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Genetics of homotopy theory and the 
Adams conjecture 

By DENNIS SULLIVAN 

Dedicated to Norman Steenrod 

This is the first in a series of papers devoted to the invariants and classi- 
fication of compact manifolds. 

One might hope for a classification theory of manifolds having the follow- 
ing form: First, there is an understandable algebraic description of the 
homotopy theory of manifolds. Second, the salient geometric properties of 
manifolds beyond homotopy theory can be isolated and understood. Third, 
the algebraic structure of these geometric invariants can be determined. 
And fourth, this structure can be successfully intertwined with the algebraic 
description of the homotopy theory of manifolds to complete the theory. 

We shall try to outline and motivate this paper in terms of this program. 
First of all, the Adams conjecture concerns the homotopy theory of 

sphere bundles associated to vector bundles. This is important in the second 
and third parts of the program for a theory of smooth manifolds and follows 
from the fact that the possible tangent vector bundles of closed manifolds 
in a homotopy type must have sphere bundles of the same fiber homotopy 
type. In fact the work of Browder shows that this sphere bundle condition 
is almost a sufficient condition for a bundle to be a tangent bundle. 

The affirmed Adams conjecture then allows us to find the possible 
tangent bundles of all manifolds in the homotopy type X by calculating the 
K-group of the homotopy type K(X) and the Adams' operations {jk} in this 
group. A more detailed description of Adams' statement is given below. 
This explains our interest in the Adams conjecture beyond that inspired by 
the natural beauty of the statement. 

Now it was well-known from the outset that the Adams conjecture 
concerned only questions of torsion and divisibility of a certain subgroup of 
K(X) of maximal rank. So the question was trivial after tensoring with the 
field of rationals. 

Thus it is natural (and indeed imperative) to discuss the question in a 
context where only p-primary considerations are left, where the influence 
of the rationals is minimal. This accounts for the profinite homotopy theory 
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of Section 3 of this paper which is, I must say, at first flush somewhat 
foreboding. 

In this profinite setting the Adams' statement assumes its most elegant 
form (see below). Also the homotopy equivalences of the unstable grass- 
mannians required for its proof appear very naturally from the fact that 
the profinite homotopy type of an algebraic variety can be constructed using 
only the abstract algebraic structure of the variety (etale homotopy theory). 

This latter point is in fact the main motive for the profinite homotopy 
theory of Section 3. In order to derive benefit from the rich Galois symmetry 
in the homotopy theory of varieties we had to domesticate the abstract 
beasts of [51 to make them usable in ordinary algebraic topology. 

The Adams conjectures become immediate consequences of general 
homotopy theoretical discussions. 

The localization in homotopy theory discussed in Section 2, which is 
easier to conscience than the completion of Section 3, plays the following 
role: 

First, localization arises in a natural way in each of the four steps of the 
outline for a classification theory of manifolds. Many workers have found 
in discussions about manifolds persistent disparity between the prime 2 and 
odd primes (see for example the statements about the universal spaces G/PL 
and G/TOP in Section 2). Analysis of these spaces essentially solves the 
third step in the program for a manifold theory of the piecewise linear and 
topological categories. A detailed solution of the Adams conjecture leads to 
an analysis of G/O, the relevant space for this step in smooth manifold 
theory. 

Second, localization allows us to construct the rational homotopy type 
which complements the information in the profinite homotopy type. This 
complementation makes very clear the relationship between the ordinary 
(or transcendental) homotopy theory of complex algebraic varieties and 
their etale (or algebraic) homotopy theory. Also in beautiful counterpoint 
to the relationship between profinite homotopy theory and abstract algebraic 
geometry is a new relationship between a rational de Rham theory on 
polyhedra and the rational homotopy type (see [17]). This new relationship 
allows a determination of the "real homotopy" of a smooth manifold by the 
de Rham algebra of C--forms. 

Thus analytical and arithmetical structure' play a role in real and 
rational homotopy theory akin to that of abstract algebraic structure in 
profinite homotopy theory. 

