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FIBRATIONS IN ETALE HOMOTOPY THEORY
by Eric M. FRIEDLANDER

Let f:X—Y be a map of geometrically pointed, locally noetherian schemes and
let A be a locally constant, abelian sheaf on X. We derive the Leray spectral sequence

Epe=Hr(Y, RI,A) =HP (X, A)

as a direct limit of spectral sequences obtained from the simplicial pairs constituting f,,,
the etale homotopy type of f. This ¢ simplicial Leray spectral sequence ” can be
naturally compared to the cohomological Serre spectral sequence for f,, and A. We
employ this comparison to investigate the map in cohomology induced by the canonical
map (X,)e;—>b(f), where B(f5;) is the homotopy theoretic fibre of f,; and X, is
the geometric fibre of f.

Of particular interest are the special cases: 1) f:X—Y is proper and smooth,
and 2) f:X-—Y is the structure map of an algebraic vector bundle minus its zero
section. In these cases,

H*(b(ﬂt% A) "’;H‘((Xy)eta A)

for any locally constant, abelian sheaf A on X with finite fibre whose order is not divisible
by the residue characteristics of Y. With certain hypotheses on the fundamental groups
involved, we obtain a long exact sequence of homotopy pro-groups:

—

e T (K o) > oK) >0 (Vo) > T3 () ) > - - -

where () denotes profinite completion ¢ away from the residue characteristics of Y ”.
We conclude with a proof of Adams’ Conjecture concerning the kernel of the
J-homomorphism on complex vector bundles over a finite C-W complex [1]. The
proof is a completion of a proof sketched by D. Quillen [13], employing the result
that an algebraic vector bundle minus its zero section has completed etale homotopy
type equal to a completed sphere fibration.
We caution the reader to remember that throughout this paper, a sheaf F on a
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6 ERIC M. FRIEDLANDER

scheme X will be a sheaf on the etale site of X; thus, the cohomology on X with
coefficients in F, H*(X, F), will be etale cohomology [3].

The author is deeply indebted to M. Artin for his continued interest and guidance.
Furthermore, section g in its present form (in particular, Theorem (3.9)) is due to the
referee, whose suggestions have proved most valuable.

1. The Category J; Associated to a Map of Schemes

After establishing some notation, we recall the definition of a special map of
simplicial schemes and of an etale hypercovering of a scheme. Relativizing the category
of etale hypercoverings of a scheme, we introduce the category J; associated to a map
S+ XY ofschemes. This category J;is seen to be codirected with cofiltering homotopy
category, Ho J;. In subsequent sections, we shall study various functors defined on J;
and Ho J;; in particular, the etale homotopy type of f is a pro-object indexed by Ho ]J;.

Let a scheme X be given. Denote by (Et/X) the category of schemes etale over X,
with maps in (Et/X) covering the identity map of X. Let A°(Et/X) denote the category
of simplicial objects U, of (Et/X). If X is a “ pointed scheme >’ with given geometric
point x : Spec Q,—X, let A°(Et/X) denote the category whose objects U, each have
a chosen geometric point u : Spec Q,—(U,),=U, above x, and whose maps U’'—T,
are pointed, simplicial maps.

Given a (pointed) scheme X and a (pointed) simplicial set S, let S, in A°(Et/X)
denote the naturally associated (pointed) simplicial scheme: (S,), is given as the disjoint
sum of copies of X indexed by the set S,, and the face and degeneracy maps of S, are
induced by the face and degeneracy maps of S,. In particular, A[o] denotes the final
object of A°(Et/X). Given two maps f, g : U/=2U, in A°(Et/X), a categorical homotopy
connecting f and g is a map ﬁ:%m—’ﬁ. in A°(Et/X) restricting to f and g (and
furthermore, sending (s,#’, 01) to syu if X is pointed).

A map U'—-U, in A°(Et/X) is special provided that U;—U, is surjective and
provided that for each n>o

U, —>(cosk,_,U), x _ T,

. n

(cosky,_4 ﬁ.)n

is surjective (recall that the functor cosk,( ) is right adjoint to the truncation functor).
One can readily check that the composition of special maps is special; moreover, the
pull-back of a special map by any simplicial map is special. An object U, of A%(Et/X)
is called an etale hypercovering of X provided that the unique map U,—A[o] is
special.

We denote by Jx the category whose objects are etale hypercoverings of X and
whose maps are special maps in A°(Et/X). We denote by Ho Jx the homotopy category
of Jx: a map in Ho Jx is an equivalence class of maps in Jyx, where the equivalence relation
is generated by pairs of maps connected by a categorical homotopy.
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FIBRATIONS IN ETALE HOMOTOPY THEORY 7

Definition (x.1). — Let f:X->Y be a (pointed) map of schemes. Define J,
to be the following category: the objects of J; are pairs U,—»V, with V_ in Jy, U, in Jy,
and the induced simplicial map ﬁ_—ﬁ,;gx in Jx (.., special); a map

(S O
V=
V. V.
in J; is a pair of maps, V.-V, in Jyand U.-»U,xV’ in Jx.
v. :
A connected category J is said to be codirected provided that any diagram >k
J

7 L2
J

A codirected category J is said to be cofiltering provided that for any pair of
maps j=Xk in J, there exists a map ¢—j in J such that the compositions i—j=k are
equal.

We proceed to relativize Verdier’s proof that Jx is codirected and Ho Jx is
cofiltering ([3], V, App.).

in J can be completed to a commutative square Z

Proposition (x.2). — Let f:X—>Y be a (pointed) map of schemes. Then J, is
codirected.

Proof. — J,is connected : for given U —-V/ and U,-V, inJ;, then U’ ><U —>V'><V
is in J; and the projection maps are maps in J;.

Let the diagram

in J; be given. Then U"><U - V"><V is in J; and the projection maps are maps

in J;, as can be 1mmed1ate1y checked using the following sublemma.
Sublemma. — If

is a commutative diagram in A®(Et/X) such that U.—>W. and U,~U.xW, are special,
then U xU, > W/ xW, is special. W
T, W
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8 ERIC M. FRIEDLANDER

Proof of sublemma is immediate upon observing that the maps

U'xU,->U'x(U.xW) and U'x(U ><W )=U" Z< - W/XW,
Ul ue w. o W, w. we
are special.

We denote by Ho J; the « homotopy category * of J;: the objects of Ho J; are those
of J;; a map in Ho J,is an equivalence class of maps in J;, where the equivalence relation
is generated by doubly commutative squares

U =T,
[
V.V,

connected by a ¢ categorical homotopy of pairs ’: namely, a commutative diagram

UxA0 — T,
l l
v:%;A[I] — V.

such that U:>}§A[1] — U, is a categorical homotopy in A°(Et/X), V' xA[] -V, isa
categorical homotopy in A’(Et[Y), and U:>)§A[x] -V >éA[I] is induced by U!-V..
Employing the techniques Verdier used to prove that Ho Jx is cofiltering, we shall
verify that the “ relative homotopy category > Ho J; is likewise cofiltering.
Given U, and U, in A°(Et/X), define the contravariant set-valued functor
Hom, (U, U,) on A’(Et/X) by

Hom, (U7, U,)(U.") = Hom(U. x U, U))

for any U’ in A°(Et/X). If Hom, (U/, U)) is representable as a simplicial scheme

in A°(Et/X) (also denoted by Hom (U, U))), then
Hom (U, Hom, (U, U))=Hom(U, x U, U)),

the usual adjoint relation between Hom(, ) and categorical products. Observe that
Hom,y(A[n], U,)=TU, and Hom,(sk,_ ,A[r], U)=(cosk,_,U,), for any U, in A°(Et/X)
and integer z>>o.

If S, is a simplicial set with finitely many non-degenerate simplices, Hom,(S_, U))
is representable for any U, in A°(Et/X) ; for each >0, Hom, (S , U )=Hom, (@)}gg, ,U)
is a finite projective limit of components of U, occurring in dimensions <n-m, where m
is the maximum of the dimensions of the non-degenerate simplices of S. In particular,
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FIBRATIONS IN ETALE HOMOTOPY THEORY 9
categorical homotopies into U, are represented by the simplicial scheme Hom, (A[1], U,).
If U, in A°(Et/X) is pointed by u, then Hom (A[1], U)) is pointed by
sou ¢ Spec Q, — U, =Homy(A[1], U))
and represents pointed categorical homotopies into U.

The key step in Verdier’s proof that Ho Jy is cofiltering is the verification that
Hom, (A[1], U) —>I_J:>}§Uﬁ is special whenever U’ is a hypercovering of X. The following

lemma relativizes this result (which the lemma implies by setting U, equal to A[o]).

Lemma (1.3). — Let X be a (pointed) scheme and let U'—U, be a special map in
A°(Et/X). Then the induced map

Hom, (A[1], U) - (U xTU))

Hom,(A[1], U,)

u,)

Mx X

(U,
is special in A°(Et/X).

Proof. — In dimension o, Hom,(A[1], U!)=TU; maps surjectively onto

(Usx Ug) _x_ Homy(A[1], U)=(U;x ;) _x_ T,
X (Uo ;({Uo) X (Uo §Uo)
since U’—U, is special.

In dimension k>0, we use the notation *ck,U,” and “H, (U)” to denote
(cosk, _,U.), and Hom,(A[1], U,) respectively, for any U, in A°(Et/X). We must prove
that Hom,(A[1], U’)=Homy(A[k] xA[1], U) maps onto the following projective limit:

ckH, (U7) X (UixTy) _x_ H(U).

el(UixTl)  x  okygH(T,) X (T §Uk)

X
X ckk(ﬁ.§ T.)

We shall denote this projective limit by P,.
Let M, denote the simplicial set defined as the fibre sum

(sk,_;A[k] X A[1]) (A[K] xsk,A[1]).

(skk_lA[kITL sko Al1])
M, — sk, (A[k] X A[1]) - A[k] X A[1] can be factored as
M, —»...—> M, =sk,(A[k] XA[1]) =... > My, =A[k] XA[1].
For 0<:<k, M,,, is obtained from M; by adjoining a k-simplex (so that
sk, _;A[k] — Al%]

M, —— My,
is co-cartesian) ; and for £<i<2k, M, is obtained from M; by adjoining a (k- 1)-simplex.

285
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10 ERIC M. FRIEDLANDER

For any U, in A°(Et/X), Hom,(M,, U )=ck,H,(U) x _(U,xT,). Therefore,
T X

P,=Homy(M,, U) x _Homy(A[k]xA[1], U,).

Homo(Mo, U,)

To verify that Homgy(A[k] xA[1], U!) - P, is surjective, it suffices to check for
each 7, 0<:<2k, that
Homy(M; , , U)) > Hom(M;, U)) __x _ Homy(M,,,, U))
Homo(M3, U,)
is surjective. This follows directly from the hypothesis that U’—U, is special and
from the fact that M, , is obtained from M; by adjoining a simplex to its skeleton.
The following proposition verifies that Ho J; is a good relativization of Ho Jx.

Proposition (x.4). — Let f:X—>Y be a (pointed) map of schemes. Then Ho J, is
cofiltering and the source and range functors, s:Ho J;—~HoJx and r:Ho J,—~HoJy, are
cofinal.

Proof. — Provided that Ho J; if shown to be cofiltering, cofinality of the source
and range functors is easily checked. One simply observes that 1f U —»s(U,»V) is
a map in Ho Jx then there is a natural lifting

u
!

<l < cl

Vv

to a map in Ho J;; similarly, if V:—r(U,—-V)) is a map in Ho Jy, then there is
a natural lifting

U,xV. T,
V.
=
v v

To prove that Ho J; if cofiltering, let

o~
.

=

<< al
<l < Cl

* ~

be two given maps in Ho J;,. Define

U’ Hom,(A[1],U) x U

V- s

V' Hm@OL,V)_x V.
V.év.
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FIBRATIONS IN ETALE HOMOTOPY THEORY 11

Since the compositions

T U' T,

=

vov v
are clearly equal in Ho J;, it suffices to prove that U.—>V.’ is an object of Ho J, and
that the projection map

is a map of Ho J;.

