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FIBRATIONS IN ETALE HOMOTOPY THEORY
by ERIC M. FRIEDLANDER

Let f : X->Y be a map of geometrically pointed, locally noetherian schemes and
let A be a locally constant, abelian sheaf on X. We derive the Leray spectral sequence

E^==IP(Y, Ry,A) =>H^(X, A)

as a direct limit of spectral sequences obtained from the simplicial pairs constituting f^y
the etale homotopy type of f. This " simplicial Leray spectral sequence 3? can be
naturally compared to the cohomological Serre spectral sequence forf^ and A. We
employ this comparison to investigate the map in cohomology induced by the canonical
map (Xy)^-^^^)? where f){f^) is the homotopy theoretic fibre of/^ and Xy is
the geometric fibre of f.

Of particular interest are the special cases: i) y:X->Y is proper and smooth,
and 2) f \ X->Y is the structure map of an algebraic vector bundle minus its zero
section. In these cases,

H^^A^iraX^A)

for any locally constant, abelian sheaf A on X with finite fibre whose order is not divisible
by the residue characteristics ofY. With certain hypotheses on the fundamental groups
involved, we obtain a long exact sequence of homotopy pro-groups:

. . . ->7T,,((X;)J^7r,(XJ^7r,(YJ^7r,_,(('5yj^...

where ( ) denotes profinite completion (c away from the residue characteristics of Y ".
We conclude with a proof of Adams5 Conjecture concerning the kernel of the

J-homomorphism on complex vector bundles over a finite C-W complex [i]. The
proof is a completion of a proof sketched by D. Quillen [13], employing the result
that an algebraic vector bundle minus its zero section has completed etale homotopy
type equal to a completed sphere fibration.

We caution the reader to remember that throughout this paper, a sheaf F on a
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6 E R I C M . F R I E D L A N D E R

scheme X will be a sheaf on the etale site of X; thus, the cohomology on X with
coefficients in F, IT(X, F), will be etale cohomology [3].

The author is deeply indebted to M. Artin for his continued interest and guidance.
Furthermore, section 3 in its present form (in particular, Theorem (3.9)) is due to the
referee, whose suggestions have proved most valuable.

i. The Category Jf Associated to a Map of Schemes

After establishing some notation, we recall the definition of a special map of
simplicial schemes and of an etale hypercouering of a scheme. Relativizing the category
of etale hypercoverings of a scheme, we introduce the category L associated to a map
/: X->Y of schemes. This category J .̂ is seen to be codirected with cofiltering homotopy
category, HoJ^.. In subsequent sections, we shall study various functors defined on L
and Hojp in particular, the etale homotopy type of/is a pro-object indexed by HoL.

Let a scheme X be given. Denote by (Et/X) the category of schemes etale over X,
with maps in (Et/X) covering the identity map of X. Let A°(Et/X) denote the category
of simplicial objects U. of (Et/X). If X is a c( pointed scheme " with given geometric
point x : Spec U,->X, let A°(Et/X) denote the category whose objects U. each have
a chosen geometric point u : Spec D^->(UJo=Uo above A", and whose maps U^-^U.
are pointed, simplicial maps.

Given a (pointed) scheme X and a (pointed) simplicial set S., let S. in A°(Et/X)
denote the naturally associated (pointed) simplicial scheme: (SJ^is given as the disjoint
sum of copies of X indexed by the set Sy,, and the face and degeneracy maps of S^ are
induced by the face and degeneracy maps of S.. In particular, A[o] denotes the final
object ofA°(Et/X). Given two maps f,g : U^U. in A°(Et/X), a categorical homotopy
connecting/and g is a map lTxA[i]->U. in A°(Et/X) restricting to/and g (andx
furthermore, sending (s^u^ 01) to s^u if X is pointed).

A map IT->U, in A°(Et/X) is special provided that VQ-^-VQ is surjective and
provided that for each n>Q

U.-^cosk^U:), X U,
(co .̂iU.̂

is surjective (recall that the functor cosk^( ) is right adjoint to the truncation functor).
One can readily check that the composition of special maps is special; moreover, the
pull-back of a special map by any simplicial map is special. An object U, of A°(Et/X)
is called an etale hypercovering of X provided that the unique map U,->A[o] is
special.

We denote by Jx the category whose objects are etale hypercoverings of X and
whose maps are special maps in A°(Et/X). We denote by HoJx the homotopy category
ofjx: a map in HoJx is an equivalence class of maps injx, where the equivalence relation
is generated by pairs of maps connected by a categorical homotopy.
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FIBRATIONS IN ETALE HOMOTOPY THEORY

Definition (1.1). — Let /: X-^Y be a (pointed) map of schemes. Define ],
to be the following category: the objecti^of.L are pairs U.->V., with V. injy, U. inJx,
and the induced simplicial map U.-^V.xX in Jx {i.e., special); a map

U: U.
^-^
V: V

in Jf is a pair of maps, V^-.V. injyand U ' — U x V inJx.
'^ ' i

A connected category J is said to be codirected provided that any diagram ^k

in J can be completed to a commutative square { / ^ky •
A codirected category J is said to be cqfiltering provided that for any pair of

maps j^k inj, there exists a map i->j inj such that the compositions i->j^k are
equal.

We proceed to relativize Verdier's proof that Jx is codirected and HoJx is
cofiltering ([3], V, App.).

Proposition (i.a). — Let /:X->Y be a (pointed) map of schemes. Then Jy is
codirected.

Proof.— disconnected : forgiven U;->V^ and U.->V. injp then U^xU.->V^xV.
is in Jf and the projection maps are maps in L. x Y •

Let the diagram
U:'^^^_^^U.

V". -V.
-v'-

in Jf be given. Then U:'xU. -> V^xV. is in J^ and the projection maps are maps

in Jp as can be immediately checked using the following sublemma.
Sublemma. — If

T-^-^-Y-^v.

w -w.
•w"

is a commutative diagram_m A°(Et/X) such that V'^W,' and U.^U^xW are special,
then U"xU -^W"xW <f rA^W * 'w;then U:'xU.-^W:'XW. is special.

TT» ^nft* U: W;
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8 E R I C M . F R I E D L A N D E R

Proof of sublemma is immediate upon observing that the maps

U:' x U. -> U:7 x (U:x W.) and U:' x (U;xW.) == U" x W -^ W" x W
U: U: W: U: W: ' W: e * W;

are special.

We denote by HoJ^. the <( homotopy category " ofjy: the objects ofHoL are those
ofjp a map in HoJ^is an equivalence class of maps injp where the equivalence relation
is generated by doubly commutative squares

U: =? U.
[_ i
V: ^ V

connected by a " categorical homotopy of pairs ": namely, a commutative diagram

U:xA[i] -^ U.
— I

V:xA[i] -^ V

such that lTxA[i] -> U. is a categorical homotopy in A°(Et/X), V^xA[i] ->V. is a
X ____ ____ Y

categorical homotopy in A°(Et/Y), and U:xA[i] ->V^xA[i] is induced by U^->V^.
X x

Employing the techniques Verdier used to prove that HoJx is cofiltering, we shall
verify that the "relative homotopy category55 HoJ^. is likewise cofiltering.

Given LT and U. in A^Et/X), define the contravariant set-valued functor
Hom.(U:, U.) on A°(Et/X) by

Hom.(U:, U.)(U:/)=Hom(U:/xU:, U )

for any U^' in A°(Et/X). If Hom.(U^ U.) is representable as a simplicial scheme
in A°(Et/X) (also denoted by Hom.(U:, UJ), then

Hom^:7, Hom.(U:, U.^Hom^xU:, U.),
x

the usual adjoint relation between Hom( , ) and categorical products. Observe that
Homo(A[7z], U.)==U^ and Homo(sk^_iA[^, U.)=(cosk^U.^ for any U. in A°(Et/X)
and integer n>o.

If S. is a simplicial set with finitely many non-degenerate simplices, Hom,(S., UJ
is representable for any U. in A°(Et/X); for each n> o, Hom^(S., U.) =Homo(A[w]xS., UJ

_ x
is a finite projective limit of components ofU. occurring in dimensions <_n-{-m^ where m
is the maximum of the dimensions of the non-degenerate simplices of S. In particular,
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FIBRATIONS IN ETALE HOMOTOPY THEORY 9

categorical homotopies into U. are represented by the simplicial scheme Hom.(A[T], UJ.
If U. in A°(Et/X) is pointed by u, then Hom.(A[i], U.) is pointed by

SQU : Spec 0, -> Ui = Homo(A[i], U.)

and represents pointed categorical homotopies into U.
___ The key step^in ^Verdier's proof that HoJx is cofiltering is the verification that
Horn. (A [ i ], IT) ->V[ x IT is special whenever IT is a hypercovering of X. The following

lemma relativizes this result (which the lemma implies by setting U. equal to A[o]).

Lemma (1.3). — Let X be a (pointed) scheme and let IT-^U. be a special map in
A°(Et/X). Then the induced map

Hom.(A[T], U:) -> (U:xU:) _ x_ Hom.(A[T], U.)
X (U. x U.)x

is special in A°(Et/X).
Proof. — In dimension o, Homo(A[i], V[)==V[ maps surjectively onto

(UoXUo)_X Homo(A[i],U.)=(UoXUo)_X U,
X (UoxUo) x (UoxUo)

since U^->U. is special.
In dimension k>o, we use the notation cc ck^U.5? and (( H/U.) " to denote

(coskfc_^UJfe and Hom.(A[i], U.) respectively, for any U. in A°(Et/X). We must prove
that Hom^(A[i], U^)=Homo(A[A:] xA[i], U^) maps onto the following projective limit:

ckX(U:) X _ (U,xU,) x H,(U.).
ck^U: x U:) _x _ ck^H.(U.) X (U^ x Ujfc)

x ckjfc(U. x U.) X

We shall denote this projective limit by P^.
Let MQ denote the simplicial set defined as the fibre sum

(sk,_,A[qxA[i])^^^II^^(A[^]xskoA[i]).

MQ -" s4(A[A] x A[i]) ->• A[^] x A[i] can be factored as

Mo -^... -> M,=sk,(A[A] xA[i]) -^... -> My,^ =A[A] xA[i].

For o<,i<k, M,^.i is obtained from M; by adjoining a A-simplex (so that

sk,,_,A[A] —> A[/;]

M. ———. M.^

is co-cartesian); and for k<_i<_2k, M,+1 is obtained from M( by adjoining a (A+i)-simplex.
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io E R I C M . F R I E D L A N D E R

For any U. in A°(Et/X), Hom^Mo, U.)==ck^H.(U.) X _ (U^xU^). Therefore,
cW.xU.) Xx

P,=Homo(Mo, U:)_x Homo(A[A] XA[I], U.).
Homo(Mo, U.)

To verify that Homo(A[/;] xA[i], IT) -^ P^ is surjective, it suffices to check for
each z, o<t<2A:, that

Homo(M^, U:) -> Homo(M,, U:)_x Homo(M^,, U.)
Homo(M». U.)

is surjective. This follows directly from the hypothesis that U^U, is special and
from the fact that M^+i is obtained from M^ by adjoining a simplex to its skeleton.

The following proposition verifies that HoJ^ is a good relativization of HoJx.

Proposition (1.4). — Let /:X->Y be a (pointed) map of schemes. Then HoL is
cofiltering and the source and range functors^ s : HoJ^HoJx and r : HoL-^HoJy, are
cofinal.

Proof. — Provided that Ho Jf if shown to be cofiltering, cofinality of the source
and range functors is easily checked. One simply observes that if U^—^U.-^VJ is
a map in HoJx then there is a natural lifting

U: U.
[ _ - > [ _
v v

to a map in Hojp similarly, if V^r(U.-->V.) is a map in Hojy, then there is
a natural lifting

U.xV: U.
v: i

A~"A
V: V

To prove that Ho J/ if cofiltering, let

U: U.

i^i
V: V.

be two given maps in HoJ/. Define

U:' Hom.(A[i], U.) x U:
[ = [ u-^
V:' Hom.(A[i],V.)_x_V:

V-xV.
Y
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FIBRATIONS IN ETALE HOMOTOPY THEORY n

Since the compositions

u; u: u
^ pr 4- —> '[

V:' V: V.

are clearly equal in Hojp it suffices to prove that U'/->V^' is an object of HoJ, and
that the projection map

U:' U:
^[_
V:' V:

is a map ofHoL.
By Lemma (1.3), Hom.(A[i], V.) -> V,xV. is special; therefore, V^^V^ is

special and consequently V^ is an etale hypercovering of Y. One readily checks that
Hom.(A[T], V. ̂  X) = Hom.(A[T], V.) ̂ X. Hence, U^-^V^xX factors as the compo-
sition of the two maps

Hom.(A[i], U.) x_U:—>Hom.(A[i],V.xX) x U.xU._x_U:
U.xU. Y (V.xV.)xX X U.xU.