1 I.e., C- manifolds and triangulated spaces. 
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Now we shall outline our structural analysis of homotopy theory and 
discuss the Adams conjectures in some detail. 

First of all a remark on terminology: We are studying the structure of 
homotopy types to deepen our understanding of more complicated or richer 
mathematical objects such as manifolds or algebraic varieties. 

The relationship between these two types of objects is I think rather 
strikingly analogous to the relationship in biology between the genetic struc- 
ture of living substances and the visible structure of completed organisms or 
individuals. 

The specifications of the genetic structure of an organism and of the 
homotopy structure of a manifold have similar texture; they are both discrete, 
combinatorial, rigid, interlocking and sequential.' 

On the other hand, a completed individual has shape, form, geometrical 
substance. Its visible expression admits continuous variation. All these 
attributes are possessed by a manifold in Euclidean space. 

So we shall think of our fracturing process for homotopy types as a 
genetic analysis. We shall refer to the array of irreducible pieces of in- 
formation in the homotopy type as the genotype. This is similar to the use 
of the term genus in the theory of quadratic forms. 

Thus the genotype of a space is determined by the rational type and 
profinite type. The latter often splits completely into a collection of p-adic 
types, one for each prime. 

We cannot combine these ingredients arbitrarily to form a space. A 
certain compatibility must persist among the pieces. 

This coherence in the genotype is the second piece of structure in our 
analysis of homotopy theory. Now the detailed description: 

Let Xdenote an "ordinary homotopy type". We shall think of Xas arising 
from a compact manifold, an algebraic variety, or one of the universal spaces 
associated to geometric problems concerning these spaces. The homology 
groups of these spaces are almost always finitely generated Abelian groups, 
and one often has some analogous control over the fundamental group and 
the higher homotopy groups. 

We shall associate to X a natural array of more basic homotopy types 
which are not such "ordinary homotopy types" but which satisfy analogous 
finiteness conditions over the rings 

Z, - 
a e Q: (b, 1) = 1) 

1 In fact many of our constructions on spaces proceed by a replication process using the 
Postnikov tower as a template. 



4 DENNIS SULLIVAN 

or 

Z = Iimn,,j Z/nZ 

where {I} is the multiplicative subset of Z generated by a collection I of 
primes. The two important cases for us correspond to the ground rings Q 
and Z = lim,, Z/n. 

These more elemental spaces associated to X are constructed by the 
processes of localization and completion. These processes might be thought 
of as analogous to laboratory techniques which break a more complicated 
substance into simpler components. 

The first process, localization at 1, is a kind of direct limit procedure which 
strips away the p-torsion and p-divisibility structure in the algebraic topology 
of the space for the primes p not in the collection 1. The remaining infor- 
mation in X is carried by the associated space Xl to which X maps X ) Xl. 

This localization procedure is well-understood if X has a principal 
Postnikov decomposition; this happens precisely when each w,-module SEX, 
n> 1 has a finite filtration 

ec kc k( c *cFk=r,,X 

with trivial action on the successive quotients.' In this "nilpotent case" the 
homology groups of Xl are the localizations of those of X: 

H*X--H*X ZZ, * > o . 
Similarly, the homotopy groups of Xl are the localizations of those of X. 

More precisely, each r,,X, admits a finite filtration so that the action of 
wrX, is trivial on the successive quotients. The map X - Xl induces a filtra- 
tion preserving map on n,, which is localization on the successive (Abelian) 
quotients. 

If we try to strip away all of the prime information (take I = 0) we 
obtain XQ, the rational type of X. In XQ the "algebraic" topology of X has 
become uniquely divisible. 

Now we turn to the process of finite2 completion. This is an inverse 
limit procedure which allows us to strip away much of the rational infor- 
mation in the homotopy type of X. 

An associated homotopy type X is constructed from "inverse systems" 

1 D. Kan and E. Dror who observed this point about Postnikov systems refer to such 
spaces as "nilpotent spaces"-a natural generalization of nilpotent groups. 

