : M̄0 Ñ M̄1, which can be extended to their collars,
i.e. we get a diffeomorphism ψ : M0 Ñ M1. Since EmbpM1,R8 ˆ p0, 1qnq is
contractible, the quotient EmbpM1,R8 ˆ p0, 1qnq{DiffpM1q is path-connected,
so there is a path of embedded submanifolds ι̃s : M1 ãÑ R8ˆ p0, 1qn such that
ι̃1 “ ι1 is the given one and ι̃0 “ ι0 ˝ ψ. Note that ι̃0 and ι0 give the same
submanifold. By lemma 2.3.12, this family ιs determines a rescaling data and
a family of diffeomorphisms ψs,t which intertwine and thus a path in PBordn,
which by construction lies in Ln´1pBordnq. It remains to show that F is full.
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In the case n “ 1, 2 this is easy to show, as we have a classification theorem
for 1- and 2-dimensional manifolds with boundary. In the 1-dimensional case
it is enough to show that an open line, the circle and the half-circle, once
as a bordism from 2 points to the empty set and once vice versa, lie in the
image of the map, which is straightforward. In the two dimensional case, the
pair-of-pants decomposition tells us how to embed the manifold.

For general n we first embed the manifold with boundary into R` ˆ R2n us-
ing a variant of Whitney’s embedding theorem for manifolds with boundary,
cf. [Lau00]. Then the boundary of the halfspace is BpR` ˆ R2nq “ R2n. We
want to transform this embedding into an embedding into p0, 1q ˆ R2n such
that the incoming boundary is sent into tεu ˆR2n and the outgoing boundary
is sent into t1´ εu ˆ R2n.

We first show that the boundary components can be separated by a hyperplane
in R2n. The boundary components are compact so they can be embedded
into balls B2n. By perhaps first applying a suitable “stretching” transforma-
tion, one can assume that these balls do not intersect. Now, since 2n ą 1,
π0pConfpB2n,R2nqq “ ˚, there is a transformation to a configuration in which
the boundary components are separated by a hyperplane, without loss of gen-
erality given by the equation tx1 “ 0u Ă R2n.

Consider the (holomorphic) logarithm function on pR`ˆRqztp0, 0qu – Hz0 Ď C
with branch cut ´iR`. It is a homeomorphism to tpx, yq P R2 : 0 ď y ď πu.
We can apply logˆidR2n´1 to pR` ˆ Rx1q ˆ R2n´1 and, composing this with
a suitable rescaling, obtain an embedding into pε, 1´ εq ˆ R2n. Now choose a
collaring of the bordism to extend the embedding to p0, 1q ˆ R2n.

The functor is a symmetric monoidal equivalence Explicitly analyzing
the two symmetric monoidal structures on h1pBord´pn´1q

n q, one sees that they
both send two elements (represented by)

pMq “ pM Ď Vdˆp0, 1q, I0 ď ¨ ¨ ¨ ď Ikq, pNq “ pN Ď Vdˆp0, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩkq

for k “ 0 or k “ 1 to an embedding of M >N into Vd`1, which sends M and
N to different heights in the extra pd` 1qst direction.

In the case of the structure coming from a Γ-object, one can similarly to in the
previous paragraph define an equivalence of categories

F rms : Bord´pn´1q
n rms ÝÑ nCobm .

Then one can easily check that the following diagram commutes.

Bord´pn´1q
n r1s ˆ Bord´pn´1q

n r1s Bord´pn´1q
n r2s Bord´pn´1q

n r1s

nCobˆnCob nCobˆnCob nCob

FˆF F r2s

»

F

>

For the case of the structure coming from a tower, we explicitly saw that
the symmetric structure on h1pBord´pn´1q

n q sends two objects or 1-morphisms
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determined by

pMq “ pM Ď V ˆp0, 1q, I0 ď ¨ ¨ ¨ ď Ikq, pNq “ pN Ď Ṽ ˆp0, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩkq

to
pM >Nq “

´

M >N ãÑ Ṽd ˆ p0, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩk

¯

,

where the embedding of M is changed by a rescaling. This change of rescaling
is precisely such that under the functor F the element pM > Nq is sent to
F ppMqq > F ppNqq.

2.5.2 The homotopy bicategory h2pBord2q and comparison
with 2Cobext

C. Schommer-Pries defined a symmetric monoidal bicategory nCobext of n-
dimensional cobordisms in his thesis [SP09]. In this section we show that
the homotopy bicategory of our p8, 2q-category of 2-dimensional bordisms is
symmetric monoidally equivalent to this bicategory.

The bicategory 2Cobext

We first briefly recall the definition of 2Cobext.

Definition 2.5.2. The bicategory 2Cobext has

• 0-dimensional manifolds as objects,

• 1-morphisms are 1-bordisms between objects, and

• 2-morphisms are isomorphism classes of 2-bordisms between 1-morphisms,

where

1. a 1-bordism between two 0-dimensional manifolds Y0, Y1 is a smooth com-
pact 1-dimensional manifold with boundary W with a decomposition and
isomorphism

BW “ BinW > BoutW – Y0 > Y1;

2. a 2-bordism between two 1-bordisms W0,W1 between objects Y0, Y1 is a
compact 2-dimensional ă2ą-manifold S equipped with

- a decomposition and isomorphism

B0S “ B0,inS > B0,outS
„
ÝÑW0 >W1,

- a decomposition and isomorphism

B1S “ B1,inS > B1,outS
„
ÝÑ Y0 ˆ r0, 1s > Y1 ˆ r0, 1s.

Recall that a ă 2ą-manifold is a manifold with faces X with a pair of
faces pB0X, B1Xq such that

B0X Y B1X “ BX, B0X X B1X is a face.
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3. Two 2-bordisms S, S1 are isomorphic if there is a diffeomorphism h : S Ñ
S1 compatible with the boundary data.

Vertical and horizontal compositions of 2-morphisms are defined by choosing
collars and gluing. This is well-defined because 2-morphisms are isomorphism
classes of 2-bordisms, and thus the composition doesn’t depend on the choice of
the collar. However, composition of 1-morphisms requires the use of a choice of
a collar, which requires the axiom of choice, and then composition is defined by
the unique gluing. However, this gluing is associative only up to non-canonical
isomorphism of 1-bordisms which gives a canonical isomorphism class of 2-
bordisms realizing the associativity of horizontal composition in the axioms of
a bicategory.

It is symmetric monoidal, with symmetric monoidal structure given by taking
disjoint unions. For the exact details we refer to the above mentioned thesis
[SP09].

The symmetric monoidal structure on h2pBord2q

The symmetric monoidal structure on Bord2 arising as a Γ-object gives us

Bord2r1s ˆ Bord2r1s
»
ÐÝ Bord2r2s ÝÑ Bord2r1s

which induces
h2pBord2q ˆ h2pBord2q ÝÑ h2pBord2q.

This makes h2pBord2q into a symmetric monoidal bicategory, where the asso-
ciativity follows from the equivalence Bord2r3s

„
ÝÑ Bord2r1s

ˆ3.

The homotopy bicategory and 2Cobext

In this section we show that our p8, 2q category of 2-cobordisms indeed gives
back the bicategory 2Cobext as its homotopy bicategory.

Proposition 2.5.3. There is an equivalence of symmetric monoidal bicate-
gories between h2pBord2q and 2Cobext.

Proof. By Whitehead’s theorem for symmetric monoidal bicategories, see [SP09],
theorem 2.21, it is enough to find a functor F which is

1. essentially surjective on objects, i.e. F induces an isomorphism
π0ph2pBord2qq – π0p2Cobextq,

2. essentially full on 1-morphisms, i.e. for every x, y P Ob h2pBord2q, the
induced functor Fx,y : h2pBord2qpx, yq Ñ 2CobextpFx, Fyq is essentially
surjective, and

3. fully-faithful on 2-morphisms, i.e. for every x, y P Ob h2pBord2q, the in-
duced functor Fx,y : h2pBord2qpx, yq Ñ 2CobextpFx, Fyq is fully-faithful.

First of all, recall from remark 2.3.25 that for n “ 2, PBord2 is a complete
2-fold Segal space, so Bord2 “ PBord2.
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Definition of the functor Let

F : h2pBord2q ÝÑ 2Cobext

be the functor defined as follows:

On objects,

pM Ď V ˆ R2, p0, 1q, p0, 1qq P pBord2q0,0
F
ÞÝÑ π´1

ˆ

p
1

2
,

1

2
q

˙

,

where the image is thought of as an abstract manifold. This is well-defined, be-
cause as π is proper and p 1

2 ,
1
2 q is a regular value of π, the preimage π´1

`

p 1
2 ,

1
2 q
˘

is compact and 0-dimensional, so it is a finite disjoint union of points. Note
that because of condition (3) in the definition of Bord2 “ PBord2, we could
have taken the fiber over any other point in p0, 1q2 and would have gotten a
diffeomorphic image.

On 1-morphisms,

pM Ď V ˆ R2, p0, b10s ď ra
1
1, 1q, p0, 1qq P pBord2q1,0

F
ÞÝÑ π´1

ˆ

rb10, a
1
1s ˆ t

1

2
u

˙

.

The point 1
2 is a regular value of the projection map p2 : M ãÑ V ˆ p0, 1q2 �

p0, 1q, so π´1
`

rb10, a
1
1s ˆ t

1
2u
˘

is a 1-dimensional manifold with boundary. More-
over, the decomposition of the boundary of the image is given by

π´1

ˆ

pb10,
1

2
q

˙

> π´1

ˆ

pa1
1,

1

2
q

˙

.

Note that again, we could have taken the preimage π´1 prc, ds ˆ ttuq for any
t P r0, 1s, c P p0, b10s, and d P ra1

1, 1q and would have gotten a diffeomorphic
image.

On 2-morphisms, the functor F comes from the assignment

pM Ď VˆR2, p0, b10s ď ra
1
1, 1q, p0, b

2
0s ď ra

2
1, 1qq

F
ÞÝÑ π´1

`

rb10, a
1
1s ˆ rb

2
0, a

2
1s
˘

“: S.

As π is proper, S is a compact 2-dimensional manifold with corners and more-
over has the structure of a x2y-manifold coming from the decomposition of the
boundary coming from the inverse images under π of the sides of the rectangle
rb10, a

1
1s ˆ rb

2
0, a

2
1s,

B0S “ π´1
`

rb10, a
1
1s ˆ tb

2
0u
˘

> π´1
`

rb10, a
1
1s ˆ ta

2
1u
˘

,

and
B1S “ π´1

`

tb10u ˆ rb
2
0, a

2
1s
˘

> π´1
`

ta1
1u ˆ rb

2
0, a

2
1s
˘

.

By condition (3) in definition 2.3.1,

π´1
`

tb10u ˆ rb
2
0, a

2
1s
˘

– π´1
`

pb10, b
2
0q
˘

ˆ rb20, a
2
1s

and
π´1

`

ta1
0u ˆ rb

2
0, a

2
1s
˘

– π´1
`

pa1
0, b

2
0q
˘

ˆ rb20, a
2
1s.
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This makes S into a 2-bordism between the images under F of the source and
target of our 2-bordism.

This assignment descends to 2-morphisms which are elements in π0ppBord2q1,1q,
as any path in pBord2q1,1 by definition induces a diffeomorphism ψ0,1 : M0 Ñ

M1 which intertwines with the composed bordisms and thus induces an iso-
morphism of the images under F defined above.

The functor is an equivalence of bicategories We check (1)-(3) of White-
head’s theorem.

For (1), the point is the image of the plane pM “ p0, 1q2
id
ãÑ p0, 1q2, p0, 1q, p0, 1qq.

For k points, we can take k disjoint parallel planes in p0, 1q ˆ p0, 1q2 which
intersect V “ R in k different points, e.g. 0, . . . , k ´ 1 and the intervals I1

0 “

I2
0 “ p0, 1q.

For (2), we use the classification of 1-dimensional manifolds with boundary.
Any connected component can be cut into pieces diffeomorphic to straight
lines and left and right half circles. These all lie in the image of F in a very
simple way, e.g. a straight line is the image of

ˆ

M “ p0, 1q2
id
ãÑ p0, 1q2, p0,

1

3
s ď r

2

3
, 1q, p0, 1q

˙

,

and the right and left half circles are the images of the following embeddings
p0, 1q2 ãÑ Rˆ p0, 1q2 with suitable choices of intervals.

By gluing these preimages in a suitable way, we get an element whose image is
diffeomorphic to the connected component we started with.

For (3), to show that it is full on 2-morphisms, we use the classification theorem
3.33 of Schommer-Pries in [SP09]. He gives a set of generating 2-morphisms
of 2Cobext for which one easily sees that they all are the image of an element
in pBord2q1,1. Moreover, the preimages can be glued. For faithfullness, a
similar argument as in the proof of proposition 2.5.1 works: we use the fact
that EmbpM,R8 ˆ p0, 1qnq is contractible, so EmbpM,R8 ˆ p0, 1qnq{DiffpMq
is path connected. Using lemma 2.3.12, an isomorphism of 2-bordisms will give
rise to a path in pBord2q1,1.
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The functor is a symmetric monoidal equivalence Similarly to in the
previous subsection, the equivalence of bicategories

F : h2pBord2q
»
ÝÑ 2Cobext

respects the symmetric monoidal structures. This can been seen by explicitly
writing out the symmetric monoidal structure for h2pBord2q.

Remark 2.5.4. In [SP09], Schommer-Pries also defined a bicategory nCobext

with objects being pn´ 2q-dimensional manifolds, 1-morphisms being pn´ 1q-
cobordisms, and 2-morphisms being equivalence classes of 2-bordisms, which
are suitable n-dimensional x2y-manifolds. A similar argument should show that
h2pLn´2pBordnqq » nCobext. However, one would need a suitable embedding
theorem for cobordisms between cobordisms. One should be able to adapt
the embedding theorem for x2y-manifolds from [Lau00], similarly to how we
adapted the embedding theorem for manifolds with boundary.

2.6 Cobordisms with additional structure: orientations
and framings

In the study of fully extended topological field theories, one is particularly
interested in manifolds with extra structure, especially that of a framing. In this
section we explain how to define the p8, nq-category of structured n-bordisms,
in particular for the structure of an orientation or a framing.

2.6.1 Structured manifolds

We first need to recall the definition of structured manifolds and the topology
on their morphism spaces making them into a topological category. In the
next subsection we will see that the simplicial set of chains on these topological
spaces essentially will give rise to the spatial structure of the levels of the n-
fold Segal space of structured bordisms similarly to the construction in section
2.3.2.

Throughout this subsection, let M be an n-dimensional (smooth) manifold.

Definition 2.6.1. Let X be a topological space and E Ñ X a topological n-
dimensional vector bundle which corresponds to a (homotopy class of) map(s)
e : X Ñ BGLpRnq from X to the classifying space of the topological group
GLpRnq. More generally, we could also consider a map e : X Ñ BHomeopRnq
to the classifying space of the topological group of homeomorphisms of Rn, but
for our purposes vector bundles are enough. An pX,Eq-structure or, equiv-
alently, an pX, eq-structure on an n-dimensional manifold M consists of the
following data:

1. a map f : M Ñ X, and

2. an isomorphism of vector bundles

triv : TM – f˚pEq.
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Denote the set of pX,Eq-structured n-dimensional manifolds by ManpX,Eqn .

An interesting class of such structures arises from topological groups with a
morphism to Opnq.

Definition 2.6.2. Let G be a topological group together with a continuous
homomorphism e : G Ñ Opnq, which induces e : BG Ñ BGLpRnq. As usual,
let BG “ EG{G be the classifying space of G, where EG is total space of
its universal bundle, which is a weakly contractible space on which G acts
freely. Then consider the vector bundle E “ pRnˆEGq{G on BG. A pBG,Eq-
structure or, equivalently, a pBG, eq-structure on an n-dimensional manifold M
is called a G-structure on M . The set of G-structured n-dimensional manifolds
is denoted by ManGn .

For us, the most important examples will be the following three examples.

Example 2.6.3. If G is the trivial group, X “ BG “ ˚ and E is trivial. Then
a G-structure on M is a trivialization of TM , i.e. a framing.

Example 2.6.4. Let G “ Opnq and e “ idOpnq. Then, since the inclusion
Opnq Ñ Diff pRnq is a deformation retract, an Opnq-structured manifold is just
smooth manifolds.

Example 2.6.5. Let G “ SOpnq and e : SOpnq Ñ Opnq is the inclusion. Then
an SOpnq-structured manifold is an oriented manifold.

Definition 2.6.6. Let M and N be pX,Eq-structured manifolds. Then let the
space of morphisms from M to N be

MappX,EqpM,Nq “ EmbpM,Nq
h
ˆ

Map{BHomeopRnqpM,Nq
Map{XpM,Nq.

Taking (singular or differentiable) chains leads to a space, i.e. a simplicial set
of morphisms from M to N . Thus we get a topological (or simplicial) category

ManpX,Eqn of pX,Eq-structured manifolds. Disjoint union gives ManpX,Eqn a
symmetric monoidal structure.

Remark 2.6.7. ForG “ Opnq we recover EmbpM,Nq, and forG “ SOpnq, the

space of orientations on a manifold is discrete, so an element in MapSOpnqpM,Nq
is an orientation preserving map.

If G is the trivial group we saw above that a G-structure is a framing. In this
case, the above homotopy fiber product reduces to

MappX,EqpM,Nq “ EmbpM,Nq
h
ˆ

MapGLpdqpFrpTMq,FrpTNqq
MappM,Nq.

Thus, a framed embedding is a pair pf, hq, where f : M Ñ N lies in EmbpM,Nq
and h is a homotopy between between the trivialization of TM induced by the
framing of M and that induced by the pullback of the framing on N .
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2.6.2 The p8, nq-category of structured cobordisms

Fix a type of structure given by the pair pX,Eq. In this subsection we define

the n-fold (complete) Segal space of pX,Eq-structured cobordisms BordpX,Eqn .

Compared to definition 2.3.1 we add an pX,Eq-structure to the data of an
element in a level set.