Hom.(A[i],VxX)_ x U:—^Hom.(A[i7,V.xX)_ x V:;xX.
Y (V. x V.) x X Y (V. x V.) x X ' Y

Using Lemma (1.3), we conclude that U^-^V^xX is special.
In order to prove that

u:' u:
1 -^ 1y pr y

V" V

is in Hojp it suffices to prove that U^ ->U^xV^ is special. This is immediate from
Lemma (1.3). Y:

We remark that the range functor r : Jf-^Jy is fibrant, with fibre above V, denoted
by Jf.v. (PL VI. 6.1). Let HoJ^y. denote the homotopy category of J^ y. whose
homotopy relation is generated by pairs of maps in J^ y^ related by a categorical
homotopy

U:xA[i] ̂  U.
^ _i
V.xA[i] -^ V
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12 E R I C M . F R I E D L A N D E R

With notation as above, the two compositions

ir'xv. u: u.
^ > i 9\ i

v v v
are equal in HoJ^. y., where g, g ' are objects in J^ and where V.->V7 is the canonical
map. Thus, HoJ^y^ is cofiltering.

Given a scheme Y, let ET/Y denote the category whose objects are pointed,
connected galois covers h' : Y'-^Y (V is finite, etale and Y'xY'=UY') and whose

Y
maps K ' - ^ h ' are commutative triangles. Since there exists at most one map h"->V
between objects of ET/Y, ET/Y is cofiltering. Recall that the Grothendieck funda-
mental group T^(Y) of Y is the pro-group {Gal(Y'/Y)}ET/Y; thus, the cokernel of
^(Y^T^Y) is Gal(Y'/Y), for Y'^Y in ET/Y. (For details, see [8].)

Given a pointed map /: X-^Y of schemes, we define the category ]j as follows.
An object g ' : U^->V^ ofjj- is an object ofj^,, for some A' : Y'->Y in ET/Y. A map
g " - ^ g ' in Jy is a map ^-"-^fxY" in J^"- The homotopy category of J^ is
denoted HoJ^: a map g " - ^ g ' in HoJ^ is a map .f'-^fxY" in HoJ^,.

Corollary (1.5). — £^ /:X-^Y ^ a ^omW map of schemes. As defined above,
J^ is codirected and HoJ^ is cofiltering. Furthermore, Jy and HoJ -̂ are fibre categories over ET/Y,
with respective fibres J^^ ̂  HoJ^^ oy^r A' ̂  ET/Y.

Proof. — Products and fibre products exist in Jy because they exist in ET/Y and
in each J^y. The existence of coequalizers in each HoJ^^ implies the existence of
coequalizers in HoJ^ . By definition ofj^ and HoJ^, the inverse image functor exists:
sending Y"-.Y' in ET/Y to the functor ^'h-^'xY".

We conclude this section by remarking that if a functor 9 : F->G is fibrant,
then lim = lim. lim on functors F°-> (Sets).

~it ~(t ~F^

2. Fibres of f^.

Having recalled the (< extended homotopy categories 9? of simplicial sets, Jfo and
•^o, pairs ([4]? § I) ? we define the etale homotopy type of a map of locally noetherian
schemes, f^ :HoJ^->^p^. We introduce canonical maps (Xy)^ -^I)(/et) -^(/e't)
between the <( geometric, " < < naive, 95 and c< homotopy-theoretic " fibres of/gf We then
identify the map on cohomology induced by (Xy)^ ->I)(/et)- In subsequent sections,
we shall study the map I)(/J -> ^(/e't)-

Given a locally noetherian scheme U, we denote by 7r(U) the set of connected
components of U. If U, in A°(Et/X) is a simplicial scheme over a locally noetherian
scheme X, then we denote by 7r(U.) the simplicial set given by ^(UJ^=7r(UJ. Clearly,
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FIBRATIONS IN ETALE HOMOTOPY THEORY 13

the association of7i:(UJ to U. is functorial on A°(Et/X) and sends categorical homotopies
to simplicial homotopies.

We recall the following <c extended homotopy categories 5? ^o and ^o, pairs? which
are geometrically realized as the homotopy category of pointed G-W complexes and
the homotopy category of pointed pairs of G-W complexes. Let Ex^ ) denote the left
adjoint to the inclusion functor of the full subcategory ofKan complexes in the homotopy
category of simplicial sets [10]. Then ^ denotes the category whose objects are
pointed simplicial sets S., and whose maps from S. to T. are homotopy equivalence classes
of pointed simplicial maps S.-^Ex°°(TJ. The objects ofj^p^g are pointed simplicial
maps S,—»-T,; the maps of .̂  pairs are equivalence classes of pointed commutative squares

S: ———. S.[ i
Ex°°T —> Ex°°T.

where the equivalence relation is generated by doubly commutative squares connected
by a pointed homotopy of pairs.

Definition (2.1). — The etale homotopy type of a locally noetherian, pointed
scheme X is the pro-object in pro-Jfo

Xet ^ Ho Jx -> ^o

induced by the connected component functor.
The etale homotopy type of a pointed map f: X—»-Y of locally noetherian schemes

is the pro-object in pro-jf^pairs
/et : K0^-^^, pairs

induced by the connected component functor.

We remark that Proposition (1.4) implies that f^ determines a map X^~>Y^
in pro-Jfo.

Given a simplicial map /: S.->T. of simplicial sets, we functorially associate a
commutative triangle

S.————^S:\/
such that the inclusion S,->S^ is a weak homotopy equivalence and such that^ is
a Kan fibration ([7], VI). Furthermore, given a categorical homotopy of pairs

S:XA[I] —> S.

T:xA[i] —> T
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14 E R I C M . F R I E D L A N D E R

there is induced a categorical homotopy of triangles

S:xA[i] ———————^S

I ^(s:rxA[i]—y:
T^xA[i] ————————>. T-

This "fibre resolution functor" therefore induces functors .^o, pairs-^ ̂  pairs ^d
PrO-̂ o, pairs -> PrO-jTo, p,̂ .

Given a pointed simplicial map /:S.->T., let I)(/)==S.X^ be the pointed
T.

fibre over the distinguished point t of T. This definition determines a functor

I) : pro-^p^-^pro-jfo.

The following proposition introduces the various fibres associated to/^*

Proposition (2.2). — Given a pointed map f: X->Y of locally noetherian schemes, with
geometric fibre i : Xy->X. Then there exist canonical maps in pro-^Q

(X^^C/et)-^/:!)

from the (( geometric fibre " to the " naive fibre " ^ ̂  " homotopy fibre " o//ef Furthermore,
these maps fit in a commutative diagram in pro-C^Q:

(X,L —————^(/et) ——————>W)

Xef——————————^X:,

Proo/. — The map IK/et)-^/^) ls induced by the natural map in pro-^p^g,
Jet ""^/et •

To define (Xy)^-^I)(^) in pro-Jfo, we associate to each object U.-^V, in HoL
an etale hypercovering of Xy, which we denote by 9(U,->VJ, and a map
7r(<p(U->V))_-^I)_(7.(U->V)).

Given U.->V. in Hojp we let y denote the trivial simplicial sub-object of V,
generated by the distinguished component v of Vg. We observe that V^XV->VX'K==U

— — — — — ev- _ Y

is special and that I)(7r(U. ->V.))==7r(U.X v). We define (p(U.--^V) to be U X z / x X ,
— — _ -V- ' " ev. M

and define ^(<p(U.-^V.)) -> ^(7r(U. ->V.)) to be the map induced by the simplicial
map U xyxX, ->U Xv.

v. M 'v.
If _ _

U: U.
i-> 1
V V

-?9(?



FIBRATIONS IN ETALE HOMOTOPY THEORY 15

is a map in Jp then

9(U:^V:)=U:x^xX,-^U.xyx^xX,=U.x?xX..=(p(U ->V)
v^ U1 V. V M' V. M

is a map in J ,̂ {i.e., special) and

7r(<p(U: -^ V:)) -^ I)(TT(U: -> V:))1 i
^(<P(U. -> V) ) -^ I)(^(U. -> V))

commutes. Thus the pairs 7r(<p(U. ̂ VJ) -> ̂ (U. ->V.)) define a map (X,),, ̂ I)(/J.
The maps ^{f^-^X^ and I)(/;t)-^X^ are given as the compositions

^(/et)-^°/et^X^ and Wt)^sof^X.^ (where ^ : ̂ o, pairs-> ^o is the " source "
functor). We must check the commutativity of the square

(X,),, —^ I)(/J

^t ————^ ^°/et

The composition (X^ ->X^ ̂ ^o^ in Hm lim [7r(W.)^(7r(U.-^V.))] is given by
_ _ Ho Jy Ho Jx

pairs TT(U. ̂  Xy) -> 7r(U.); whereas the composition (Xy)^ -^ I)(/et) -^ ^°/et is given by
pairs ^(U.XyxXy)->TT(U.).

v. u
To check thatjJiese pairs determine the same map (Xy)^ -^sof^, we observe

that U.x^xXy-^U. factors through the simplicial (though not special) map

U.xy^Xy->U.xXy of etale hypercoverings of Xy. Let W. be the product in Jx
'• x "

of U . X y x X y and U.xXy. As in Proposition (i .4), we find W^->W. injx with
•• x

W^->W.=fU.^Xy categorically homotopic. Hence, the pairs Tr(U.xXy)-> 7r(U.) and
7r(U. X v x Xy) ->• 7r(UJ induce homotopic maps 7r(W^) -^ 7r(U.).

In order to verify that Up becomes <c arbitrarily fine " for U. in HoJx, we verify
the following lemma (asserted in [3], V, App.).

Lemma (2.3). — For any scheme X and any integer p>o, there exists a functor
Rf() : (Et/X) -> A°(Et/X) satisfying:

a) R?() sends surjective maps to special maps.
b) R^Q is right adjoint to the functor sending U. to Up.

_c) y_U. ij A°(Et/X), Z->Up ^ a w^ m (Et/X), and U:==U. x Rf(Z), then
pr. :U;-^Up /^o^ ^ro^A Z-^Up. Rf^

^P2



16 E R I C M . F R I E D L A N D E R

Proof.—Defined {p, m) to be the set of non-decreasing maps from {o, ...,^} to {o, ...,w}
for any m>_o. The t{p, m) naturally determine a co-simplicial set, denoted v(^)? wlt1^
V(^r=^(A m)- We define Rf(Z) to be the composition of y(^) ; A°-> (Finite sets)0

with the functor ^ : (Finite sets)0 -> (Et/X) given by sending a set S to the fibre
product over X of Z with itself #(S)-times.

For any m>i , (cosk^_iRf(Z))^ is the fibre product over X of copies of Z
indexed by " deg^vC^)), " those co-simplices in the image of vC^)"1"1 under some
co-face map. Hence, R^(Z)^-^ (cosk^_iRf(Z))^ is surjective, arising from an injec-
tive map of indexing sets deg^v^-^vW1- we m^ thus readily check that

R^(Z') -> (cosk,_,Rf(Z')), x R^(Z)
(cosk^-iRf(Z))^

is surjective whenever Z'-^Z is surjective and 7^>o; thus, a) is valid. Namely, let
any geometric point

xx^ : Spec ̂  -> (cosk^R.^Z')), X , R^(Z)
^ (coskff,-iR^(Z))m

be given; we lift xx^, to A - X W : Spec Q, -> R^(Z') by defining w to be some lifting of

those factors of ^ : Spec f2 -> R^(Z) not determined by j/ : Spec Q -> (cosk^_iRf(Z))^.
To check b), let /: U^->Z in (Et/X) be given. Define U.->Rf(Z) by sending U^

into the factor of (Rf(Z))^ corresponding to ^o .. .^'lo^o ... ̂ i: A[^] -^A[^—^] -»A[/;j
via the composition /o^o . . . °y^° . .. o^ : U^-^U^^-^U^-^Z. One may readily check
that this establishes a i — i correspondence between Hom(Up, Z) and Hom(U., Rf(Z)).