2 In earlier versions of this work, e.g., [181, this was called "profinite completion". 
Similarly, in the algebraic context (groups, modules, etc.) we use "finite" or "l-finite" for 
"profinite or "l-profinite", before the word "completion". 
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indexed by the category {f}x = {X f F} of all maps of X into spaces with 
finite homotopy groups. 

X is defined in the homotopy category by the formula 

[, XI = limf'x [, F] 

using a little theory about "compact Brownian functors". 
In the most general discussion of finite completion one needs both the 

space X and the "inverse systems" over {f}X- However, if X has "good" 
homotopy groups then all the information after finite completion is carried 
by the homotopy theory of X, which is simply related to that of X. 

For example, if rX contains a solvable subgroup which has finite 
index and finite type', and if the higher homotopy groups of X are finitely 
generated, then2 

wffX-finite completion of wrX, n ? 1 

and 

Hi(X, M) - H'(Xy M) 

for all finite r,-modules M. 
We also have i-completions for a set of primes 1. For example if l 

consists of one prime p we have the p-adic completion X, constructed from 
the category of maps of X into spaces whose homotopy groups are finite 
p-groups. 

There is a natural map X -. fl, X, where h is an isomorphism in the 
intersection of the two good cases mentioned above, i.e., if X is nilpotent 
with finitely generated homotopy groups. 

We refer to the array of spaces {XQ, X2, X3, * } as the "genotype of X". 
The homotopy type X can be reconstructed from a coherence between 

rational type XQ and the finite type X = ll , We describe the coherence. 
First, construct a formal completion of XQ by taking the increasing 

union of the finite completions of its finite subcomplexes Xj, 
formal completion XQ lima (XQ)A. 

Then construct the rational type of X. This may be described in terms 
of the rational types of the p-adic factors of X by the formula 

rational type of X 
- lim, P (XP)Q X JpES X 

1 All its subgroups are finitely generated. 
2 If G is a group we refer to the inverse limit of its finite quotients as its finite 

completion. 
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where S ranges over finite sets of primes.' 
Because XQ and X came from the same ordinary homotopy type X there 

is a canonical homotopy class of equivalences 

CA: formal completion of XQ - rational type of X 

preserving the Z 0 Q structure in the "homotopy groups". We refer to Z 
as the coherence of the homotopy type X. 

If we add C, to the genotype we obtain the "coherent genotype" of X: 

{XQ, X2, X3, * 

Now we describe the reconstruction of the homotopy type X from its 
coherent genotype {XQ, X; C,}. The coherence allows us to construct a 
common space containing XQ and X. Then X is simply the space of all paths 
in this common space whose endpoints lie respectively in XQ and X. 

The complete theorem about these constructions goes as follows: 
Form the homotopy category AI generated by nilpotent spaces of finite 

type and visible2 homotopy classes of maps between them. Also form the 
category of coherent genotypes 93. The objects of S, are arrays of nilpotent 
spaces {XQ, X2, * } whose "homotopy groups" are finitely generated over 
the appropriate ground rings {Q, Z2, Z3, * }, together with a coherence 

C: formal completion of XQ - rational type of 7rX, 

a class of homotopy equivalences respecting the Z 0D Q module structure on 
"homotopy". The morphisms of G, are arrays of homotopy classes of maps 
{fQ, f2, f3, ... } respecting the coherences. Thus we have the 

THEOREM. Localization and completion define a functor ' a-,,, The 

path construction defines a functor Gc 'I . These are mutually inverse 
equivalences of categories. 

As suggested above we will show in later discussion and papers how 
the two objects XQ and X are respectively related to analytic and algebraic 
structure in X. 