Definition 2.6.8. Let V be a finite dimensional vector space. For every n-
tuple k1, . . . , kn ě 0, let

`

PBordpX,Eq,Vn

˘

k1,...,kn
be the collection of tuples

pM,f, triv, pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq, where

1. pM, pIi0 ď ¨ ¨ ¨ ď Iikiq
n
i“1q is an element in the set pPBordVn qk1,...,kn , and

2. pf, trivq is an pX,Eq-structure on the (abstract) manifold M .

Remark 2.6.9. Note that there is a forgetful map

U :
`

PBordpX,Eq,Vn

˘

k1,...,kn
Ñ pPBordVn qk1,...,kn

forgetting the pX,Eq-structure.

Definition 2.6.10. An l-simplex of
`

PBordpX,Eq,Vn

˘

k1,...,kn
consists of the

following data:

1. A family of elements

pMs, fs, trivsq “
`

Ms Ď V ˆ p0, 1qn, fs, trivs, pI
i
0psq ď ¨ ¨ ¨ ď Iikipsqqi“1,...,n

˘

in
`

PBordpX,Eq,Vn

˘

k1,...,kn
indexed by s P |∆l|, which are called the un-

derlying pX,Eq-structured 0-simplices;

2. For every 1 ď i ď ki,

`

Ii0psq ď ¨ ¨ ¨ ď Iikipsq
˘

sP|∆l|

is an l-simplex in Intki with rescaling datum ϕis,t : p0, 1q Ñ p0, 1q;

3. A family of elements in ManpX,Eqn pMs,Mtq with underlying diffeomor-
phisms

ψs,t : Ms ÝÑMt,

indexed by s, t P |∆l|;

such that the triple

UpMs, fs, trivsq, pϕs,tqs,tP|∆l|, pψs,tqs,tP|∆l|

is an l-simplex in pPBordVn qk1,...,kn .
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Similarly as for PBordn the levels can be given a spatial structure with the
above l-simplices and then the collection of levels can be made into a complete
n-fold Segal space BordpX,Eqn .

Moreover, BordpX,Eqn has a symmetric monoidal structure given by pX,Eq-
structured versions of the Γ-object and of the tower giving Bordn a symmetric
monoidal structure.

2.6.3 Example: Objects in Bordfr2 are 2-dualizable

In dimension one, a framing is the same as an orientation. Thus the first
interesting case is the two-dimensional one. In this case, the existence of a
framing is a rather strong condition. However, we will see that nevertheless, any
object in Bordfr2 is 2-dualizable. Being 2-dualizable means that it is dualizable
with evaluation and coevaluation maps themselves have adjoints, see [Lur09b].

Consider an object in Bordfr2 , which, since in this case Bordfr2 “ PBordfr2 by
remark 2.3.25, is an element of the form

`

M Ď V ˆ p0, 1q2, F, p0, 1q, p0, 1q
˘

,

where F is a framing of M . By the submersivity condition 3 in the definition
2.3.1 of PBord2, M is a disjoint union of manifolds which are diffeomorphic to
p0, 1q2. Thus, it suffices to consider an element of the form

`

p0, 1q2 Ď p0, 1q2, F, p0, 1q, p0, 1q
˘

,

where F is a framing of p0, 1q2. Depict this element by

1

2

One should think of this as a point together with a 2-framing,

1

2

We claim that its dual is the same underlying unstructured manifold together
with the opposite framing

1

2

1

2

An evaluation 1-morphism ev
1
2

between them is given by the element in

pBordfr2 q1,0 which is a strip, i.e. p0, 1q2, with the framing given by slowly ro-
tating the framing by 180˝, and is embedded into Rˆ p0, 1q2 by folding it over
once as depicted further down.
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1

2 1

2 1

2 1

2

1

2

1

2

1

2

A coevaluation coev
1
2

is given similarly by rotating the framing along the

strip in the other direction, by -180˝.

The composition

1

2

1

2

1

2

1

2

1

2

is connected by a path to the flat strip with the following framing given by
pulling at the ends of the strip to flatten it.

1

2 1
2 1

2 1

2

1

2

1

2

1
2 1

2

1

2

This strip is homotopic to the same strip with the trivial framing. Thus the
composition is connected by a path to the identity and thus is the identity in
the homotopy category. Similarly,

`

ev
1
2
b id

1
2

˘

˝
`

id
1
2
b coev

1
2

˘

» id
1
2
.

In the above construction, we used ev
1
2

and coev
1
2

which arose from

strips with framing rotating by ˘180˝. A similar argument holds if you use for
the evaluation any strip with the framing rotating by απ for any odd integer
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α and for the coevaluation rotation by βπ for any odd β. Denoting these by
evpαq and coevpβq, they will be adjoints to each other if α` β “ 2.

The counit of the adjunction is given by the cap with the framing coming from
the trivial framing on the (flat) disk.

evcoev
1

2

1

21

2

1

2

1

2

1

2

1

2 1

2

1

2

1

2

1

2

1

2

Similarly, the unit of the adjunction is given by a saddle with the framing com-
ing from the one of the torus which turns by 2π along each of the fundamental
loops.

Then the following 2-bordism also is framed and exhibits the adjunction.

=

2.7 Fully extended topological field theories

Now that we have a good definition of a symmetric monoidal p8, nq-category
of bordisms modelled as a symmetric monoidal complete n-fold Segal space,
we can define fully extended topological field theories à la Lurie.
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2.7.1 Definition

Definition 2.7.1. A fully extended unoriented n-dimensional topological field
theory is a symmetric monoidal functor of p8, nq-categories with source Bordn.

Remark 2.7.2. Consider a fully extended unoriented n-dimensional topolog-
ical field theory

Z : Bordn ÝÑ C,

where C is a symmetric monoidal complete n-fold Segal space. We have seen
in section 2.5 that h1pLn´1pBordnqq » nCob. The Z induces a symmetric
monoidal functor

nCob » h1pLn´1pBordnqq ÝÑ h1pLn´1pC, Zp˚qqq,

i.e. an ordinary n-dimensional topological field theory. The converse for n ą 1
is not always true and poses interesting questions whether a theory can be
“extended down”.

Similarly, a fully extended unoriented 2TFT with target C yields an extended
2TFT

2Cobext » h2pBord2q ÝÑ h2pCq.

Additional structure Recall from the previous section that there are vari-
ants of Bordn which require that the underlying manifolds of their elements to
be endowed with some additional structure, e.g. an orientation or a framing.
These variants lead to the following definitions.

Definition 2.7.3. A fully extended n-dimensional framed topological field the-
ory is a symmetric monoidal functor of p8, nq-categories with source Bordfrn .

Definition 2.7.4. A fully extended n-dimensional oriented topological field
theory is a symmetric monoidal functor of p8, nq-categories with source Bordorn .

Remark 2.7.5. We will sometimes be imprecise when specifying the type of
fully extended TFT. From now on, if we do not specify explicitly that it is
unoriented or oriented, we will usually mean that it is framed.

2.7.2 nTFT yields kTFT

We will see that every fully extended n-dimensional (unoriented, oriented,
framed) TFT yields a fully extended k-dimensional (unoriented, oriented, framed)
TFT for any k ď n by truncation from subsection 1.5.1.

Note that for k ă n, we have an equivalence of n-fold Segal spaces

PBordk
»
ÝÑ τkpPBordnq “ pPBordnq‚, . . . , ‚

loomoon

k times

,0, . . . , 0
loomoon

n´k times

induced by sending
`

M ãÑ V ˆ p0, 1qk, pIij ’sq
k
i“1

˘

P PBordk to

`

M ˆ p0, 1qn´k ãÑ V ˆ p0, 1qn, pIij ’sq
k
i“1, p0, 1q, . . . , p0, 1q

˘

.
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The completion map PBordn Ñ Bordn induces a map on the truncations.
Precomposition with the above equivalence yields a map of (in general non-
complete) n-fold Segal spaces

PBordk
»
ÝÑ τkpPBordnq ÝÑ τkpBordnq.

Recall from 1.5.1 that since τkpBordnq is complete, by the universal property
of the completion we obtain a map Bordk Ñ τkpBordnq. This ensures that
any fully extended n-dimensional (unoriented, oriented, framed) TFT with
values in a complete n-fold Segal space C, Bordn Ñ C leads to a k-dimensional
(unoriented, oriented, framed) TFT given by the composition

Bordk ÝÑ τkpBordnq ÝÑ τkpCq

with values in the complete k-fold Segal space τkpCq.

2.7.3 Cobordism Hypothesis à la Baez-Dolan-Lurie and
outlook

In his seminal paper [Lur09b], Lurie gave a detailed sketch of proof of the
Cobordism Hypothesis, which in its simplest form says that a fully extended
framed TFT is fully determined by its value at a point. Conversely, any ob-
ject in the target category which satisfies a suitable finiteness condition can
be obtained in this way. The finiteness condition in question is called fully
dualizability, which we will not explain here. For a full definition, we refer to
[Lur09b].

Theorem 2.7.6 (Cobordism Hypothesis, [Lur09b] Theorem 1.4.9). Let C be a
symmetric monoidal p8, nq-category. The evaluation functor Z ÞÑ Zp˚q deter-
mines a bijection between (isomorphism classes of) symmetric monoidal func-
tors Bordfrn Ñ C and (isomorphism classes of) fully dualizable objects of C.

Thus to construct a fully extended n-dimensional framed TFT, it suffices to find
a fully dualizable object in the target C, and the cobordisms hypothesis does
the rest for us. However, fully dualizability is a condition which in general is not
completely straightforward to check. Moreover, even though the proof of the
cobordism hypothesis tells you that the p8, nq-category Bordn of cobordisms
is freely generated by the point, it does not give you a simple algorithm with
which one can compute all values of the fully extended n-TFT.

Our goal in this thesis is precisely this, namely, for a very special fully extended
TFT, to explicitly construct it without invoking the cobordism hypothesis. In
the next chapter we will construct our target, a symmetric monoidal p8, nq-
category Algn of En-algebras, and in the last chapter we will, given any object
A in Algn, build a fully extended n-TFT by defining a strict functor of n-fold
Segal spaces

FHnpAq : Bordfrn ÝÑ Algn,

whose evaluation at the point is A. By the cobordism hypothesis, this in
particular shows that any object in Algn is fully dualizable.



Chapter 3

The Morita p8, nq-category of
En-algebras

In this chapter, we define the target category for our fully extended n-dimensional
topological field theory, which is a symmetric monoidal Morita p8, nq-category
Algn “ AlgnpSq of En-algebras. By an En-algebra, we mean an En-algebra
object in a suitable symmetric monoidal p8, 1q-category S. In [Lur], Lurie
proved that there is an equivalence of p8, 1q-categories between En-algebras

and locally constant factorization algebras on p0, 1qn
χ
– Rn, see theorem 3.2.11.

We will use this equivalence to define the objects of our p8, nq-category of
En-algebras as a suitable space of locally constant factorization algebras on
p0, 1qn. As (higher) morphisms we essentially use factorization algebras which
are locally constant with respect to a certain stratification to model the Morita
category of En-algebras as a complete n-fold Segal space Algn “ AlgnpSq. In-
formally speaking, it Algn is the p8, nq-category with En-algebras as objects,
pointed pA,Bq-bimodules in En´1-algebras as 1-morphisms in HompA,Bq, and
so on.

For the existence of factorization algebras we need the following assumption
on S.

Assumption 1. Let S be a symmetric monoidal p8, 1q-category which admits
all small colimits.

3.1 The n-fold Segal space of closed covers in p0, 1q

In this section, we construct a (1-)fold Segal space Covers‚ of covers of p0, 1q by
closed intervals, which we will later enhance by suitable spaces of factorization
algebras to give the desired complete n-fold Segal space of En-algebras. Before
we begin with its construction, we introduce a family of collapse-and-rescale
maps %ba which will be used to define the simplicial structure.

3.1.1 Collapse-and-rescale maps

We first define collapse-and-rescale maps %ba : r0, 1s Ñ r0, 1s which delete the
interval pb, as and rescale the rest back to r0, 1s.

67
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Definition 3.1.1. Let 0 ď b, a ď 1 such that pb, aq ‰ p0, 1q. If a ď b, let
%ba “ idr0,1s. If b ă a, let %ba : r0, 1s Ñ r0, 1s,

%bapxq “

$

’

&

’

%

x
1´pa´bq , x ď b,

b
1´pa´bq , b ď x ď a,
x´pa´bq
1´pa´bq , a ď x.

10
b a

10
b

1´pa´bq

%ba

10 a

10

%0a

10 b

10

%b1

To simplify notation, we define the following composition of collapse-and-
rescaling maps.

Definition 3.1.2. Let 0 ď d, c, b, a ď 1. Then let

%dc ˚ %
b
a “ %

%bapdq

%bapcq
˝ %ba.

Remark 3.1.3. Note that if pb, aq Ď pd, cq, %dc ˚ %
b
a “ %dc .

The following lemma shows that if the intervals pd, cq and pb, aq are disjoint,
the composition of the respective collapse-and-rescale maps is independent of
order in which we delete and rescale and so is determined by the data of the
intervals which are collapsed.

Lemma 3.1.4. Let 0 ď d, c, b, a ď 1 such that pd, cq ‰ p0, 1q ‰ pb, aq. Further-
more, let pd, cq X pb, aq “ H. Then

%dc ˚ %
b
a “ %ba ˚ %

d
c .

Moreover, if b “ c or a “ d, the above composition is equal to %
minpd,cq
maxpb,aq.

Proof. Note that %ba and %dc are monotonically increasing and piecewise linear
functions. We first consider the cases in which one of the functions in the
composition is the identity.
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1. If d ě c, %bapdq ě %bapcq and so %dc “ id “ %
%bapdq

%bapcq
. Thus,

%
%bapdq

%bapcq
˝ %ba “ %ba “ %

%dc pbq

%dc paq
˝ %dc .

If b “ c, %
minpd,cq
maxpb,aq “ %cmaxpb,aq “ %bmaxpb,aq “ %ba, since if maxpb, aq ‰ a,

a ď b, and %ba “ id “ %bb.

2. If b ě a, similarly, %ba “ id “ %
%dc pbq

%dc paq
and

%
%bapdq

%bapcq
˝ %ba “ %dc “ %

%dc pbq

%dc paq
˝ %dc .

If b “ c, %
minpd,cq
maxpb,aq “ %

minpd,cq
b “ %

minpd,cq
c “ %dc , since if minpd, cq ‰ d,

c ď d, and %dc “ id “ %cc.

Since %ba and %dc are piecewise linear functions their composition again is piece-
wise linear. Thus in the remaining case it suffices to compute their value at
the “break points”. The computation of the composition in between the break
points is essentially the same so we include it as well.

3. In the remaining case we can assume wlog that c ď b and thus d ă c ď
b ă a. This implies that

%bapdq “
d

1´pa´bq , %bapcq “
c

1´pa´bq ,

%dcpbq “
b´pc´dq
1´pc´bq , %dcpbq “

b´pc´dq
1´pc´bq .

If x ď d,

%
%bapdq

%bapcq
˝ %bapxq “

x

1´ pa´ bq

1

1´ c´d
1´pa´bq

“
x

1´ pa´ bq ´ pc´ dq

“
x

1´ pc´ dq

1

1´
´

a´pc´dq
1´pc´dq ´

b´pc´dq
1´pc´dq

¯

“ %
%dc pbq

%dc paq
˝ %dcpxq.

If d ď x ď c,

%
%bapdq

%bapcq
˝ %bapxq “

d

1´ pa´ bq ´ pc´ dq
“ %

%dc pbq

%dc paq
˝ %dcpxq.
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If c ď x ď b,

%
%bapdq

%bapcq
˝ %bapxq “

x
1´pa´bq ´

c´d
1´pa´bq

1´ c´d
1´pa´bq

“
x´ pc´ dq

1´ pa´ bq ´ pc´ dq

“

x´pc´dq
1´pc´dq

1´
´

a´pc´dq
1´pc´dq ´

b´pc´dq
1´pc´dq

¯

“ %
%dc pbq

%dc paq
˝ %dcpxq.

If b ď x ď a,

%
%bapdq

%bapcq
˝ %bapxq “

b´ pc´ dq

1´ pa´ bq ´ pc´ dq
“ %

%dc pbq

%dc paq
˝ %dcpxq.

If a ď x,

%
%bapdq

%bapcq
˝ %bapxq “

x´pa´bq
1´pa´bq ´

c´d
1´pa´bq

1´ c´d
1´pa´bq

“
x´ pa´ bq ´ pc´ dq

1´ pa´ bq ´ pc´ dq

“

x´pc´dq
1´pc´dq ´

´

a´pc´dq
1´pc´dq ´

b´pc´dq
1´pc´dq

¯

1´
´

a´pc´dq
1´pc´dq ´

b´pc´dq
1´pc´dq

¯

“ %
%dc pbq

%dc paq
˝ %dcpxq.

If b “ c,

d

1´ pa´ bq ´ pc´ dq
“

d

1´ pa´ dq
“

b´ pc´ dq

1´ pa´ bq ´ pc´ dq
,

so the composition reduces to

%da “ %
minpd,cq
maxpb,aq.

In the following, since the intervals we consider lie in p0, 1q we often use the
restriction of %ba to the domain Dp%baq, which is defined as follows.

Definition 3.1.5. Let 0 ď b, a ď 1 such that pb, aq ‰ p0, 1q. Let

Dp%baq “

$

’

&

’

%

p0, 1q, 0 ď b, a ď 1,

pa, 1q, b “ 0,

p0, bq, a “ 1.
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We might like to restrict to an even smaller domain to get a partial inverse.

Definition 3.1.6. The restriction of the collapse-and-rescale map %ba to Db
a “

p0, bs Y pa, 1q Ă Dp%baq,

%ba|p0,bsYpa,1q : Db
a ÝÑ p0, 1q,

is injective. We call Db
a its domain of injectivity. In the following, let p%baq

´1

be the inverse of this restriction, p%ba|Dbaq
´1 : p0, 1q Ñ Db

a.

3.1.2 The sets Coversk

We first define 0-simplices of the levels Coversk as sets.