To check c ) , observe that the projection map pr^ : Up-^Up factors through
any factor Up X Z of Up. Yet the factor corresponding to the identity map in y^

vp— —
equals Z, since Up into the factor of R^(Up) corresponding to the identity map is the
identity.

The following proposition explicates the map on abelian cohomology induced
by (Xy)^->I)(/et)* A similar statement can be made for non-abelian finite groups G
and integers p==o,i.

Let X be a scheme and let F be an abelian sheaf on the etale site of X. We recall
the Verdier isomorphism

llm^F(U.,F)^Hg(X,F)
HoJx

where H*(X, F) is the etale cohomology ofX with values in F, where U. runs over etale
hypercoverings in HoJx, and where H*(U., F) is the cohomology of the cochain
complex F(U.) ([3], V, App.; or see Proposition (3.7) below). In particular, let A
be a locally constant, abelian sheaf on the etale site of a locally noetherian scheme X,
with corresponding local coefficient system on X^ also denoted by A ([4], § lo). Then
ir(X^ A)=lm IT(7r(U.), A)==lm H-(U, A) ̂  H*(X, A).

HoJx HoJx
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Proposition (2.4).—Let f: X->Y ^ a pointed map of locally noefherian schemes, with geo-
metric fibre i : Xy->X. Z^A ̂  a locally constant, abelian sheaf on X. Then for each p^o,
there exists an isomorphism

IP(I)(/J,A)^(Ry.A),

which fits in the commutative square

HP(I)(/J,A) ^ (R^.A),,

I i
H^X^t-A) ^ IP(X^A)

wA^ ̂  ̂  vertical arrow is induced by (X^-^IKyet)) ^le n^ vertical arrow is the cano-
nical map, and the bottom arrow is the Verdier isomorphism.

Proof, — We recall that ifU. is an etale hypercovering of a scheme Z, if F is a sheaf
on the etale site ofZ, and if F-^-I* is an injective resolution of sheaves, then the spectral
sequence of the bicomplex I*(U.) can be written

E^==:EP(U., j^(F)) => H^Z, F),

since U, is acyclic at each geometric point of Z. The association of
?(U.->V.)==U.x?xX,

V. M

inHoJx to U,->V. in Ho Jf induces a map of spectral sequences:

£1^== lim ^(U.x v, J^(F)) => Urn HN(yxX, F)
Half V. | Ho~?f Y

'Ei'^JImH^W^^^F)) => HN(X^^*F)
H^

The map on abutments is precisely the natural map (R^F^-^H^X^iT).
Taking F equal to A, we obtain E^^H^^/J, A) and 'E^H^X^, A); more-
over E^-^'E^0 is induced by (Xy)^-^I)(/eJ. The Verdier isomorphism is the edge
homomorphism of the 'W^ spectral sequence. If we define I:P(I)(/J, A) -> (R^A)^
to be the edge homomorphism of the E^ q spectral sequence, the square

H^(/et),A) ——. (R^A),

H^((X,)e^rA) —> H^X,,z-A)
commutes, for any p^>_o.
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To show that H^I) (/J, A) -> (R^/.A)^ is an isomorphism, it suffices to verify
that £^^==0 for y>o. Let <7>o be given and let c be a cohomology class in
IP(U. X v, ̂ (A)), represented by a cocycle c in J^(A) (U. X v\. Let ^ in J^(A) (Up)

• ^»
be the cochain obtained from c by extension by zero. Since J^(A) vanishes at every
geometric point, there exists an etale surjective map Z->Uy such that c' goes to o in
j^(A)(Z). By Lemma (2.3), the special map U^=:R^(Z) X U. -> U. satisfies the

_ _ _ _ R^Vp) _
condition that Vp-^Vp factors through Z-^Up. Hence, c in H^U.X v , J^(A)) goes
too in H^U^xy.Jf^A)). Thus E|^==o for y>o. v-

v.

3. The Simplicial Leray Spectral Sequence.

In this section, we study a naturally constructed spectral sequence E^Q^A)
associated to a map g : U.->V. ofsimplicial sets and to a local system A on U.. After
checking functoriality of this construction and after verifying that E^Q^, A) is the usual
Serre spectral sequence whenever g is a Kan fibration, we proceed to identify E^/g^ A)
for /: X->Y a (possibly pointed) map of locally noetherian schemes and A a locally
constant, abelian sheaf on X. Theorem (3.9) asserts that E^^/^^A) takes the form
of the Leray spectral sequence. This <( simplicial Leray spectral sequence 9? is by
construction readily compared to the Serre spectral sequence for/, E^^/^, A).

For notational convenience, we shall denote sky_^A[^] by sk(^).

Construction (3.1). — Let g : U.-^V. be a map of simplicial sets and let A be a
contravariant local system on U.. We construct a spectral sequence

EM ,̂ A)=W^{g-1^ r'V^-i); A) => IP (̂U., A)

where V^ denotes skpV. and where .g^V^ denotes V^xU..
•»

Namely, let A(UJ be the complex of cochains on U. with values in A. Define a
decreasing filtration on A(U.) by F^UJ^ke^AQJ.) -^ A^V^)). We obtain a
spectral sequence (E?^,^) with E^F^-^+^UJ/F^-^U.) and d^ : E^-.E^+1

the differential ofF^-^UJ/F^U.). Equivalently, d^: E^E^-^ is the differential
of ker(AQT%)) -> A^-1^,.^).

Taking cohomology, Ef^HP-^-1^, ,r%-i); A) and ^ : Ef'^EF1^ is the
connecting homomorphism in cohomology for the short exact sequence

o^A^-^^^^^-^^^A^-^^^^^-^^.^^A^-^^.^-^^.^-^o.

The following lemma explicates the functoriality of E^^, A) as constructed above.

Lemma (3.2). — Let
U: U.
,1 G [''\ -^ \'
V: V.
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be a map of simplicial pairs, let A be a (contravariant) local system on U^, and let G*A->A'
be a map of local systems on IT. Then G induces a map E^ ̂ G) : W' ̂ g, A) -» E^ ̂  A').

Let
U:xA[i] -^ U.

L'xl L
y y

V:xA[i] ^> V.

6^ given together with a map A^A—^pr^A' of local systems on lTxA[i]. Then the induced
maps W^^g.A) z^W^^g', A') are equal, beginning with the E^ term. Furthermore, let

U:xA[i] -^ U.
1 ^ ' x l \g
^ ^

V:xA[i] -^ V.

be given together with a map VA-^pr^A' of local systems on Ulx A[i], Then the induced maps
W^^g, A) =$ E^ '̂, A') are equal, beginning with the E^ term.

Proof. — To verify the first assertion, we observe that

U: U.
I , G Ir -^ r
V: V.

and G*A-»-A' induce maps of filtered, graded complexes:
P(A(U.)) -^ P(G-A(U:)) -> P(A'(U:)).

The homotopy h : U^xA[i]-»-U. covering the trivial homotopy induces homo-
topics g ' ~ 1 V(p) X A [ i ] ->• g~1 V(,,). Therefore, the maps

AQr'V,,,)^-1^^) ̂ VA({g'xi)-^p), C^xi)-1^.,))
-^p^A'c^xi)-1^,), {g'xir^-i)) ̂ ^{g'-^g'-1^-^

are homotopic.
Finally,

U:xA[i] -^ U.

V:xA[i] -^ V.
restricts to give homotopies

^V^xAM-^-1^.

Represent an element x of E^' ar(^, A) by a cocycle in

Z^'^g, A^MH^-1^!)^-1^); A) -^ H^^-^,,,?-%-!); A)).
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We must show that h^{x)—h'[{x') lies in

Bi.̂ , A') = KerCH^^'-1^,, ̂ V^,; A') -. IP^'-^,), ̂ '-1V„_„); A')),

where A, = Aoe,: U^ -» IT X A[i] -^ U.. This follows from the observation that the maps

A(5-lV(,^),^-lV(,_l))-^A•A^-lV(„xA[I],^-lV^_,)XA[I])
^pr^A'^-^^xAEiJ^'-^^^xACi])^^^-1^,)^'-1^^,))

are homotopic.

The application of Lemma (3.2) which we envisage is the following: A is a locally
constant, abelian sheaf on X and /: X-^Y is a map of locally noetherian schemes.
We observe that A determines a local system on U.==-n:(UJ, U. in Jx, whenever A is
constant on each^component of VQ. Furthermore, if g'->g is a map injp then the
local system on IT determined by A is simply the pull-back of the local system on U.
determined by A. By an abuse of terminology, we shall denote by A each of these local
systems determined by the sheaf A.

In the following proposition we verify that E^ q{g, A) for a Kan fibration g is the
cohomological Serre spectral sequence for g and A. We first observe the following useful
fact. Let g : U.->V. be a map of simplicial sets and let A be a local system on U..
For each simplex v of V., let

g-'W^U^^p] and ^(^-Uxsk^),

where A[j&]->V. is given by v. Since

(r ,̂ g-1^^ -> por^), g-^))'p
is an excision map, we have

^H*^-1^), g-\v); A) ̂  irQr1^, ̂ -1V(^; A)

where Vp~ consists in the non-degenerate ^-simplices of V.

Proposition (3.3). — If g : U.-̂ V. is a Kan fibration and if A is a local system on U.,
then Ef'g(^,A)=^H?(^-l(y),A) and (Ei, ̂ ) is the complex of normalised cochains on V.

Vp
with coefficients in the local system y^H^"^), A).

Hence E^, A)=:EF(V., v ̂  HP^-^), A)) => IP^(U., A).
Proof. — Since g is a fibration, g contains a Kan fibre bundle A as a strong

deformation retract over each connected component of V. ([i6], (11.12)). Hence,
g'1^)-^^?] is fibre homotopy equivalent to a product /T^z^FxA^] -> A[/»].
Therefore,

H^C?-1^ r1^); A) ̂  IP^(FX(AM, sk(^)); A) ̂  H^(F, A)
^ H^(FxAM, A) ̂  H^r^), A).

-^
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Furthermore, g'^d.v)-^ g^f^v) and ^(.s^) -^g^W may be viewed as

FxA[^~i]^FxA[>] and FxA[>+i]-^ FxA^];

thus, IT^-^), A) ̂  H^-V^), A) and H*^-^), A) ̂  H*^-1^), A). We conclude
that y^H?^-1^), A) is a covariant local system on V. (cf. [7], App. II, (4.6) for more
details).

As remarked in Construction (3.1), ^ : Ef'^, A) -> Ef-^'^, A) is the connecting
homomorphism for

o ̂  A^V^, g-^) -> A^V^, ̂ %-i)) -> A^-^^, 5-1V(,_^ ̂  o.

To identify ^ into some factor H^f-^), A) of Ef+ l t f f(^,A)= II H?^-^), A), it
suffices to examine p+l

o -> A^-^), g-^v)) -> A^-1^), ̂ -l(^)) ̂  A^-1^-), ̂ l(?)) -^ o

where ^(^UxA^+i]^.
'•

In this case, a cohomology class o' in

H^^r1^)^-1^);^^^^^^^^^),^^^

goes to S :̂̂ --!)1^ in IP4-^1^-1^), ̂ -^y); A), where a, is defined by extending

acocycle^in A^4-^-1^), g^^v)) to some cochain j in A^+^-^z/), ̂ ~l(^)), then
restricting ^s to a cocycle in Ap+q+l{g-l(v), g^^v)). Replacing g^^v) by a strong
deformation retract FxA[^], we readily check the commutativity of

H^^-1^.),^1^);^ ̂  H^^1^-1^),^1^);^

H^^-1^.),^ <———————— IPQr^.A)

where the bottom row is induced by ^~ l(^y) ->.?"~l(y).
We conclude that rfi : nHP^-1^'), A) -^ 11 H^-^), A) into some factorv? ^+1

K3^"^^? A) is ^'(—ly'^opr^,, where the sum S' is taken over these z, o<:i<,p+i,
with rf,y in V^-. Hence {nH^-1^), A), fi?i} is the complex of normalized cochainsy^
on V. with coefficients in v \-> HP^""^), A).