Now we turn to the final section of the homotopy analysis, where we 
apply this discussion to the theory of fibrations where the fiber has the 
homotopy type of a sphere. Thus we study local and complete spherical 
fibration theory. By fiberwise localization and completion we construct a 
canonical diagram of theories 

1 Hereafter, " " means "has the same homotopy type", or "is homotopic to". 
2 Two maps are visibly homotopic if they are homotopic on every finite subcomplex of 

the domain. 
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{Si' '-fibrations} 

{S n--fibrations} / 

{S 'fibrations} 

We show that the corresponding diagram of classifying spaces has for 
no the diagram of units' 

A* 

Z* 

1* 

and for universal covering space the diagram of spaces 

(BSGn) I 

BSGn \ { 

(BSGn)l 

where BIG. is the classifying space of oriented S"-'-fibration theory. 
We obtain then the 

COROLLARY. The stable theory of spherical fibrations is a direct factor 
in the stable theory of fibrations where the fibers are the completed spheres Sn. 

We then use this corollary to prove the real and complex Adams con- 
jectures, which we shall now discuss. 

The Adams conjectures. These conjectures concern the spherical fiber 
homotopy type of vector bundles related by the famous Adams' operation *k. 

For example if r is a complex line bundle then *kr is the k-fold tensor power 

,2k = As .. * * . In general Ak is the unique ring endomorphism of K- 
theory extending this operation. 

In his work on the order of the image of the Hopf-Whitehead J-homo- 
morphism, [1]-[4], 

wrGl(n, C) J r2,f+ . 
F 

Adams made use of the natural fiber-preserving map r rk defined on vectors 
vby vw v ... (O v. On each fiber the map can be thought of as z Zk in 
the complex plane. 

1 R* = units in R. 
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Thus if we remove the zero sections of r and Ok, F induces a fiber 
homotopy equivalence provided we suppress the primes dividing k. Adams 
did this by forming the stable bundle 

(o~k _0 a) 
(, 
(k _0 a) ...** (Dok _ 

with kN-summands, where N depends on the dimension of the base. 
Adams proved the corresponding sphere bundle was fiber homotopy 

trivial (using F) if N was large enough. This gave an upper bound on the 
order of image J. 

At this point Adams conjectured that for all elements e in the K-theory 
of a finite complex the stable bundle kN(rk$-$), N large, has a fiber homo- 
topy trivial associated sphere bundle. 

He then proved the beautiful consequence-if the relations "kN' k$- 

is fiber homotopy trivial" hold, then all stable fiber homotopy relations 
between vector bundles can be deduced from them. 

Our formulation and proof of the Adams conjecture use the finite com- 
pletion of K-theory defined for finite complexes by 

K(X) = lim, K(X) 8) Z/n . 

K(X) has a unique extension to the entire homotopy category which is 
represented by mapping into some classifying space B. This B is just the 
finite completion of the infinite grassmannian classifying space B of ordinary 
K-theory. 

Now each element ̂ / e K(X) has a well-defined stable fiber homotopy 
type. This follows by continuity from the fact that the group of stable 
spherical fiber homotopy types over a finite complex is finite. 

For each integer k we can define an isomorphism of K(X) using *k on 
the p-components for (p, k) = 1 and the identity if (p, k) > 1. 

Computations made by Adams imply that these operations extend by 
continuity to an action of the group of units Z* = lime (Z/n)* on K(X). 

Our proof of the Adams conjecture is based on describing this symmetry 
in K in terms of algebraic symmetry in the grassmannian varieties which 
classify K-theory. 

Amusingly enough, this symmetry is obtained by transforming the 
points of the grassmannians discontinuously by a field automorphism of C 
which moves the roots of unity around. For example, to prove the Adams 
conjecture for * k we use a field automorphism a of C which raises nth roots 
of unity to the kth power for (n, k) = 1 and is the identity on all kr th roots 
of 1, for any r. 
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We thus refer to the symmetry group Z* which contains the isomorphic 
part of the Adams' operations as the Galois group. Then we have the 

THEOREM (Adams conjecture). In real or complex K-theory the stable 
fiber homotopy type is constant on the orbits of the Galois group Z*. 

COROLLARY (Adams). Any element in K which is fiber homotopy trivial 
is of the form a - for some o e Z* and ~ e K. 