Definition 3.1.7. For an integer k ě 0 let

Coversk “ tI0 ď ¨ ¨ ¨ ď Iku

be the set consisting of ordered pk` 1q-tuples of intervals Ij Ď p0, 1q such that

Ij has non-empty interior, is closed in p0, 1q and
Ťk
j“0 Ij “ p0, 1q. As in the

definition of Intk in 2.1, by “ordered” we mean that the left endpoints, denoted
by aj , and the right endpoints, denoted by bj , are ordered.

Remark 3.1.8. Note that the condition that the intervals form a cover,
Ťk
j“0 Ij “ p0, 1q, implies that a0 “ 0 and bk “ 1.

3.1.3 The spatial structure of Coversk

The l-simplices of the space Coversk

An l-simplex of Coversk consists of

1. a collection of underlying 0-simplices, i.e. for every t “ 0, . . . , l,

pI1ptq ď ¨ ¨ ¨ ď Ikptqq P Coversk;

2. a rescaling datum, which is a collection of strictly monotonically increas-
ing homeomorphisms

pφt : p0, 1q Ñ p0, 1qq1ďtďl

which sends the common endpoint of non-overlapping intervals at t ´ 1
to the corresponding endpoint at t, i.e. for 0 ď j ă k such that for every
t “ 0, . . . , l the intersection Ijptq X Ij`1ptq contains exactly one element,
we require

bjpt´ 1q “ aj`1pt´ 1q
φt
ÞÝÑ bjptq “ aj`1ptq.

10

φt

10

b0ptq “ a0ptq

b0pt ´ 1q “ a1pt ´ 1q

a2ptq

b1pt ´ 1q “ a2pt ´ 1q

b1ptq
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Remark 3.1.9. Note that in particular for l “ 0 an l-simplex in this sense is
an underlying 0-simplex together with φ0 “ id : p0, 1q Ñ p0, 1q, so, by abuse of
language we call both a 0-simplex.

The space Coversk

The spatial structure arises similarly to that on Intk.

Fix k ě 0 and let f : rms Ñ rls be a morphism in the simplex category ∆,
i.e. an order-preserving map. Then let f˚ be the map sending an l-simplex in
Coversk given by

´

pI0ptq ď ¨ ¨ ¨ ď Ikptqq0ďtďl,
`

φt : p0, 1q Ñ p0, 1q
˘

1ďtďl

¯

to the m-simplex in Coversk given by

´

I0pfptqq ď . . . ď Ikpfptqq0ďtďm,
`

φfptq : p0, 1q ÝÑ p0, 1q
˘

1ďtďm

¯

.

This gives a functor ∆op Ñ Set and thus we have the following

Lemma 3.1.10. Coversk is a space, i.e. a simplicial set.

Remark 3.1.11. Coversk is the nerve of the category whose objects are the
points of Coversk and whose morphisms are the paths, i.e. the 1-simplices, of
Coversk.

Notation 3.1.12. We denote the spatial face and degeneracy maps by δ∆
j and

σ∆
j for 0 ď j ď l.

We will need the following lemma later for the Segal condition.

Lemma 3.1.13. Each level Coversk is contractible.

Proof. For every k ě 0, consider the composition of degeneracy maps, which
is the inclusion of the point pp0, 1q ď ¨ ¨ ¨ ď p0, 1qq P Coversk. A deformation
retraction of Intk onto its image is given by

ppI0 ď ¨ ¨ ¨ ď Ikq, sq ÞÝÑ pI0psq ď ¨ ¨ ¨ ď Ikpsqq,

where ajpsq “ p1 ´ sqaj , bjpsq “ p1 ´ sqbj ` s for s P r0, 1s. Thus, Coversk is
contractible.

3.1.4 The simplicial set Covers‚

In this section, we make the collection of sets Covers‚ (ignoring the spatial
structure we just constructed) into a simplicial set by defining degeneracy and
face maps, which use the family of collapse-and-rescale maps %ba : p0, 1q Ñ p0, 1q
defined in subsection 3.1.1.
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Definition 3.1.14. The jth degeneracy map is given by inserting the jth
interval twice,

Coversk
σj
ÝÑ Coversk`1,

I0 ď ¨ ¨ ¨ ď Ik ÞÝÑ I0 ď ¨ ¨ ¨ ď Ij ď Ij ď ¨ ¨ ¨ ď Ik.

The jth face map is given by deleting the jth interval, collapsing what now is
not covered, and rescaling the rest linearly to p0, 1q. Explicitly,

Coversk
δj
ÝÑ Coversk´1,

I0 ď ¨ ¨ ¨ ď Ik ÞÝÑ %bj´1
aj`1

pI0q X p0, 1q ď ¨ ¨ ¨ ď
{

%
bj´1
aj`1pIjq ď ¨ ¨ ¨ ď %bj´1

aj`1
pIkq X p0, 1q,

where %
bj´1
aj`1 is the collapse-and-rescale map associated to bj´1, aj`1 from the

previous section.

Proposition 3.1.15. Covers‚ is a simplicial set.

Proof. We need to show that the simplicial relations are satisfied. Two condi-
tions are obviously fulfilled, namely σlσj “ σj`1σl for l ď j and

δlσj “

$

’

&

’

%

id, l “ j, j ` 1,

σj´1δl, l ă j,

σjδl´1 l ą j ` 1.

It remains to check that

δjδl “ δl´1δj for j ă l.

Let I0 ď ¨ ¨ ¨ ď Ik be an element in Coversk. Since the same intervals are
deleted in both compositions, it is enough to show that the compositions of the
respective collapse-and-rescale maps coincide on both sides. This follows from
lemma 3.1.4 with

d “ bj´1, c “ aj`1, b “ bl´1, a “ al`1,

given that pbj´1, aj`1q X pbl´1, al`1q “ H, which requires that

aj`1 “ c ď b “ bl´1.

Assume the opposite, that is, that bl´1 ď aj`1. By definition, aj`1 ă bj`1 ď bα
for α ą j, so this implies that l ´ 1 ď j. Since we need to check the identity
for j ă l, this implies that l “ j ` 1. The intervals pIjqj must form a cover of
p0, 1q, so bl´1 ě al “ aj`1 and therefore aj`1 “ bl´1. So in any case

aj`1 “ c ď b “ bl´1.
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3.1.5 The Segal space Covers‚

Face and degeneracy maps on l-simplices

We first need to extend the (simplicial) face and degeneracy maps δj , σj to
l-simplices in a compatible way. They essentially arise from applying the face
and degeneracy maps δj , σj to each of the 0-simplices underlying the l-simplex.

Notation 3.1.16. Let
´

pI0ptq ď ¨ ¨ ¨ ď Ikptqqt“0,...,l, pφtqt“1,...,l

¯

be an l-simplex of Coversk. For t “ 0, . . . , l, denote by %
bj´1
aj`1ptq “ %

bj´1ptq

aj`1ptq
the

collapse-and-rescale map associated to the tth underlying 0-simplex pI0ptq ď
¨ ¨ ¨ ď Ikptqq of the above l-simplex, and by Db

aptq “ p0, bj´1ptqs Y paj`1ptq, 1q
its domain of injectivity.

Degeneracy maps on l-simplices For 0 ď j ď k the jth degeneracy map
σj sends an l-simplex of Coversk

´

pI0ptq ď ¨ ¨ ¨ ď Ikptqqt“0,...,l, pφtqt“1,...,l

¯

to the l-simplex of Coversk`1 given by

´

σjpI0ptq ď ¨ ¨ ¨ ď Ikptqqt“0,...,l, pφtqt“1,...,l

¯

This is well-defined, since the condition on the φt stays the same.

Face maps on l-simplices For 0 ď j ď k the jth face map δj sends an
l-simplex of Coversk

´

pI0ptq ď ¨ ¨ ¨ ď Ikptqqt“0,...,l, pφtqt“1,...,l

¯

to the following l-simplex of Coversk´1.

1. The underlying 0-simplices of the image are the images of the underlying
0-simplices under δj , i.e. for t “ 0, . . . , l,

δj pI0ptq ď ¨ ¨ ¨ ď Ikptqq ;

2. Its rescaling datum is

δjpφtq “ %bj´1
aj`1

ptq ˝ φt|Dbaptq ˝ %
bj´1
aj`1

pt´ 1q´1 : p0, 1qn Ñ p0, 1qn.

The complete Segal space Covers‚

Proposition 3.1.17. Covers‚ is a complete Segal space.



3.2. THE MORITA p8, nq-CATEGORY OF En-ALGEBRAS Algn 75

Proof. That the simplicial and spatial face and degeneracy maps commute
follows directly from the definition. Furthermore, we have seen in lemma 2.1.5
that every Coversk is contractible. This ensures the Segal condition, namely
that

Coversk
»
ÝÑ Covers1

h
ˆ

Covers0
¨ ¨ ¨

h
ˆ

Covers0
Covers1,

and completeness.

Definition 3.1.18. Let

Coversn‚,...,‚ “ pCovers‚q
ˆn.

Lemma 3.1.19. The n-fold simplicial space Coversn‚,...,‚ is a complete n-fold
Segal space.

Proof. The Segal condition and completeness follow from the Segal condition
and completeness for Covers‚. Since every Coversk is contractible by lemma
2.1.5, pCovers‚q

ˆn satisfies essential constancy, so Coversn is an n-fold Segal
space.

3.2 The Morita p8, nq-category of En-algebras Algn

This section contains the main construction of the complete n-fold Segal space
Algn “ AlgnpSq. We first recall the definition of an En-algebra.

3.2.1 Structured disks and En-algebras

As in section 2.6.1, let X be a topological space and E Ñ X a topological n-
dimensional vector bundle which corresponds to a (homotopy class of) map(s)
e : X Ñ BGLpRnq from X to the classifying space of the topological group
GLpRnq.

Definition 3.2.1. The symmetric monoidal topological category Disk pX,Eqn of

pX,Eq-structured disks is the full topological subcategory of ManpX,Eqn whose
objects are disjoint unions of pX,Eq-structured n-dimensional Euclidean disks
Rn.

Example 3.2.2. Recall from section 2.6.1 that interesting examples of pX,Eq-
structures arise from a topological group G together with a continuous homo-
morphism e : GÑ Opnq by setting X “ BG and e : BGÑ BGLpRnq. In this
case, we refer to pBG, eq-structured disks as G-structured disks and use the

notation Disk Gn “ Disk pBG,eqn .

Definition 3.2.3. Let S be a symmetric monoidal p8, 1q-category. The p8, 1q-

category Disk pX,Eqn -AlgpSq of Disk pX,Eqn -algebras is the p8, 1q-category of sym-

metric monoidal functors FunbpDisk pX,Eqn ,Sq.

Remark 3.2.4. Recall from section 1.2 that topological categories are a model
for p8, 1q-categories. By perhaps changing to a different, suitable, model of
p8, 1q-categories, the above definition makes sense.
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The most common examples are the following three special cases.

Example 3.2.5. If G is the trivial group, then X “ BG “ ˚, and the topo-

logical category Disk Gn is denoted by Disk frn . Using the fixed diffeomorphism
χ : p0, 1q – R it is equivalent to the topological category Cuben whose objects
are disjoint unions of p0, 1qn and whose spaces of morphisms are the spaces of
embeddings

š

Ip0, 1q
n Ñ

š

Jp0, 1q
n which are rectilinear on every connected

component. As Cuben-algebras are equivalent to En-algebras, the category

Disk frn -AlgpSq is equivalent to the usual category of En-algebras in S.

Remark 3.2.6. Note that morphisms in the category Disk frn -AlgpSq are mor-
phisms of En-algebras, i.e. natural transformations of functors. In the Morita-
category we will construct in this section morphisms will be bimodules of En-
algebras.

Example 3.2.7. If G “ Opnq, the topological category Disk Gn is denoted
by Disk unn . We call Disk unn -algebras unoriented En-algebras. Similarly to in
the previous example Disk unn is equivalent to the topological category Cubeunn
whose objects are disjoint unions of p0, 1qn and whose spaces of morphisms are
the spaces Cubenp

š

Ip0, 1q
n,
š

Jp0, 1q
nq ˙OpnqˆJ .

Example 3.2.8. If G “ SOpnq and X “ BG, the topological category

Disk pX,Eqn is denoted byDisk orn . We callDisk pX,Eqn -algebras oriented En-algebras.
Again similarly to above Disk orn is equivalent to the topological category Cubeorn
whose objects are disjoint unions of p0, 1qn and whose spaces of morphisms are
the spaces Cubenp

š

Ip0, 1q
n,
š

Jp0, 1q
nq ˙ SOpnqˆJ .

3.2.2 Stratifications and locally constant factorization
algebras

The full definition of locally constant factorization algebras on a (stratified)
space can be found in [Gin]. In this paper, we will only deal with stratifications
of a very special type, so we recall the definition in an easier setting suitable
for the factorization algebras appearing in this thesis here.

Definition 3.2.9. Let X be an n-dimensional manifold. By a stratification of
X we mean a filtration

H “ X´1 Ă X0 Ă X1 Ă ¨ ¨ ¨ Ă Xn “ X,

where Xα is an α-dimensional closed submanifold of Xα`1. The connected
components of XαzXα´1 are called the dimension α-strata of X. An open disk
D in X is said to have index α, if DXXα ‰ H and D Ă XzXα´1. We say that
a disk D is a good neighborhood at Xα if α is the index of D and D intersects
only one connected component of XαzXα´1.

Definition 3.2.10. Let H “ X´1 Ă X0 Ă X1 Ă ¨ ¨ ¨ Ă Xn “ X be a stratifica-
tion of an n-dimensional manifold X. A factorization algebra F on X is called
locally constant with respect to the stratification if for any inclusion of disks
U ãÑ V such that both U and V are good neighborhoods at Xα for the same
index α P t0, . . . , nu, the structure map FpUq Ñ FpV q is a weak equivalence.



3.2. THE MORITA p8, nq-CATEGORY OF En-ALGEBRAS Algn 77

A factorization algebra F on X is called locally constant if it is locally constant
with respect to the stratification given by Xα “ H for every α ‰ n, i.e.

H Ă X.

En-algebras as locally constant factorization algebras

We will base our construction on factorization algebras which are locally con-
stant with respect to certain stratifications. That our objects, which will be
locally constant factorization algebras on p0, 1qn, indeed are En-algebras as de-
fined in the previous section follows from the following theorem due to Lurie
for which we need to introduce some notation.

Let X be a topological space and S be a symmetric monoidal p8, 1q-category
with all small colimits. Then the category FactXpSq of factorization algebras
on X with values in S is itself a symmetric monoidal p8, 1q-category, see [CG].
Let Fact lcX be the full sub-p8, 1q-category of FactXpSq whose objects are locally
constant factorization algebras.

Theorem 3.2.11 (Lurie, [Lur], Theorem 5.3.4.10). There is an equivalence of
p8, 1q-categories

Disk frn -AlgpSq »
ÝÑ Fact lcRn .

Remark 3.2.12. In fact, the equivalence in the proof is given by factorization
homology, i.e. the image of an En-algebra A is its factorization homology

ş

Rn A,
which we will construct in the next chapter, in section 4.1.

The choice of diffeomorphism χ : p0, 1q – R yields the following corollary, see
also [Gin], Remark 23, or [Cal].

Corollary 3.2.13. There is an equivalence of p8, 1q-categories

En-AlgpSq »
ÝÑ Fact lcp0,1qn .

Bimodules as locally constant factorization algebras

Our second motivation for using factorization algebras is the following. For
more details, see [Gin].

Let A,B be associative algebras in S, M a pointed pA,Bq-bimodule, with
pointing 1

m
Ñ M . Then the following assignment extends to a factorization

algebra FM on p0, 1q: Let 0 ă s ă 1. For open intervals U, V , and W in p0, 1q
as in the picture

10
VU

W

s

we set
U ÞÝÑ FM pUq “ A, V ÞÝÑ FM pV q “ B,

p PW ÞÝÑ FM pW q “M.
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The structure maps of the factorization algebra are given by the bimodule
structure and by

AbB – Ab 1bB
m
ÝÑM.

This special case comes from the fact that factorization algebras naturally are
pointed, as we can always include the empty set into any other open set. The
inclusion H ĎW induces a map

1 ÝÑM.

In the case where S “ Chk is the p8, 1q-category of chain complexes over a
field k, the pointing is a map k Ñ M which is determined by the image of
1 P k,

1 ÞÝÑ m PM.

In this case the structure map of U > V Ă p0, 1q is given by

AbB ÝÑM, pa, bq ÞÝÑ amb.

The factorization algebra FM defined by a bimodule M as above is locally
constant with respect to the stratification

H Ă tsu Ă p0, 1q.

Conversely, any factorization algebra F which is locally constant with respect
to a stratification of the above form determines a homotopy bimodule M over
homotopy algebras A,B as we show in the following lemma.

Lemma 3.2.14. Let 0 ă s ă 1 and let F be a factorization algebra on p0, 1q
which is locally constant with respect to the stratification

H Ă tsu Ă p0, 1q.

Then M “ Fpp0, 1qq is, up to homotopy, a pointed pA,Bq-bimodule for the
(E1-)algebras A “ Fpp0, sqq and B “ Fpps, 1qq and pointing 1 Ñ M induced
by the structure map for the inclusion H Ă p0, 1q.

Proof. Since U Ă p0, sq and V Ă ps, 1q are weak equivalences, the structure map
of the factorization algebra associated to the inclusion of open sets U>V Ă p0, 1q
as in the picture above induces the homotopy bimodule structure.

Corollary 3.2.15. The data of a homotopy bimodule over E1-algebras is the
same as the data of a factorization algebra on p0, 1q which is locally constant
with respect to a stratification of the form

H Ă tsu Ă p0, 1q

for some 0 ă s ă 1.
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Locally constant factorization algebras on products

We will need the following theorem later on, which is proposition 18 and corol-
lary 6 in [Gin].

Theorem 3.2.16. Let X, Y be stratified manifolds with finitely many dimen-
sion α-strata for every α.

1. The pushforward along the projection pr1 : X ˆ Y Ñ X induces an
equivalence

pr1˚
: FactXˆY ÝÑ FactXpFactY q.