By Lemma (1.3), Hom,(A[1], V) —>_\7_>év. is special; therefore, V>V’ is
special and consequently V!’ is an etale hypercovering of Y. One readily checks that
Hom,(A[1],V, X X)=Hom,(A[1], V) >§X. Hence, U/’ >V X X factors as the compo-

sition of the two maps

Hom,(A[1],U) x_ U.—s Hom,(A[1], V.xX) x UxU, x U
U, xU, Y (V. xV,) xX X U, xU,
X Y Y X
Hom (A[1], V,xX) x U,—> Hom,(A[1], V,xX) x VixX
Y (V, x V);; Y (v,§v,)§x Y

Using Lemma (1.3), we conclude that U’ —>V:’>§X is special.

In order to prove that

’

4

o ~

—
pr

<+~ g
<~

o~

’

is in Ho J, it suffices to prove that U, - U ><V" is special. This is immediate from
Lemma (1.3).

We remark that the range functor r: J;—Jy is fibrant, with fibre above V, denoted
by J;v. ([8], VI.6.1). Let HoJ;y denote the homotopy category of J;y whose
homotopy relation is generated by pairs of maps in J, g, related by a categorical
homotopy
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12 ERIC M. FRIEDLANDER

With notation as above, the two compositions

UxV. U T,

v —

y— o
v V. v

are equal in Ho J; 5, where g, ¢’ are objects in J; 3, and where V.-V’ is the canonical
map. Thus, HoJ; 5, is cofiltering.

Given a scheme Y, let ET/Y denote the category whose objects are pointed,
connected galois covers A :Y'—Y (&' is finite, etale and Y’>§Y'=HY') and whose

maps h''—Fk' are commutative triangles. Since there exists at most one map A" —A4’
between objects of ET/Y, ET/Y is cofiltering. Recall that the Grothendieck funda-
mental group ,(Y) of Y is the pro-group {Gal(Y'/Y)}gry; thus, the cokernel of
7w (Y')—»>ny(Y) is Gal(Y'[Y), for Y'—Y in ET/Y. (For details, see [8].)

Given a pointed map f: XY of schemes, we define the category J7 as follows.
An object g’ : U/ >V’ of J> is an object of J;,, for some 4" :Y'—Y in ET/Y. A map
g’'—g in Jr is a map g"—>§’§<,Y” in J;,». The homotopy category of Jz is

denoted Ho J7: a map g”"—g’ in Ho J; is a map g"—»g'%gY" in Ho J;, .

Corollary (x.5). — Let f:X—Y be a pointed map of schemes. As defined above,
Jf is codirected and Ho J; is cofiltering.  Furthermore, J; and Ho Jr are fibre categories over ET[Y,
with respective fibres J; . and Ho J; 5 over b in ET[Y.

Proof. — Products and fibre products exist in J; because they exist in ET/Y and
in each J;,, . The existence of coequalizers in each Ho J;,; implies the existence of
coequalizers in Ho J. By definition of J; and Ho J7, the inverse image functor exists:
sending Y'—Y’ in ET/Y to the functor g’ Hg_'§<’Y".

We conclude this section by remarking that if a functor ¢ : F-G is fibrant,

then lim=Ilim.lim on functors F°—(Sets).
7

2. Fibres of £,.

Having recalled the * extended homotopy categories  of simplicial sets, ¢ and
Ao, pairs ([4], § 1), we define the etale homotopy type of a map of locally noetherian
schemes, f, : Ho J, — A} ,i,- We introduce canonical maps (X)), — b(for) = b(feh)
between the ¢ geometric, > ¢ naive, >’ and ‘° homotopy-theoretic *’ fibres of f,,. We then
identify the map on cohomology induced by (X,),, —b(f,). In subsequent sections,
we shall study the map §H(f,,) = H(/%)-

Given a locally noetherian scheme U, we denote by =n(U) the set of connected
components of U. If U, in A°(Et/X) is a simplicial scheme over a locally noetherian
scheme X, then we denote by =(U,) the simplicial set given by =(U,),==(U,). Clearly,
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FIBRATIONS IN ETALE HOMOTOPY THEORY 13

the association of =(U,) to U, is functorial on A°(Et/X) and sends categorical homotopies
to simplicial homotopies.

We recall the following * extended homotopy categories ” #; and #} ,.;,, Which
are geometrically realized as the homotopy category of pointed C-W complexes and
the homotopy category of pointed pairs of G-W complexes. Let Ex®( ) denote the left
adjoint to the inclusion functor of the full subcategory of Kan complexes in the homotopy
category of simplicial sets [10]. Then %, denotes the category whose objects are
pointed simplicial sets S,, and whose maps from S, to T, are homotopy equivalence classes
of pointed simplicial maps S,—~Ex®(T,). The objects of £; ., are pointed simplicial
maps S,—T,; the maps of #; ,, are equivalence classes of pointed commutative squares

S, —— S,

! !

Ex*T, — Ex*T,

where the equivalence relation is generated by doubly commutative squares connected
by a pointed homotopy of pairs.

Definition (2.x). — The etale homotopy type of a locally noetherian, pointed
scheme X is the pro-object in pro-X,

Xet : HOJX g ‘9{(‘)

induced by the connected component functor.
The etale homotopy type of a pointed map f:X—Y of locally noetherian schemes
is the pro-object in pro-J ...

Sus : Hojf—>91")

induced by the connected component functor.

, pairs

We remark that Proposition (1.4) implies that f,, determines a map X,—Y,,
in pro-X,.
Given a simplicial map f:S,—T, of simplicial sets, we functorially associate a
commutative triangle
S, ——>§"

N

such that the inclusion S,—S’ is a weak homotopy equivalence and such that f7 is
a Kan fibration ([7], VI). Furthermore, given a categorical homotopy of pairs

S'XA[1] —> 8,

| !

T'xA[1] — T,

289



14 ERIC M. FRIEDLANDER

there is induced a categorical homotopy of triangles

S, xA[1] > S,
SN (syxan —Ss;
T/ xA[1] > T,*/

This “ fibre resolution functor ” therefore induces functors J§ .o —> Hg e and
Pro"%/(‘), pairs ~> pro"%(;, pairs *

Given a pointed simplicial map f:S,—T,, let BH(f )=S,%<t be the pointed
fibre over the distinguished point ¢ of T. This definition determines a functor

b : pro-#; L. —> pPro-A#y.

, pairs

The following proposition introduces the various fibres associated to f,.

Proposition (2.2). — Given a pointed map f: X—Y of locally noetherian schemes, with
geometric fibre 1 : X, —X. Then there exist canonical maps in pro-A,

(Xy)et = B(fer) > H(Se0)

JSrom the < geometric fibre > to the “ naive fibre> to the * homotopy fibre > of f,.. Furthermore,
these maps fit in a commutative diagram in pro-A:

(Xy)et Hb(\fet ___>I)(fet)

N/ /

X ————> X",

Proof. — The map H(f,,) >bh(f%) is induced by the natural map in pro-X,
f t et — —_—

To define (X,),;—>b(f,) in pro-¥,, we associate to each object U,—~V_ in Ho J;
an etale hypercovering of X,, which we denote by ¢(U,~V,), and a map
w(o(T, »V.)) > b(=(T, -~ V.)). B

Given U,—V,_ in HoJ;, we let v denote the trivial simplicial sub-object of V,

generated by the distinguished component » of V,. We observe that U,x7 > osxX=u
V. Y

is special and that §(=(U, - V,))==(U, >< 7). We define ¢(U,-V,) tobe U, >< v ><X,

, pairs ?

and define =(e(U, »V,)) - h(=(U, ——>V )) to be the map induced by the s1mpl1c1al
map U ><U><X,—>I—J X7
A7
If _
u. U
V=
N
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FIBRATIONS IN ETALE HOMOTOPY THEORY 15

is a map in J;, then

(U, > V)=U/x9'xX, > U xix0'xX,=U,x1xX,=¢(U, >V,
\A u' V. % u' V., u

is a map in Jx (i, special) and
n(e(T. — V1)) — bh(=(U:

! l

(90, — V) — h(x(U, — V)

commutes. Thus the pairs 7(¢(U, >V,)) > h(x(U, »V,)) define a map (X))et = b(for)-

The maps B(f,)—>X, and H(f}) =X}, are given as the compositions
b(fer) >sofs =Xy, and H(f5) >sofi =X, (where s :Hf i — H, is the “ source ”
functor). We must check the commutativity of the square

(Kot — (/o)

! l

Kot —> $9f

The composition (X),, - X, = sof,; in Ilfir_? Hl% [x(W)), s(=(U,-V,))] is given by
_ _— 0 f 0 Xy
pairs =(U, XX,,) —n(U,); whereas the composition (X,),, — b(fy) = sof; is given by

pairs =(U, ><v><Xy) - =(U,).

To check that these pairs determine the same map (X,),, —> sof,, we observe

that U,x7 ><Xy—> U, factors through the simplicial (though not special) map
V.

U,xoxX,—~ U ><Xy of etale hypercoverings of X,. Let W, be the product in Jx,

<I
e

of U, XEXX and U XXy As in Proposition (1.4), we find W.—->W, in Jx, with

<

W —>W =2U, ><Xu categorlcally homotopic. Hence, the pairs =(U, >}§Xv) —n(U,) and

n(U, X7 ><X7,) — n(U)) induce homotopic maps =(W') — =(U).
V.

In order to verify that U, becomes  arbitrarily fine ” for U, in Ho Jx, we verify
the following lemma (asserted in [3], V, App.).

Lemma (2.3). — For any scheme X and any integer p>o0, there exists a functor
R?() : (Et/X) — A°(Et/X) satisfying:

a) RP() sends surjective maps to special maps.

b) R®() is right adjoint to the functor sending U, to U,.

c) If U, is A(Et/X), Z—U, is a map in (Et/X), and U,=T, X R¥Z), 1
pr, : Uy—>U, factors through Z—TU,. RIGy
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16 ERIC M. FRIEDLANDER

Proof. — Define t(p, m) to be the set of non-decreasing maps from {o, ..., p} to {o, ..., m}
for any m>o. The ¢(p, m) naturally determine a co-simplicial set, denoted y(p), with
v(p)"=t(p, m). We define R?(Z) to be the composition of y(p) : A’ — (Finite sets)®
with the functor =, : (Finite sets)® — (Et/X) given by sending a set S to the fibre
product over X of Z with itself #(S)-times.

For any m>1, (cosk,_;R?(Z)), is the fibre product over X of copies of Z
indexed by ‘ deg™(v(p)),” those co-simplices in the image of y(p)" ! under some
co-face map. Hence, R?(Z),, — (cosk,,_,R?(Z)),, is surjective, arising from an injec-
tive map of indexing sets deg™(v(p))—>v(p)". We may thus readily check that

RL(Z') > (cosk, _,R¥(Z)), X, REZ)
(coskm—1R(Z)m
is surjective whenever Z’'—Z is surjective and m>o0; thus, @) is valid. Namely, let
any geometric point
x>y<z : Spec Q — (cosk,,_R?(Z")),, X R2(Z)

(coskm—1R(Z)m
be given; we lift xXz to xXw :Spec Q — RE(Z’) by defining w to be some lifting of
Y

those factors of z : Spec Q — R?(Z) not determined by y : Spec Q — (cosk,, _;R?(Z)),,.
To check 4), let f: U,—~Z in (Et/X) be given. Define U,—~R?(Z) by sending U,
into the factor of (R?(Z)), corresponding to &o...d0c%o.. .6 : A[p] = A[p—t] — A[k]
via the composition fos;o...050d, 0. . .0d; : U,—~U,_,~U,—~Z. One may readily check
that this establishes a 1—1 correspondence between Hom(U,, Z) and Hom(U,, R?(Z)).
To check ¢), observe that the projection map pr, : U,—U, factors through
any factor U,XZ of U;. Yet the factor corresponding to the identity map in y”
Up

equals Z, since U, into the factor of R2(U,) corresponding to the identity map is the
identity.