The map of spectral sequences W^{f^ A) -. E^^/,^ A) will be our main tool
in comparing the cohomology of I)(/;J and t)(/et)-

297



22 E R I C M . F R I E D L A N D E R

Proposition (3.4). — Let /:X-^Y ^ a (pointed) map of locally noetherian schemes
and let A. be a locally constant, abelian sheaf on X. For each g : U.->V, in L with A constant
on VQ, Construction (3 .1) provides a map of spectral sequences

E^Cf,A)-^E^,A)

with common abutment, where gT : U^V. is the fibre resolution of g : U.->V..
Therefore, we obtain a map of spectral sequences with common abutment:

EM/e^ A)=lm IP(V, . ——> H^-^), A)) => IP^(X, A)
HoJ/ ]

Ei'V.t^^^limH^H^^-1^,)^-1^^,);^;^) => H^(X,A)
HoJ/

Proo/'. — By Lemma (3.2)3 the commutative triangle

U.————^U:v
induces the map E^^f, A) -> E^Q?, A). Since homotopies in HoJ^ give homotopies
of pairs of simplicial sets, the limit spectral sequences beginning with the E^ term are
well-defined by Lemma (3.2). By Proposition (3.3), Ej^/^A) has its stated form.
Finally, the abutment lim H*(U:, A)==lim H*(U., A) is isomorphic to H*(X, A)

Ho J/ Ho J/
by Verdier's theorem ([3], § V, App.).

Since any etale map of schemes U->X with section j :X->U splits as
(U—J(X))iiX->X, U. in A°(ET/X) admits a unique splitting ([4], § 8). Hence, U^
is a disjoint union of copies ofU^", the non-degenerate part ofU^, for o<k<^n.

Lemma (3.5). — Let Y be a locally noetherian scheme, let V, be a simplicial scheme in
A°(Et/Y), and let V.==7r(VJ. For each simplex v of V. of dimension d, corresponding to a
map v : A[rf]->V., there exists a unique map S(y)-^V. in A°(Et/Y) satisfying:

a) S(y)->V, is componentwise the identity", and
b) n(S{v) -^V.)=y : A[rf]^V.

Furthermore, let f : X->Y be a (pointed) map of locally noetherian schemes and let
^:U.-^V. be an object of J^. For each d-simplex v o/V., define ^(z^U.x!^) and
^-'(^U.xsk,.^). Then ^{g~\v)) equals g-\v) and ' Y

^r'w.g-^^g-^.g-^v)).
Therefore, for any locally constant, abelian sheaf A. on X which is constant on Uo, VL^g-1^), A)
equals H^^), A) and H^-1^), g-\v); A)=H#(ker(A(5-l(y)) -^ A^-^)))) equals
H^-1^^-1^);^.
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Proof. — Properties a) and b) serve to define S(y)->V.. The equalities
^OT1^))^"1^) and ^{g~l(v),g-l{v))={g-l{v),g-l{v)) follow immediately from flj
and b), and directly imply the equalities

H^r^^H^-^A) and H^-1^), g-\v), A)=H^-1^), ̂ r^); A).

We proceed to analyze E^f/^ A).

Lemma (3.6). — Let X be a scheme and let U.->A[fi?] be a special map in A°(Et/X).
Let F be an abelian sheaf on X and let F-^F ^ an injective resolution of sheaves. Then the
bicomplex

yields the spectral sequence
ker{r(U)-^r(U^<_skW)}

A[d]

Ef^= (ker(^F(U.) -> ^F(U.^<_sk(rf))))., => H^-^X, F).
A[d]

Proo/l — Given a scheme W etale over X, we denote by Z^ the abelian sheaf on X
given by Hom(Z^, F)=F(W), for any abelian sheaf F on X. We first verify that
^(^u./Zu.^sk^^Zx? d), the complex of sheaves which is Z^ in dimension d and o

A[d]

elsewhere. It suffices to prove that the canonical maps

.̂̂ U.ĵ sMd) -> ZA[d]/zsk(d) -> (ZK? ^)
A[d]

induces isomorphisms H,(Z^/Zu,_^^)^-> (Zx, rf)^ at every geometric point x of X.
_ A[d]

Since U.XA:->A[rf] and U._x_sk(rf) xx-^ sk(a?) are special maps in A0 (Sets), these are
X A[d] X

fibrations with contractible fibre. Therefore, the maps

H,(Z^/Zu^^),=H,(Z^^/Zu^^,J -^ H,(A[rf], sk(rf))=(Zx, rf),
A[d] X AM X

are isomorphisms.
We observe that ker(P(U.) -> r(U.^sk(rf))) equals Hom(Zu/Zp ^ ^, P).

Therefore, A[(i] ' 'Aiaj

H^H^(ker(I*(U.) ̂  I*(U._^sk(</)))))

= H.(Hom(H,(Z,. . )̂, P)) = |Ht(xl F) if p- d

A[^ ( ° ^+a

so that the total cohomology of the bicomplex ker.(r(U.) -> V(U _x_sk(rf))) equals
ir-^x, F). ' eA^

Since U._X_sk(af) -> U. is componentwise the identity map,
A[d]

ff(ker(P(U.)^r(U^sk(rf))))=Hom(Zt;/Zu , s^,^(F))
A^] * 'AW

equals ker^(F)(U.) ̂  ^(F)(U._>^sk(rf))).
A[d]

^P9
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The proposition below relativizes Verdier's theorem (which can be obtained by
setting d==o, V.=A[o], and/==id : X->X).

Proposition (3.7). — Let /:X-»Y be a (pointed) map of locally noetherian schemes
and let F be an abelian sheaf on X. Then for any V, in Jy, all d, q^>_ o

Hm ^Hd+^- l(^^- l(^;F)^^H^xX,F).
H^V.v^ v^ Y

Proo/'. — Let P be an abelian presheaf on X which commutes with direct
sums: P(UuW)=P(U)xP(W). For any y in V^-, ker(P{g-\v)) -> P^-^y'))) equals
ker(P(^~•l(y)_x ^[d]xv) -> PCf^^X sk(rf) XzQ), since the components of g^^v) not in

S(i?) Y S(u) Y ____ ____

g^^u) are exactly the components of g^1^)^ A[rf] xv not in ^~ l(y)_X sk(a?) xu. Let
S(v) Y S(v) Y

F-^F be an injective resolution of abelian sheaves on X. Applying Lemma (3.6)
with X replaced by vxX and U. replaced by g^^X f^[d\Xv, we conclude that the

Y S(u) Y

spectral sequence for the bicomplex ke^r^"^)) -^rQ?"1^))) can be written

EM ,̂ F, ,)=(ker(^F(r1^)) -> ̂ {g~\m\ -> H^^-^^X, F).

We define the map Hti^^g-1^), g-\v); F) -^ IlH^xX, F) to be the edge
Vrf Vrf Y

homomorphism of the product spectral sequence II E^3^, F, v). Since homotopies
•rf

in J^y. between ^'z^^ induce homotopies between j^FQlT^y)) ̂  j^^F^'"1^)) and
J^^Fd-1^)) ^J^F^'-^)), IlE^^^F^) is functorial on HoJ^. Moreover, if

'(/
g^-^g isamapinj^y and veV^ then

^'- l(^/)_xA[rf]xy ~> ^-l(y)_xA[rfJx^/ and j'- l(y)_xsk(rf)xy -> g-\v)xsk(d) xv
S(v) Y S(v) Y S(u) Y / Y

A[rf]^y sk( r f )xy

commute; hence, g ' - ^ g induces an isomorphism on abutments for

nE^, F,^) -> nE^^', F,.).
Vrf Vrf

It suffices to prove that lim II Ef'3^, F, y) =o for ^>o in order to complete the
HoJy^v. vrf

proof. Let Xa,, be an yz-cochain in ^ker(^fgF(^-l(y)) -> ̂ F^g-1^))). For each a^ in
v5

ker((^F(r1^)) -^ ̂ F^-1^))))^^^^-1^^-^-1^^,

let ^'•^v~^g~l[v}n~§~l{v)n be some etale surjective map such that 9^(aJ===o in
^F(W,). Since j-l(^')„-,?-l(y)„ embeds m U^^^^ such that g^W^-g^v)^ and

3<?<?
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§~l{vf)n~-g~l{vf)n_<iTe disjoint for z/=t=y' in V^, n^ extends to an etale surjective map
<p : W^CuWjn^-^-^V^J ->U^, where ̂ (V^ consists of the components of H,

'</
mapping to some non-degenerate component of V^".

Using Lemma (2.3), find a special map ^ : LT->U. such that U^U^ factors
through (p : W->U^ and let g ' : U^V. be the composition ^o^. By construction,
^(XocJ=o in nEf'^F.^^nkerC^F^'-1^)-^^^^'-1^))).

v</ v</
As an immediate corollary of Proposition (3.7)5 we obtain the following comparison

of simplicial and algebraic cohomology.

Corollary (3.8). — Let f: X->Y be a (pointed) map of locally noetherian schemes and
let A be a locally constant, abelian sheaf on X. For all V. in Jy, all d, q> o

Hm H^-1V^-1V^;A) ^HH^xX,A).
HoJ^V. Vj Y

p^y. _ By excision, H^^V^^V^; ̂ -nH^^-1^), ̂ l(.); A).
Apply Proposition (3.7). vrf

Corollary (3.8) enables us to interpret W^{f^ A) as a simplicially derived Leray
spectral sequence, as explicated in Theorem (3.9) below. In conjunction with Pro-
position (3.4), this enables us to readily compare the Leray spectral sequence with
the Serre spectral sequence for/^.

Theorem (3.9). — Let f : X->Y be a (pointed) map of locally noetherian schemes and
let A. be a locally constant abelian sheaf on X. For the spectral sequence E^/^A) of
Proposition (3.4), E|^(/^, A) equals IP(Y, Ry,A). Therefore, E^(/^ A) may be written

E^(/et, A)=IP(Y, Ry;A) => H^(X, A).

Proof. — As given in Proposition (3.4),

EI'Vet, A)==lim I^(^P)+^-1V(,„ g-^^. A); ̂ ).
HoJ/

Since Jf->Jv is fibrant with fibre J^y.?

Urn H^H^Qr1^, ̂ -%_,); A); ^)=H^ Un^ ^(?^(5-%), ̂ -%_^ A); d,).
HoJy HoJyHoJ^v.

As in Lemma (3.2), H^-1^, .§^-lV(p_l); A) determines a functor on HoJ^y; thus,
E?'Vet,A) equals Hr^ H-( Hr^ H^^-1 V^,^-^.^ A); d,)

Ho Jy Ho 3f v

By Corollary (3.8) :

Hm E ,̂ A) ̂  IjH^xX, A).
Ho Jy^v. Y^ Y

301
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Moreover, d^ equals lim d^g), where
HoJ^v.

d,{g) ̂ w+^v^r-^A) -n H^^-1^-1^)^)^ '^+1

is the coboundary inap for

o-^A^-^t^y^-^^^A^-^t^D^-^^.^-^A^-^^^-'V^-^^o.

Let S{g) be an " un-normalized " restriction of d^g):

S{g): n HP+^-l(^),5-l?^');A)-^HP+»+l(5-l(o),5-l(^5);A).
O^i^p+1

We view 8(^) as the coboundary in H*'0 cohomology for

o-pcr1^ rW) ->r(r1^), r1^)) -^rcr1^ r1^)) ->o
where A->I* is an injective resolution of abelian sheaves on X. As checked in
Proposition (3.7), the associated E^ spectral sequences of these bicomplexes degenerate
in the limit at lim E^3. Therefore, lim8(^)==8 may be viewed as a map on abutments.

Ho Jy^ v.