2. Consider the stratification on the product X ˆ Y given by

pX ˆ Y qk :“
ď

i`j“k

Xi ˆ Yj Ă X ˆ Y.

The equivalence from 1 induces a functor

pr1˚
: Fact lcXˆY ÝÑ Fact lcXpFact lcY q

between the subcategories of factorization algebras which are locally con-
stant with respect to the stratifications of the respective spaces.

3.2.3 The level sets pAlgnqk1,...,kn

For S Ď t1, . . . , nu we denote the projection from p0, 1qn onto the coordinates
indexed by S by πS : p0, 1qn Ñ p0, 1qS and for 1 ď i ď n, we abbreviate πtiu to
πi.

Definition 3.2.17. For every k1, . . . , kn ě 0, let pAlgnqk1,...,kn be the collection
of tuples

pF , pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq,

satisfying the following conditions:

1. F is a factorization algebra on p0, 1qn.

2. For 1 ď i ď n,

pIi0 ď ¨ ¨ ¨ ď Iikiq P Coverski .

3. F is locally constant with respect to the stratification defined inductively
by

Xn “ p0, 1q
n and Xn´i “ Xn´i`1 X Yi

for 1 ď i ď n, where, denoting by pIijq
˝ “ paij , b

i
jq the interior of the

interval Iij ,

Yi “ π´1
i

`

p0, 1qz
ki
ď

j“0

paij , b
i
jq
˘

“ p0, 1qnz
ki
ď

j“0

π´1
i

`

pIijq
˝
˘

.
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Remark 3.2.18. Given an element in pAlgnqk1,...,kn , let 0 ă si1 ď . . . ď sili ă 1
be the points such that

Si “ tsi1, . . . , s
i
liu “ p0, 1qz

ki
ď

j“0

paij , b
i
jq.

Then Yi “ π´1
i pS

iq is a disjoint union of parallel hyperplanes and

Xn´i “ Yn X ¨ ¨ ¨ X Yi

“
ď

p1ďjαďkαqiα“1

π´1
t1,...,iups

1
j1 , . . . , s

i
jiq

“ S1 ˆ ¨ ¨ ¨ ˆ Si ˆ p0, 1qti`1,...,nu.

The stratification has the form

p0, 1qn Ą
ď

1ďjďk1

π´1
1 ps1

j q Ą
ď

1ďj1ďk1
1ďj2ďk2

π´1
t1,2ups

1
j1 , s

2
j2q Ą ¨ ¨ ¨ Ą

ď

p1ďjiďkiqni“1

π´1ps1
j1 , . . . , s

n
jnq.

Remark 3.2.19. In fact, the data of the points in Si is the essential one in
the sense that they are the information of pIi0 ď ¨ ¨ ¨ ď Iikiq P Coverski we use.
It might thus seem more natural to basing our construction on a Segal space of
points instead of Covers‚. However, the points alone do not form a simplicial
space because degeneracy maps cannot be defined. The extra information
coming from the fact that points come from endpoints of intervals allows to
define the missing structure.

Example 3.2.20. For n “ 1, objects, which are elements in pAlg1q0, are
locally constant factorization algebras on p0, 1q – R, which in turn by the
above mentioned equivalence 3.2.11 are E1-algebras. Morphisms, i.e. elements
in MappA,Bq “ tAuˆh

pAlg1q0
pAlg1q1ˆ

h
pAlg1q0

tBu, are pointed homotopy pA,Bq-

bimodules as we have seen in lemma 3.2.14. For example, an element in pAlg1q4

could have a cover of the form

1

b4

0

a0 b0 “ a1 a2 b1 b2 “ a3 b3 “ a4

and therefore factorization algebras F which are locally constant with respect
to a stratification of the following form

10
s1 s2 s3

Since F |p0,s1q is locally constant on p0, s1q » p0, 1q it equivalent to the data of
an E1-algebra A0. Similarly, F determines E1-algebras A1, . . . , A3. Moreover,
the restriction F |p0,s2q determines a pointed homotopy pA0, A1q-bimodule M1

and similarly, F determines bimodules M2,M3:
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10
M1 M2 M3

A0 A1 A2 A3

One may think of the overlapping intervals as also giving a point of the stratifi-
cation, but one which is “degenerate”, and thus gives a “degenerate” bimodule,
by which we mean an E1-algebra viewed as a bimodule over itself.

10
M1 A1 M2 M3

A0 A1 A1 A2 A3

Remark 3.2.21. One should be a bit careful with the interpretation of the
degenerate points of the stratification, as this data does not behave well with
respect to the simplicial structure. As we explained above, this is the reason
we do not use this as a definition, but keep track of the intervals instead.

Example 3.2.22. For n “ 2, stratifications which appear in the definition of
Alg2 give pictures as in the left picture below. A 2-morphism, i.e. an element in
pAlg2q1,1, leads to a bimodule C between bimodules M and N of E2-algebras
A and B which are the images of open disks as in the right picture below.

s1
1 s1

2 s
1
3 s1

4s
1
5

s2
1

s2
2

s2
3

s2
4

C

M

N

A

B

For n “ 3, stratifications which appear in the definition of Alg3 give pictures
of the following type:

s1
1 s1

2 s1
2

s2
1

s2
2

s3
1
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3.2.4 The spaces pAlgnqk1...,kn

The level sets pAlgnqk1,...,kn form the underlying set of 0-simplices of a space
which we construct in this section.

The space of factorization algebras

We first need suitable spaces of factorization algebras.

Recall from [CG]that the category FactXpSq of factorization algebras on X
with values in S is a symmetric monoidal p8, 1q-category. For our construc-
tion, by perhaps changing the model, will realize the underlying symmetric
monoidal p8, 1q-category S as a symmetric monoidal relative category S with
weak equivalences W for which the classification diagram as explained in sec-
tion 1.2.3 of FactXpSq with its level-wise weak equivalences gives a symmetric
monoidal complete Segal space NpFactXpSq,Wq of factorization algebras.

The objects of this Segal space form a space of factorization algebras. Explic-
itly, if we begin with a relative category, this space of factorization algebras is
the nerve of the category of factorization algebras with weak equivalences as
morphisms, i.e. a k-simplex is a sequence

F0
w1
ÝÝÑ F1

w2
ÝÝÑ ¨ ¨ ¨

wk
ÝÝÑ Fk.

A slight modification of this construction gives the level sets of our n-fold Segal
space a spatial structure.

The spatial structure of pAlgnqk1...,kn

Definition 3.2.23. An l-simplex of pAlgnqk1,...,kn consists of the following
data:

1. A collection of underlying 0-simplices, which is a collection of elements

`

Ft, pIi0ptq ď ¨ ¨ ¨ ď Iikiptqq
n
i“1

˘

P pAlgnqk1,...,kn

indexed by t “ 0, . . . , l;

2. For every 1 ď i ď n, a rescaling datum
`

φit : p0, 1q Ñ p0, 1q
˘

t“0,...,l
making

`

Ii0ptq ď ¨ ¨ ¨ ď Iikiptq
˘

t“0,...,l

into an l-simplex in Coverski ;

3. A collection of weak equivalences

pφtq˚Ft´1
wt
ÝÑ Ft

for t “ 1, . . . , l, where φt “ pφ
i
tq
n
i“1 : p0, 1qn Ñ p0, 1qn is the product of

the rescaling data.
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Remark 3.2.24. 1. This space is a subspace of a “twisted” nerve of the
category of factorization algebras with weak equivalences as morphisms.
The “twist” is given by the rescaling maps. It is still 2-skeletal, as it is a
subspace of the nerve of the category whose objects are pairs pF , pIi0 ď
¨ ¨ ¨ ď Iikiqq and whose morphisms are weak equivalences pφtq˚Ft´1

wt
ÝÑ

Ft, where φt is some rescaling data associated to the respective I-tuples.

2. One should think of an l-simplex as a chain of weak equivalences

F0
w1
ÝÝÑ F1

w2
ÝÝÑ ¨ ¨ ¨

wl
ÝÑ Fl,

where the Ft’s are rescaled to have the same intervals. By abuse of
notation we will often write an l-simplex this way. Note that φt is this
rescaling map and should be thought of as an analog to the map ϕt´1,t

in definition 2.3.5.

Spatial face and degeneracy maps arise from the face and degeneracy maps of
the nerve of a category, i.e. by inserting an identity respectively by forgetting
or by composition of morphisms.

Definition 3.2.25. The jth spatial degeneracy map σ∆
j from l-simplices to

pl`1q-simplices of pAlgnqk1,...,kn sends a chain pFq “ F0
w1
ÝÝÑ F1

w2
ÝÝÑ ¨ ¨ ¨

wl
ÝÑ Fl

to
F0

w1
ÝÝÑ ¨ ¨ ¨

wj
ÝÝÑ Fj

id
ÝÑ Fj

wj`1
ÝÝÝÑ ¨ ¨ ¨

wl
ÝÑ Fl.

The jth spatial face map δ∆
j from l-simplices to pl´1q-simplices of pAlgnqk1,...,kn ,

for j ‰ 0, l, sends a chain pFq to

F0
w1
ÝÝÑ ¨ ¨ ¨

wj´1
ÝÝÝÑ Fj´1

wj`1˝wj
ÝÝÝÝÝÝÑ Fj`1

wj`2
ÝÝÝÑ ¨ ¨ ¨

wl
ÝÑ Fl.

For j “ 0, l, it sends pFq to

F1
w2
ÝÝÑ ¨ ¨ ¨

wl
ÝÑ Fl, resp. F0

w1
ÝÝÑ F1

w2
ÝÝÑ ¨ ¨ ¨

wl´1
ÝÝÝÑ Fl´1.

Since the face and degeneracy maps come from the structure of the nerve of a
category, we have the following proposition.

Proposition 3.2.26. pAlgnqk1,...,kn is a space.

3.2.5 The n-fold simplicial set Algn

In the next two sections, we make the collection of spaces pAlgnq‚,...,‚ into an
n-fold simplicial space by defining suitable face and degeneracy maps. They
essentially arise from the face and degeneracy maps of the n-fold simplicial set
Coversn‚,...,‚ of covers of p0, 1qn by products of closed intervals. In this section
we define faces and degeneracies on 0-simplices, which makes pAlgnq‚,...,‚ into
an n-fold simplicial set, ignoring the spatial structure of the levels. We will lift
the n-fold simplicial set to an n-fold simplicial space using the spatial structure
of the levels in the next section.

Before giving the full definition of the face and degeneracy maps of the n-fold
simplicial set Algn, we first demonstrate them for n “ 1.
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Example 3.2.27. For n “ 1, elements in pAlg1q1 consist of a factorization al-
gebra F on p0, 1q and two intervals p0, bs and ra, 1q such that a ď b. The source
and target maps pAlg1q1 Ñ pAlg1q0 are given by restricting the factorization
algebra which then is rescaled back to p0, 1q. Explicitly, the source map pushes
forward the restriction of the factorization algebra F to p0, bq by the collapse-
and-rescale map %b0 to p0, 1q, which is the unique affine bijection p0, bq Ñ p0, 1q.
Similarly the target map pushes forward the restriction of the factorization
algebra F to pa, 1q by the collapse-and-rescale map %0

a to p0, 1q. We saw in
example 3.2.20 that elements in pAlg1q1 can be viewed as pairs pA,Bq of E1-
algebras and a pointed homotopy pA,Bq-bimodule M . The source and target
maps pAlg1q1 Ñ pAlg1q0 map M to the source A, respectively the target B.

The degeneracy map pAlg1q0 Ñ pAlg1q1 sends a pair pF , p0, 1qq consisting of
a locally constant factorization algebra F on p0, 1q to the element pF , p0, 1q ď
p0, 1qq. In the language of algebras and bimodules, it sends an E1-algebra A
to itself, now viewed as an pA,Aq-bimodule.

Two of the face maps, δ0, δ2 : pAlg1q2 pAlg1q1 are defined similarly, by
“forgetting” part of the data, i.e. by restricting the factorization algebra and
rescaling. In the language of modules, the map δ2, which corresponds to the
“source map”, sends an element consisting of a triple pA,B,Cq of E1-algebras
and a pair pAMB ,B NCq of bimodules to pA,Bq and AMB . The “target map”
δ0 sends the same element to pB,Cq and BMC . The third map δ1, which
corresponds to composition, sends an element pF , I0 ď I1 ď I2q to the push-
forward along the collapse-and-rescale map %b0a2 : p0, 1q Ñ p0, 1q, illustrated in
the following picture for the case b0 “ a1.

b2 “ 1a0 “ 0 b0 “ a1 a2 b1

10

b0
1´pa2´b0q

%
b0
a2

If b0 ě a2, then %b0a2 “ id. Moreover, either A “ B and AMB “ BBB , or
B “ C and BNC “ B (or both). In the first case δ1 sends pBBB ,BMCq to just

BMC . In the second case δ1 sends pAMB ,B BBq to just AMB .

If b0 ă a2, the gluing axiom of factorization algebras implies that the homotopy
bimodule associated to image under δ1 of the pair of homotopy bimodules
pAMB ,B NCq is the tensor product pAMBq bB pBNCq, i.e. composition sends
an element consisting of E1-algebras A,B,C and bimodules AMB and BNC to
A,C and the bimodule pAMBq bB pBNCq.

The two degeneracy maps σ0, σ1 : pAlg1q1 Ñ pAlg1q2 send pF , I0 ď I1q to
σ0pF , I0 ď I1q “ pF , I0 ď I0 ď I1q, σ1pF , I0 ď I1q “ pF , I0 ď I1 ď I1q.
In the language of modules, they send an pA,Bq-bimodule AMB to the pairs
pAAA,AMBq respectively pAMB ,B BBq.
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10

M

A B

10
MA

BAA

σ0

10

M

A B

10
M B

A B B

σ1

Notation 3.2.28. Before we start defining the face and degeneracy maps,
recall that we used collapse-and-rescale maps %ba to define the simplicial struc-

ture on Covers‚. More precisely, the jth face map was defined using %
bj´1
aj`1 . For

simplicity of notation, we will denote this map by %j in the following and its
domain of injectivity by Dj .

Since 1 ď i ď n will be fixed throughout the constructions, by abuse of no-

tation, we also denote by %j the map %
bij´1

aij`1
used for the jth face map in the

ith direction of the n-fold simplicial structure of Coversn‚,...,‚ and its domain of

injectivity by Dj “ p0, b
i
j´1q Y pa

i
j`1, 1q.

By even more abuse of notation we again denote by %j the map

%j : p0, 1qn Ñ p0, 1qn,

which is %j in the ith coordinate and the identity otherwise. By %´1
j we mean

the inverse of

%j |π´1
i pDjq

: π´1
i pDjq “

ź

α‰i

p0, 1q ˆDj Ñ p0, 1qn.

Degeneracy maps Fix 1 ď i ď n. For 0 ď j ď ki the jth degeneracy map

σij : pAlgnqk1,...,kn Ñ pAlgnqk1,...,ki`1,...,kn

applies the jth degeneracy map of Covers‚ to the ith tuple of intervals, i.e. it
repeats the jth specified interval in the ith direction, Iij ,

pF , pIα0 ď ¨ ¨ ¨ ď Iαkαq
n
α“1q ÞÝÑ

`

F , pIα0 ď ¨ ¨ ¨ ď Iαkαqα‰i, σjpI
i
1 ď ¨ ¨ ¨ ď Iikiq

˘

“
`

F , pIα0 ď ¨ ¨ ¨ ď Iαkαqα‰i, I
i
1 ď ¨ ¨ ¨ ď Iij ď Iij ď ¨ ¨ ¨ ď Iiki

˘

.

Since this does not change the stratification with respect to which F must be
locally constant this map is well-defined.

Face maps Fix 1 ď i ď n. For 0 ď j ď ki the jth face map

δij : pAlgnqk1,...,kn Ñ pAlgnqk1,...,ki´1,...,kn

applies the jth face map δj of Covers‚ to the ith tuple of intervals, which
forgets the jth interval Iij and applies the collapse-and-rescale map %j to the

other intervals, and pushes the factorization algebra, restricted to π´1
i pDjq,

forward along the map %j . Explicitly, pF , pIα0 ď ¨ ¨ ¨ ď Iαkαq
n
α“1q is sent to

´

p%jq˚F |π´1
i pDjq

, pIα0 ď ¨ ¨ ¨ ď Iαkαqα‰i, δjpI
i
1 ď ¨ ¨ ¨ ď Iikiq

¯

.

This is well-defined since the restriction of the factorization algebra and the
stratification with respect to which it must be locally constant are rescaled by
the same rescaling map.
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Remark 3.2.29. In the following, we will omit explicitly writing out the re-
striction of F to π´1

i pDjq for readability.

Proposition 3.2.30. The face and degeneracy maps defined above define an
n-fold simplicial set pAlgnq‚,...,‚.

Proof. This follows from the fact that Covers‚ is a simplicial set and pushfor-
ward of factorization algebras is a functor.

3.2.6 The full structure of Algn as an n-fold simplicial space

In this section we “extend” the simplicial face and degeneracy maps δij , σ
i
j to

the l-simplices of pAlgnqk1,...,kn in a way that they commute with the face
and degeneracy maps δ∆

l , σ
∆
l of the space pAlgnqk1,...,kn . This gives Algn the

structure of an n-fold simplicial space.

Degeneracy maps on l-simplices. Fix 1 ď i ď n. For 0 ď j ď ki the
jth degeneracy map σij sends an l-simplex of pAlgnqk1,...,kn to the l-simplex

of pAlgnqk1,...,ki`1,...,kn defined by applying the degeneracy map σij to each
underlying 0-simplex,

σij
`

Ft, pIi0ptq ď ¨ ¨ ¨ ď Iikiptqq
˘

P pAlgnqk1,...,ki`1,...,kn ,

and keeping the same rescaling data φt and weak equivalences pφtq˚Ft´1
wt
ÝÑ

Ft.

Face maps on l-simplices. Fix 1 ď i ď n.