The theorem follows quickly from the fact that the Galois symmetry in 
K arises from homotopy symmetry in the finite completions of the grass- 
mannian approximations to B. In fact the theory of Section 4 allows us 
to obtain a canonical fiber homotopy equivalence between the appropriate 
completed spherical fibrations before stabilizing. 

We note in passing certain other homotopy theoretical results found in 
the discussion. 

i) In the localization section the following principle is described: If a 
homotopy problem involving only finitely many simply-connected finite com- 
plexes has a rational solution, then it has a solution after localization away 
from a certain finite set of primes. 

ii) In that section we also find that there are no "phantom maps" of a 
countable complex into a nilpotent space whose homotopy groups are built 
up from Q-vector spaces of finite rank. 

iii) In the completion section we find a Hasse principle for maps-which 
says that two maps of a finite complex into a nilpotent space of finite type 
are homotopic if and only if they are homotopic at every (finite) prime. 

iv) In Section 3 we use the "coherent genotype" picture of QP- to con- 
struct self-mappings of any odd square degree. 

v) In Section 4 we discuss principal spherical fibrations and prove 
for p odd that S2r-' is homotopy equivalent to a topological group if n 
divides p - 1. 

(It has been known for some time that the conditions of iv) and v) were 
necessary.) 

Now it is time to acknowledge the many debts incurred during the 
research on this paper. First of all G. Washnitzer first pointed out to me 
the miracle of a "discontinuous map" acting on the cohomology of a space 
like the grassmannians. Greg Brumfiel first explained the Adams conjecture 
to me at an opportune moment in the study of smooth normal invariants. 

I am indebted to Dan Quillen who first raised the specter of algebraic 
geometry in characteristic p in connection with the Adams conjecture. He 
has also found a proof of the Adams conjectures using another "algebraic 
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theory of cohomology", the cohomology of finite groups [91, [11], [12]. His 
methods lead to interesting computations of algebraic K-theory and a 
general homotopy theoretical attack on certain algebraic questions. Hope- 
fully our proof will lead to a certain understanding of the geometric topology 
of algebraic varieties. 

I am grateful to George Bergman who told me many things about the 
p-adics and to Saul Lubkin who explained many useful things about his 
approach to etale cohomology. 

Barry Mazur and Mike Artin helped me understand the etale cohomology 
in characteristic zero which is simpler than characteristic p because of the 
appealing geometric interpretations and yet sufficient for the Adams con- 
jecture. Also the notion of finite completion used here is evolved from 
theirs [5]. 

I am grateful to John Morgan who worked out many thorny technical 
points and provided a set of notes without which this paper would still be 
in the "to appear" category. 

I am indebted to Dan Kan for explaining the notion of nilpotent space 
and to his student Emmanuel Dror for pointing out that our original localiza- 
tion arguments worked essentially word for word for this more interesting 
class of spaces. I am grateful to Ellie Palais for promoting the genetic 
terminology which is useful for understanding the structure found here. 

Finally I offer my thanks and admiration to Frank Adams for dis- 
covering this beautiful phenomenon in K-theory. 

1. Algebraic constructions 

Here we describe the algebraic constructions and objects needed for 
the later discussion. These include localization and completion of groups and 
the corresponding ground rings Z, and Z,. 

One of the main point is the "arithmetic square" (page 14), introducing 
one of the major themes of the work. 

The constructions and their properties are described in serial order with 
some indication of proof. Topological examples illustrate the algebra. 

Localization. 
We shall sometimes want in our calculations to concentrate on a certain 

subset of primes 1 and allow division by the primes outside of 1. The 
appropriate ground ring for this situation is Z1, the subring of the rationals 
consisting of fractions whose denominators are products of primes outside 1. 