Since the E^ spectral sequences for F^"1^), g ' 1 ^ ) ) and P^'^y), g ' 1 ^ ) )
degenerate at the E|'q- level as checked in Lemma 3.63 we may view S as a map

n vLp+mz^^p^-^H^^wz^^p+i)).
O^^P+l l Y Y

We readily conclude that this map

n H^y x X, A) -> H^u x X, A)
O^i^p+l Y •' / ' Y

is simply the alternating face map induced by the maps of schemes v-^d^v. For a in
IlH^y'xX, A), d^a in H^yxX^A) is therefore the sum S^—i)^^, where the

sum is taken over those z, o<i<p+ i, such that d^v is in V^.
We conclude that { lim 'HLP+q{g~l\r^, g"^^,.^ A); d^} is the normalized

HoJ^v.

complex of the co-simplicial group: nh>HP(V^xX, A). By Verdier's theorem,

E|'g(/,„A)=limHy(7^^-^:?(V„xX,A)) equals ^(Y.R^A): the cohomology of Y
HoJ^- Y

with coefficients in the sheaf associated to the presheaf Sl->H?(SxX, A).

We remark that E^/et? A) can also be written

EM/et, A) = Urn IP(V, ̂ Ry,A(.)) =>H^^(X, A),
HoJy

since Verdier's theorem asserts that

lim IP(^IP(V^xX, A) equals lim IP^h->R^A(VJ).
HoJ^ Y HoJy

3<?^
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4. Applications to a Proper, Smooth Map.

In this section, we apply Proposition (3.4) and Theorem (3.9) to the special case
of a proper, smooth, pointed map of noetherian schemes, y:X->Y. The Zeeman
comparison theorem [15] enables us to compare the cohomology of the geometric
and homotopy theoretic fibres of/^- Under additional hypotheses on the fundamental
groups 7Ti((Xy)et) and TTi(Y^), we obtain the long exact sequence of homotopy pro-
groups asserted in Corollary (4.8).

If Y is a pointed, connected, noetherian scheme, the Grothendieck fundamental
group 7Ta(Y) ofY is the profinite completion of^YJ ([4]? (10.7)). If Y is in addition
geometrically unibranched and ifV, is an etale hypercovering ofY with V^ noetherian
for each n, then 7r,^(V.) is finite for all n>_ i ([4], § 11). For such Y, T^(Y^) is therefore
profinite; in particular, TTi(Y^) equals 7ri(Y).

We begin by observing (in Corollary (4.2)) that if /: X->Y is a pointed map
of locally noetherian schemes with Y noetherian, we need only consider those g : U.-^V,
in HoJ^ with V^ noetherian for each TZ>O. We shall frequently use this property ofV.
to conclude that lim HP(V., A,) =HP(V., lim A,).

Proposition (4.1). — Let Y be a noetherian scheme and let V^V, be a special map in
A°(Et/Y) with V^ noetherian, n>o. Then there exists a map V^->V^ in A°(Et/Y) such that
the composition V^->V^—^V, is special and V^->V^ is of finite type, n>o.

Proof. — Let f: W->Z be an etale, surjective map of schemes with Z of finite
type over Y. Since f:Vf->Z is locally of finite type, there exists an affine open W^,
of W which is of finite type over some affine open Z ,̂ of Z for every point w of W.
Since Z is noetherian, each Z^,->Z is of finite type, so that W^->Z is likewise of finite
type. Since f : W->Z is an open mapping, some finite union W' of Wy/s satisfies the
condition that ./(W) ==Z. We observe that W'->W is etale and that the composition
W'->-W-^Z is etale, surjective, and of finite type.

To obtain V^, we first apply the above observation to the map VO->VQ to
obtain VQ'. Having defined the A-th truncation, (V/)(&)-->(V)(A;), we obtain V^ by
applying the above observation to

Vj^ x (cosk.V^^^V^, x (cosk^V:7),^,
(cosk^V:)^i (cosk^V.)^i

which is surjective since V^_^->V^_^ X (cosk^V^.^ is surjective. By construc-
__ _ _ ^k^k^l_

tion, (V^-^V^ extends to (V^)(&+1)->(V^+1). By induction, we conclude that
V^i->V^^^ x_ (cosk^V^)^i is finite type and surjective and V^i-^V^i is of

^ (coskjfcV.)^i
finite type.

Given a pointed map f : X~>Y of locally noetherian schemes with Y noetherian,
we define various codirected and cofiltering categories associated tof. Let ']^ be the full
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subcategory ofj^ consisting of pairs U.->V. with V^ noetherian for all TZ;>O. Let tl^
be the category whose objects are those ofj^ and whose maps are simplicial squares.
Let Ho'J^ and Ho"J^ denote the homotopy categories (with respect to pointed categorical
homotopies of simplicial pairs) of 'J^ and "Ĵ . respectively. Arguing as in Pro-
positions (1.2) and (i .4), we conclude that J^ and J^ are codirected and that Ho'J^ and
Ho'^ are cofiltering.

Corollary (4.2). — Let f : X->Y be a map of locally noetherian schemes with Y noetherian.
Then HoJ^ and HoJ .̂ are cofinal subcategories of Ho'J^. Therefore, f^={g}^ojr is canoni-
cally isomorphic to {g}^^ in pro-JTo^.

Proof. — Proposition (4.1) implies that Ho'J^->Ho"J^ is cofinal provided that
HoJ^Ho'J^. is cofinal. Given maps

U: U
^=U
V: V

in "Jp we obtain as in Proposition (1.4) a map

U:' U:
_i - i_
V:' V:

in Jf such that the compositions are categorically homotopic. Therefore, HoJ^->Ho"L
is cofinal. Moreover, the cofinal maps Ho'J^->Ho"J^ and Hoj^->Ho"L induce iso-
morphisms {g}^^->{g}^ and {^}Ho-j/-4^Hoj/ in pro-^-o, pairs •

In the following proposition, we assume that TCi(YJ==o. This simplifies the
proof, while providing a good example of how Theorem (3.9) can be applied.

Proposition (4.3). — Let f : X-^Y be a pointed map of locally noetherian schemes with
Y noetherian. Assume that Y is connected and TTi(Y^) ==o. Let A be a locally constant abelian
sheaf on X such that R^A is constant on Y and (R^A^H^Xy, A) for all q>_o,
where Xy is the geometric fibre off.

Then (Xy)^-^I)(y^) induces isomorphisms for all q^o:

H^(I)(^),A)^H^(X,L,A).
Proof. — Since 7Ti(V.)==o for all V. in Jy ([4], § 10), the local system

yi^HP^)-^), A) may be identified with its value, H^I)^), A), on the distinguished
vertex of V.. Since V. in 'J .̂ is of finite type in each dimension,

Inn IP(V, IP(t)QT), A)) = lim IP(V, W{W, A))
HoJ/ Ho'J/

equals
Urn IP(V, IP(I)(/;J, A)) = Imi IF(V, H^(/;J, A)).
Ho'J/ HoJ/
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Therefore, E^y^, A)-^-''^ A) of Proposition (3.4) may be written

^•^,A)==IP(Y^WW^),A)) ^ H^(X,A)

o

E?-Vet,A)=H^(Y^,(Ry,A),) => IF+'(X,A)

where

EWet. A) =jlm H^H^xX, A)) = lin^ H^R^A(VJ)=H^(Y^ (Ry,A),).
HoJy Y HoJy

For each V, in Jy, the composition

l"n nHW,)A)^Hm H^^)-1^,,, (^r)-lV(,_^; A)
^'^V. ^ K0'1/,^.

^ _im H^-^^-^.^^^nH^xx^^-^nR^A^)
HoJ/.V. r r

is induced by the composition map of groups

Hm^ H^^A)-^ Um^ ?(1)^), A)^H^XX, A)->(Ry,A),.
HoJ^v. ^•^V.

Therefore, the limit map 0 : W^{f^ \)->-W^{f^ A) is induced by the compo-
sition map of groups H^I^), A^H^/et)? A)->(Ry,A)y. Applying the Zeeman
comparison theorem [15]) we conclude that H3^^), A) -^> (R^A)^, all ?^o.
Applying Proposition (2.4)3 we conclude that X^-^I^yjt) induces isomorphisms
H*(I)(^),A)^H*((X,)^,A).

We recall that a map {Xj -^{Y^.} in pro-Jfo is said to be a tf -isomorphism provided
that the induced maps cosk^Xj -> cosk^Yj} are isomorphisms for all n^o. A map
f : {Xj~>{Yj in pro-^fo is a (-isomorphism of connected pro-objects if and only if
/,:^({XJ)^({Y,}) and for every ^({Y,})-module M, H-({Y,}, M)^H-({XJ, M)
([4], Theorem (4.3)).

The following lemma will enable us to relax the hypothesis on y:X-^Y that
"l(Yet)=0.

Lemma (4.4). — Let f : X->Y be a pointed^ galois cover of connected, locally noetherian
schemes. For all n^>_2^

/,: 7^(XJ^(YJ.

Proof. — Let K denote the full subcategory of Ho Jy consisting of pointed, etale
hypercoverings V^ ofY such that Vo->Y factors through f : X->Y. Given V^inHoJy,
V^==coskoX x V,-^V^ is special (where (coskoX)^ is the A-fold fibre product over Y

coskoY

ofX with itself). Hence, K->HoJy is cofinal.
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Represent Y^ as {TC(V.)}K in pro-Jfo and let ^={n(V^xX)}^. Then

/et : ̂ t-^et in pro-e^o factors as A^o^ ^ X^Z^-^Y^ m the obvious way.
Since X/Y is galois, XxX-^X is the trivial d-fold cover uX-^X, where d equals

the degree of/. For each V. in K and each AJ> o, there exists a commutative diagram
with cartesian squares :

V^xX —> uX —> X

!_ [ i
V, -^ X —> Y

Hence, 7t(V.xX)-^7t(V.) is a simplicial covering map. We conclude that A(,(,:Z^^Y^,

givenby {TC(V.^X)^TT(V.)}K in pro- ̂ p^, induces isomorphisms A. :^(ZJ^.^(YJ
for n^2.

For any abelian sheaf F on X, g^ : X^-^Z^ induces a map of spectral sequences

'EI-^limH^V.xX,^?)) ^ H^X,?)
17- Y i

Ei^= Inn ?(17., J^(F)) => HN(X, F)
HoJx

inducing an isomorphism on abutments. We observe that lim G^V.xX, ^(F))
_ _ _ "K^ " Y

equals lim n^(F)(V,,) for all p, q>o, since (V.xX)p==uVp. Using Lemma (2.3),

we conclude that 'E^^^o^E^3 for all p^o, q>o. Therefore, g^ induces isomor-
phisms for any locally constant abelian sheaf F:

Hm H^VxX, F) =H-(Z,,, F)^IT(X^ F) == lim H*(U., F).
K JL HoJx

Furthermore, {coskoUjHojx-^I^^o^.xX)^ is clearly an isomorphism; thus

^(XeO^-^Zet). Therefore, g^ : X^-^Z^ is a ft-isomorphism. We conclude that
the compositions ^(XeJ-^TC^Z^-^Tr^YJ are isomorphisms, for n > 2.

In the following theorem, we eliminate the hypothesis that T^(YJ be o by
examining the maps W^{f^, A)-^^/;,, A) for each /': X'->Y', the pull-back of/
by some pointed galois cover h' : Y'-^Y. Thus, we are led to consider direct limits
of spectral sequences on the cofiltering category HoJ^ (Corollary (1.5)).

Theorem (4.5). — Let f: X->Y be a pointed map of noetherian schemes such that the
geometric fibre Xy is connected. Assume TCi(Y^) is pro-finite and Y is connected. Let A. be a
locally constant abelian sheaf on X whose fibre A^ is finite with order relatively prime to the residue
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characteristics of Y. Aw^ne R^A ij foca^ constant on Y ararf (Ry.A)^ ̂  H^Xy, A),
for all o^o.

TAen (Xy)et-»-l;)(./e't) induces isomorphisms/or all q'>_o:

HW./:t),A)^IP((X^,A).