For 0 ď j ď ki the jth face map δij sends an l-simplex of pAlgnqk1,...,kn consisting
of

`

Ft, pIi0ptq ď ¨ ¨ ¨ ď Iikiptqq
˘

t“0,...,l

pφt : p0, 1qn ÝÑ p0, 1qnqt“1,...,l , and
`

pφtq˚Ft´1
wt
ÝÑ Ft

˘

t“1,...,l

to the l-simplex of pAlgnqk1,...,ki´1,...,kn consisting of the following data.

Denote by %jptq be the analog of the above map %j associated to the tth un-
derlying 0-simplex pIi0ptq ď ¨ ¨ ¨ ď Iikiptqq P Coverski .

1. The underlying 0-simplices of the image are the images of the underlying
0-simplices under δij , i.e. for t “ 0, . . . , l,

δij
`

Ft, pIi0ptq ď ¨ ¨ ¨ ď Iikiptqq
˘

“
`

%jptq˚Ft|..., pIα0 ptq ď ¨ ¨ ¨ ď Iαkαptqqα‰i, δjpI
i
0ptq ď ¨ ¨ ¨ ď Iikiptqq

˘

,

where we omit writing down the precise restriction domain from now on.
It can be checked easily that they match up where needed.
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2. The underlying l-simplex in Coverski is sent to its image under δij , i.e. its

rescaling data is δijpφtq. Recall from section 3.1.5 that this is the map

δijpφtq “ %jptq ˝ φt|... ˝ %jpt´ 1q´1 : p0, 1qn Ñ p0, 1qn.

3. Pushforward along %jptq is an endofunctor of the category of factorization
algebras on p0, 1qn which preserves weak equivalences, so for every t “
1, . . . , l we have the following weak equivalences

δijpφtq˚

´

%jptq˚Ft|...
¯

“ %jptq˚pφt|...q˚Ft|...
%jptq˚wt
ÝÝÝÝÝÝÑ %jptq˚Ft`1|....

Proposition 3.2.31. The degeneracy and face maps σij , δ
i
j defined above and

the degeneracy and face maps maps σ∆
l , δ

∆
l of the simplicial sets pAlgnqk1,...,kn

satisfy the simplicial relations and commute. We thus obtain an n-fold simpli-
cial space pAlgnq‚,¨¨¨ ,‚.

Proof. Since the maps σ∆
l , δ

∆
l arise from the degeneracy and face maps of the

nerve of a category, they commute with the other degeneracy and face maps.
It remains to show that the maps σij , δ

i
j defined above satisfy the simplicial

relations. They do so since we showed in lemma 3.1.19 that Coversn‚,...,‚ is an
n-fold Segal space, in particular, we proved that the rescaling maps commute
in the appropriate way.

3.2.7 The n-fold Segal space Algn

Proposition 3.2.32. pAlgnq‚,...,‚ is an n-fold Segal space.

Proof. We need to prove the following conditions:

1. The Segal condition is satisfied. For clarity, we explain the Segal condition
in the following case. The general proof works similarly. We will show
that

pAlgnqk1,...,2,...kn
„
ÝÑ pAlgnqk1,...,1,...,kn

h
ˆ

pAlgnqk1,...,0,...,kn

pAlgnqk1,...,1,...,kn .

To simplify notation, we omit the indices and the specified points in all
directions except for the ith one, as this procedure only depends on this
specified direction. We construct a map

pAlgnq1
h
ˆ

pAlgnq0

pAlgnq1
glue
ÝÝÝÑ pAlgnq2

which is a deformation retraction, i.e. glue˝pδ0ˆδ2q “ id, pδ0ˆδ2q˝glue „
id.

An element in pAlgnq1 ˆ
h
pAlgnq0

pAlgnq1 consists of two factorization al-

gebras G and G̃ on p0, 1qn, specified intervals p0, b0s ď ra1, 1q, p0, b̃0s ď
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rã1, 1q in the i-th direction, rescaling data, and a path, i.e. a weak equiv-
alence, between their target and source δ1pG̃q

w
Ñ δ0pGq. Here again, we

omit the rescaling in the notation. We glue them to an element in pAlgnq2
in the following way. By first applying a piecewise linear rescaling, we
can assume that 1´ a1 “ b̃0.

10 b0 “ a1

10 ã1 b̃0 “ 1 ´ a1

w

10 ã1
1`a1

b̃0
1`a1

“
1´a1
1`a1

b0
1`a1

“
a1

1`a1

Send the above data to the factorization algebra F on p0, 1qn defined by G
on p0, b̃0

1`a1
qˆ

ś

α‰ip0, 1q and G̃ on p a1
1`a1

, 1qˆ
ś

α‰ip0, 1q using rescaling
maps which, again, we will omit for clarity of notation. It remains to
“glue” them together using the weak equivalence w. On an interval pa, bq

such that a1
1`a1

ă a ă b̃0
1`a1

ă b, Fppa, bqq :“ Gppa, bqq. Moreover, we
define the factorization algebra structure by

10

a1
1`a1

b̃0
1`a1

c d

Gppc, dqq

e f

G̃ppe, fqq

g h

=

G̃ppe, fqq

»
Ý
Ñ

w

G̃ppc, dqq b Ñ G̃ppg, hqq

Note that this way the factorization algebra is defined on a factorizing
cover and can be extended by the gluing condition.

This construction extends to the spatial structure and by construction,
glue ˝ pδ0 ˆ δ2q “ id. Moreover, the weak equivalence w gives pδ0 ˆ δ2q ˝
glue „ id.

2. For every i and every k1, . . . , ki´1, pAlgnqk1,...,ki´1,0,‚,¨¨¨ ,‚ is essentially
constant.

An element in pAlgnqk1,...,ki´1,0,ki`1,...,kn is of the form

pF , I1
0 ď . . . ď I1

k1 , . . . , I
i´1
0 ď . . . ď Ii´1

ki´1
, p0, 1q,

Ii`1
0 ď . . . ď Ii`1

ki`1
, . . . , In0 ď . . . ď Inknq,
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so by definition the stratification with respect to which F is locally con-
stant reduces to

p0, 1qn “ Xn Ě Xn´1 Ě ¨ ¨ ¨ Ě Xi`1 Ě Xi “ Xi`1Xπ
´1
n´i

´

p0, 1qzp0, 1qq
¯

“ H.

Since the stratification only depends on the first i´ 1 tuples of intervals
we can freely move the remaining intervals Iαj for α ą i and still have a
well-defined element in pAlgnqk1,...,ki´1,0,ki`1,...,kn . In particular, we can
move them to Iα0 “ ¨ ¨ ¨ “ Iαkα “ p0, 1q, which is in the image of the
composition of degeneracy maps S. We can chose the endpoints to move
linearly (by setting aαj ptq “ p1 ´ tqaαj and bαj ptq “ p1 ´ tqbαj ` t), so this
construction extends to a homotopy. Hence

S : pAlgnqk1,...,ki´1,0,...,0
»
ÝÑ pAlgnqk1,...,ki´1,0,ki`1,...,kn

is a weak equivalence.

Remark 3.2.33. One can alternatively show the Segal condition by showing
that the source and target maps s, t : pAlgnqk1,...,1,...kn Ñ pAlgnqk1,...,0,...kn are
Serre fibrations and then showing that

pAlgnqk1,...,ki,...kn
„
ÝÑ pAlgnqk1,...,1,...,kn ˆ

pAlgnqk1,...,0,...,kn

¨ ¨ ¨ ˆ
pAlgnqk1,...,0,...,kn

pAlgnqk1,...,1,...,kn .

One can show the homotopy lifting property for cubes Ik for s, t explicitly by
constructing a lift. This construction is similar to the construction of the map
glue above. The second “strict Segal” condition follows from the fact that
factorization algebras satisfy a descent condition, see e.g. 4.3.5 in [Gin].

3.2.8 Completeness of Algn and the Morita p8, nq-category of
En-algebras

Factorization algebras with values in a symmetric monoidal relative category
with all coproducts S are pointed in the sense that given a factorization algebra
F , for any open set U the inclusion of the empty set H ãÑ U gives a map 1Ñ

FpUq, where 1 is the unit for the monoidal product of the symmetric monoidal
structure of S. In this subsection we show that if we assume that all objects
in S are flat for the monoidal structure, this pointing ensures completeness of
Algn.

Assumption 2. Let all objects in the symmetric monoidal p8, 1q-category S
be flat for the monoidal structure.

We will first explain the argument for n “ 1 using the language of algebras and
bimodules following corollary 3.2.15, and then give the general argument.

Proposition 3.2.34. Under assumption 2, the Segal space Alg1pSq is com-
plete, i.e.

s0 : pAlg1pSqq0 ÝÑ pAlg1pSqqinv1

is a weak equivalence.
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Proof. An element in pAlg1q
inv
1 is a pointed pA,Bq-bimodule 1

m
ÝÑ M such

that there is a pointed pB,Aq-bimodule 1
n
ÝÑ N and weak equivalences

A
»

ÝÝÝÑ
mbn

M bB N, and B
»

ÝÝÝÑ
nbm

N bAM,

of pA,Aq, respectively pB,Bq-bimodules. We need to show that A » B » M .
This implies that there is a path from AMB to AAA. This construction extends
to a homotopy, since a weak equivalence from AMB to a different bimodule

CND includes the data of a weak equivalence from A to C.

First note that

A M M bB N A,

1 m mb n 1

idM b n »

are maps of pA,Aq-bimodules, and induce the identity AÑ A in the homotopy
category h1S of S.

Consider all following maps in h1S, in particular the maps a : AÑ B, b : B Ñ
A given by the following diagram:

A M »M bB B M bB N A M M bB N A

B M » AbAM N bAM B M N bAM B

m idb n » m idb n »

m nb id » m nb id »

= =

idA
idA

a b

Their composition is equal to the composition of the dashed arrows, which
are identities, so b ˝ a “ idA. Similarly, a ˝ b “ idB , so A and B are weakly
equivalent. Moreover, A Ñ M Ñ M bB N » A is the identity, so A Ñ M
is a monomorphism and M Ñ A is an epimorphism. Similarly, A Ñ N is a
monomorphism.

Since all objects are flat for the monoidal structure, M Ñ M bB N » A is a
monomorphism, and thus an isomorphism (all in h1S). Similarly for N .

Proposition 3.2.35. Under assumption 2 the n-fold Segal space AlgnpSq is
complete.

Proof. The statement for general n follows from the statement for n “ 1, which
is porposition 3.2.34.
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Let n “ t1, . . . , nu. Factorization algebras on p0, 1qnztiu form a relative cate-
gory S satisfying the assumptions 1 and 2. Elements in pAlgnqk1,...,1,...,kn are
modules in S over E1-algebra objects in S, so we can apply proposition 3.2.34
which proves the statement.

Definition 3.2.36. The Morita p8, nq-category of En-algebras is the complete
n-fold Segal space Algn.

3.3 The symmetric monoidal structure on Algn

3.3.1 The symmetric monoidal structure arising as a
Γ-object

Similarly to Bordn we can endow Algn with a symmetric monoidal structure
arising as a Γ-object. It essentially comes from the fact that factorization
algebras have a symmetric monoidal structure as a relative category.

Definition 3.3.1. For every k1, . . . , kn, let pAlgnrmsqk1,...,kn be the collection
of tuples

pF1, . . . ,Fm, pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq,

where for every 1 ď β ď m, pFβ , pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq P pAlgnqk1,...,kn .
Similary to Algn this can be made into a complete n-fold Segal space.

Proposition 3.3.2. The assignment

Γ ÝÑ SSpacen,

rms ÞÝÑ Algnrms

extends to a functor and endows Algn with a symmetric monoidal structure.

Proof. The functor sends a morphism f : rms Ñ rks to

Algnrms ÝÑ Algnrks,

pF1, . . . ,Fm, pIijqi,jq ÞÝÑ p
â

βPf´1p1q

Fβ , . . . ,
â

βPf´1pkq

Fβ , pIijqi,jq.

Here the tensor product is the tensor product of factorization algebras with
values in the given symmetric monoidal category (defined level-wise). This is
well-defined as every Fβ , and therefore also the tensor product of several Fβ ’s
are locally constant with respect to the same stratification.

To show that
ź

1ďβďn

γβ : Algnrms ÝÑ pAlgr1sqm

is an equivalence of n-fold complete Segal spaces we need to show that for any
element in the right hand side we can rescale the intervals pIijqi,j so that they
coincide. This follows from the fact that rescaling p0, 1qn by some suitable
rescaling data φ leads to a weak equivalence of factorization algebras given by
pushforward along φ. This rescaling yields a path in the right hand space to
an element in the image of

ś

1ďβďn γβ and the collection of these paths form
a homotopy.
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3.3.2 The monoidal structure and the tower

Our goal for this section is to endow Algn with a symmetric monoidal structure

arising from a tower of monoidal l-hybrid pn ` lq-fold Segal spaces Algplqn for
l ě 0.

The deloopings Algplqn

Our construction of the p8, nq-category of En-algebras AlgnpSq relies on a
symmetric monoidal p8, 1q-category S. Independent of which model for sym-
metric monoidal p8, 1q-categories we choose there is a distinguished object in
S, the unit 1 for the symmetric monoidal structure. This object naturally is
an En-algebra, the constant factorization algebra on Rn with value 1, which
determines an object p1, p0, 1q, . . . , p0, 1qq in pAlgnq0,...,0.

The first layer of the tower

Definition 3.3.3. Let Algp1qn be the fiber of Algn`1 over 10 “ 1 in the first di-

rection, i.e. pAlgp1qn qk1,...,kn`1
is the fiber over 1k1`1 P

`

pAlgn`1q0,k2,...,kn`1

˘k1`1

of the map

pAlgn`1qk1,...,kn`1
ÝÑ

`

pAlgn`1q0,k2,...,kn`1

˘k1`1
,

which is the product of the pk1`1q different possible compositions of face maps

pAlgn`1qk1,...,kn`1

ÝÑ...ÝÑ pAlgn`1q0,k2,...,kn`1 .

Proposition 3.3.4. Algp1qn is a monoidal complete n-fold Segal space.

Proof. By construction the pn ` 1q-fold Segal space Algp1qn is 1-hybrid and
pointed.

Remark 3.3.5. It may seem unnatural to take the actual fiber here instead of
a homotopy fiber. This is needed as we need hybridness which requires certain
spaces to be equal to a point and not just contractible. As explained in re-
mark 3.2.33, the maps s, t : pAlgnqk1,...,1,...kn Ñ pAlgnqk1,...,0,...kn are fibrations.
Thus, in this case, the homotopy fiber and the fiber actually coincide.

The higher layers Similarly, we define the higher layers of the tower.

Assume that we have defined Algp0qn “ Algn,Algp1qn , . . . ,Algpl´1q
n for every n

such that Algpkqn is a k-hybrid pn`kq-fold Segal space which is pj´1q-connected
for every 0 ă j ď k. Note that, via the degeneracy maps, 1 can be viewed as
a trivial l-morphism in any Algpkqn for any 1 ď l ď n` k, i.e. an element

1l “ p1, p0, 1q ď p0, 1q, . . . , p0, 1q ď p0, 1q, p0, 1q, . . . , p0, 1qq P pAlgpkqn q 1,...,1,
loomoon

l

0,...,0.

Definition 3.3.6. Let Algplqn be the fiber of Alg
pl´1q
n`1 over 1l´1, i.e. pAlgplqn qk1,...,kn`l

is the fiber over 1l´1 P pAlgn`lq1,...,1,0,kl`1,...,kl`n of the product of all different
possible compositions of face maps

pAlg
pl´1q
n`1 qk1,...,kn`l

ÝÑ...ÝÑ
`

pAlg
pl´1q
n`1 q1,...,1,0,kl`1,...,kl`n .
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Proposition 3.3.7. Algplqn is a k-monoidal complete n-fold Segal space.

Proof. Again by construction the pn` lq-fold Segal space Algplqn is l-hybrid and
pj ´ 1q-connected for every 0 ă j ď l.

The tower and the symmetric monoidal structure

The monoidal complete n-fold Segal space Algp1qn turns out to be a delooping
of Algn. The following proposition shows that the collection of the l-monoidal

complete n-fold Segal spaces
´

Algplqn

¯

l
forms the tower which gives Algn a

symmetric monoidal structure.

Proposition 3.3.8. For n, l ě 0, there are weak equivalences

LpAlgplqn ,1q Algpl´1q
n ,

u

`

defined as follows.

1. The map u sends an element pFq “
`

F , p0, b10s ď ra1
1, 1q, pI

i
0 ď ¨ ¨ ¨ ď Iikiq

n`l
i“2

˘

P

LpAlgplqn q to

pupFqq “ pupFq, pIi0 ď ¨ ¨ ¨ ď Iikiq
n`l
i“2 q,

where upFq “ pπt2,...,n`1uq˚F is the pushforward of F along the projec-

tion πt2,...,n`1u : p0, 1qt1,...,n`1u Ñ p0, 1qt2,...,n`1u

2. The map ` sends an element pGq “ pG, pIi0 ď ¨ ¨ ¨ ď Iikiq
n`l
i“2 q P Algpl´1q

n to

p`pGqq “
`

`pGq, p0, 1
2 s ď r

1
2 , 1q, pI

i
0 ď ¨ ¨ ¨ ď Iikiq

n`l
i“2

˘

,

where `pGq “ ι˚pGq is the pushforward of G along the inclusion

ι : p0, 1qn`l´1 Ñ p0, 1qn`l, px2, . . . , xn`lq ÞÑ p 1
2 , x2, . . . , xn`lq.

The map ` is called the looping and u the delooping map.

We will need a refinement of theorem 3.2.16 suitable for our situation.

Definition 3.3.9. Let M be a topological space and N Ď M be a closed
subspace. Then a factorization algebra on M is said to be supported on N , if

F |MzN “ 1.