The following proposition explicates the map on abelian cohomology induced
by (X)e—>b(fi). A similar statement can be made for non-abelian finite groups G
and integers p=o,I.
Let X be a scheme and let F be an abelian sheaf on the etale site of X. We recall
the Verdier isomorphism
lim H?(U,, F) 3 HY(X, F)
Hodx
where H*(X, F) is the etale cohomology of X with values in F, where U, runs over etale
hypercoverings in Ho Jyx, and where H*(U,, F) is the cohomology of the cochain
complex F(U,) ([3], V, App.; or see Proposition (3.7) below). In particular, let A
be a locally constant, abelian sheaf on the etale site of a locally noetherian scheme X,
with corresponding local coefficient system on X, also denoted by A ([4], § 10). Then
H*(X,;, A)=£r? H'(=(U,), A)=Ilim H'(U,, A) 3 H'(X, A).
HoJx Ho Jx
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FIBRATIONS IN ETALE HOMOTOPY THEORY 17

Proposition (2.4).— Let f: XY be a pointed map of locally noetherian schemes, with geo-
metric fibre i : X, —X. Let A be a locally constant, abelian sheaf on X. Then for each p>o,
there exists an isomorphism

B?(b(fer)s A) = (RPLA),

which fits in the commutative square
B (h(fu) A) 5 (R7AA),

! !

HP((X)et, 7A) = HI(X,, ©°A)

where the left vertical arrow s induced by (X))o, —D(fs1), the right vertical arrow is the cano-
nical map, and the bottom arrow is the Verdier isomorphism.

Progf. — We recall that if U, is an etale hypercovering of a scheme Z, if F is a sheaf
on the etale site of Z, and if F—I" is an injective resolution of sheaves, then the spectral
sequence of the bicomplex I*(U,) can be written

Ef=H*(U,, #(F)) = HY(Z, F),
since U, is acyclic at each geometric point of Z. The association of
9(U, - V,)=U,x7xX,
V., u

in Ho Jx, to U,-V, in Ho Jy induces a map of spectral sequences:

Ep¢=lim H?(U,x 7, #*(F)) = lim H¥oxX, F)
Hody V. my Y

‘Ep o= lim HY(W,, #9('F)) = HY(X,,'F)

Ho JXy

The map on abutments is precisely the natural map (RMAF), — HY(X,,'F).
Taking F equal to A, we obtain Ef°=H’((f,,), A) and 'E}°=H?((X),, A); more-
over Ef°—'E° is induced by (X,);—Dh(f;;). The Verdier isomorphism is the edge
homomorphism of the ‘E”¢ spectral sequence. If we define H?(§( f,;), A) - (R?£A),
to be the edge homomorphism of the E”? spectral sequence, the square

H*(h(fer) A) — (RPAA),

HP((X))et> 'A) —> H(X,, "A)

commutes, for any p>o.
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18 ERIC M. FRIEDLANDER

To show that H?(h(f,), A) = (R?f,A), is an isomorphism, it suffices to verify
that Ep?=o0 for ¢g>o0. Let ¢>o0 be given and let ¢ be a cohomology class in
H*(U, >< v, #(A)), represented by a cocycle ¢ in #7(A)(U, >< v),. Let¢ in s#7(A)(U,)

be the cocham obtained from ¢ by extension by zero. Smce HU(A) vanishes at every
geometric point, there exists an etale surjective map Z->U, such that ¢’ goes to o in
H#(A)(Z). By Lemma (2.3), the special map U'=RP?(Z) x U, — U, satisfies the

RE(Tp)
condition that U,—U, factors through Z—U,. Hence, ¢ in Hq(U ><v H1(A)) goes

to 0 in Hq(U'xv %Q(A)) Thus Er?=o for g>o.

3. The Simplicial Leray Spectral Sequence.

In this section, we study a naturally constructed spectral sequence EP (g, A)
associated to a map g : U,—V, of simplicial sets and to a local system A on U,. After
checking functoriality of this construction and after verifying that E” (g, A) is the usual
Serre spectral sequence whenever g is a Kan fibration, we proceed to identify E”¢( f,,, A)
for f:X—Y a (possibly pointed) map of locally noetherian schemes and A a locally
constant, abelian sheaf on X. Theorem (3.9) asserts that E»?( f,,, A) takes the form
of the Leray spectral sequence. This ¢ simplicial Leray spectral sequence” is by
construction readily compared to the Serre spectral sequence for f, E»4( f7., A).

For notational convenience, we shall denote sk,_,A[p] by sk(p).

Construction (3.1). — Let g : U, -V, be a map of simplicial sets and let A be a
contravariant local system on U,. We construct a spectral sequence

Ep4(g, A)=H""4(g7 V), £7'V(,_y3 A) = HPF(U, A)
where V) denotes sk,V, and where g~*V,,, denotes V(p)%;U, .

Namely, let A(U,) be the complex of cochains on U with values in A. Define a
decreasing filtration on A(U,) by FPA(U,)=ker(A(U,) - A(g"'V(,)). We obtain a
spectral sequence (EF¢, d;) with EP¢=F?~'A?*+¢(U ) /FPA?+4(U)) and d,: El?—>EP?*!
the differential of F?~*A(U,)/FPA(U,). Equivalently, d,: E}?—E?*! is the differential
of ker(A(g™'V,) = A(g™'V,_y))-

Taking cohomology, Ef?=H?*4(g~'V,, &'V, _,; A) and d, : E)?>E}*™? is the
connecting homomorphism in cohomology for the short exact sequence

0>A(g7 Vi, 11y g_lv(p)) —A(g Vi1, 8 Vipy) —’A(g_lv(p) , 8 'Vi,_q)) —>o0.
The following lemma explicates the functoriality of E* (g, A) as constructed above.

Lemma (3.2). — Let
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FIBRATIONS IN ETALE HOMOTOPY THEORY 19

be a map of simplicial pairs, let A be a (contravariant) local system on U, , and let G*A—A’
be a map of local systems on U .

Then G induces a map EP4(G) : EP (g, A) — EP (g, A').
Let

U'xA[1] -2 U,

[P

V/xA[1] 2

be given together with a map k' A—priA’ of local systems on U.XA[1]. Then the induced
maps EP (g, A) Z EP (g, A’) are equal, beginning with the E, term. Furthermore, let

U'XA[1] —> U,
la’xl la
V'xA1] 2> V.

be given together with a map h*A—priA’ of local systems on U:iXA[I]. Then the induced maps
E* (g, A) Z EPY(g', A") are equal, beginning with the E, term.

Proof. — To verify the first assertion, we observe that

U’ U,
ly’ —-G—> ly
\'%4 \Y

and G*A—A’ induce maps of filtered, graded complexes:
F(A(U,)) = F(G'A(U))) — F/(A'(UT))).

The homotopy £ :U.XxA[1]—U, covering the trivial homotopy induces homo-
topies g'~'V, XA[1] > g~ 'V,,. Therefore, the maps

Alg™ Vi, & Vip—n) > FA((g' X )7 Vi (8'% 1)—1V(p_1))

— priA’((g' X 1) V), (€' X1) TV, ) T A7V, g7V _y)
are homotopic.

Finally,

U'xA[1] 2> U,

lg' x1 lg
V'xA[1] = V,
restricts to give homotopies

g7 Vi X Al1] > g7V, 1y,

Represent an element x of Ef»%(g, A) by a cocycle in

Zp(g, A)= Im(Hpﬂ(g‘lV(pH)s g_lv(p—l); A) - Hpﬂ(g_lv(p), g_lv(p—l); A))
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20 ERIC M. FRIEDLANDER

We must show that kj(x)—Aj(x) lies in

B ?(g', A') = Ker(HP*4(g' " Vi), &7 Vip_qy3 A') - HPF(g 71V, g7V, )5 A)),
where h;=hoe;: U, - U.XxA[1] > U,. This follows from the observation that the maps

A(g Vg 8 WVipoy) = BA(E ™ Vi x Al1], g7V, _gyx Al1])
—= priA' (g7 Vi X A[1], g7 Vi, _y X A[1]) T A(&7 Vi, &7 Vp_y)

are homotopic.

The application of Lemma (3.2) which we envisage is the following: A is a locally
constant, abelian sheaf on X and f:X-—->Y is a map of locally noetherian schemes.
We observe that A determines a local system on U,==(U,), U, in Jx, whenever A is
constant on each component of U,. Furthermore, if g’—g is a map in J;» then the
local system on U’ determined by A is simply the pull-back of the local system on U,
determined by A. By an abuse of terminology, we shall denote by A each of these local
systems determined by the sheaf A.

In the following proposition we verify that E”%(g, A) for a Kan fibration g is the
cohomological Serre spectral sequence for g and A. We first observe the following useful
fact. Let g:U,—»V, be a map of simplicial sets and let A be a local system on U,.
For each simplex v of V, let

g"(v)=U.g,fA[P] and  g7!(8)=U,xsk(p),

v.
where A[p]—V, is given by v. Since
(€ Vi & Vip—y) ~ %(g_l(v), §7(@))
is an excision map, we have

%H'(g_l(v), g0); A) 3 H (g7, £ V,_y); A)
where V! consists in the non-degenerate p-simplices of V.

Proposition (3.3). — If g :U,—-V, is a Kan fibration and if A is a local system on U,
then EP9(g, A)=Iv1Hq(g‘1(v), A) and (E,, d,) is the complex of normalized cochains on V,
with coefficients in the local system v HY(g7(v), A).

Hence E2 g, A)=H"(V,, v HY(g '(v), A)) = H?T¢U , A).

Proof. — Since g is a fibration, g contains a Kan fibre bundle % as a strong
deformation retract over each connected component of V, ([16], (11.12)). Hence,

g Yv)—>A[p] is fibre homotopy equivalent to a product A~ *(2)=FxA[p] - A[p].
Therefore,

HP (g7 (2), g71(9); A) 5 HPT4(F X (A[g], sk(p)); A) & HI(F, A)
S HY(FXA[p], A) & H(g7'(v), A).
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FIBRATIONS IN ETALE HOMOTOPY THEORY 21
Furthermore, g~'(d;v) > g '(v) and g '(52) > g '(v) may be viewed as
FxA[p—1] % FxA[p] and FxA[p+1] 3 FxA[p];

thus, H*(g7'(2), A) 3 H*(g7*(dp), A) and H*(g7'(),A) 3 H'(g7*(52), A). We conclude
that v H(g"*(v), A) is a covariant local system on V, (cf. [7], App. 11, (4.6) for more
details).

As remarked in Construction (3.1), 4, : EP%(g, A) - Ef+t19(g, A) is the connecting
homomorphism for

0> A(g  Vipi1, 8 Vi) > Al Vi i1y & Vipoy) > Alg™ Vi 87 Vip_y) —

To identify d; into some factor H(g"'(v), A) of EP*1:9(g, A)=vﬂ HY(g(v), A), it
b+l

suffices to examine
0> A(g7(v), £71(9)) > A(g™ (v), £7(¥)) > A(g™1(9), g '(¥)) > 0

where g~1(#)=U ><A[p+1](p —1)
In this case, a cohomology class o in

HP+9(g=1(5), g7'(1); A)= HP* (g7 (d;v), g7 (d;1); A)

0<t<P+1

goes to So=X(—1)'gc in HPT2+1(g=1(), g~1(3); A), where ¢, is defined by extending

a cocycle sin AP*%(g7'(d;v), g7*(d;v)) to some cochain ¥ in A?*%(g~'(v), g7(d;v)), then
restricting 9,5 to a cocycle in AP*?*+!(g=1(y), g71(7)). Replacing g~*(v) by a strong
deformation retract FXA[p], we readily check the commutativity of

H? (g~ (dpv), g~ Y(d); A) —2> HPFa+(g71(y), g71(d); A)

Hi(g™!(div), A) «——— Hi(g7'(2), A)
where the bottom row is induced by g=!(d;v) - g~ (v).
We conclude that d, :HH“( 1), A) - H Hq( ~1(»), A) into some factor
HY(g (), A) is Z (—1)} 3oprd,,, where the sum 2 is taken over these i, 0<i<p-1,

with dyp in V. Hence {HH" g (v), A), d} is the complex of normalized cochains
on V, with coefficients in » H H(g™(v), A).