Proof. — Let h"->h' be a map in ET/Y and consider the commutative diagram

(x;')^ -^ W) -^ [X^y -^ Y,et

I
(X;),t ^/eV) (Xet)1- v̂et

where /' =/x A' : X' = X ̂  Y' ̂ Y' and /" : X" -^Y". Since X, = X; - X;' is connec-

ted, X" and X' are connected; moreover ^(X^-^Y") and 7Ti(X')-^(Y') are
surjective. Moreover, ^(X")-^^) and ^(Y'^-^TT^Y') are injective with cokernel
Gal(X///X/)=Gal(Y/7Y'). By Lemma (4.4) and the 5-lemma, W)^W) is a
ff-isomorphism. We conclude that IT(I)(/;J, A)^> lim H^^/;^), A), as well as
H*((X^, ̂ ^ImH^CX;),,, A). W?)

(ET/Y)

We consider the map 0 : Imi (E^ ̂ ^ A) -^E^' ̂ ^ A)). Since lim = lim lim lim
HoJ^ HoJ^ ET/^HoJ^ HoJy^^

and since each V, in some Ho Jy/ is of finite type in each dimension, 0 can be written

llmE2p '^ r,A)=llmHm^HP(V.,y }-> lim H^"1^), A)) => lim HP+^X', A)
HoJ7 ET/Y HoJ^/ HoJy^v. ET/Y

Um E|̂ , A) = Hm lim ^(V., v ^ ^A{v)) => lim HP+^X', A).
HoJ^ ET/Y HoJy ET/Y

For A satisfying the hypotheses of the theorem, R^'A equals g^R^A restricted
to Y'; thus, Ry;A is locally constant and (R^A)^ (R^A^ ([3], XVI).

Given any 5 in HoJ^, we can find <?'->,? in HoJ^ such that the induced systems
^HP^-^.A) and ^h>Ry,A(y') are constant on V^. Hence,

H^V.^HTO-^A)) H^^.^^H^^)-1^),^)

H^(V,^R^A(^)) H^V:,.'h>R^A(.'))
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factors through
HWH^(^A))

HP(V:, (Ry,A),),

where the last pair is induced by the map of coefficients evaluated at the distinguished
vertex VQ ofV.:

^W). A) -^?(1)^), A) ->IP(^X, A) ->Ry,A(.o).

Therefore, 0 may be written

limE^^A)=limUmH^(V,limH^I)^^ ^ Urn IP-^(X', A)
HoJ/; ET/YHoJy l ET/Y ET/Y

lim E ,̂ A) = Im Hm^ IP(V., (R^A),) ^ lim H^(X', A)
Hoy ET/Y HoJy ET/Y

with the map induced by

IP(I)(/;O, A) = Hm H^(/;^ A) ->Hm H^(^(/;,), A) ̂ lim (Ry:A),= (Ry,A),.
ET/Y ET/Y ET/Y

Applying the Zeeman comparison theorem [15] and Proposition (2.4), we conclude
that (X^->^) induces isomorphisms IT(I)(^), A)^ir((X^, A).

The cc proper, smooth base change theorem" ([3], XVI, Corollary (2.2)) in
conjunction with Theorem (4.5) immediately imply the following:

Theorem (4.6). — Let f : X-»Y be a proper^ smooth^ pointed map of connected noetherian
schemes such that the geometric fibre Xy is connected and TT^Y^) is profinite. Let A be a locally
constant, abelian sheaf on X whose fibre A^ is finite with order relatively prime to all residue charac-
teristics of Y.

Then (X^->I)(^) induces isomorphisms H*(I)(^), A)^IT((X^;A).

Although the assertion of the following lemma is made for a pointed map f : X->Y
of schemes, the conclusion is a statement concerning only the associated pro-object, jf^,
in pro-J^o.pairg. Such pro-pairs arising from a pointed map of schemes are simpler to
consider, since the pointed etale cover Yg->Y provides a canonical representative of
the covering space (Y^Jg ofY^ associated to a subgroup H of^Y).

For any set L of primes, we denote by G^ the class of finite groups G satisfying
the condition that the prime factors of the order of G lie in L.
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Lemma (4.7). — Let f : X->Y be a pointed map of connected^ locally noetherian schemes
such that Y is noetherian and ^(X) -^(Y) is surjective. Let L be a given set of primes such
that TC^YJ is in pro'C^. Let /et-^At be the canonical map ofpro-^^, where Q denotes
completion with respect to G^ ([4], § 5).

Then the induced map ^{f^->\){f^ in pro-^ induces isomorphisms for all abelian A
in CL, all q>o:

H^(^),A)^H^(^),A).

Proof. — For each g of Hojjr, represent g in pro-jfo, pairs by {g' : U^->V^}i .
Then the maps {/etr}ET/Y==={^r}HoJ^{{^'r}IJHoJ^U/tr}ET/Y induce

0 : E^W^ A)^E^({/^}^ A).

As in the proof of Theorem (4.5)

Ei'W^/Y, A) = Urn Hm H^(V:, .' ̂  H^^'Q-1^'), A))
Hoj7 Ig

is isomorphic to

lim Hm H^(V:, H^t)^-), A)) ̂  lim lim IP(V, ?(1)^0, A)).
HoJ^ 1̂  HoJ/: 1̂

Since I)^") has L-primary finite homotopy groups, H^I)^"), A) is in 0^. Therefore,

^W}^ A) ̂  lim Imi H^(V, ?(1)^-), A)) ̂  Um H^(V, ?(1)^-), A))
HoJ^ 1̂  HoJ/-

since V^ is finite for n>o, ifV. is in Ho'Jy-
We conclude that 0 : E^^^^/y, ̂ -^E^^^^/Y, A) may be written

limH^Y^H^^.A)) ^ HmH^^xi^A)
ET/Y , ET/Y

limH^Y^.md)^)^)) => limH^^X'^A).
ET/Y iBT/Y

Since A is in G^, 0 is an isomorphism on abutments.
As in the proof of Theorem (4.5), a map ,§^"-^^' in ET/Y induces isomorphisms

^(^(/e^A^H*^/^), A). In order to conclude the lemma by applying the
Zeeman comparison theorem, it suffices to verify that IT^f^), A^H^I)^^), A)
whenever g " ' - > g ' is a map in ET/Y.

Consider the following commutative diagram in pro-jfo:

W) -^ X^ —> Y^i i
^(/e?) —> x:r —> Y;•et ——^ ••• et
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Since TT^Y') /TT^Y") =7Ti(X') /^(X") is in GL, Y^->Y^ and X^X^ are covering spaces
([4], Theorem (4.11)). Moreover, ^(X^^X^) =7ri(Y:J/7Ti(Y^) ^TT^Y^/TC^Y").
Using the 5-Lemma, we conclude that ^[f^-^^f^ is a ff-isomorphism; hence,
that H-^^.^^H^^^O.A).

Combining Theorem (4.6) and Lemma (4.7), we obtain the following homotopy
sequence for a proper, smooth map.

Corollary (4.8). — Let f : X->Y be a proper, smooth, pointed map of connected, noetherian
schemes. Let L be a set of primes not occurring as residue characteristics ofY and satisfying the
condition that ^(YgJ is in pro-C^. Assume that the geometric fibre Xy off is connected and that

the ^-completion ^(Xy) of ̂ (Xy) is o.
Then there exists a long exact sequence of pro-groups

... ̂ ^((X;)J^7rJX;0^^(YJ^^_,((^)J->...

where the maps ^((XyD-^TrJXJ and T^(XJ ->T^(YJ are induced by the L-completions
of the etale homotopy type of the pointed maps i : Xy-^X and f : X->Y.

Proof. — By Proposition (2.2), ^ : 7^((Xy)J->7^(Xet) factors as

7T,((X;)J ̂ W^,)) ->7^(^)) -^(XJ.

Since Exoo(^(^))->Exco(X^)-^Exoo(Y^) is a pro-fibre triple ([io], Theorem (4.3)),
the triple ^(/e^'^X^-^Y^ induces a long exact sequence of pro-groups

• • •^^(^(^t))^^((^)et)^n(Y^)^^_,(^ . .

To verify the corollary, it suffices to prove that the composition (Xy)^->^(^)->t)(^)
is a (-isomorphism.

Recall that n^Xy) ->7Ti(X) -^i(Y) ->e is exact ([8], § X). Since completion with
respect to C^ is right exact, 7Ti(XJ =TCi(X)^7r3^=7Ti(YJ is an isomorphism.
Therefore, ^(^J-^iW/Jt)) is surjective, implying that 7Ti(I)(^)) is pro-abelian.
Since ^((Xy)^) ==o and TCi(I)(/^)) is pro-abelian, it suffices to check that the compo-
sition (X^et-^K^t)^^^) induces isomorphisms H*(I)(^), A)^IT((X^, A), any
abelian group A in Gj, ([4], Theorem (4.3)). This follows directly from Theorem (4.6)
and Lemma (4.7).

5. Applications to a Vector Bundle minus its o-section.

Given a locally free sheaf M on a scheme Y, the (algebraic) vector bundle V(M)
associated to M is the spectrum of the symmetric (Py-zlgebrsi on M. In this section,
we investigate the structure map /: V(M)—o(Y)->Y, where V(M)—o(Y) is the
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vector bundle minus its o-section. We conclude that f)(f^) completed away from the
residue characteristics of Y is a completed sphere.

A commutative triangle

Z—————^V

of schemes is said to be a smooth S-pair of codimension c provided that i is a closed
immersion, h and g are smooth, and for every geometric point s of S, Z,-^V^ is of
codimension c. In particular, if M is a locally free sheaf of rank r on a scheme Y, then

o
Y————^\V(M)

is a smooth Y-pair of codimension r.

Lemma (5.1). — Given a smooth S-pair

Z————>V

of codimension c>o, with Z simply connected. Let L be any set of primes not occurring as residue
characteristics of S. Denote V— Z by X.

Then for any abelian group A in G^, there exists the following (( Gysin " long exact sequence
in cohomology\

... -^H^^Z, A) -^H^V, A) -^H^X, A) -^H^+^Z, A) ->.. . .

Proo/*. — Consider the Leray spectral sequence for the map j : X->V and the
constant sheaf A on X:

E|̂ =:EP(V, Ry,A) =>IP^(X, A).

Recall that for j : X-^V associated to a smooth S-pair as in the present situation,
j\A equals the constant sheaf A on V; R^A==o for y+o, 2<;—i; and ^(R2'"1;^)
is locally isomorphic to A on Z ([3], XVI, Theorem (3.7)). Since Z is simply
connected, ^(R^-^A) equals the constant sheaf A. Hence R2C-1;,A=^A (^.The-
orem (2.2)). Thus EI^ reduces to two non-vanishing rows: H*(V, R°/,A) =H*(V, A)
and H*(V, R20-1;^) ̂  H*-2^1^, z,A) ^ H^^Z, A). This spectral sequence
therefore reduces to the asserted long exact sequence.
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The following proposition verifies the cohomological conditions on V(M) —o(Y) ->Y
required in order to employ the simplicial Leray spectral sequence.

Proposition (5.2). — Let Y be a connected, noetherian scheme'$ let M be a locally free,
rank r sheaf on Y; and let f: X==V(M)—o(Y)-^Y be the restriction of the structure map
g : V(M)->Y. Let L be the set of primes not occurring as residue characteristics ofY. Then
for any abelian group A in C^, R^A is locally constant on Y; and (R^A^H^Xy, A)
for all <7>o, all geometric points y ofY.

Furthermore,

?(X„A)=A ^=o'2r-I

o otherwise

for any abelian A in C^, any geometric point y ofY.
Proof. — We view /: X-^Y as the composition ofg with j : X-^V(M). Consider

the spectral sequence for the composite left exact functor f^ and the constant sheaf A
on the etale site of X:

E^R^R^A^R^A.

As in the proof of Lemma (5.1), R°;,A==A on V(M)$ R^A==o for ^=|=o,2r—i;
and o^R^'^A) is locally isomorphic to the constant sheaf A on Y. Since g : V(M) ->Y
is acyclic for L {g is smooth with L-acyclic fibres), we conclude that R^R^A^o for
^=f=o. Furthermore, for ^4=0,

R^R^A) ̂ R^o^R^-^A) ̂ R^o^-^A) =o.

Hence, R2r-l/.A=&(R2r-l;,A) = (^oo),o*(R2r-l;,A) is locally isomorphic to o'A=A
on Y, whereas R°/*A ==^(^A) =A. Thus, Ry*A is locally constant on Y for all q>_ o.