Recall from theorem 3.2.16 that there is a functor pr1˚
: FactXˆY ÝÑ FactXpFactY q

given by the pushforward along the projection pr1 : X ˆ Y Ñ X.
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Lemma 3.3.10. Let X “ p0, 1q with stratification X Ą tsu Ą H for s P X
and let Y be a stratified manifold with stratification Y “ Yn Ą Yn´1 Ą Y0 Ą

Y´1 “ H. Consider the stratification on X ˆ Y given by

X ˆ Y Ą tsu ˆ Y Ą tsu ˆ Yn´1 Ą ¨ ¨ ¨ Ą tsu ˆ Y1 Ą tsu ˆ Y0 Ą H,

which is coarser than the one from theorem 3.2.16. Then factorization algebras
on X lying in Fact lcXpFact lcY q which are supported on tsu arise from factoriza-
tion algebras on X ˆ Y which are locally constant with respect to this coarser
stratification and are supported on tsu ˆ Y via the functor pr1. Moreover, this
is a one-to-one correspondence.

Proof. Note that factorization algebras which are locally constant with respect
to this coarser stratification (the space of which is denoted by Fact lc,coarseXˆY ) also
are locally constant with respect to the finer stratification from 3.2.16. We need
to show that the composition of the inclusion Fact lc,coarseXˆY ãÑ Fact lcXˆY with
pr1˚

yields an equivalence between elements supported on tsu ˆ Y Ă X ˆ Y

and elements supported on tsu Ă X.

First, let F P Fact lc,coarseXˆY be supported on tsu ˆ Y . We need to check that its
image is supported on tsu. By definition, pr1˚

F is the factorization algebra on
X such that

X Ě U ÞÝÑ FU , FU : V ÞÝÑ FU pV q “ FpU ˆ V q,

and FU is a factorization algebra on Y . Let U Ă Xztsu, i.e. s R U . Then for
every V Ă Y , UˆV Ă pXˆY qzptsuˆY q, and since F is supported on tsuˆY ,

FU pV q “ FpU ˆ V q “ 1.

Conversely, consider an element in Fact lcXpFact lcY q which is supported in tsu.
From theorem 3.2.16, 1 we know that it arises from a factorization algebra
F P FactXˆY . We need to check that F is supported on tsuˆ Y and that it is
locally constant with respect to the coarse stratification. It is enough to check
the conditions on a factorizing basis, so it is enough to check them on products
of open sets.

Let U ˆ V Ă pX ˆ Y qzptsu ˆ Y q, then U Ă Xztsu, and

FpU ˆ V q “ FU pV q “ 1.

Now let U ˆ V Ă U 1 ˆ V 1 be an inclusion of disks such that both U ˆ V and
U 1 ˆ V 1 are good neighborhoods at α for the same index α P t0, . . . , n` 1u.

If α “ n` 1, then U ˆ V Ă U 1 ˆ V 1 Ă pX ˆ Y qzptsu ˆ Y q and by the above,

FpU ˆ V q “ 1 “ FpU 1 ˆ V 1q.

If 0 ď α ď n, then pU ˆ V q X ptsu ˆ Y q ‰ H and pU 1 ˆ V 1q X tsu ˆ Y ‰ H, so
we get
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1. The inclusion U Ă U 1 is a weak equivalence and the intersections U Xtsu
and U 1 X tsu are not empty, so they are disks of the same index for X,

2. Both V and V 1 are disks of index α for the same α.

Then
FpU ˆ V q “ FU pV q

1
» FU 1pV q

2
» FU 1pV 1q “ FpU 1 ˆ V 1q.

The main step in the proof of proposition 3.3.8 is the following observation.

Lemma 3.3.11. Let X “ p0, 1q and s P p0, 1q. Then the data of a factorization
algebra F on X with values in S which is locally constant with respect to the
stratification X Ą tsu Ą H and is supported on s is equivalent to the data of
its global sections FpXq P S. It can be recovered from its global sections by
pushforward along the map ˚ Ñ p0, 1q, ˚ ÞÑ s.

Proof. We showed in corollary 3.2.15 that factorization algebras on Y which
are locally constant with respect to a stratification of the form Y Ą tsu Ą H
are equivalent to (homotopy) bimodules. The fact that F is supported on s
implies that F is equivalent to a p1,1q-bimodule which is the data of an object
in S.

Proof of Proposition 3.3.8. Let

u : LpAlgplqn q ÝÑ Algpl´1q
n ,

pFq “
`

F , p0, b10s ď ra1
1, 1q, pI

i
0 ď ¨ ¨ ¨ ď Iikiq

n`l
i“2

˘

ÞÝÑ pupFqq “ pupFq, pIi0 ď ¨ ¨ ¨ ď Iikiq
n`l
i“2 q,

where upFq “ pπt2,...,n`1uq˚F is the pushforward of F along the projection

πt2,...,n`1u : p0, 1qt1,...,n`1u Ñ p0, 1qt2,...,n`1u forgetting the first coordinate. So
it “forgets” the data associated to the first coordinate, which includes the first
specified intervals.

Note that setting X “ p0, 1q as in the lemmas above and Y “ p0, 1qt2,...,n`lu,

upFq “ pπt2,...,n`luq˚F “ pr1˚
pFqpXq.

By lemma 3.3.10, pr1˚
pFq is locally constant on X, supported on tb10u, and

its global sections upFq is locally constant with respect to the stratification on
Y “ p0, 1qt2,...,n`lu. Hence u is well-defined.

Conversely, let

` : Algpl´1q
n ÝÑ LpAlgplqn q

pGq “ pG, pIi0 ď ¨ ¨ ¨ ď Iikiq
n`l
i“2 q ÞÝÑ p`pGqq “

`

`pGq, p0, 1
2 s ď r

1
2 , 1q, pI

i
0 ď ¨ ¨ ¨ ď Iikiq

n`l
i“2

˘

,

where `pGq “ ι˚pGq is the pushforward of G along the inclusion

ι : p0, 1qn`l´1 Ñ p0, 1qn`l, px2, . . . , xn`lq ÞÑ p1
2 , x2, . . . , xn`lq.
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By appyling first lemma 3.3.11 and then lemma 3.3.10, the map ` is well-
defined. Moreover, by definition, u ˝ ` “ id. It remains to show that ` ˝u » id.

Given an element pFq P pLpAlgplqn qq1,k2,...,kn`l , note that the associated strati-
fication on X “ p0, 1q is given by p0, 1qz

`

p0, b10q Y pa
1
1, 1q

˘

either is empty or is
equal to a point s “ b10 “ a1

1. This data is lost when applying u. By the lemmas
above, the factorization algebra is recovered under ` ˝ u except for the data of
s, which in the definition of ` we chose to be s “ 1

2 . However, a homotopy
from ` ˝ u to the identity is given by the following construction. Let ξ P r0, 1s.
Send an element pFq to its pushforward along fξ, which is the (restriction to
p0, 1q of the) unique piecewise affine map RÑ R such that

0 ÞÑ 0, s ÞÑ sξ ` p1´ sq
1

2
, 1 ÞÑ 1.

Corollary 3.3.12. The l-monoidal complete n-fold Segal spaces Algplqn endow
Algn with a symmetric monoidal structure.

3.4 The homotopy category of Alg1 and the Morita
category

The idea behind our construction of Alg1 was to model an p8, 1q-category
of algebras and (pointed) bimodules between them. Indeed, the homotopy
category of Alg1 turns out to be what we expect.

Definition 3.4.1. Let Mor1 be the category whose objects are algebras and
whose morphisms from an algebra A to an algebra B are equivalences classes of
pA,Bq-bimodules AMB , where AMB is equivalent to A1M

1
B1 iff A » A1, B » B1,

M »M 1.

Remark 3.4.2. Keep in mind that we are considering algebra and bimodule
objects in some symmetric monoidal relative category S, e.g. S “ Chk. If we
choose S “ Vectk with isomorphisms as weak equivalences, we get the classical
category of algebras and bimodules. If we want to specify which relative cat-
egory the algebra and module objects take values in, we write Mor1pSq. The
symmetric monoidal structure comes from the one on S, which sends pA,A1q
to their tensor product AbA1 in S and pAMB , CNDq to AbCM bNBbD.

Proposition 3.4.3. There is an equivalence of symmetric monoidal categories

h1pAlg1q » Mor1 .

Proof. We have seen in examples 3.2.20 and 3.2.27 using 3.2.11 that objects
of Alg1, and thus also of h1pAlg1q are equivalent to (homotopy) algebras. A
(1-)morphisms in Alg1 from A to B is a factorization algebra F on R which
gives the data of an pA,Bq-bimodule AMB . The extra information it encodes
is a choice of intervals p0, bs ď ra, 1q which corresponds to choosing where on
p0, 1q the module is located. The space of this extra information is the space
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of s P p0, 1q and thus contractible. Moreover, paths from AMB to A1M
1
B1 by

definition are the data of weak equivalences A » A1, B » B1, M »M 1. Thus, a
connected component of the space of (1-)morphisms in Alg1 from A to B is an
equivalence class of pA,Bq-bimodules M . Summarizing, there is an equivalence
of categories

F : h1pAlg1q ÝÑ Mor1,

which sends an object pF , p0, 1qq P pAlg1q0 to Fpp0, 1qq and a 1-morphism rep-

resented by pF , p0, bs ď ra, 1qq to the
´

Fpp0, bqq,Fppa, 1qq
¯

-bimodule Fpp0, 1qq.

We saw in example 1.6.9 that the symmetric monoidal structure on Alg1 in-
duces one on the ordinary category h1pAlg1q coming from the diagram

Alg1r1s ˆAlg1r1s
»

ÐÝÝÝÝ
γ1ˆγ2

Alg1r2s
γ
ÝÑ Alg1r1s,

where the first arrow is an equivalence of complete Segal spaces. By the def-
inition of the map γ, it is clear that the equivalence of categories F respects
the monoidal structure.

3.4.1 The p8, n` 1q-category of En-algebras

As mentioned above, starting with a symmetric monoidal p8, 1q-category S
with all products, factorization algebras on any space X with values in S again
form a symmetric monoidal p8, 1q-category. Thus, Algn can be extended to

an n-fold complete Segal object in p8, 1q-categories ĄAlgn, and from this one
can extract an p8, n` 1q-category, which is moreover symmetric monoidal. In
the full p8, n` 1q-category every object is dualizable, but there are fewer fully
dualizable objects. This construction will explained in more detail in [JFS].

In the case of n “ 1 we saw in the previous section that the homotopy category
of Alg1 is just the Morita category Mor1 of algebras and equivalence classes of
bimodules. This equivalence can be extended to an equivalence of the homotopy
bicategory of the p8, 2q-category Alg1 with the full bicategory of algebras,
bimodules, and intertwiners, which one might want to call the full “Morita
bicategory ĆMor1 of E1-algebras”.

3.4.2 An unpointed version

Note that in our construction we use factorization algebras and weak equiva-
lences to model objects, 1-morphisms, and 2-morphisms. As we discussed in
section 3.2.8, factorization algebras are pointed, with pointing coming from the
monoidal unit 1 of the underlying category S. This pointing leads to pointed
bimodules and intertwiners.

For applications one might be interested in an unpointed version to obtain a
category with unpointed bimodules as morphisms, which leads to the usual
Morita category. For such a construction an unpointed version of factorization
algebras which are locally constant with respect to the same stratifications
is needed. Such “unpointed factorization algebras” can be defined using an
operad similar to the one used in the definition of factorization algebras, but
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allowing only certain inclusions of empty sets. However, there is no reason for
such an unpointed version of an p8, nq-category of En-algebras to be complete.



Chapter 4

Factorization homology as a fully
extended topological field theory

Recall that the main task of this thesis is the following. Given any En-algebra
A, i.e. any object in Algn, we would like to define a map of symmetric monoidal
n-fold Segal spaces

FHnpAq : Bordfrn ÝÑ Algn

essentially given by taking factorization homology of A. As complete n-fold
Segal spaces are models for p8, nq-categories, this defines a fully extended
topological field theory with values in C “ Algn .

This chapter deals with the construction of this functor. For better overview
we split the construction in two steps. First we construct a map, which is just
a map of n-fold simplicial sets, to an auxillary complete n-fold Segal space
of factorization algebras which is essentially given by factorization homology.
Then we construct a map which can be understood as “collapsing” and then
“rescaling” a factorization algebra. Their composition yields the desired map
of n-fold Segal spaces. The construction can be summarized in the following
diagram. We indicate in which section the individual maps are constructed.

PBordfrn Factn FAlgn

Bordn Algn

4.3

4.5

4.4

FHnpAq

4.4.2

This map extends to the symmetric monoidal structures and yields the desired
fully extended topological field theory.

4.1 Factorization Homology

Inspired by an algebro-geometric version by Beilinson and Drinfeld in [BD04]
and a similar construction by Salvatore in [Sal01], Lurie introduced factor-
ization homology in [Lur] calling it topological chiral homology. It has been

99
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studied, amongst others, in [Fra12, Fra13, AFT12, GTZ10, GTZ12, Hor14].
We briefly recall the definition and the most important properties we will use
in this chapter.

Assumption 3. From now on, we will require that the symmetric monoidal
p8, 1q-category S which we required to have all small colimits in the previous
section to additionally be tensored over spaces.

Remark 4.1.1. For this, by [AFT12], it suffices that for each s P S, the

functor S bs
ÝÝÑ S preserves filtered colimits and geometric realizations. Then

in particular, for each object s P S and each space, i.e. simplicial set K, the
constant map K

s
ÝÑ S admits a colimit, which we denote by K b s. The map

´b´ : Space ˆS Ñ S exhibits S as tensored over spaces.

Again, as in sections 2.6.1 and 3.2.1, let X be a topological space and E Ñ X
a topological n-dimensional vector bundle which corresponds to a (homotopy
class of) map(s) e : X Ñ BGLpRnq from X to the classifying space of the
topological group GLpRnq.

Recall from definition 3.2.3 that aDisk pX,Eqn -algebra in S is a symmetric monoidal
(covariant) functor

A : Disk pX,Eqn ÝÑ S.

Now consider an pX,Eq-structured n-dimensional manifoldM . SinceDisk pX,Eqn Ď

ManpX,Eqn , it yields a contravariant functor

M : pDisk pX,Eqn qop ÝÑ Space,
ž

I

Rn ÞÝÑ EmbpX,Eqp
ž

I

Rn,Mq.

Definition 4.1.2. Let the factorization homology of M with coefficients in A

be the homotopy coend of the functor M ˆA ÝÑ Space ˆS b
ÝÑ S and denote

it by
ż

M

A “M bDisk pX,Eqn
A.

Remark 4.1.3. Recall that we required S to contain all small colimits. This
ensures the existence of the coend.

In [GTZ10] it was proven that if we consider this construction locally on M for
X “ BG, whereG is the trivial group, we obtain a locally constant factorization
algebra on M .

Theorem 4.1.4 ([GTZ10], Proposition 13). Given an En-algebra A, i.e. a

Disk frn -algebra, the rule

U ÞÑ

ż

U

A

for open subsets U ĎM with the induced framing extends to a locally constant
factorization algebra on M .
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Remark 4.1.5. By abuse of notation, we will denote this factorization algebra
by

ş

M
A, i.e. for an open subset U ĎM ,

`

ż

M

A
˘

pUq “

ż

U

A “ U bDisk frn
A P S.

4.2 The auxillary p8, nq-category Factn

The main idea for our functor is that, given an En-algebra A, we define a map ,
also called

ş

p´q
A, which should be given by first taking factorization homology

to obtain a factorization algebra on the manifoldM and then pushing it forward
to obtain a factorization algebra on p0, 1qn, i.e.

M V ˆ p0, 1qn

p0, 1qn

ι

π

ş

p´q
A

ÞÝÝÝÝÑ π˚p

ż

M

Aq.

We define an auxillary complete n-fold Segal space Factn by translating the
properties 1.-3. in the definition of PBordn to conditions on the factorization
algebra. We will show that this is the correct translation in section 4.3.

Similarly as to in the definition of Algn, for S Ď t1, . . . , nu, denote by πS :
Rn Ñ RS the projection onto the coordinates indexed by S.

Definition 4.2.1. Let elements in pFactnqk1,...,kn be pairs

pF , pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq,

satisfying the following conditions:

1. F is a factorization algebra on p0, 1qn.

2. For 1 ď i ď n,
pIi0 ď ¨ ¨ ¨ ď Iikiq P Intki .

3. For 1 ď i ď n, the factorization algebra F is an En´i`1-algebra in fac-
torization algebras on p0, 1qt1,...,i´1u in a neighborhood of π´1

i pI
i
0 Y . . .Y

Iikiq Ă p0, 1q
n.

Remark 4.2.2. In condition 3 we first use theorem 3.2.16 to view F as a
factorization algebra on p0, 1qti, . . . , nu in the p8, 1q-category of factorization
algebras on p0, 1qt1,...,i´1u and then require that this factorization algebra on
p0, 1qti, . . . , nu is locally constant. This is translated to saying that it is an
En´i`1-algebra by using theorem 3.2.11.

4.2.1 The spaces pFactnqk1,...,kn

The spatial structure of pFactnqk1,...,kn is a mixture of that on Bordn, essentially
coming from the one on the spaces Intki , and that on Algn.
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Definition 4.2.3. An l-simplex in pFactnqk1,...,kn is given by the data of

1. underlying 0-simplices, i.e. for every s P |∆l|,
`

Fs, pIi0psq ď ¨ ¨ ¨ ď Iikipsqq
˘

P pFactnqk1,...,kn ;

2. for every 1 ď i ď ki,
`

Ii0psq ď ¨ ¨ ¨ ď Iikipsq
˘

sP|∆l|

is an l-simplex in Intki with rescaling datum ϕis,t : p0, 1q Ñ p0, 1q;

3. for every s, t P |∆l|, weak equivalences

pϕs,tq˚Fs
ws,t
ÝÑ Ft,

where ϕs,t “ pϕ
i
s,tq

n
i“1 : p0, 1qn Ñ p0, 1qn is the product of the rescaling

data.

The spatial face and degeneracy maps δ∆
l , σ∆

l arise from the face and de-
generacy maps of p∆lq similarly to those of PBordn, and we obtain a space
pFactnqk1,...,kn .