We shall make use of certain properties of this local situation: Z1 and 
its modules. 
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First of all there are natural inclusions Z1 Z, if 1' c 1, and it is easy 
to check that 

Zlfl Z, 

1.1 4l ji 

Z1' k Zin n 

is a "fiber square". That is, the sequence 

1.1' o -~ z1 ze zi0 Zl Z1 Z1 Znp > o 

is exact. 
Z1 is used to localize Abelian groups by tensoring 

1.2 G-> G where G, = G?0 Z 1 

We refer to G, as the localization of G with respect to the set of primes 
1. Of course G1aii primes} - G and we write G0 = GQ. 

Examples. 
a) If G is a finitely generated Abelian group G, - Z1 ED* * ED Z1 & 1- 

torsion G. 
b) (Q/Z)1 = D elZ/p? (Z/p? = lima ZIpa). 
The natural localization map G G, has kernel the torsion of G prime 

to 1. 
More generally, we think of G, as formed from G by making the opera- 

tions of multiplication by integers prime to 1 into isomorphisms. Thus we 
have 

1.3 G, 1 lim(,l,1 {G G} 

1.4 Thus we see that G is isomorphic to its localization at I if and only if G 
is a Z1-module. In this case we say that G is local (with respect to 1). 

1.5 The direct limit formula 1.3 shows localization preserves exactness, 
finite products, and commutes with the operation of taking homology (when 
extended to graded groups in the obvious way). 

Thus for all spaces X 

1.6 H*(X, Z1) H* X?(&Z 

Also, let F- E--B be a fibration of connected spaces. 
If the fundamental groups are Abelian, and two of 

1 The homotopy arguments of Section 2 lead directly an extension of localization to 
nilpotent groups (see also [61). 
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1.7 {wi*F}, {wi*E}, {wi*B} 

are local then the third is also. 
1.7 follows by localizing the exact homotopy sequence, 

* * * - 7r+ F > (rE -*rB * 

The bottom row is exact by 1.5 so the result follows from the 5-lemma. 
The result of 1.7 extends to homology in case w1B acts trivially in 

H*(F, Z/p) for primes p X 1. For then if two of 

1.8 {H*F}, {H*E}, {H*B} 

are local, the third is also. 
1.8 follows from the Serre spectral sequence relating the mod p homo- 

logies of F - E d B and 

1.9 "H*X is local if and only if H*(X, Zip) vanishes for primes p X 1." 

1.9 follows from the coefficient sequence 

... ).HX HiX >Hj(X, Zlp) >** 

and 1.4. 
The analogue of 1.1 for groups is true, namely 

Giul, ) Gi 

1.10 1 

G1' > G-n,, 

is a fiber square of groups. For example if I U l' = all primes and I n 1'-0 
then we see that G is the fiber product of its 1-localizations and l'-locali- 
zations over GQ, 

1.11 G --G, X GQ G1Z 

1.10 follows by tensoring 1.1' with G since tor (G, Z1) = 0 for all G and 1. 
If we localize G at I and then localize the result at 1', we obtain the 

localization at 1 n 1', 
1.12 (G1)1 -- Gin,, 

This follows from 1.3 or the isomorphism 

1.13 Zini- Z1 (OZ Z1f - 

For certain considerations localizing is not drastic enough. We can 
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suppress the influence of the rationals and obtain an interesting compact- 
ness phenomenon by completing with respect to a set of primes 1. 

The ground ring for this situation is the inverse limit of the finite rings, 

1.15 Z, = limne{l} Z/nZ 

where {l} is the multiplicative set generated by the primes of 1. {l} is 
partially ordered by divisibility. 

We shall make use of the natural compact topology on Z1 coming from 
the inverse limit and the uniform structure obtained by regarding Z1 as the 
completion of Z with respect to the ideals nZ, n e {l}. 