Since (R^A^^H^X^, A), where t) denotes the strict local ring at a geometric
point j/, it suffices to prove that the natural homomorphisms H^X^, A^H^X^, A)
are isomorphisms to complete the proof. The residue map jy->H) induces a map of
Gysin sequences for the smooth pairs of codimension r given in Lemma (5.1):

^^———^ /A;=(V(M)), 1)———> /A;-(V(M)),

< / ^y i)
Applying the 5-Lemma, we conclude that jy-ft) induces isomorphisms

IP(X,,A)^IP(X,,A)

for all <7^o, all geometric points y.

Proposition (5.2) provides the hypotheses needed to prove the analogue of
Theorem (4.6) and Corollary (4.8) for /: X==V(M)—o(Y)^Y.
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Theorem (5.3). — Let ^ be a pointed, connected, noetherian scheme such that TTi(Y^)
is pro-finite. Let M be a locally free, rank rj> 2 ^/o% Y. Let f : X = V(M) —o(Y) ->Y
&<? ̂  restriction of the structure map g : V(M) ->Y, pointed above the pointing of Y. Z^ L
be some set of primes excluding all residue characteristics of\ and let (") denote completion with
respect to C^.

Then there exist ^-isomorphisms in pro-^Q:

S^-^X^ and (X,)^^).

Furthermore, if 71:1 (Y) is in pro-C^, there then exists a ^-isomorphism (X^t^I)(j%)$
consequently, there exists a long exact sequence of pro-groups:

. . . ̂ ((X;)J ->7T,(XJ ->7^(YJ -^_,((X,)J ̂  . . .

where the maps 7^((Xy)J -> TCn(Xet) fl%rf 7^n(xet) ̂  ̂ (^t) are induced by the L-completions
of the etale homotopy types of the pointed maps i : 5L -> X ^nrf /: X -> Y.

Proof. — To verify the existence of a ("isomorphism S27"""1 -> (X,)et5 it suffices to
verify that 7Ci((Xy)^) ==o and that

H,((X,)^Z)=
(Z y == 2r— i

$4=0, 2r—i ([4], Corollary (4.15)).

Yet ^(X,) =TT,(V(M),) =^(A;) by the <c Purity Theorem " ([3], XVI, Theorem (3.3)),
so that 7Ti((Xy)eJ =o. Serre class theory implies that H^((Xy)^, Z) is in pro-G^ for
all q>o. Since H^Xy, A) =H*((Xy)^, A) for abelian groups A in C^, Proposi-
tion (5.2) and the universal coefficient theorem imply that

.Z q==2r—i
^ o <7=[=o,2r—i

as required.

H,((X^Z)=

To verify that (Xy)^--> I)^) induces a (-isomorphism (Xy)et->i(y^), it suffices
to prove that ^i((Xy)eJ =o==-^;l(I)(^rt))5 and that for any abelian group A in G^,
H^/^A^H^X^A).

Observe that if Y' -> Y is a pointed, galois cover in ET/Y, then

X'^M^-^Y') V(M)-o(Y)

Y' Y
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is cartesian. Furthermore, since 7^1 (X) -^ 7Ti(V(M)) by the Purity Theorem and since
V(M)->Y has a section, TTi(X)-> ^(Y) is surjective; therefore, X' is connected.
Applying the 5-Lemma plus Lemma (4.4), we conclude that the square

(^y)et ""̂ > (^y)et

W) ——> I)(/ert)

commutes in pro-jTo, with \){f^) -> f){f^) a ^-isomorphism for any map Y'->Y
in ET/Y.

We consider the long exact sequence of pro-groups

• . . -^ ̂ nWf:t)) ^{^(Xet)}ET/Y-^{^(Yet)}ET/Y-> . . •

In particular, {^(Y^T/Y^ ^(^(/e't)) -^(^OET/Y-^ ^ is exact, since

{^iWt^ET/Y = {^(Y'^ET/Y === ̂

For any Y'->Y in ET/Y, // : X'-^Y' is i-aspherical for L; therefore, ^(X7) ===-n:i(Y').
Since (") is right exact, we conclude that {^(Yet^ET/Y-^ ^(^(/^t)) ls surjective; thus
TCi(I)(y^)) is pro-abelian. We conclude that it suffices to prove that (Xy)et-^ ^{f!t)
induces isomorphisms for any abelian A in G^ : I-r(I)(y^), A) ^> H^Xy)^ A). This
is immediate by Theorem (4.5) and Proposition (5.2).

Finally, to conclude the existence of the asserted long exact sequence provided ^(Y)
is in pro-G^, we apply Lemma (4.7) as in the proof of Corollary (4.8) to prove that

the composition (Xy)et-> I)^) -> l)^) is a ^isomorphism.

6. Adams9 Conjecture.

In this section, we provide a completion ofD. Quillen's sketch of Adams' conjecture
for complex vector bundles [13]. The arguments and results of Quillen's discussion
are freely employed, together with Theorem (5.3) of the previous section. An additional
ingredient is D. Sullivan's observation that pro-finite pro-objects of the homotopy category
admit inverse limits.

Let ^ denote the homotopy category of topological spaces having the homotopy
type of G-W complexes and let [.,.] denote maps in Jf7. We recall that any pair in ̂
is represented by a Hurewicz fibration (namely, the mapping path fibration of any
representative), unique up to fibre homotopy equivalence ([6], Theorem (6.1)). Thus,
the fibrewise join E*E'->Y of pairs E->Y and E'-^Y in ^ is well-defined up to
fibre homotopy equivalence [9]. Moreover, the fibre I)(E -> Y) of a pair E -^Y in Jf
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is thereby defined up to homotopy equivalence; furthermore, t)(E->Y) is an object
ofJf [n]. We use [ [ . [ [ to denote the geometric realization functor from (pointed)
simplicial sets to JT. If S. ~> T is a Kan fibration ofsimplicial sets, then [| I)(S. ->• T.) [ [
is isomorphic to I)(|| SJ[ -> [| TJ[) in ^ [12].

We begin by recalling the representability of pro-finite inverse limits of connected
objects of ^ ([14], Propositions (3.1) and (3.3)). For the sake of completeness, we
include Sullivan's proof.

Proposition (6.1) (Sullivan). — Let {Xj in pro-^ satisfy the conditions that X, is
(arcwise) connected and T^(X,) is finite for each n>_ i, i in I. Then the functor

^LXJ ; ^°->(Sets)

is representable in ̂  by a C-W complex, denoted lim X,.
Proof. — A functor F : j^° -> (Compact Hausdorff spaces) is a <( compact repre-

sentable functor " provided that the composition with the stripping functor

(Compact Hausdorff spaces) -> (Sets)

is representable in ^ by a connected C-W complex. Using Brown's representability
axioms [5], we verify the following: if {Fjj is a system of compact representable
functors indexed by a cofiltering indexing category I, then lim F^ is a compact repre-
sentable functor.

Since Hm commutes with inverse limits, lim F,(VY^.) equals II lim F,(Y.), where VY.
is an arbitrary wedge product of connected objects ofc^ (each pointed by a non-degenerate
base point); furthermore, by the compactness of F,, lim F,(Y) maps surjectively onto
Hm F,(YJ, where Y^-^Y satisfies the condition that sk^(YJ ^ skJY) in JT for any
i,n

non-negative integer n. Let Y = = S u T and let Z==SnT be given in jf7, with Z a
subcomplex of both S and T. Let lim ^xlim ^ be an element of lim F,(S) xlim F,(T)
such that the image of lim ^ equals the image of lim ^ in limF^(Z). Let C^ denote
the closed subset ofF,(Y) given as the inverse image of s,xt, in F,(S) XF,(T). Since
the inverse limit of non-empty compact sets is non-empty, there exists an element limj^
in lim C.clim F^(Y) which maps to lim^xlim^.

Thus, it suffices to prove that {[,XJ}i is a system of compact representable
functors. Observe that if Y, is a finite subcomplex of Y, then [Y,, XJ is a finite set.
For any two complexes X and Y, the natural map [Y, X] -> lim [Y,, X] is surjective,

c

where Yg runs through the finite subcomplexes of Y. We use the finiteness of homotopy
classes of homotopies Y, x I -> X, restricting to given maps on Y, x o and Y, X i in
order to verify that [Y, X,] -> ̂ m [Y,, X,] is injective. If /, g : Y =f X, map to the

c

same element oflim[Y^,,Xj, we obtain an inverse system of non-empty finite sets of
c

homotopy classes of homotopies between the restrictions of/ and g. An element of the
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inverse limit yields compatible homotopies which patch together to yield a homotopy
between f and g.

We conclude that [Y, XJ =Um[Y,, Xj admits the structure of a (totally
c

disconnected) compact Hausdorff space. We readily check that any Y' -> Y induces
a continuous map [Y, XJ-> [Y', Xj. Moreover, whenever X,->X^. in {Xji, then
[Y, Xj -> [Y, Xj] is continuous for any Y. Hence, {[ , XJ}j is a system of compact
representable functors.

This inverse limit of pro-finite pro-objects preserves fibrations in the following sense.

Lemma (6.2). — Let {E^->Yji be an object of ĵ o-e^airs suc^ ^la^ ̂  ^5 an^
I)(E^->Y^) are connected and ^(E^) and TT^(YJ are finite for every n^>_ i, i in I. Then

I)(lim E, -> lim Y,) -^ lim I)(E, -» Y,) m JT.

Proof. — By autoduality of finite abelian groups, lim is exact on functors from I to
(Finite abelian groups). Hence the long exact sequences associated to the triples

I)(limE, —> limY,) —> lim E, —> lim Y,

W Y.) E, Y,

imply isomorphisms TC^(I)(lim E^ -^ lim Y,)) -^ ^(lim t)(E^ -^ YJ) for n>^ 2.
For TZ = i, we let E^ -^ Y^ denote the pull-back of E^ -> Y( to the universal covering

space Y^ ofY^. Exactness of lim on finite abelian groups and left exactness on arbitrary
groups imply the exactness of lim ^(E^) -> lim ^(Y^) -> lim 7Ci(I)(E^ -> Y,7)) -> lim 7ri(E^).
Upon applying the 5-Lemma to the commutative diagram

^(limEQ —> ^(limY;) —> 7Ti(I)(limE; —> limY^)) —> ^(limE;) —> o

Um^E;) —>Hm7r2(Y,) —^ ^mn^W —> Yi)) —^ ^E ^i(Ei)

we conclude that ^(^(Hm E; -> Hm YQ) ̂  Urn 7Ti(t)(E; -> YQ). Since

^(limE; —> limYQ —> lim I)(E; —> YQ

I)(UmE, —^ UmY,) —> Urn I)(E, —^ Y,)

commutes in J^, I) (lim E^-> limY,) -> lim I)(E^-> Y,) is an isomorphism in Jf\
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The following lemma will enable us to define the fibrewise join of " L-completed
sphere fibrations. "

Lemma (6.3). — Let (^) denote completion with respect to the class C^ of finite groups
with prime factors in a given set L of primes. Let S and S' be m and n spheres^ with m, n ̂ i,
respectively. Then the natural map S * S' -> lim S »lim S' induces a ^-isomorphism

(S+S'r^UmS^lmiS'r.

Proof. — Since the join of pathwise connected spaces is simply connected,
it suffices to prove that for all ?eL, S » S' -> lim S * lim S" induces isomorphisms
H*(lim S * lim S', Z/y) ^> H*(S * S', TL\q). We recall that for any pair of connected spaces
Z and Z'

(CZ, Z) x (CZ', Z') == (CZ x GZ', Z * Z')

where CZ denotes the cone on Z. Furthermore, we recall that H*(lim S, Z/y) ==H*(S, Z/^)
([14], " complement5? Theorem (3.9) for m> i; for m== i, use the fact that Z and lim Z
have same Zfq cohomology), thus finite. Applying the Kimneth theorem, we
conclude that H*(G lim S, lim S; Z/y) ® H*(G lim S', lim S'; Z/y) is isomorphic to
H'(G lim S X Glim S', lim S * lim S'; Z / q ) . Therefore,

H*(limS,Z/$)®H*(limS',Z^) -^> H*(S, Z/y)®H*(S', Z/y)

H^+^hm S *Hm S', Zfq) —> IT+^S * S', Z/?).