4.2.2 The n-fold Segal space Factn.

We now define face and degeneracy maps on the 0-simplices of the levels of
Fact‚,...,‚ essentially coming from those of the n-fold Segal space pIntqn‚,...,‚ “
Int‚ˆ ¨ ¨ ¨ˆ Int‚. They are similar to those of Algn, but use the rescaling maps
ρj coming from Int‚ instead of the collapse-and-rescale maps %ba coming from
Covers‚. Recall that for j “ 0 orj “ k, in the usual notation they are the
linear rescaling maps

ρ0 : D0 “ pa1, 1q Ñ p0, 1q, x ÞÑ x´a1
1´a1

, ρk : Dk “ p0, bk´1q Ñ p0, 1q, x ÞÑ x
bk´1

.

Since 1 ď i ď n will be fixed throughout the following constructions, by abuse
of notation we define

ρj : π´1
i pDjq “

ź

α‰i

p0, 1q ˆDj Ñ p0, 1qn,

which is ρj in the ith coordinate and the identity otherwise.

Degeneracy maps on 0-simplices Fix 1 ď i ď n. For 0 ď j ď ki the jth
degeneracy map

sij : pFactnqk1,...,kn Ñ pFactnqk1,...,ki`1,...,kn

applies the jth degeneracy map of Int‚ to the ith tuple of intervals, i.e. it
repeats the jth interval in the ith direction,

pF , pIα0 ď ¨ ¨ ¨ ď Iαkαq
n
α“1q ÞÝÑ

`

F , pIα0 ď ¨ ¨ ¨ ď Iαkαqα‰i, sjpI
i
0 ď ¨ ¨ ¨ ď Iikiq

˘

“
`

F , pIα0 ď ¨ ¨ ¨ ď Iαkαqα‰i, I
i
1 ď ¨ ¨ ¨ ď Iij ď Iij ď ¨ ¨ ¨ ď Iiki

˘

.
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Face maps on 0-simplices Fix 1 ď i ď n. For 0 ď j ď ki the jth face map

dij : pFactnqk1,...,kn Ñ pFactnqk1,...,ki´1,...,kn

applies the jth face map of Int‚ to the ith tuple of intervals, which forgets
the jth interval, and, if necessary, rescales them and pushes the factorization
algebra forward along the rescaling map ρj . Explicitly, for j ‰ 0, ki, the 0-
simplex pFq “ pF , pIα0 ď ¨ ¨ ¨ ď Iαkαq

n
α“1q is sent to

`

F , pIα0 ď ¨ ¨ ¨ ď Iαkiqα‰i, djpI
i
0 ď ¨ ¨ ¨ ď Iikiq

˘

“

“
`

F , pIα0 ď ¨ ¨ ¨ ď Iαkiqα‰i, I
i
0 ď ¨ ¨ ¨ ď Iij´1 ď Iij`1 ď ¨ ¨ ¨ ď Iiki

˘

.

For j “ 0 or j “ ki, the 0-simplex pFq is sent to

ppρjq˚F |π´1
i pDjq

, pIα0 ď ¨ ¨ ¨ ď Iαkiqα‰i, djpI
i
0 ď ¨ ¨ ¨ ď Iikiqq.

The full structure as an n-fold Segal space Face and degeneracy maps
on l-simplices are defined analogous to for Algn, by which we obtain an n-fold
simplicial space Factn.

Proposition 4.2.4. pFactnq‚,...,‚ is an n-fold Segal space.

Proof. The proof of the Segal condition works similarly as for Algn and essen-
tially follows from the fact that paths of objects arise from weak equivalences
and rescaling, which we can use to glue.

It remains to check that for every i and every k1, . . . , ki´1, the pn´iq-fold Segal
space pFactnqk1,...,ki´1,0,‚,...,‚ is essentially constant.

We claim that the composition of degeneracy maps

pFactnqk1,...,ki´1,0,...,0 ãÝÑ pFactnqk1,...,ki´1,0,ki`1,...,kn

is a deformation retract.

For s P r0, 1s, consider the path γs in pFactnqk1,...,ki´1,0,ki`1,...,kn sending an
element represented by

pFq :“ pF ,
´

Iβ0 ď ¨ ¨ ¨ ď Iβkβ q1ďβăi, p0, 1q, pI
α
0 ď ¨ ¨ ¨ ď Iαkαqiăαďn

¯

to

pFqs :“
´

F , pIβ0 ď ¨ ¨ ¨ ď Iβkβ q1ďβăi, p0, 1q, pI
α
0 psq ď ¨ ¨ ¨ ď Iαkαpsqqiăαďn

¯

,

where for α ą i, aαj psq “ p1 ´ sqaαj and bαj psq “ p1 ´ sqbαj ` s. Note that for
s “ 0, Iα0 p0q “ Iα0 , Iαj p0q “ Iαj and for s “ 1, Iαj p1q “ p0, 1q.

The collection of paths γs form a deformation retraction provided that each
path is well-defined, i.e. indeed maps to pFactnqk1,...,ki´1,0,ki`1,...,kn . It suffices
to check condition (3) in definition 4.2.1 for pFqs. Since pFq P pFactnqk1,...,ki´1,0,ki`1,...,kn ,
this reduces to checking
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For every i ă α ď n, F is an En´α`1-algebra in factorization
algebras on p0, 1qt1,...,α´1u in a neighborhood of π´1

α pI
α
0 psq Y . . . Y

Iαkαpsqq Ď p0, 1q
n.

Condition (3) on pFq for i implies that in particular, F is an En´i`1-algebra
in factorization algebras on p0, 1qt1,...,i´1u in (a neighborhood of) π´1

i pp0, 1qq “
p0, 1qn.

This in turn implies that for every α ą i, F is an En´α`1-algebra in factor-
ization algebras on p0, 1qt1,...,α´1u in a neighborhood of π´1

α pp0, 1qq “ p0, 1q
n Ě

π´1
α pI

α
0 psq Y . . .Y I

α
kj
psqq.

4.2.3 Completeness of Factn.

We now show that the auxillary n-fold Segal space of factorization algebras
Factn always is complete, and thus is an p8, nq-category.

Proposition 4.2.5. The n-fold Segal space Factn is complete.

Proof. We need to show that for any k1, . . . , ki´1, ki`1, . . . , kn, the degeneracy
map

pFactnqk1,...,ki´1,0,ki`1,...,kn
s0
ÝÑ pFactnq

inv
k1,...,ki´1,1,ki`1,...,kn

is a weak equivalence.

For any element in the right hand side

pFq “ pF , Ii0 ď Ii1, pI
α
0 ď ¨ ¨ ¨ ď Iαkαqα‰i

¯

there is another element

pF̃q “ pF̃ , Ĩi0 ď Ĩi1, pĨ
α
0 ď ¨ ¨ ¨ ď Ĩαkαqα‰i

¯

which, in the homotopy category, is an inverse of pFq. The composition in the
homotopy category is represented by an element

pGq “ pG, ˜̃Ii0 ď
˜̃Ii1, p

˜̃Iα0 ď ¨ ¨ ¨ ď
˜̃Iαkαqα‰i

¯

which, for some 0 ď c ď d ď 1, where the pair pc, dq is not equal to p1, 0q,
on π´1

i pp0, dqq restricts to (the rescaled) F and on π´1
i ppc, 1qq restricts to (the

rescaled) F̃ . Moreover, there is a path to the En´i`1-algebra in factorization
algebras on p0, 1qt1,...,i´1u which is the source d1pFq of F which in turn is
weakly equivalent to the target d0pF̃q of F̃ , i.e. there is a weak equivalence
G ÝÑ d1pFq.
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F̃

|pc,1q

10

F

|p0,dq

10

G
10 c d

σpFq

»

10

As a factorization algebra on p0, 1qtiu with values in factorization algebras on
p0, 1qnzi, d1pFq is locally constant and and therefore weakly equivalent to its
restrictions to p0, dq and pc, 1q. Since G » d1pFq and F and F̃ are its restrictions
to p0, dq and pc, 1q,

F » d1pFq.
This construction yields a deformation retraction.

4.2.4 The symmetric monoidal structure on Factn

Factn has a symmetric monoidal structure defined by a Γ-object which arises
similarly to the structure of Algn as a Γ-object.

Definition 4.2.6. For every k1, . . . , kn and m ě 0, let pFactnrmsqk1,...,kn be
the collection of tuples

pF1, . . . ,Fm, pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq,

where for every 1 ď β ď m, pFβ , pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq P pFactnqk1,...,kn .
Similarly to Factn this can be made into a complete n-fold Segal space.

Proposition 4.2.7. The assignment

Γ ÝÑ SSpacen,

rms ÞÝÑ Factnrms

extends to a functor and endows Factn with a symmetric monoidal structure.

Proof. Just as for Algn, a morphism f : rms Ñ rks is sent to the functor

Factnrms ÝÑ Factnrks,

pF1, . . . ,Fm, I 1sq ÞÝÑ p
â

βPf´1p1q

Fβ , . . . ,
â

βPf´1pkq

Fβ , I 1sq.

Remark 4.2.8. It is not quite as straightforward to write down the symmetric
monoidal structure as a tower and we will not need it later on.



106
CHAPTER 4. FACTORIZATION HOMOLOGY AS A FULLY

EXTENDED TFT

4.3 The map of n-fold simplicial sets
ş

p´q
A

In this section, given a fixed En-algebra A, we define a map of n-fold simplicial
sets

ż

p´q

A : PBordfrn ÝÑ Factn

from the framed bordism category to the auxillary category of factorization
algebras. This map essentially translates the properties of the bordisms to
factorization algebras on p0, 1q. It thus in a certain sense encodes the geometry
of the embedded manifold. It will not, however, be a map of n-fold Segal spaces
as it does not extend to the simplicial structure of the “levels”, as we explain
below in problem 4.3.4.

Recall from definition 2.3.1 that for an element pMq in PBordfrn we used the
following notation, where S Ď t1, . . . , nu:

M V ˆ p0, 1qn

p0, 1qn

p0, 1qS

π

pS

πS

The following proposition shows that the third condition on factorization al-
gebras in Factn is the exact translation via the map π˚p

ş

p´q
Aq of the third

condition on elements in PBordfrn .

Proposition 4.3.1. Let A be an En-algebra and let M be an n-dimensional
framed manifold. For S Ď t1, . . . , nu, let pS : M Ñ p0, 1qS be submersive
at x P p´1

S ppt
αqαPSq. Then F :“ π˚p

ş

M
Aq is an E|S|-algebra in factorization

algebras on p0, 1qnzS in a neighborhood of π´1
S ppt

αqαPSq.

Proof. F is a factorization algebra on p0, 1qn, so by theorem 3.2.16 it is a fac-
torization algebra on p0, 1qS with values in factorization algebras on p0, 1qnzS .
We denote it by F̃ : U ÞÑ FU for U Ă p0, 1qS , where

FU : W ÞÑ FpU ˆW q for W Ă p0, 1qnzS .

We need to show that F̃ is locally constant in a neighborhood of ptαqαPS . Take
V Ă U Ă p0, 1qS two sufficiently small open sets containing ptαqiPS such that
U » V . The the structure map FV Ñ FU is a weak equivalence if for every
open set W Ă p0, 1qnzS , the map FV pW q Ñ FU pW q is a weak equivalence.
Consider

FU pW q “ FpU ˆW q “ π˚p

ż

M

AqpU ˆW q “ p

ż

M

Aqpπ´1pU ˆW qq,

FV pW q “ FpV ˆW q “ π˚p

ż

M

AqpV ˆW q “ p

ż

M

Aqpπ´1pV ˆW qq.
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Since
ş

M
A is locally constant, it is enough to show that the inclusion π´1pV ˆ

W q Ă π´1pU ˆW q is a weak equivalence. Since

π´1pV ˆW q “ p´1
S pV q X p

´1
nzSpW q and π´1pU ˆW q “ p´1

S pUq X p
´1
nzSpW q,

it is enough to show that p´1
S pV q ãÑ p´1

S pUq is a weak equivalence. This holds
because we assumed that V » U and that pS is a submersion at p´1

S

`

ptijiqiPS
˘

,
so locally a projection map.

Definition 4.3.2. Let A be an En-algebra. Let

ż

p´q

A : PBordfrn ÝÑ Factn

send

`

M ãÑ V ˆ p0, 1qn, pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,n

˘

P pPBordnqk1,...,kn

to
ˆ

π˚p

ż

M

Aq, pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,n

˙

P pFactnqk1,...,kn ,

where, as in the previous sections, π : M ãÑ V ˆ p0, 1qn � p0, 1qn.

Proposition 4.3.3.
ş

p´q
A is a well-defined map of n-fold simplicial sets.

Proof. By the above proposition, p
ş

p´q
Aq ppMqq is an element in pFactnqk1,...,kn .

Moreover,
ş

p´q
A commutes with the face and degeneracy maps dij , s

i
j and δij , σ

i
j

of the n-fold simplicial sets pPBordfrn q‚,...,‚ and pFactnq‚,...,‚ by construction.

Problem 4.3.4.
ş

p´q
A does not extend to a map between l-simplices of the

levels, i.e. p
ş

p´q
Aqk1,...,kn is not a map of simplicial sets

p

ż

p´q

Aqk1,...,kn : pPBordnqk1,...,kn ÝÑ pFactnqk1,...,kn ,

as can be seen in the following example.

Consider the following 1-simplex in pBord1q1, which is given by a smooth defor-
mation of the standard embedding of the circle, r0, 1sˆS1 ãÑ r0, 1sˆRˆp0, 1q,
and the pair of intervals p0, bs ď ra, 1q.
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V “ R

0 1ab

M1 M0.5 M0

U

The factorization algebra F1 “ pπ1q˚p
ş

S1 Aq associated to s “ 1 is not weakly
equivalent to that associated to s “ 0 (even after any rescaling of p0, 1q), as its
value on the open set U as given in the picture is

F1pUq “ Ab2 b pAopqb2,

but F0 “ pπ0q˚p
ş

S1 Aq on intervals takes on values 1, A,Aop, or AbAop.

4.4 Collapsing the factorization algebra and FAlgn

In this section, we explain how to “collapse” a factorization algebra in Factn.
We define a map of n-fold simplicial sets

V : Factn ÝÑ FAlgn

to an n-fold Segal space FAlgn Ě Algn of factorization algebras on p0, 1qn,
which have certain locally constancy properties, but do not lead to bimodules.

We first define a collapse-and-rescale map v : Int‚ Ñ Covers‚ given by applying
a collapse-and-rescale map %

b
a : p0, 1q Ñ p0, 1q to a tuple of intervals with

endpoints a, b. This map is lifted to a map V : Factn Ñ FAlgn by pushing
forward the factorization algebra along the product of the collapse-and-rescale
maps.

4.4.1 The collapse-and-rescale map v : Int‚ Ñ Covers‚

... on the levels

Informally speaking, we first collapse the complement of all intervals and then
rescale the rest to p0, 1q. We saw in lemma 3.1.4 that the collapse-and-rescale
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maps %ba commute in a suitable way. This ensures that we can define the

collapse-and-rescale map %
b
a can be defined as a successive application of %ba’s.

Definition 4.4.1. Let I0, . . . , Ik be closed intervals in p0, 1q with non-empty
interior and endpoints a “ pa0, . . . , akq, b “ pb0, . . . , bkq. Then, let

%ba “ %b0a1 ˚ %
b1
a2 ¨ ¨ ¨ ˚ %

bk´1
ak

.

Note that since by definition paα, bαq ‰ H, pbα´1, aαq X pbα, aα`1q “ H. So

we can apply lemma 3.1.4 and the map %
b
a is independent of the order of maps

%bαaα`1
. In the following, we will apply this to pI0 ď ¨ ¨ ¨ ď Ikq P Intk.

10 b0 a1 b1a2 b2 a3

10 b̃0 “ ã1 b̃2 “ ã3b̃1ã2

%
b
a

Notation 4.4.2. For I0, . . . , Ik as above let tj1, . . . , jlu Ď t0, . . . , k´1u be the

indices for which bjβ ă ajβ`1, i.e. %
bjβ
ajβ`1 ‰ id. Then, similarly as we saw for

%ba,

%ba|Dba ,

for D
b
a “ p0, bj1sYpaj1`1, bj2sY¨ ¨ ¨Ypajl`1, 1q is bijective. We denote its inverse

by

p%baq
´1 “ p%ba|Dbaq

´1 : p0, 1q ÝÑ Db
a.

... as a map of complete Segal spaces

Proposition 4.4.3. The map

Intk
v k
ÝÑ Coversk,

pI0 ď ¨ ¨ ¨ ď Ikq ÞÝÑ p%bapI0q ď ¨ ¨ ¨ ď %bapIkqq,

extends to a map of complete Segal spaces.

Proof. We first need to show that the map v k extends to a map of spaces
v k : Intk Ñ Coversk, i.e. we need to define it on l-simplices and show that
it commutes with the spatial face and degeneracy maps s∆

l , d
∆
l of Intk and

σ∆
l , δ

∆
l of Coversk. Finally we need to show that all v k together form a map of

simplicial spaces, i.e. they commutes with the simplicial face and degeneracy
maps sj , dj of Int‚ and σj , δj of Covers‚.
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... on l-simplices Consider an l-simplex in Intk consisting of underlying
0-simplices pI1psq ď ¨ ¨ ¨ ď IkpsqqsP|∆l| and a rescaling datum pϕs,t : p0, 1q Ñ
p0, 1qqs,tP|∆l|. It is sent to the l-simplex in Coversk defined as follows:

1. for 0 ď t ď l, the tth underlying 0-simplex of the image is

´

%bapI0ptqq ď ¨ ¨ ¨ ď %bapIkptqq
¯

P Coversk;

2. for 1 ď t ď l, the rescaling datum is

φt “ %
bptq
aptq ˝ ϕt´1,t|Dbapt´1q

˝ p%
bpt´1q
apt´1qq

´1 : p0, 1q Ñ p0, 1q.

... commutes with the spatial degeneracy and face maps The map
v k commutes with spatial degeneracy and face maps since these come from the
degeneracy and face maps of the simplicial set p∆lql.