The map of spectral sequences EP¢( f7, A) - E??( f,,, A) will be our main tool
in comparing the cohomology of H( f};) and H( f,,)-
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22 ERIC M. FRIEDLANDER

Proposition (3.4). — Let f:X—>Y be a (pointed) map of locally noetherian schemes
and let A be a locally constant, abelian sheaf on X. For each g:U,—~V, in Jr with A constant
on Uy, Construction (3.1) provides a map of spectral sequences

E? (g, A) > EP (g, A)

with common abutment, where g" : UT—>V_ is the fibre resolution of g : U, —V,.
Therefore, we obtain a map of spectral sequences with common abutment:

EP(fo, A)=lim H(V,, v —— H(¢"'(v), A)) = HF*{(X, A)
HoJdf

ED?(for, A)=lim H'(H?* (g™ V), g7V, _y)5 A)5 dy) = HPU(X, A)

HoJy
Proof. — By Lemma (3.2), the commutative triangle

U———>U

N\

A"

induces the map E”%(g", A) - E”?(g, A). Since homotopies in Ho J; give homotopies
of pairs of simplicial sets, the limit spectral sequences beginning with the E, term are
well-defined by Lemma (3.2). By Proposition (3.3), EJ?( f%, A) has its stated form.
Finally, the abutment lim H'(U], A)=lim H*(U,, A) is isomorphic to H'(X, A)

HoJf HoJf

by Verdier’s theorem ([3], § V, App.).

Since any etale map of schemes U-—>X with section s:X-—>U splits as
(U—s(X))uX—->X, U, in A°(ET/X) admits a unique splitting ([4], § 8). Hence, U,
is a disjoint union of copies of U}, the non-degenerate part of U, for 0<k<n.

Lemma (3.5). — Let Y be a locally noetherian scheme, let V, be a simplicial scheme in
A°(Et/Y), and let V,==(V,). For each simplex v of V, of dimension d, corresponding to a
map v :A[d]—>V,, there exists a unique map S(v) -V, in A°(Et]Y) satisfying:

a) S(v) >V, is componentwise the identity; and

b) =(S(v) - V.)=0v : A[d]—>V.

Furthermore, let f:X—>Y be a (pointed) map of locally noetherian schemes and let
Z:U, -V, be an object of J,. For each d-simplex v of V,, define §=*(v)=U_XxS(v) and
g7 10)=TU,xsk,_,S(®). Then n(g~(v)) equals g~(v) and v

v,
©(g "} (0), £7(9))=(g""(v), £7*(9))-
Therefore, for any locally constant, abelian sheaf A on X which is constant on Uy, H'(g™1(v), A)
equals H'(g(0), A) and H'(g*(0), &(3); A)=H'(ker(A(g~1(0) > A(Z~1(4)))) equals
H'(¢g7'(0), 77(9); A).
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Proof. — Properties a) and b) serve to define S(v)—V,. The equalities
n(g™ (v))=¢g*(v) and w(g"'(v), g '(9))=(g"*(v), g~ *(¢)) follow immediately from a)
and ), and directly imply the equalities
H'(g7'(2), A)=H(¢7(2),A) and  H'(g7'(2),57'(9); A)=H'(g"'(0), £ '(7); A).

We proceed to analyze E}9( f,,, A).

Lemma (3.6). — Let X be a scheme and let U,—~A[d] be a special map in A°(Et/X).
Let ¥ be an abelian sheaf on X and let ¥ —1I1* be an injective resolution of sheaves. Then the
bicomplex
ker{I*(U,) - I'(U, x sk(d))}
Ald]
yields the spectral sequence

EP t= (ker(#7F(U,) > #'F(U, x sk(d)))), = H?+1-4(X, F).
Ald]

Proof. — Given a scheme W etale over X, we denote by Zy, the abelian sheaf on X
given by Hom(Zy, F)=F(W), for any abelian sheaf F on X. We first verify that

H,(Z5 /Z5, « wm)=(Zx, d), the complex of sheaves which is Zy in dimension 4 and o
i
elsewhere. It suffices to prove that the canonical maps

Z; |Zg, « a@ > LZag/ L > (Zx, d)
A
induces isomorphisms H,(Zg [Zg, « ). —~ (Zx, d), at every geometric point x of X.
A

Since U, ><x — A[d] and U, X sk(d) Xxx — sk(d) are special maps in A° (Sets), these are

Ald] b'e
fibrations w1th contractible fibre. Therefore, the maps

H.(Zg,/Z5, x w@)e=Hu(Z5, x2/Z5, x waxa) = Hu(A[d], sk(d)) =(Zy, d),

At X A@ X
are isomorphisms.
We observe that ker(I'(U,) - I*(U, (d))) equals Hom(Zg |Zg , w5, I')-
Therefore, A[d] Al
HY(H? (ker(I'(U,) — I'(U, X sk(d)))))
A[d] . H/(X,F) if p=d)
= H*(Hom(H,(Z5, « m@), I'))=

A o P+ ds
so that the total cohomology of the bicomplex ker(I*(U,) — I*(U, >< sk(d))) equals
H' 94X, F).

Since U, X sk(d) - U, is componentwise the identity map,
Ald)

He(ker(I"(T,) - I'(T, x 5k(d)))) = Hom(Zg Zs, . @ #7(F))

Ald) Aldl
equals ker(#(F)(U,) — #4(F)(U, x sk(d))).
Ald]
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The proposition below relativizes Verdier’s theorem (which can be obtained by
setting d=o0, V,=A[o], and f=id : X->X).

Proposition (3.7). — Let f:X—>Y be a (pointed) map of locally noetherian schemes
and let F be an abelian sheaf on X. Then for any V, in Jy, all d, ¢>o0

lim ITH**1(g74(0), g7'(9); F) > L HGox X, F).

Holy, Vd

Proof. — Let P be an abelian presheaf on X which commutes with direct
sums: P(UnW)=P(U)xP(W). For any vin V;, ker(P(z~(v)) - P(g~'(9))) equals
ker(P(g~'(v) x A[d]xv) - P(g~(v) x sk(d) Xv)), since the components of g~*(v) not in

S(o) Y S(o) Y
g7 1(9) are exactly the components of g~ !(v) X A[d]xv notin g7 '(v) X sk(d) xv. Let

S(v) Y 8(v) Y
F—I'* be an injective resolution of abelian sheaves on X. Applying Lemma (3.6)

with X replaced by »x X and U, replaced by g~ *(v) X A[d]xv, we conclude that the
Y S(v) Y
spectral sequence for the bicomplex ker(I*(g~(»)) - I'(g7*(?))) can be written

EP (8, F, v) = (ker(#F(g7"(2)) > #F(g77(9)))), = H* (0 XX, F).

We define the map IITH?*+¢(g=(v), g7(3); F) —>11H9(v>éX, F) to be the edge
Vd Vd
homomorphism of the product spectral sequence IIE™%(g, F,s). Since homotopies
Va

in J, 7. between g’=3g induce homotopies between #?F(z~'(v)) = #*F(g'~'(v)) and

HF(g71(5)) = #'F(g'~4(9)), IIEP9(g, F,0) is functorial on HoJ, 5. Moreover, if
Vd .

g'—g isamapin J,5 and 2€V;, then

&7 (v) X Ald]Xv — g7'(v) X A[d]Xv and g ~'(v) xsk(d)xv — g '(v)xsk(d) Xv
S(v) Y 8v) Y ) Y Y

EW%?U sk(d)>év

commute; hence, g’—g induces an isomorphism on abutments for

IIE? (g, F, v) - IIE» (3", F, v).
Va Va

It suffices to prove that lim IIEP¢(g F, »)=o0 for ¢>o in order to complete the
Hols v, Va4

proof. Let X«, be an n-cochain in gker(%qF(g_l(v)) — #F(g~%(9))). For each «,in
d
ker((#7F (27" (0)) > #F(g7(9))))=o"F (g (2),—5 (),

let ¢@,:W,—>g (v),—g *(¢), be some etale surjective map such that ¢}(«,)=0 in
H#TF(W,). Since g7(v),—g 1(¢), embedsin U,=s(g), such that g7*(v),—g*(¢), and
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& Yv'),—g '(v'), aredisjoint for ¢’ in V7, e, extendsto an etale surjective map
¢ : W=(uW,)II(U,—g*(V{),) - U,, where g7*(V;), consists of the components of U,
\Z]

mapping to some non-degenerate component of V; .

Using Lemma (2.3), find a special map ¢ : U'—U, such that U,—U, factors
through ¢ : W—U, and let g’ :U.—»V, be the composition go¢. By construction,
$*(Xe,) =0 in IVIE{”“(E', F, ) =1v1k€r(qu(§"1(v) — A#F (g 7(5))).

d d

As an immediate corollary of Proposition (3.7), we obtain the following comparison
of simplicial and algebraic cohomology.

Corollary (3.8). — Let f:X—>Y be a (pointed) map of locally noetherian schemes and
let A be a locally constant, abelian sheaf on X. For all V, in Jy, all d,q>o0

liﬂll H'* (g7 Vg, 87 Vg1 A) 3 qu(wéX, A).
HOJf’V_ d
Proof. — By excision, Hd“(g—lV(d),g‘lV(d_l);A)=1_!Hd+”(g‘1(v),g‘1(zi);A).
Apply Proposition (3.7%). Ve

Corollary (3.8) enables us to interpret E”¢( f,,, A) as a simplicially derived Leray
spectral sequence, as explicated in Theorem (3.9) below. In conjunction with Pro-
position (3.4), this enables us to readily compare the Leray spectral sequence with
the Serre spectral sequence for f;.

Theorem (3.9). — Let f:X—>Y be a (pointed) map of locally noetherian schemes and
let A be a locally constant abelian sheaf on X. For the spectral sequence EPI(f,., A) of
Proposition (3.4), EB( f,., A) equals H?(Y, RYf,A).  Therefore, EP4( f,,, A) may be written

E»( f., A)=H?(Y, R, A) = HPT¢(X  A).
Proof. — As given in Proposition (3.4),
E3( forr A) =lii>n H' (H? (g7 V iy, 87 Vp_1y; A) 5 dy).

Ho Jf
Since J;—Jy is fibrant with fibre J; 3 ,

lim H*(H?* (g7 V), £V, _y); A); dy) =lim lim H'(H *4(g7'V,), £V ,_y; A); dy).

HoJr HoJy Holg 7,

As in Lemma (3.2), H'(g7'V(,), & 'V(p_1); A) determines a functor on Ho J; 7 ; thus,
ED4(fy, A) equals lim H*( lim H?*%(g™'Vy,), g7V, _y); A); dy)

HoJy HoJf,V.

By Corollary (3.8) :

—
HoJf, ¥,

lim EPe(z A) 3 ITH(r X, A).
»

301



26 ERIC M. FRIEDLANDER
Moreover, d; equals lim d,(g), where

HoJy, ¥,

4(g) : TH4(g7(0), 735 A) = T HPPer4(g™(0), £74(9); A)

is the coboundary map for
0—>A(g—1V(p+1), g_IV(P)) _>A(g—1V(P+1)’ g_IV(P—l)) —>A(g—1V(p), g—lv(p—l) —>0.

Let 3(g) be an “ un-normalized > restriction of d,(g):

8(g) : _II  HP (g™ (dp), g7'(dv); A) > HP ¥} (g™ (0), g7'(3); A).

Oisp+1
We view 8(g) as the coboundary in H*° cohomology for
0=>I'(g7%(2), £7'(3)) >T' (g7 (v), £ 1(¥)) >T'(g7'(4), g '(¥)) ~o0

where A—I* is an injective resolution of abelian sheaves on X. As checked in
Proposition (3.7), the associated E?? spectral sequences of these bicomplexes degenerate
in the limit at lim E?. Therefore, lim 3(g)=3 may be viewed as a map on abutments.
LY. -

Since the E?? spectral sequences for I*(g7(v), g7%(d)) and I*(g~'(d), g~ *(¥))

degenerate at the EJ'? level as checked in Lemma 3.6, we may view 3 as a map
II  HP(IY(Zg, ,x, p) > B (D(Z, (x, p+1)).
Y Y

0Sisp+1
We readily conclude that this map
I1 Hq(div§<X, A) - H“(v%{<X, A)

o<isp+1
is simply the alternating face map induced by the maps of schemes v—>d;v. For ¢ in
EH“(Z}’%}X, A), di6 in Hq(v>éX, A) s therefore the sum 2'(—1)'d’s, where the
P K3

sum is taken over those 7, 0<i<p+ 1, such that dv isin V.