If {Xj->{Yj} is a map in pro-e^ with {Y^.} i-connected, then

D({XJ^{Y,})^D({^}^{Y,})
is a #-isomorphism in pro-e^ ([4], Theorem (5.9)).

Let Y in ^ be i-connected. If E -> Y and E' -> Y are pairs in J^ having fibres
limS'""1 and limS""1 respectively, then

I)(E * E' -> Y)" = (lim S"^1 * lim S^Y -> I)(E^E' -^ Y)

is a #-isomorphism. By Lemma (6.3), (S^-1-"-1)" •̂  I)(E * E' ->Y)" is a ff-isomorphism.
Applying Lemma (6.2), we conclude that lim E*E'-^limY has fibre lin^S^""1)".

Definition (6.4). — Let L be a set of primes, (^) denote completion with respect
to CL. A i-connected C-W-complex Y is L-good provided that the canonical map
Y -> lim Y in ^ is an isomorphism.
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I fYis L-good and m>i, SF^(Y) is defined to be the set of fibre homotopy equi-
valence classes of Hurewicz fibrations with fibre lim S™"1. The symmetric operation

+ : SFMxSF^Y^SF^Y)

is defined by sending p : E -> Y, p ' : E' -> Y to the fibration p +p' : lim E*^? -^ Y
induced by E^E/ -> Y.

IfY' is a i-connected, finite type C-W complex {i.e., H^(Y') is finitely generated
for each n), then for any L, HmY'^ Y is L-good, where ("s) is the completion with
respect to this L ([14], <( complement" Theorem (3.9)).

The following proposition introduces the monoid of stable, L-completed sphere
fibrations over an L-good complex.

Proposition (6.5).— LetY be anL-good complex, let ^ : HmS^^xY-^Y denote the trivial
fibration o/SF^(Y), and let £„ denote ^

•+^:SFM^SF^(Y).

Then (SF^(Y), sj is filtering, with set-theoretic direct limit denoted SF^Y). Moreover,

+ : SF^(Y) x SF^(Y)-^ SF^(Y)

provides the set SF^Y) with the structure of a commutative monoid, natural with respect to homotopy
classes of maps X->Y of L-good C-W complexes.

Proof. — The projection maps for ((limS^^^limS'^xY)" induce a fibre
homotopy equivalence mri((Hm S^^* Hm'S^^71) x Y)" -> lim ( î̂ i x lim Y over lim Y
by Lemma (6.2) and the fact that I)(E -> Y)" -> I)(E -> Y) is a ft-isomorphism. Hence
^(AJ equals e^. To prove that {SF^(Y), ej is filtering and that {SF^Y), +} is a well-
defined commutative monoid, it suffices to check the associativity of +. There are
natural maps E*, E^ E" -> lim(Hm E^E'̂  E")" and E*E'*E"-.Hm(E*lim E'7E77)"

covering Y. By examining the induced maps of fibres, we conclude that { p + p ' ) +j&"
and p + ^ p ' + p " ) are fibre homotopy equivalent to \ m { p ^ p ' ^ p " y .

Let f:'X->Y represent a homotopy class of maps of L-good complexes, let
p : E->Y be in SF^(Y), and let p ' : E'-^Y be in SF^(Y). Using the natural maps

(ExX)*(E'xX)-^Hm((ExX)*(E'xX)) ' and (E*E') xX-^lim E^xX, we
Y X Y "^—— Y Y Y Y Y <—— Y Y

readily conclude that (./^) + (/Y) is fibre homotopy equivalent to f'(?+?').
Hence, / induces a homomorphism SF^Y) -^ SF^X).

We recall the G-W complex BQ, the classifying space for sphere fibrations. For
a finite dimensional C-W complex Z, the group [Z, Eg] is the group of stable fibre
homotopy equivalence classes of sphere fibrations over Z. The following proposition
relates [Z, B^] to SF^lim .Z).
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Proposition (6.6). — Let Z be a i-connected, finite C-W complex, let L be a set of primes,
let (") denote completion with respecttoL, andlet Y==limZ. The association of'limj?: limE-^Y
to a sphere fibration p : E->Z defines a homomorphism of monoids

QL : [Z, BG]-> SF^Y), ^ set L of primes.

Furthermore, if p : E->Z ^ a sphere fibration in the kernel ofQ^, then the order of p in [Z, B ]̂
Aaj no ^HT^ factor in L.

Proo/'. — Let p : E->Z, j&' : E'-^Z be sphere fibrations over Z, inducing a (not
necessarily unique) map p - ^ p ' -> limp * limp'. Applying the Kiinneth formula to the
map on the cohomology of the fibres, we conclude that the induced map

limp*?' ->\imp -^-limp'

is a fibre homotopy equivalence by Lemma (6.3). Moreover, if p : Sn~lxZ->Z is
the trivial S^1"1 fibration, then the natural map \imp ->e^ is a fibre homotopy equivalence
of fibrations over Y. Hence, 6^ is defined on stable classes and is a homomorphism of
monoids.

Let p : E—»-Z represent a class in the kernel of 6^. We may assume that there
exists a map lim E -> lim S"1 whose composition with the inclusion of the fibre
lim S"* ->• lim E is an isomorphism in Jf7.

Observe that [E, S ]̂ equals [E, S ]̂ equals [lim E, S"1] since E is L-good, which
by definition equals [lim E, lim S^]. Similarly, [S ,̂ S™] equals [lim S ,̂ lim S^].
We conclude that [E, S^] -> [S^*, S™] is surjective, where this map is given by composi-
tion with the fibre inclusion S^-^E inpro-J^. Therefore, (E, S^) -> (S^, S^ is likewise
surjective, where ( . , .) denotes the abelian pro-group of stable maps in pro-c^f ([4], § 7).
Furthermore, (E, S^) == (E, S"*)" and (S^, S^) == (S^, 8^)^=7 ([4], Corollary (7.5)).
In other words, the inclusion of the fibre S^-^E induces a homomorphism
(E, S^) -> (S^ S^) whose cokernel has L-completion o.

For some n>o, there thus exists a map S^-^S^"1 whose composition with
gn+m.^E is a map S^-^S^ of degree k, with k having no factor in L. By Adam's
" mod. k Dold Theorem 95 ([i], Theorem (i. i)), applied to (S^xY) * E -> S^^xY
we conclude that p : E->Z represents a stable class in [Z, Bg] whose order has no
factor in L.

The following proposition, proposed by Quillen ([13], § 10), will suffice to prove
Adams' conjecture. We recall that an algebraic variety V over the complex numbers
can be triangulated; thus if V is projective, it is a finite G-W complex.

Proposition (6.7). — Let p be a prime number, let L be the set of all primes except p, and
let (^) denote completion with respect to C^. Let R denote the local ring given as the strict loca-

319



44 E R I C M. F R I E D L A N D E R

libation ofZ at p, and let k denote the residue field o/R. Let YR be a scheme projective and smooth
over SpecR, with generic geometric fibre Yp over Spec C (C== complex numbers) and special
geometric fibre Y^ over Spec k. Let Y,i denote the <c classical" topological space of complex
points of Ye. Let K^YJ denote the Grothendieck group of complex vector bundles over Y,i
and let K^Y,,) denote the Grothendieck group of locally free, finite rank sheaves over Y,.

ffV^ is i-connected, then there exists a commutative diagram of monoids

K^YJ K^(Yc) j* K^(YR) K^(YJ

O L O J /c ^B fk

SF^HmY^ ^ SF^UmllY^ SF^limllY^J SF^UmllY^II)

w^ J : K^Y,,!) -> [Y,i, Eg] is the usual J homomorphism, where

^(E.)=nm||(V(E.)-o(Y.)):J|^mn||Y^J|

for E, locally free, of rank ̂ 2 owr Y. (^g Theorem (5.3)), ara^ wAere ̂  lower horizontal arrows
are induced by the isomorphisms in pro-3^,

Yo,^ l lYc.etl l^HY,R,et | Y..et||

Proof. — To prove that /^ extends to a homomorphism on K^YJ, it suffices to
prove that /^ is additive with invertible image. For ^5 these properties and the com-
mutativity of the left-most square follows from the observation that y^^c) == ̂ J^Bc)
in SFL(HmYJ,bythe (c generalized Riemann existence theorem" ([4], Theorem (12.9)).
For /^ we observe that rM^)=W^ m SF^Hmll Y^\\) by employing the
proper, smooth base change theorem and lemma (5.1). Similarly, the proper base
change theorem implies that the right-hand square commutes, provided /^ extends to a
homomorphism on K^Y,,). There remains to prove the following:

1) for any locally free, rank ^2 sheaf E^ over Y^,^(E^) is invertible, and
2) for any short exact sequence

(*) o->E,->E^E^o

of locally free, rank >_2 sheaves over Y^, /^ equals ^B^^^)-
Let (*) be a short exact sequence as above such that E ;̂ is generated by its global

sections. Let n be the rank of E^, m be the rank of E^', and let N be an integer such
that E is generated by N global sections. Let D^ denote the 2-stage flag manifold of
type N, 72, m. Then DR is projective and smooth over Spec R and D,i is i-connected.
Hence, /^ : K^D^) -> SF^Hm [ [ I\ J I) is well-defined. Moreover, (*) arises by pull-
back from the universal short exact sequence over DR . Hence, <^(E^) == ̂ (E^) + ̂ (E^)
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and each of^(E^), ^(E^), and A(E^) ^e invertible, since A^^^A on actual
bundles.

More generally, any locally free, finite rank sheaf E^ over Y ;̂ is embedded (locally
as a direct summand) in bL®a, where L is a very ample bundle on Y^ and a, b are positive
integers. By the above argument, ^;(E^) is invertible.

Finally, given any short exact sequence (*) of locally free, rank >_2 sheaves
over Y^, there exists a commutative diagram with exact rows and columns:

o o

t t
Fs = Fs

o —> Efc —> Pi —> Fg —^ o

t t
o -^ E; —> E, -^ E;' -< o

t t
0 0

with FI and Fg generated by global sections. Hence

^(E,)=^(Fi)-^(F3)=(A(E,)+A(F2))~(A(F2)-^(E^^^
-^(ED+ACE^.

In conclusion, we complete Quillen's sketch of Adams5 conjecture.

Theorem (6.8) (Adams5 Conjecture). — Let E be a complex vector bundle over a finite
complex X and let k be a positive integer. For some positive integer n, the stable sphere fibration
associated to ^(^E—E) in K^X) is fibre homotopically trivial.

Proof. — It suffices to prove the theorem for the canonical w-dimensional quotient
bundle Q over the Grassmannian G of complex N planes in m + N space (for arbitrary
m, N>i) and for k===p, a prime. Let L be the set of all primes except p and let R
denote the strict localization of Z at p.

Let Gz denote the Grassmannian scheme over SpecZ representing the functor
<( isomorphism classes of m-dimensional vector bundles with m+N generating sections. "
The pull-back ofG^ to Spec R, denoted G^, satisfies the hypotheses of Proposition (6.7).
Let QR denote the canonical locally free, rank 771 sheaf over G^; Q is the topological
vector bundle over G = G^ associated to Q^ ® QQ over Gp.

To verify the theorem, it suffices by Proposition (6.6) to prove that
^J^QJ-Q^o in SF^HmG). By Proposition (6.7) it suffices to prove that
A^^^-Q^-o, or equivalently that A^Q^-^Q^ in SF^UmUG^JI).
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We recall that ^(Qj^Q^ in K^G^, where Q^ is the pull-back of Q^ by
the Frobenius map 9 : C^-^G^. Furthermore, there exists a purely inseparable map

Spec(Sym^(Q^)) =V(QJ -> V(Q^) = Spec(Sym^(Q!j?))

of schemes over G^ given in local coordinates by (Z,) goes into (Zf). Therefore, the
induced map in pro-jfo (V((.D~o(G^)^-> ^(O^—c^G^ is an isomorphism of
pro-objects over (G^ ([8], Theorem (4.10)). By definition of /^ we conclude that
A^QJ)-^^).
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