... commutes with the simplicial degeneracy and face maps This
essentially follows from the behaviour of the collapse-and-rescale maps %ba. We
need to show that the following diagram commutes

Intk`1 Coversk`1

Intk Coversk

Intk´1 Coversk´1

v k`1

v k

dj

sj

δj

σj

v k´1

The collapse-and-rescaling maps on the top and in the middle coincide, since

%
bj
aj “ id and therefore

%
djpbq

djpaq
“ ¨ ¨ ¨ ˚ %bj´1

aj ˚ %bjaj ˚ %
bj
aj`1

“ %ba.

Thus the top diagram commutes.

For the lower diagram, we need to compare the composition of the (collapse-
and-)rescaling maps.

Intk Coversk

Intk´1 Coversk´1

%ba

id or ρj %
bj´1
aj`1

%ba
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The upper right composition σj ˝ v k has as rescaling map %
bj´1
aj`1 ˚ %

b
a. Using

lemma 3.1.4 and remark 3.1.3 we obtain

%bj´1
aj`1

˚ %ba “ %bj´1
aj`1

˚ p%b0a1 ˚ %
b1
a2 ¨ ¨ ¨ ˚ %

bk´1
ak

q

3.1.4
“ %bj´1

aj`1
˚ p%bj´1

aj ˚ %bjaj`1
˚ ˚
α‰j´1,j

%bαaα`1
q

“ p%bj´1
aj`1

˚ %bj´1
aj q ˚ %bjaj`1

˚ ˚
α‰j´1,j

%bαaα`1

3.1.3
“ p%bj´1

aj`1
˚ %bjaj`1

q ˚ ˚
α‰j´1,j

%bαaα`1

3.1.3
“ %bj´1

aj`1
˚ ˚
α‰j´1,j

%bαaα`1

3.1.4
“ %b0a1 ˚ ¨ ¨ ¨ ˚ %

bj´2
aj´1

˚ %bj´1
aj`1

˚ %bj`1
aj`2

˚ ¨ ¨ ¨ ˚ %bk´1
ak

“ %
pb
j

paj
,

where paj “ pa0, . . . , aj´1, aj`1, . . . , akq and pb
j
“ pb0, . . . , bj´1, bj`1, . . . , bkq.

For j ‰ 0, k, we have that sjpaq “ paj and sjpbq “ pb
j

and thus the lower left
composition v k´1 ˝sj has as rescaling map

%
sjpbq

sjpaq
“ %

pb
j

paj
.

For j “ 0 or j “ k we have that sjpaq “ ρjppa
j
q “ %

bj´1
aj`1ppa

j
q and sjpbq “

ρjppb
j
q “ %

bj´1
aj`1p

pb
j
q, and thus the lower left composition v k´1 ˝σj has as rescal-

ing map

%
sjpbq

sjpaq
“ %

pb
j

paj
˚ %bj´1

aj`1

“ p%b0a1 ˚ ¨ ¨ ¨ ˚ %
bj´2
aj´1

˚ %bj´1
aj`1

˚ %bj`1
aj`2

˚ ¨ ¨ ¨ ˚ %bk´1
ak

q ˚ %bj´1
aj`1

“ %b0a1 ˚ ¨ ¨ ¨ ˚ %
bj´2
aj´1

˚ %bj´1
aj`1

˚ %bj`1
aj`2

˚ ¨ ¨ ¨ ˚ %bk´1
ak

“ %
pb
j

paj
,

since similarly to above, by lemma 3.1.4 we can first reorder the terms in

the parentheses, use %
bj´1
aj`1 ˚ %

bj´1
aj`1 “ %

bj´1
aj`1 by remark 3.1.3, and then reorder

again.

4.4.2 The “faux” Algn, the n-fold Segal space FAlgn

Recall that in definition 3.2.17, given pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,n P pCoversnqk1,...,kn ,
we inductively defined a stratification of p0, 1qn by

Xn “ p0, 1q
n, Xn´i “ Xn´i`1 X Yi,

for 1 ď i ď n, where

Yi “ π´1
i

`

Si
˘

for Si “ p0, 1qz
ki
ď

j“0

paij , b
i
jq “ p0, 1qz

ki
ď

j“0

pIijq
˝,
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and pIijq
˝ “ paij , b

i
jq is the interior of the interval Iij . Note that the set XzYi “

Ťki
j“0pa

i
j , b

i
jq ˆ p0, 1q

nzi is a disjoint union of products of the form

p0, si1q ˆ p0, 1q
nzi, psij , s

i
j`1q ˆ p0, 1q

nzi, or psili , 1q ˆ p0, 1q
nzi.

We now define a “faux” n-fold Segal space FAlgn of En-algebras, whose objects
are En-algebras, but the morphisms do not behave like modules.

Definition 4.4.4. For every k1, . . . , kn ě 0, let pFAlgnqk1,...,kn be the collection
of tuples

pF , pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq,

satisfying the following conditions:

1. F is a factorization algebra on p0, 1qn.

2. For 1 ď i ď n,
pIi0 ď ¨ ¨ ¨ ď Iikiq P Coverski ,

3. For 1 ď i ď n, on every connected component of XzYi, the factorization
algebra F is an En´i`1-algebra in factorization algebras on p0, 1qt1,...,i´1u.

We make the collection pFAlgnq‚,...,‚ into an n-fold Segal space similarly to
pAlgnq‚,...,‚.

Remark 4.4.5. Similarly to definition 4.2.1 we use theorem 3.2.16 to formulate
the condition on the factorization algebra F .

Example 4.4.6. For n “ 1, pFAlg1qk consists of elements of the form

pF , I0 ď . . . ď Ikq,

where F is a factorization algebra on p0, 1q and is locally constant everywhere
except at the points S “ ts1, . . . , slu “ p0, 1qzpI0 Y . . . Y Ikq. In particular,
pFAlg1q0 “ pAlg1q0 and consists of locally constant factorization algebras on
p0, 1q, i.e. E1-algebras. However, for k ą 1, pAlg1qk is the proper subset of
pFAlg1qk of elements which furthermore satisfy the condition that if U , V are
intervals containing the same point sj , FpUq » FpV q.

Proposition 4.4.7. There is an inclusion of n-fold Segal spaces

Algn Ă FAlgn .

Proof. Recall from definition 3.2.17 that

Xn´α “ S1 ˆ ¨ ¨ ¨Sα ˆ p0, 1qtα`1,...,nu.

Thus, the stratification induces a stratification on XzYi of the form

pXzYiq XXn´α “ S1 ˆ ¨ ¨ ¨ ˆ Sα ˆ p0, 1qtα`1,...,i´1u ˆ
`

p0, 1qzSi
˘

ˆ p0, 1qti`1,...,nu

“ X̃n´α ˆ p0, 1q
ti`1,...,nu,
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where
X̃n´α “ S1 ˆ ¨ ¨ ¨ ˆ Sα ˆ p0, 1qtα`1,...,i´1u ˆ

`

p0, 1qzSi
˘

.

for 0 ď α ă i.

Let pF , pIi0 ď ¨ ¨ ¨ ď Iikiq1ďiďnq P pAlgnqk1,...kn . The restriction F |XzYi is lo-
cally constant with respect to the stratification pXzYiq X Xn´α. Thus, as a
factorization algebra on p0, 1qti`1,...,nu with values in factorization algebras on
p0, 1qt1,...,iu it is locally constant.

4.4.3 The collapsing map V : Factn Ñ FAlgn

We can now lift the collapsing map v : Int Ñ Covers to a collapsing map
V : Factn Ñ FAlgn.

Notation 4.4.8. Let pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq P Intnk1,...,kn . For 1 ď i ď n

denote the collapse-and-rescale map associated to pIi0 ď ¨ ¨ ¨ ď Iikiq P Intki by

%
bi

ai , and denote their product by

%
b
a “ p%

b1

a1 , . . . , %
bn

anq : p0, 1qn ÝÑ p0, 1qn.

Note that
%
b
a “ %

b1

a1 ˝ . . . ˝ %
bn

an ,

where as before we again denote by %
bi

ai the map p0, 1qn ÝÑ p0, 1qn which is %
bi

ai

in the ith coordinate and the identity otherwise, and the order in the above
composition does not matter.

Proposition 4.4.9.

pFactnqk1,...kn
V
ÝÑ pFAlgnqk1,...kn

pF , pIi0 ď ¨ ¨ ¨ ď Iikiq1ďiďnq ÞÝÑ

´

p%
b
aq˚pFq,

`

v pIi0 ď ¨ ¨ ¨ ď Iikiq
˘

1ďiďn
q

is a map of n-fold Segal spaces.

Proof. As we have seen in the previous section that the (collapse-and-)rescaling
maps behave well with respect to face and degeneracy maps of the simplicial
space, it is enough to show that V indeed maps to FAlgn.

We need to check the third condition in definition 4.4.4, i.e. that for 1 ď i ď n,
on

XzYi “ π´1
i

`

ki
ď

j“0

%
bi

aipI
i
jq
˝
˘

p%
b
aq˚F is an En´i`1-algebra in factorization algebras on p0, 1qt1,...,i´1u.

For this it is enough to show that for every 0 ď j ď ki, we have
´

p%
b
aq˚F

¯

|
π´1
i

`

%
bi

ai
pIijq

˝

˘ “ p%
b
aq˚

´

F |π´1
i pIijq

˝

¯
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is an En´i`1-algebra in factorization algebras on p0, 1qt1,...,i´1u.

Since pF , pIi0 ď ¨ ¨ ¨ ď Iikiq1ďiďnq P pFactnqk1,...kn , F |π´1
i pIijq

˝ is an En´i`1-

algebra in factorization algebras on p0, 1qt1,...,i´1u, so the following lemma fin-
ishes the proof.

Lemma 4.4.10. Let G be a locally constant factorization algebra on p0, 1q and
let %ba be a collapse-and-rescaling map. Then p%baq˚G is locally constant on
p0, 1q.

Proof. This follows from the fact that preimages of intervals under %ba again
are intervals.

4.5 The functor of p8, nq-categories FHn

We now show that, given an En-algebra A, the composition V ˝
ş

p´q
A lands

in Algn and thus yields a map

FHn “ FHnpAq : PBordfrn ÝÑ Algn .

Proposition 4.5.1. Let pMq “
`

M ãÑ V ˆ p0, 1qn, pIi0 ď ¨ ¨ ¨ ď Iikiq1ďiďn
˘

P

pPBordnqk1,...kn . Then

´

V ˝

ż

p´q

A
¯

ppMqq P pAlgnqk1,...,kn ,

Proof. Let π : M ãÑ V ˆ p0, 1qn � p0, 1qn and as usual denote the endpoints
of the interval Iij by aij , b

i
j . We need to show that the underlying factorization

algebra of FHnppMqq, which is

FpMq “ p%
b
aq˚π˚

ż

M

A,

is locally constant with respect to the stratification associated to the intervals
`

%
bi

aipI
i
0q ď ¨ ¨ ¨ ď %

bi

aipI
i
ki
q
˘n

i“1
.

Let V Ď U be good neighborhoods at Xn´α “ S1 ˆ ¨ ¨ ¨ ˆ Sα ˆ p0, 1qtα`1,...,nu

from definition 3.2.17 respectively remark 3.2.18. We can assume that they are
boxes, i.e. products of intervals

U “ U1 ˆ ¨ ¨ ¨ ˆ Un, V “ V 1 ˆ ¨ ¨ ¨ ˆ V n

and meet exactly one connected component

psijq
α
β“1 ˆ p0, 1q

tα`1,...,nu

of Xn´α. We need to show that the structure map FpMqpV q Ñ FpMqpUq is a
weak equivalence. By definition,

FpMqpV q “ p
ż

M

Aqpπ´1pṼ qq and FpMqpUq “ p
ż

M

Aqpπ´1pŨqq,
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where Ṽ “ p%
b
aq
´1pV q and Ũ “ p%

b
aq
´1pUq. Since

ş

M
A is locally constant, it is

enough to show that the inclusion π´1pṼ q ãÑ π´1pŨq is a weak equivalence.

The open sets Ṽ and Ũ are boxes of open intervals,

Ṽ “ pe1, f1q ˆ ¨ ¨ ¨ ˆ pen, fnq and Ũ “ pc1, d1q ˆ ¨ ¨ ¨ pcn, dnq

where pci, diq “ p%
bi

aiq
´1pU iq and pei, f iq “ p%

bi

aiq
´1pV iq. The endpoints ci and

ei, respectively di and f i, either lie in the same closed specified interval Iiji or
in ones connected by a chain of overlapping intervals. An argument similar
to that in corollary 2.3.4 or, if an endpoint is 0 or 1, example 2.3.2 gives a
diffeomorphism

π´1pŨq ÝÑ π´1pṼ q.

Definition 4.5.2. Let

FHn “ FHnpAq “ V ˝

ż

p´q

A : PBordfrn ÝÑ Algn,

FHn
`

pMq
˘

“ pFM ,
`

v pIi0 ď . . . ď Iikiq
˘n

i“1
q,

where FpMq “ p%
b
aq˚π˚

ş

M
A. By the universal property of the completion it

extends to a map of complete n-fold Segal spaces

FHn “ FHnpAq : Bordfrn ÝÑ Algn .

4.6 The fully extended topological field theory FHn

To obtain a fully extended topological field theory the functor FHnpAq needs to
be symmetric monoidal. In this section we extend it to a symmetric monoidal
functor, both by defining a natural transformation of Γ-objects and by defining
compatible functors between the layers of the towers.

4.6.1 Symmetric monoidality via Γ-objects

We extend the map FHnpAq to a natural transformation between functors
Γ Ñ SSpacen, rms ÞÑ PBordfrn rms,Algnrms.

Proposition 4.6.1. For every object rms P Γ, let FHnrms “ FHnpAqrms be
the map of n-fold Segal spaces

PBordfrn rms ÝÑ Algnrms,
`

M1, . . . ,Mm, pI
i
0 ď . . . ď Iikiq

n
i“1q

˘

ÞÝÑ
`

FpM1q, . . . ,FpMmq, v pI
i
0 ď . . . ď Iikiq

n
i“1

˘

.

This assignment endows the functor FHnpAq of p8, nq-categories with a sym-
metric monoidal structure.
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Proof. The map FHnrms is well-defined since the the image of the left-hand
element under the inclusion PBordnrms Ď pPBordnr1sq

m is the collection of

pMβ , pI
i
0 ď . . . ď Iikiq

n
i“1q P pPBordfr,Vn qk1,...,kn

which under FHnpAq are sent to elements in pAlgnqk1,...,kn with underlying fac-
torization algebras FpMβq and the same underlying element in pCoversnqk1,...,kn

`

v pIi0 ď . . . ď Iikiq
˘n

i“1
.

Thus the collection of the images lies in the image of the inclusion Algnrms Ď
pAlgr1sqm. The map FHnrms is a map of n-fold Segal spaces by the same
argument as for FHn.

To see that this assignment defines a natural transformation, let f : rms Ñ rks,
and 1 ď α ď k. Let π “ πr1s > ¨ ¨ ¨ > πrms : M1 > ¨ ¨ ¨ >Mm Ñ p0, 1qn. By the
following lemma we have

π˚

ż

š

βPf´1pαqMβ

A “
â

βPf´1pαq

πrβs˚

ż

Mβ

A,

and thus the following diagram commutes.

PBordfrn rms Algnrms

PBordfrn rks Algnrks

FHnrms

f f

FHnrks

Lemma 4.6.2. Let f : X Ñ Z, g : Y Ñ Z be continuous maps of topological
spaces and let F be a factorization algebra on X > Y . Then

pf > gq˚F “ f˚F |X b g˚F |Y .

Proof. Let U Ă Z be open. Then pf > gq´1pUq “ f´1pUq > g´1pUq and by the
gluing property of F , we have

Fpf´1pUq > g´1pUqq “ Fpf´1pUqq b Fpg´1pUqq.

4.6.2 Symmetric monoidality via the tower

In this section we extend the map to the layers of the tower in a compatible
way.

On the lth layer the extension FHplqn is the composition of maps
ş

p´q
A and

V plq analogous to those for l “ 0. For simplicity, instead of defining the layers
for the auxillary spaces Factn and FAlgn we define FHplqn directly.
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Proposition 4.6.3. For every l ě 0, the assignment

PBordfr,ln ÝÑ Algplqn ,
`

πplq : M Ñ p0, 1qn`l, pIi0 ď . . . ď Iikiq
n`l
i“1

˘

ÞÝÑ
`

FMplq , v pIi0 ď . . . ď Iikiq
n`l
i“1

˘

,

where FMplq “ p%
b
aq˚pπ

plqq˚
ş

M
A, is a map of n-fold Segal spaces FHplqn “

FHplqn pAq. It commutes with the looping and delooping maps u, ` from propo-
sitions 2.4.8 and 3.3.8.

Proof. We need to check:

1. FHplqn is well-defined, i.e. its image indeed lies in Algplqn .

Similarly to propositions 4.4.9 and 4.5.1 one can show that FMplq is locally
constant with respect to the stratification associated to v pIi0 ď . . . ď

Iikiq
n`l
i“1 , and thus FHplqn maps to Algn`l. Moreover, as noted in remark

2.4.6, pPBordfr,ln q1,...,1,0,‚,...,‚, with pl ´ 1q 1’s, is the point viewed as a

constant pn ´ lq-fold Segal space. This implies that FHplqn indeed maps

to Algplqn Ă Algn`l.

2. FHplqn commutes with the looping and delooping maps u, ` from proposi-
tions 2.4.8 and 3.3.8, i.e. the following diagram commutes:

PBordfr,ln Algplqn

LpPBordfr,l`1
n q LpAlgpl`1q

n q

FHplqn

` `

FHpl`1q
n

u u

It is straightforward to see from the constructions of u that the diagram
for u commutes. The commutativity for ` follows from the properties of
the collapse-and-rescale maps.

By the universal property of the (l-hybrid) completion, we obtain maps

FHplqn : Bordfr,plqn ÝÑ Algplqn .

which endow the functor FHnpAq : Bordfrn Ñ Algn of p8, nq-categories with a
symmetric monoidal structure.

Corollary 4.6.4. The maps FHplqn make the functor

FHnpAq : Bordfrn ÝÑ Algn

into a fully extended topological field theory.
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