We conclude that { lim HP*¢(g~'V,, g7'V,_;; A); di} is the normalized
Hols v, ’

complex of the co-simplicial group: nHHq(V,@;X, A). By Verdier’s theorem,
ED 9 f,., A) = !H’} H?(n->HY(V, X X, A)) equals H?(Y, R4, A): the cohomology of Y

Holy
with coefficients in the sheaf associated to the presheaf SHH“(S%(X, A).

We remark that E??( f,,, A) can also be written
EpY(fu, A) = lim H?(V,, 2RI A(0)) = HP (X, A),

HoJy

since Verdier’s theorem asserts that

lim H?(n+> HY(V, X X, A) equals lim H?(n>R? f.A(V,)).

HoJy HoJy
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4. Applications to a Proper, Smooth Map.

In this section, we apply Proposition (3.4) and Theorem (3.9) to the special case
of a proper, smooth, pointed map of noetherian schemes, f:X-—Y. The Zeeman
comparison theorem [15] enables us to compare the cohomology of the geometric
and homotopy theoretic fibres of f;;,. Under additional hypotheses on the fundamental
groups ,((X,),) and =,(Y,), we obtain the long exact sequence of homotopy pro-
groups asserted in Corollary (4.8).

If Y is a pointed, connected, noetherian scheme, the Grothendieck fundamental
group 7,(Y) of Y is the profinite completion of =,(Y,,) ([4], (10.7)). IfY is in addition
geometrically unibranched and if V, is an etale hypercovering of Y with V, noetherian
for each n, then =,(V,) is finite for all n>1 ([4],8§ 11). ForsuchY, =,(Y,,) is therefore
profinite; in particular, =, (Y,,) equals ;(Y).

We begin by observing (in Corollary (4.2)) that if f:X—Y is a pointed map
of locally noetherian schemes with Y noetherian, we need only consider those g : U,—V,
in Ho J, with V, noetherian for each #n>0. We shall frequently use this property of V,
to conclude that lim H(V,, A;) =H!(V , lim A)).

Proposition (4.1). — Let Y be a noetherian scheme and let V. —V, be a special map in
A°(Et[Y) with V, noetherian, n>o. Then there exists a map V. —V' in A°(Et[Y) such that
the composition V'' >N'—V_ is special and V! -V, is of finite type, n>>o.

Proof. — Let f:W—>Z be an etale, surjective map of schemes with Z of finite
type over Y. Since f: W-—Z is locally of finite type, there exists an affine open W,
of W which is of finite type over some affine open Z, of Z for every point w of W.
Since Z is noetherian, each Z,—Z is of finite type, so that W,—Z is likewise of finite
type. Since f:W-—Z is an open mapping, some finite union W’ of W, ’s satisfies the
condition that f(W’)=Z. We observe that W'—>W is etale and that the composition
W' >W-—Z is etale, surjective, and of finite type.

To obtain V!, we first apply the above observation to the map V;—V, to
obtain V;'. Having defined the £-th truncation, (V!)¥—(V!))® we obtain V;’,; by
applying the above observation to

vl,c+1 X (COSka:I)k+1 *vk+1 X (COSka:I)k+1)
(cosky Vg, 1 (cosk V,)k, 1

which is surjective since V; -V, ., X  (cosk,V)),,, is surjective. By construc-
(coskg V., )k, 1

tion, (V)®—(V/)® extends to (V)*+V—(V/)#+1 By induction, we conclude that

Viii=»Viee X (cosk,V!'),,, is finite type and surjective and V. ,—V,,, is of
. (coskkv.)]”l
finite type.

Given a pointed map f:X—Y of locally noetherian schemes with Y noetherian,
we define various codirected and cofiltering categories associated to f. Let '], be the full
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subcategory of J; consisting of pairs U,—V, with V, noetherian for all z>0. Let “J;
be the category whose objects are those of J, and whose maps are simplicial squares.
Let Ho'J; and Ho"'J; denote the homotopy categories (with respect to pointed categorical
homotopies of simplicial pairs) of 'J; and "J; respectively. Arguing as in Pro-
positions (1.2) and (1.4), we conclude that 'J; and J, are codirected and that Ho’J, and
Ho"’J, are cofiltering.

Corollary (4.2). — Let f: X—>Y be a map of locally noetherian schemes with Y noetherian.
Then Ho'J; and Ho J; are cofinal subcategories of Ho'"'J;. Therefore, f,,={g}y,s, is canoni-
cally isomorphic to {g}uy s 1 pro-H o pairs-

Proof. — Proposition (4.1) implies that Ho’J,—~Ho"J; is cofinal provided that
Ho J,—~Ho"]; is cofinal. Given maps

’

=

<l «<—d
< <cl

in "’J;, we obtain as in Proposition (1.4) a map

U T

| =1

v V.
in J; such that the compositions are categorically homotopic. Therefore, Ho J,—~Ho"J,
is cofinal. Moreover, the cofinal maps Ho'J,—~Ho"J, and Ho J;—Ho"]; induce iso-
morphisms {g}Ho”Jf—){g}Ho’Jf and {g}Ho”Jf'é{g}HoJf il’l pro'fo,paira'

In the following proposition, we assume that =,(Y,)=o0. This simplifies the
proof, while providing a good example of how Theorem (3.9) can be applied.

Proposition (4.3). — Let f:X—>Y be a pointed map of locally noetherian schemes with
Y noetherian. Assume that Y is connected and w,(Y,)=o0. Let A be a locally constant abelian
sheaf on X such that RIf,A is constant on Y and (Rf,A),SH (X, A) for all ¢>o,
where X, is the geometric fibre of f.

Then (X,)e—>b(f5:) induces isomorphisms for all q=>o:

HI(H(fo), A) SHI(X, e, A).

Proof. — Since m(V)=o0 for all V, in Jy ([4], § 10), the local system
v>H((g") "' (v), A) may be identified with its value, H?(h(g"), A), on the distinguished
vertex of V,. Since V, in J, is of finite type in each dimension,

lim H(V,, Hi(h(g"), A)) = lim HP(V,, HI(D(g), A))
Ho Jf Ho'Jf
equals
lim HP(V,, H(b(f5y), A)) = lim HP(V,, HP(B(f7,), A)).

Ho'Jy HoJs
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Therefore, EP( f7,, A)—>E?(f,, A) of Proposition (3.4) may be written
Ep1(foi, A) =H" (Y, HI(H( /), A)) = HP*(X, A)

(]

EP U fos A) =H(Y,,, (RIf,A),) = HIFUX, A)
where

Ep9(f, A) = lim HP(n> HI(V, X X, A)) = lim H (2> R2AA(V,)) =HA(Y,,, (R A),).

HoJy HolJy

For each V, in Jy, the composition

lim ITH(h(g",) A)S Lim HY((g") ™' Vi, (8) 7 Vip—n3 A)
HOJf’V. 4 HOJf,V.
~ lim Hi(g"'V,,, g“V(p_l);A)—“—ivH; HY(v XX, A) »% RYf,A(0)

Holr ¥,

is induced by the composition map of groups

lim HY(h(g" — lim H? X He —(R? .

HW%.H (b(g), A) HT,%,H (blg), A) S H(o X X, A)—>(RAA),
Therefore, the limit map @ :E”»( f},, A)—>E”»(f,,, A) is induced by the compo-
sition map of groups HY(h( f3;), A) =~HYb(fs), A) = (R, A),. Applying the Zeeman
comparison theorem [15], we conclude that HY(H(f3), A) > (R£,A),, all g¢g>o.
Applying Proposition (2.4), we conclude that X,,—bh(f)) induces isomorphisms

H'((/e)> A) SH((X)ets A)-

We recall that a map {X;} >{Y;} in pro-#} is said to be a #-isomorphism provided
that the induced maps cosk,{X;} - cosk,{Y;} are isomorphisms for all n>o0. A map
S {X}~>{Y;} in pro-i; is a #-isomorphism of connected pro-objects if and only if
£ i m(X ) 3m{Y;) and for every my({Y,})-module M, H'({Y;}, M)3H'({X;}, M)
([4], Theorem (4.3)).

The following lemma will enable us to relax the hypothesis on f:X—>Y that
™ (Yy) =o0.

Lemma (4.4). — Let f:X—>Y be a pointed, galois cover of connected, locally noetherian
schemes. For all n> 2,
Jor m(Xop) S7(Yey).

Proof. — Let K denote the full subcategory of Ho Jy consisting of pointed, etale
hypercoverings V_ of Y such that Vy—Y factors through f: X—Y. Given V, inHo Jy,

V! =cosk, X XYV.—;V. is special (where (cosk,X), is the k-fold fibre product over Y

cosk,

of X with itself). Hence, K—Ho Jy is cofinal.
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Represent Y, as {n(V)}x in pro-o#, and let Zet={n(v_§<X)}K. Then

Soo : Xoy—>Y,, in pro-X, factors as k,og, : X—>Z,—>Y,, in the obvious way.
Since X /Y is galois, X xX—X is the trivial d-fold cover uX—X, where d equals
Y

the degree of f. For each V, in K and each 4> o0, there exists a commutative diagram
with cartesian squares :

Vk§<X———>nX—>X

l b

Vk — X —Y

Hence, =(V, ;(X) —n(V)) isasimplicial covering map. We conclude that 4, :Z ,—Y,,,
givenby {n(V, xX) —n(V,)}g in pro-of} .., induces isomorphisms £, : 7,(Z,,) 5 m,(Y,,)
for n>a2.

For any abelian sheaf F on X, g,, : X,,—Z,, induces a map of spectral sequences

’ NS X7 N
Eg“_h_K)mHP(V%X, H#U(F)) = HYX,F)

Ep = lim H?(U,, #%(F)) = HY(X, F)

HoJx
inducing an isomorphism on abutments. We observe that lim CP(V.§<X, H(F))
K
equals li_r)an’(F) (V,) forall p, ¢>o0, since (V,§<X)p=uvp. Using Lemma (2.3),
K

we conclude that 'E»?=o0=E}? for all p>o0, ¢>o0. Therefore, g,, induces isomor-
phisms for any locally constant abelian sheaf F:

ling H'(V.xX, F) =H'(Z,, F) 3H'(X,,, F) = lim H'(T,, F).

HoJx

Furthermore, ~ {cosky U, }yo, —{c0ske(V, X X)}x is clearly an isomorphism; thus

7 (Xep) 371(Z,,). Therefore, g, : X,,—Z, 1is a #-isomorphism. We conclude that
the compositions =,(X,,) =>=,(Z,)—>=,(Y,) are isomorphisms, for n> 2.

In the following theorem, we eliminate the hypothesis that =,(Y,) be o by
examining the maps E? (£, A)>E?{( f,;,, A) for each f':X’'—>Y’, the pull-back of f
by some pointed galois cover 4’ :Y’—Y. Thus, we are led to consider direct limits
of spectral sequences on the cofiltering category Ho Jr (Corollary (1.5)).

Theorem (4.5). — Let f:X—>Y be a pointed map of noetherian schemes such that the
geometric fibre X is connected. Assume w,(Y,,) is pro-finite and Y is connected. Let A be a
locally constant abelian sheaf on X whose fibre A, is finite with order relatively prime to the residue
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characteristics of Y. Assume RIf,A is locally constant on Y and (RIfA), 3 HY(X,, A),
Sor all g>o.

Then (X,)e;—>b(f3;) induces isomorphisms for all g>o:
HI(B(fer)> A) SHI((X)e15 A).-

Proof. — Let &”—h’ be a map in ET/Y and consider the commutative diagram

(Xy)et — B(fet) — X)” — Yo

l l Lo

(X;/)et — H(fo) — (X)) — Y,

where f’ =f><h’:X’=X§<Y’—>Y’ and f": X" —>Y". Since X, =X,=X/ is connec-
ted, X" and X’ are connected; moreover m,(X")—>m(Y") and m;(X’)—>mr,(Y') are
surjective. Moreover, m,(X")—>m,(X’) and =«,(Y")—>n,(Y’) are injective with cokernel
Gal(X"/X') =Gal(Y”/Y’). By Lemma (4.4) and the 5-lemma, H(f,;")—=>bh(f) isa

4-isomorphism. We conclude that H'(H(f5), A)> lim H'(H( /), A), as well as

H'(X,)u0 A) 7 lim H((X)),0, A). @)
(ET/Y)
We consider the map @ : lim (E”?(g", A)>E” (g, A)). Sincelim = lim lim lim
H_o?;, Hol; BT Hedy Holp: v,

and since each V, in some Ho Jy. is of finite type in each dimension, ® can be written

lim Ep (g, A) = lim lim H?(V,,2 i lim H(g(), A)) = lim H?*¢(X’, A)

U]

lim Ep/(g, A) = lim lim H?(V,,» > RIf/A(s)) = lim H?*+¢(X’, A).
Hody FI fody. B

For A satisfying the hypotheses of the theorem, Rif,A equals g"*R%f, A restricted
to Y’; thus, R%/A is locally constant and (Rf,A), = (R%,A), ([3], XVI).

Given any g in Ho J7, we can find ¢'—>g¢ in Ho J such that the induced systems
vHHY((g)"1(v'), A) and o'>RY,A(s') are constant on V’. Hence,

H!(V,, 2> HY((¢") 7 (2), A)) HY(V., o' » H((¢") 71 (), A))
¥
HY(V,, 2> R, A(v)) HY(V., o' > RILA())
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factors through
H(V,, H(h(g), A))

HY(V., (R©A),),

where the last pair is induced by the map of coefficients evaluated at the distinguished
vertex v, of V:

Hi(h(g"), A) ~H(h(g), A) > H(og X X, A) >R A(2).
Therefore, ® may be written

lim Ef %(g", A) = lim lim H(V,, lim H(h(£7), A)) = lim HP+9(X/, A)

HoJf'-‘ ET/Y HoJy ET/Y ET/Y
v
lim E2-9(g, A) = lim lim H?(V,, (R%£,A),) = lim H?*¢(X’, A)

with the map induced by
H!(h(fe), A) = Lim HY(B(f5y), A) — Lim HI(h(f), A) > lim (RYf/A), = (RIfA),.

ETY ET/Y ET/Y
Applying the Zeeman comparison theorem [15] and Proposition (2.4), we conclude
that (X,),—>b(f7,) induces isomorphisms H*(H( /), A) SH'((X,)e:r A)-

The ¢ proper, smooth base change theorem ” ([3], XVI, Corollary (2.2)) in
conjunction with Theorem (4.5) immediately imply the following :

Theorem (4.6). — Let f: XY be a proper, smooth, pointed map of connected noetherian
schemes such that the geometric fibre X is connected and 7,(Y ) is profinite. Let A be a locally
constant, abelian sheaf on X whose fibre A, is finite with order relatively prime to all residue charac-
teristics of Y.

Then (X,)o—>b(Sf5) induces isomorphisms H'(H(fy), A) SH((X,) e A)-

Although the assertion of the following lemma is made for a pointed map f: X—Y
of schemes, the conclusion is a statement concerning only the associated pro-object, f,,,
in pro-j .. Such pro-pairs arising from a pointed map of schemes are simpler to
consider, since the pointed etale cover Yy;—Y provides a canonical representative of
the covering space (Y,;)g of Y, associated to a subgroup H of =,(Y).

For any set L of primes, we denote by G, the class of finite groups G satisfying
the condition that the prime factors of the order of G lie in L.
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Lemma (4.7). — Let f:X—>Y be a pointed map of connected, locally noetherian schemes
such that Y is noetherian and 7 (X)—>m,(Y) s surjective. Let L be a given set of primes such
that 7, (Yy,) is in pro-Cy. Let fe,;—>f:t be the canonical map of pro-Ay .., where (™) denotes
completion with respect to Cy, ([4], § 5).

Then the induced map B( f7,) —b(f7 ) in pro-Ay induces isomorphisms for all abelian A
in Cp, all g>o:

H(H(fe), A) SHH(Sa), A)-
Proof. — For each g of Ho J;, represent g in pro-2#j n, by {g' : U=V} .
Then the maps {f;{}ery ={g }Ho.r;"’{{g }Ig}HoJ;* fet }eryy induce

D : Ep’q({ﬂltr}m/ya A) *Ep’q({ﬂltr }ET/Y s A).
As in the proof of Theorem (4.5)

B2 ({3 Yoy A) = lim lim HP(V, o’ 0> HY((¢'") 71 (v), A))
HoJf Ig
is isomorphic to

lim lim HP(V?, HY(b(g'""), A)) 3 lim lim H?(V,, HY(h(g'"), A)).
Hol7 Tp Hol7 T
Since h(g"") has L-primary finite homotopy groups, H%(§(g""), A) isin C,. Therefore,
ER*({ fil Yomw> A) = lim lim H(V,, Hi(h(g'"), A)) = lim HP(V,, HI(H(2"), A))
HoJ);' Ig HoJf
since V, is finite for n>>0, if V, is in Ho'Jy.
We conclude that ® : EP( ¢ f ey, A) >EP({ fi Ygry, A) may be written

lim HP(Y;, H(B(f3), A)) = lim HP+4(X],, A)
ET[Y ET/Y

Lim H?(Y,, BY(h( /i), A)) = hm HPF (X, A).

ET/Y

Since A is in Cp, ® is an isomorphism on abutments.
As in the proof of Theorem (4.5), a map g"’—g’ in ET/Y induces isomorphisms
H'(h(f)), A)SH (H(f;"), A). In order to conclude the lemma by applying the

Zeeman comparlson theorem, it suffices to verify that H*(j( fe v), A) SH(h( "'), A)
whenever g'’—g’ is a map in ET/Y.
Consider the following commutative diagram in pro-:

B — X — Yo
L1
b)) — X — Y,
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Since 7, (Y') /7, (Y") =7,(X") 7, (X"’) is in Cp, ?E»?;\t and )/(;\293/(;: are covering spaces
([4], Theorem (4.11)). Moreover, (X)) /m(Xp) = m1(Yee) [ma(Yer) =m0 (Y') fra (Y7).
Using the 5- -Lemma, we conclude that §H(f, "')—>I)( ") is a #-isomorphism; hence,

that H‘(b(fe’) A)-»H‘([)(f"’), A).

Combining Theorem (4.6) and Lemma (4.7), we obtain the following homotopy
sequence for a proper, smooth map.

Corollary (4.8). — Let f: X—>Y be a proper, smooth, pointed map of connected, noetherian
schemes. Let L be a set of primes not occurring as residue characteristics of Y and satisfying the
condition that 7t,(Y,,) is in pro-Cy,. Assume that the geometric fibre X, of f is connected and that

the L-completion nl(/X:) of ™ (X,) is o.
Then there exists a long exact sequence of pro-groups
(Xy)et) énn(xet) "’Tcn(Yet >, ()(y et) .
where the maps nn((Xy)et)»nn(Xet) and n,,(i\et) »n”(ﬁ/(;) are induced by the L-completions
of the etale homotopy type of the pointed maps 1 : Xy—>X and f X-Y.
Proof. — By Proposition (2.2), i, : = (( Wet) =T (Xet) factors as

(%)) > (D) > (5( ) > (Xo0)-
Since Ex®(j( f:t))—>Ex (X;t —>Ex°°(Yet is a pro-fibre triple ([10], Theorem (4.3)),

the triple H(f} —>Xet—>Y ¢ induces a long exact sequence of pro-groups
(O F2) > (X)) > n(Vd) >y (H(F) >

To verify the corollary, it suffices to prove that the composition (/)g)et —“)/(J?t) - B( f;’t)
is a #-isomorphism.

Recall that 7,(X,) =, (X) —>m;(Y)—e is exact ([8], § X). Since completion with
respect to G is right exact, 7:1()/{;) =a§) »7?(?) =7c1(§/{';) is an isomorphism.
Therefore, nz(ﬁ)enl(b( fe’t)) is surjective, implying that = (h( f;’t)) is pro-abelian.
Since m,((X,) et) =o0 and 1:1([)( f:’t)) is pro-abelian, it suffices to check that the compo-
sition (X)) et—>[)( Jr)—=>B( fet) induces isomorphisms H*(f( f:’t), A)SH((X,)ers A), any

abelian group A in Gy, ([4], Theorem (4.3)). This follows directly from Theorem (4.6)
and Lemma (4.7).

5. Applications to a Vector Bundle minus its o-section.

Given a locally free sheaf M on a scheme Y, the (algebraic) vector bundle V(M)
associated to M is the spectrum of the symmetric Oy-algebra on M. In this section,
we investigate the structure map f:V(M)—o(Y)—Y, where V(M)—o(Y) is the
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vector bundle minus its o-section. We conclude that §( f7;) completed away from the
residue characteristics of Y is a completed sphere.
A commutative triangle

7—>V
N /
S
of schemes is said to be a smooth S-pair of codimension ¢ provided that 7 is a closed

immersion, £ and g are smooth, and for every geometric point s of S, Z,—~V, is of
codimension ¢. In particular, if M is a locally free sheaf of rank r on a scheme Y, then

0
Y—\VM

\/

is a smooth Y-pair of codimension r.

Lemma (5.1). — Given a smooth S-pair

Z——>V
N /
S
of codimension ¢>o, with Z simply connected. Let L be any set of primes not occurring as residue
characteristics of S. Denote V—27Z by X.

Then for any abelian group A in Gy, there exists the following < Gysin > long exact sequence
in cohomology:

.. >H"(Z, A)>H"(V, A) >H"(X, A) >H"%+1(Z, A) >

Progf. — Consider the Leray spectral sequence for the map j:X—V and the
constant sheaf A on X:

EP¢=H?(V, RY,A) > H?+¢(X, A).

Recall that for j : X—>V associated to a smooth S-pair as in the present situation,
J.A equals the constant sheaf A on V; R%,A=o0 for ¢#o0, 2c—1; and *(R*71j A)
is locally isomorphic to A on Z ([3], XVI, Theorem (3.7)). Since Z is simply
connected, *(R*~'j,A) equals the constant sheaf A. Hence R*~'j,A=1¢,A ([2], The-
orem (2.2)). Thus E£'? reduces to two non-vanishing rows: H*(V, R%,A) =H*(V, A)
and H*'(V, R*~YA) 3 H~**YV, ,A) 5 H*"**YZ, A). This spectral sequence
therefore reduces to the asserted long exact sequence.
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The following proposition verifies the cohomological conditions on V(M)—o(Y) Y
required in order to employ the simplicial Leray spectral sequence.

Proposition (5.2). — Let Y be a connected, noetherian scheme; let M be a locally free,
rank r sheaf on Y; and let f:X=V(M)—o(Y)—>Y be the restriction of the structure map
g:V(M)—>Y. Let L be the set of primes not occurring as residue characteristics of Y. Then
Jor any abelian group A in Cy, R, A is locally constant on Y; and (RIf,A),SHY(X,, A)
Sor all g>o, all geometric points y of Y.

Furthermore,

_‘A if g=o,2r—1
Hi(X, A) = ? o  otherwise
JSor any abelian A in Gy, any geometric point y of Y.

Proof. — We view f: X—Y asthe composition of g with j: X—>V(M). Consider
the spectral sequence for the composite left exact functor f, and the constant sheaf A
on the etale site of X:

Eyt=R’g (RY,A) =RVfA.

As in the proof of Lemma (5.1), R%, A=A on V(M); RY,A=o0 for t+o0, 2r—1;
and o'(R¥~%j,A) is locally isomorphic to the constant sheaf AonY. Since g:V(M)->Y
is acyclic for L (g is smooth with L-acyclic fibres), we conclude that R°g,R%,A=o0 for
s£0. Furthermore, for s+o,

Reg,(R¥~1j,A) =R’g,(0,0'R¥ ~1j,A) = R*id,(0*R¥ ~1j,A) = o.

Hence, R¥*~1f,A=g,(R*"1j,A) = (g00),0*(R*~1j,A) is locally isomorphic to 0*A=A
on Y, whereas R°f,A=g,(j,A)=A. Thus, R%,A is locally constant on Y for all ¢>o.

Since (RIf,A),3H!(X,, A), where 1y denotes the strict local ring at a geometric
point y, it suffices to prove that the natural homomorphisms H(X,, A)->H!X,, A)
are isomorphisms to complete the proof. The residue map y-—>1 induces a map of
Gysin sequences for the smooth pairs of codimension r given in Lemma (5.1):

y —> /A=(V(M)), ) —> /AL =(V(M)),
N N

Applying the 5-Lemma, we conclude that y—y induces isomorphisms

HI(X,, A) 3HI(X,, A)

P

for all ¢>o, all geometric points j.

Proposition (5.2) provides the hypotheses needed to prove the analogue of
Theorem (4.6) and Corollary (4.8) for f:X=V(M)—o(Y)->Y.
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Theorem (5.3). — Let Y be a pointed, connected, noetherian scheme such that w,(Y,,)
is pro-finite. Let M be a locally free, rank r>2 sheafonY. Let f:X=V(M)—o(Y)—>Y
be the restriction of the structure map g :V(M)—Y, pointed above the pointing of Y. Let L
be some set of primes excluding all residue characteristics of Y and let (™) denote completion with
respect to Ci,.

Then there exist f-isomorphisms in pro-Hy:

o~

ST (X)  and (X))~ (S

Furthermore, if w,(Y) is in pro-Cy,, there then exists a #-isomorphism (/X:)et—ﬂ)( fe’t);
consequently, there exists a long exact sequence of pro-groups:

—

e T (R at) 70 (K)o (V) >0 (K )e) > - - -

where the maps 'rc”((/X:)et) - rc,,(i;) and 1:,,(5(;) — n”(?;) are induced by the L-completions
of the etale homotopy types of the pointed maps i : X, - X and f:X Y.

r —
Proof. — To verify the existence of a #-isomorphism S~ (X)), it suffices to

—

verify that =,((X,),;) =0 and that

— Z g=2r—1
Hq(<X,)et,Z)=§0 1vo,ary  ([4] Corollary (4.15)).

Yet !nl(Xv) =m,(V(M),) =n,(A]) by the “ Purity Theorem ” ([3], XVI, Theorem (3.3)),
so that m,((X,),) =0. Serre class theory implies that H,((X,),;, Z) is in pro-Cy, for

—

all ¢>o. Since H'(X,, A) =H*((X))y,A) for abelian groups A in G, Proposi-
tion (5.2) and the universal coefficient theorem imply that

—~ Z g=2r—I
H(X)ets Z) =

0o g+o0, 2r—1
as required.

To verify that (X,),, — B(f;;) induces a #-isomorphism (/X\y)et »m, it suffices
to prove that 11:1(6(;)“) =o=1rl(m)), and that for any abelian group A in G,
H'(B(fer)> A) = H'((X)et> A)-

Observe that if Y'— Y is a pointed, galois cover in ET/Y, then

X'=V(M@0y)—o(Y') —> V(M)—o(Y)

v
Y’ Y
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is cartesian. Furthermore, since m;(X) 3 n,;(V(M)) by the Purity Theorem and since
V(M) —->Y has a section, m(X)—> n;(Y) is surjective; therefore, X’ is connected.
Applying the 5-Lemma plus Lemma (4.4), we conclude that the square

(X‘;) et —~') (Xy) et

h(fk) —> (SR

commutes in pro-¥,, with BH(f,y) = b(f%) a #-isomorphism for any map Y' > Y
in ET/Y.
We consider the long exact sequence of pro-groups

- = () = {ma(Xee) Yoy = {mn(Yo) Jomy — -
In particular, {my(Yy,) ery = m1(D( o)) = {m(Xse) Jeryy — ¢ is exact, since
{m(Ye) Jomy = {m1(Y") Jumy =e.
Forany Y'Y in ET/Y, f' : X'—>Y’ is 1-aspherical for L; therefore, 71:16(\’ ) =1r1(Y/T).

Since (™) is right exact, we conclude that {1;(Y\“)}ET,Y——> nl(@) is surjective; thus

—

7 (b(fey)) is pro-abelian. We conclude that it suffices to prove that (X)), — h(fs;)
induces isomorphisms for any abelian A in G, : H*(§(f3), A) 5 H*((X,)e;, A). This
is immediate by Theorem (4.5) and Proposition (5.2).

Finally, to conclude the existence of the asserted long exact sequence provided =, (Y)
is in pro-C, we apply Lemma (4.7) as in the proof of Corollary (4.8) to prove that

—_—

the composition (X),;— h(fe) = b( f:’t) is a f-isomorphism.

6. Adams’ Conjecture.

In this section, we provide a completion of D. Quillen’s sketch of Adams’ conjecture
for complex vector bundles [13]. The arguments and results of Quillen’s discussion
are freely employed, together with Theorem (5.3) of the previous section. An additional
ingredient is D. Sullivan’s observation that pro-finite pro-objects of the homotopy category
admit inverse limits.

Let £ denote the homotopy category of topological spaces having the homotopy
type of G-W complexes and let [.,.] denote maps in 5. We recall that any pair in #
is represented by a Hurewicz fibration (namely, the mapping path fibration of any
representative), unique up to fibre homotopy equivalence ([6], Theorem (6.1)). Thus,
the fibrewise join E;E’ —Y of pairs E>Y and E'—>Y in 5 is well-defined up to

fibre homotopy equivalence [g9]. Moreover, the fibre H(E —Y) of a pair E—-Y in &#
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is thereby defined up to homotopy equivalence; furthermore, H(E —Y) is an object
of # [11]. We use ||.|| to denote the geometric realization functor from (pointed)
simplicial sets to #. If S, — T, is a Kan fibration of simplicial sets, then ||H(S,—T,)||
is isomorphic to §(||S,|| = || T.||) in o# [12].

We begin by recalling the representability of pro-finite inverse limits of connected
objects of # ([14], Propositions (3.1) and (3.3)). For the sake of completeness, we
include Sullivan’s proof.

Proposition (6.x) (Sullivan). — Let {X;} in pro-o# satisfy the conditions that X is
(arcwise) connected and w,(X;) is finite for each n>1, © in XI. Then the functor

lim[, X;] : #7°— (Sets)

is representable in # by a C-W complex, denoted I(E_I_l X;.
Proof. — A functor F : #°— (Compact Hausdorff spaces) is a * compact repre-
sentable functor > provided that the composition with the stripping functor

(Compact Hausdorff spaces) — (Sets)

is representable in # by a connected C-W complex. Using Brown’s representability
axioms [5], we verify the following: if {F;}; is a system of compact representable
functors indexed by a cofiltering indexing category I, then lim F; is a compact repre-
sentable functor.
Since lim commutes with inverse limits, im F;(V'Y;) equals II lim F;(Y,), where VY;
<~ <« 't j o<— W J
is an arbitrary wedge product of connected objects of # (each pointed by a non-degenerate
base point); furthermore, by the compactness of F;, lim F;(Y) maps surjectively onto
lim F(Y,), where Y,—Y satisfies the condition that sk,(Y,) > sk,(Y) in 5 for any
n,on-negative integer n. Let Y=SUT and let Z=SnT be given in 5, with Z a
subcomplex of both S and T. Let lim 5;xlim #; be an element of lim F(S) X lim F,(T)
such that the image of lim s; equals the image of lim ¢ in lim F;(Z). Let C; denote
< <~ <=
the closed subset of F;(Y) given as the inverse image of s;x¢#; in F;(S) X F,(T). Since
the inverse limit of non-empty compact sets is non-empty, there exists an element lim y,
in lim C;clim F;(Y) which maps to lim s;xlim .
< < « <—
Thus, it suffices to prove that {[ , X;]}; is a system of compact representable
functors. Observe that if Y, is a finite subcomplex of Y, then [Y,, X;] is a finite set.
For any two complexes X and Y, the natural map [Y, X]— l(i_rg[Yc, X] is surjective,

where Y, runs through the finite subcomplexes of Y. We use the finiteness of homotopy

classes of homotopies Y,XI— X, restricting to given maps on Y,xo and Y,X1 in

order to verify that [Y, X;]— ﬁ(_m[Yc, X;] is injective. If f g:Y =X, map to the
c

same element of lim[Y,, X;], we obtain an inverse system of non-empty finite sets of

homotopy classes of homotopies between the restrictions of f and g. An element of the
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inverse limit yields compatible homotopies which patch together to yield a homotopy
between f and g.
We conclude that [Y,X;]=lm[Y,, X;] admits the structure of a (totally

disconnected) compact Hausdorff space. We readily check that any Y’— Y induces
a continuous map [Y, X;]— [Y’, X;]. Moreover, whenever X;— X; in {X;};, then
[Y, X]]— [Y, X;] is continuous for any Y. Hence, {[, X;]}; is a system of compact
representable functors.

This inverse limit of pro-finite pro-objects preserves fibrations in the following sense.
Lemma (6.2). — Let {E;— Y}, be an object of pro-3,,,, such that E;, Y;, and
b(E;—Y,) are connected and w,(E;) and =, (Y;) are finite for every n>1, iin 1. Then
h(lim E; — lim Y)) S 1lim h(E;»Y,) in H.
Proof. — By autoduality of finite abelian groups, lim is exact on functors from I to
(Finite abelian groups). Hence the long exact sequences associated to the triples
h(imE, — 1IimY,) — LImE, — limY;
< <~ P <

! l !

hE, — Y) — E — Y,

®

imply isomorphisms ,(h(lim E;— lim Y})) % =, (lim h(E;—Y;)) for n> 2.

For n=1, welet E; - Y, denote the pull-back of E; - Y; to the universal covering
space Y; of Y;. Exactness of lim on finite abelian groups and left exactness on arbitrary
groups imply the exactness of lim my(E;) - lim m,(Y;) — lim =, (h(E; - Y;)) — lim =, (E]).
Upon applying the 5-Lemma to the commutative diagram

mmE) — mlimY) — m(hUmE, —> ImY)) — m(mE) — o

lim my(E) —> lmmy(Y}) —> Umm(h(E — YD)  —> limm(E)
we conclude that =, (h(lim E{ ~lim Y;)) = lim =, (h(E; - Y;)). Since

bim E; —> limY}) —> lim B(E; — ¥

blmE, —> ImY) —> LmBh(E, —> Y))
commutes in 5, h(lim E; - limY,) - lim §(E;—Y,) is an isomorphism in 5.
<~ < <
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The following lemma will enable us to define the fibrewise join of ¢ L-completed
sphere fibrations. »

Lemma (6.3). — Let (™) denote completion with respect to the class Cy, of finite groups
with prime factors in a given set L of primes. Let S and S’ be m and n spheres, with m,n > 1,
respectively.  Then the natural map S S’ — lim §*h(_m S’ induces a #-isomorphism

(88" > (lim Sxlim §)".

Proof. — Since the join of pathwise connected spaces is simply connected,
it suffices to prove that for all ¢eL, S%S'— lim Sx lim S’ induces isomorphisms
H*(lim Sx lim S',Z/g) X H*(S*S’,Z[g). We recall that for any pair of connected spaces
Z and Z’

(CZ,2)x(CZ',Z')=(CZxCZ',Z+Z")
where CZ denotes the cone on Z.  Furthermore, we recall that H*(lim S,Z/q)=H*(S,Z/q)
([14], ¢ complement > Theorem (3.9) for m>1; for m=1, use the fact thatZ andl(iiiz
have same Z/q¢ cohomology), thus finite. Applying the Kiinneth theorem, we
conclude that H*(ClimS,lim S;Z/q)®H*(Clim §’,1im §'; Z/g) is isomorphic to
~ ~ (—A <—A < <
H*(Clim S x Clim S’,lim S*1lim S’; Z/g). Therefore,
< <= <= <

H'(lim§, Z/q) 9 H'(lim §', Z/g) > H*(S, Z/q)OH"(S', ZJq)

H*(lim Sx1lim §',Z/g) — H'"(SxS’,Z]g).
If {X;}—>{Y;} is a map in pro-# with {Y;} 1-connected, then
pEX} > {Y;H"™ > p({X} > {Y3})

is a #-isomorphism in pro-# ([4], Theorem (5.9)).

Let Y in 5 be 1-connected. If E—Y and E’'— Y are pairs in 5 having fibres
lim S"~! and lim S"~! respectively, then
P a— <=

BE$E - Y)" = (lim S" '+ lim )" > hEE > ¥)
is a §-isomorphism. By Lemma (6.3), (S"*""!)" — I)(E%k{ E'>Y)” isa g-isomorphism.

Applying Lemma (6.2), we conclude that 2@@“"2’2? has fibre LiE(S'”J“”“)".

Definition (6.4). — Let L be a set of primes, (*) denote completion with respect
to C,. A 1-connected C-W-complex Y is L-good provided that the canonical map
Y—)li(_m? in S is an isomorphism.
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If Y is L-good and m>1, SFL(Y) is defined to be the set of fibre homotopy equi-
valence classes of Hurewicz fibrations with fibre lim S™=1, The symmetric operation

+ : SFL(Y) x SFX(Y) — SF: . (Y)

m+n

is defined by sending p:E—Y, p' :E' > Y to the fibration p+p’ :li(_mEYki'aY
induced by E3E - Y.

If Y’ is a 1-connected, finite type C-W complex (i.e., H,(Y’) is finitely generated
for each n), then for any L, h(_m?: Y is L-good, where (7) is the completion with
respect to this L ([14], ¢ complement ”* Theorem (3.9)).

The following proposition introduces the monoid of stable, L-completed sphere
fibrations over an L-good complex.

Proposition (6.5). — Let Y be an L-good complex, let e, : Li_@S’”*l XY —Y denote the trivial
fibration of SE2(Y), and let <, denote

. +¢, : SFE(Y) — SFL

m+n

(Y).
Then {SF5(Y), &,} is filtering, with set-theoretic direct limit denoted SF*(Y). Moreover,
& SFL(Y) x SFX(Y) — SF%, (Y)

m+n

provides the set SF(Y) with the structure of a commutative monoid, natural with respect to homotopy
classes of maps X—~Y of L-good G-W complexes. -

Proof. — The projection maps for ((lim Sm_l*Li_nl S"~1xY)" induce a fibre
homotopy equivalence lim((lim ST l(}mg‘\l) xY)" - lim Smn=1 X lim Y over lim Y
by Lemma (6.2) and the fact that H(E - Y)~ — h(E - Y) is a #-isomorphism. Hence
€,(¢,) equalse, . To prove that {SF5(Y),¢,} is filtering and that {SF*(Y), +} is a well-
defined commutative monoid, it suffices to check the associativity of +. There are
natural maps E*E’ % E” — lim(lim E+E'x E”")” and ExE *E”’—>lim(Exlim E'«E"")”

YO Y ——\e—TY Ty Y Y —\y<—Ty
covering Y. By examining the induced maps of fibres, we conclude that (p-+p’) +p"’
and p—+ (p'+p”) are fibre homotopy equivalent to l(j_rr_l(ﬁ#[)’#ﬁ”)'\.

Let f:X—Y represent a homotopy class of maps of L-good complexes, let
£ :E=Y be in SEX(Y), and let p’ : E'—>Y be in SFL(Y). Using the natural maps
(ExX)* (E'xX) >lIm((ExX)* (E'xX))" and (ExE’)xX—lim ﬁxx, we

Y X Y <~ Y Y Y Y Y <~ Y Y
readily conclude that (f*p)+ (f*p’) is fibre homotopy equivalent to f*(p-+p').
Hence, f induces a homomorphism SFY(Y) — SFY(X).

We recall the G-W complex By, the classifying space for sphere fibrations. For
a finite dimensional C-W complex Z, the group [Z, B;] is the group of stable fibre
homotopy equivalence classes of sphere fibrations over Z. The following proposition
relates [Z, Bg] to SF(lim Z).
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Proposition (6.6). — Let Z be a 1-connected, finite C-W complex, let L be a set of primes,
let (™) denote completion with respect to L, and let Y = lim Z. The association of lim b: lim E-Y
to a sphere fibration p : E—Z defines a homomorphism of monoids

0, : [Z, Bg]— SFX(Y), any set L of primes.

Furthermore, iof p : E—7Z is a sphere fibration in the kernel of 0y, then the order of p in [Z, Bg]
has no prime factor in L.

Proof. — Let p:E—Z, p' : E'—>Z be sphere fibrations over Z, inducing a (not
necessarily unique) map p % p" —lim ) ;5@ p’. Applying the Kiinneth formula to the

map on the cohomology of the fibres, we conclude that the induced map
lim px p" > lim $ + lim §”

is a fibre homotopy equivalence by Lemma (6.3). Moreover, if p:S" " 'XZ—>Z is
the trivial S™~* fibration, then the natural map lim p —¢,, is a fibre homotopy equivalence
of fibrations over Y. Hence, 0 is defined on stable classes and is a homomorphism of
monoids.

Let p : E—Z represent a class in the kernel of 6,. We may assume that there
exists a map lim E— lim S" whose composition with the inclusion of the fibre
lim sm —>1(i_r£1_E is anAisoAmorphism in .}f . o

Observe that [E, S™] equals [E, S"] equals [lim E, S"] since E is L-good, which
by definition equa}s A[Liln_ E,ALiLn-ASm]. Similarly, [S™, S"] equals [lim §" lim S™].
We conclude that [E, S™] — [S™, S™] is surjective, where this map is given by composi-
tion with the fibre inclusion S”"—E inpro-#. Therefore, (E, S — (S, S™ is likewise
surjective, where (.,.) denotes the abelian pro-group of stable maps in pro-# ([4], § 7).
Furthermore, (E, $") = (E, S™)~ and (S™, §") = (S™, S")"=Z ([4], Corollary (7.5)).
In other words, the inclusion of the fibre S™—E induces a homomorphism
(E, S™) — (S™, S™) whose cokernel has L-completion o.

For some n>o, there thus exists a map S"E—S"*™ whose composition with
Sttm_»~S"E is a map S"t™—>S"t" of degree £, with £ having no factor in L. By Adam’s
“ mod.k Dold Theorem ” ([1], Theorem (1.1)), applied to (S""!XY)*E — S"t"xY
we conclude that p :E—Z represents a stable class in [Z, B;] whose order has no
factor in L.

The following proposition, proposed by Quillen ([13], § 10), will suffice to prove
Adams’ conjecture. We recall that an algebraic variety V over the complex numbers
can be triangulated; thus if V is projective, it is a finite G-W complex.

Proposition (6.7). — Let p be a prime number, let L be the set of all primes except p, and
let (7) denote completion with respect to Cy,. Let R denote the local ring given as the strict loca-
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lization of Z at p, and let k denote the residue field of R. Let Yy be a scheme projective and smooth
over Spec R, with generic geometric fibre Yy over Spec G (C = complex numbers) and special
geometric fibre Y, over Spec k. Let Y, denote the “ classical > topological space of complex
points of Yg. Let K¥(Y,)) denote the Grothendieck group of complex vector bundles over Y,
and let K*(Y,) denote the Grothendieck group of locally free, finite rank sheaves over Y,.

If Y, is 1-connected, then there exists a commutative diagram of monoids

K#P(Y,) <« K¥(Y,) < K¥%(Y,) — - K¥(Y,)

Lo J S Fr Tk

SF(im¥,) & SF(lim|| Vo, uil)) & SF(m|| Y ol) = SF(lim|| Y, /)
where J : K¥(Yy) = [Yq, Bgl s the usual J homomorphism, where
A(E)=lim|| (V(E)—o(Y)3 || > lim|| ¥, o]

Sor E, locally free, of rank > 2 over Y, (see Theorem (5.3)), and where the lower horizontal arrows
are induced by the isomorphisms in pro-S2, ‘

Va1 Yool > 11 Yauell < 1| Vi well-

Proof. — To prove that g, extends to a homomorphism on K*¥(Y,), it suffices to
prove that 2, is additive with invertible image. For _#,, these properties and the com-
mutativity of the left-most square follows from the observation that ¥* #y(E¢)=00]Jocl(E)
in SFI‘(l<i_m_ ¥ .), by the « generalized Riemann existence theorem > ([4], Theorem (12.9)).
For #;, we observe that j* #(Egx)=4(;'Eg) in SF(lim|| ¥ ||) by employing the
proper, smooth base change theorem and lemma (5.1). Similarly, the proper base
change theorem implies that the right-hand square commutes, provided _# extends to a
homomorphism on K*¢(Y,). There remains to prove the following:

1) for any locally free, rank >2 sheaf E, over Y,, #(E,) is invertible, and
2) for any short exact sequence

(%) o—>E,—»E, —->E/'—>o0

of locally free, rank >2 sheaves over Y, #(E,) equals % (E;)+ 4(E).

Let (%) be a short exact sequence as above such that E, is generated by its global
sections. Let n be the rank of E,, m be the rank of E;’, and let N be an integer such
that E is generated by N global sections. Let D, denote the 2-stage flag manifold of
type N, n, m. Then Dy is projective and smooth over Spec R and D, is 1-connected.
Hence, ¢, : K*8(Dg) — SFL(EEn_H ﬁR’et ||) is well-defined. Moreover, (*) arises by pull-
back from the universal short exact sequence over Dg. Hence, 4(E,)=_4(E)+ 4(E))
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and each of %(E,), 4 (E.), and Z(E;') are invertible, since oi*=1"0 ¢, on actual
bundles.

More generally, any locally free, finite rank sheaf E, over Y, is embedded (locally
as a direct summand) in $L®% where L is a very ample bundle on Y, and a, 5 are positive
integers. By the above argument, Z(E,) is invertible.

Finally, given any short exact sequence (%) of locally free, rank >2 sheaves
over Y,, there exists a commutative diagram with exact rows and columns:

(o) o
[
F, = F,

0—-—>Ek——>F1——->F2—>O

T

o— E — E — E’' — o

with F; and F, generated by global sections. Hence

Fe(By) = Fi(F1) — Fu(Fa) = (Au(Bp) + A(Fs)) — (A(Fa) — 7 (E))
= F(B) + A(E).

In conclusion, we complete Quillen’s sketch of Adams’ conjecture.

Theorem (6.8) (Adams’ Conjecture). — Let E be a complex vector bundle over a finite
complex X and let k be a positive integer. For some positive integer n, the stable sphere fibration
associated to k™(Y*E — E) in K¥*(X) is fibre homotopically trivial.

Proof. — Tt suffices to prove the theorem for the canonical m-dimensional quotient
bundle Q) over the Grassmannian G of complex N planes in m+4 N space (for arbitrary
m, N>1) and for k=p, a prime. Let L be the set of all primes except p and let R
denote the strict localization of Z at p.

Let G, denote the Grassmannian scheme over Spec Z representing the functor
¢ isomorphism classes of m-dimensional vector bundles with m+4N generating sections.
The pull-back of G4 to Spec R, denoted Gy, satisfies the hypotheses of Proposition (6.7%).
Let Qg denote the canonical locally free, rank m sheaf over Gy; Q is the topological
vector bundle over G=G, associated to Qg 0(2!% . over Gg.

To verify the theorem, it suffices by Proposition (6.6) to prove that
0,0J(JP(Q)—Q)=0 in SFL(E_I’BG). By Proposition (6.7) it suffices to prove that
A (Qi)—Qu)=0, or equivalently that Z(4*(Q4)=A(Qu), in SF*(Lim|| G, ).
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We recall that ¢?(Q,)=Q) in K*"¢(G,), where Q® is the pull-back of Q, by
the Frobenius map ¢ : G,—G,. Furthermore, there exists a purely inseparable map

Spec(Symy,, (Qy)) =V(Q,) ~ V(QY) =Spec(Symy, (QF))

of schemes over G, given in local coordinates by (Z;,) goes into (Z?). Therefore, the
induced map in pro-#, (V(Q,)—0(Gy))e — (V(QP)—0(G,)),, is an isomorphism of
pro-objects over (Gy),, ([8], Theorem (4.10)). By definition of %, we conclude that
F(VP(Qy)) = A(Qu)-
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