Of particular interest for us are the cases 
i) I = {p}. Then Z1 is the ring of p-adic integers 

1.16 Z, _=lim" Z/p'1Z . 

We will use the interesting fact that the group of units in Z, contains 
the (p - 1)st roots of unity. In fact, we need the natural isomorphisms 

Z* _ Z/p-1 Z1 , p odd 

and 

Z* =Z/2 d Z2, 

constructed using the p-adic log and exp functions. 
ii) 1 {all primes}. Then Z Z is the finite completion of Z, 

1.17 Z --limnZ/n . 

It is clear from 1.17 that we have the continuous isomorphism 

1.18 Z JJpP Z 

We will also encounter the localizations 

1.19 i) (Z4)Q- ZP (, Q, the field of p-adic numbers, denoted Qp. Recall 
that Z is contained in the compact ring Zp as a dense subset, and Zp is 
contained in the locally compact field Qp as the closed unit disk (with respect 
to the natural p-adic metric on Qp). 
1.20 ii) (Z)Q 2_ Z ?D Q, the ring of "finite Adeles for Q" denoted Af. Af is 
isomorphic to a restricted product over the primes of the p-adic numbers; 
that is, Af c jlp Qp is the locally compact subring consisting of elements of 
the product which have integral components at all but finitely many primes. 

From the description it is clear that A is a direct limit 
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where S ranges over finite sets of primes and 

Af= (ap es QP) X (T-I es ZP) 

Our main use of Af concerns the fiber square, 

Z >Z 

1.22 l"arithmetic square", 

Q > Af 
d where Q A is the diagonal embedding 

n n n, e f 

The exactness of 

1.22' 0 Z ZeQ Af - 

is checked fairly easily. 
The study of Q - Af is certainly enhanced by combining it with the 

real completion Q R. The product embedding of Q in the full ring of 
Adeles for Q, A = Af x R, is now discrete with a compact quotient. This 
property is only used as a provocation in this work. 

These considerations may be extended to groups in several ways. First 
of all we shall make some use of the formal completion of Abelian groups 

1.23 G- G where G>EG ?ZZ. 

The formal completion enjoys many of the algebraic properties of localiza- 
tion, especially 1.5. 

A more interesting construction is the l-finite completion of an arbitrary 
group G. We have 

G - G,* where G, lima GIH,, 

and Hat ranges over those normal subgroups of G so that GIH, has finite 
order, a product of primes in 1. 

We are most interested in the case where 1 is {all primes}. Then we 
have the finite completion 

G , G where G = lima GIHa,, GIH, finite. 

We shall make use of the natural compact topology on these profinite 
groups given by their expression as an inverse limit of finite groups. 

1.24 For example, each map of G into a finite group has a unique continu- 
ous extension to G. 
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1.25 If G is a finitely generated Abelain group, the finite completion and 
formal completion agree. The topology on the former is intrinsic to the 
algebraic structure of G. 

In this case we also have the fiber square of groups 

G AG 

1.26 1 { "arithmetic square for G" . 

GQ GO AfZ A, 

Because of 1.25 we can check the exactness property 1.26 by tensoring 1.22' 
with G since tor (G, Af) = 0. 

Since c and 1 are defined intrinsically in terms of GQ and G (namely 
formal completion and localization respectively) we can view 1.26 as a 
natural recovery formula for G in terms of its localization GQ and its finite 
completion G. 

Also for Abelian groups it is clear that 

1.27 G-JJ G,. 

So the arithmetic square 1.26 binds together the rational type of G, GQ 
and its rather independent p-adic completions GP using the natural iso- 
morphism (GQ)f -(G)Q (each is naturally isomorphic to G ?, Af). We shall 
generalize this picture to homotopy in Section 3. 

1.28 We shall make use of the fact that G oA G gives a dense embedding of 
a finitely generated Abelian group G into its finite completion G. In fact 
finite completion is characterized by this property for finitely generated 
Abelian groups. 

Examples. 
a) If G is. a finitely generated Abelian group G 20 Zg 02 0 * ED 

torsion G. 
b) QA 0, but QA = Af. 
c) If G is a vector space over Z/p with infinite cardinality a then G is 

a vector space over Z/p with cardinality 22a. The topology on G is clearly 
important in this case. 

2. Localization in homotopy theory 

Let 1 be a set of primes in Z, vacuous or not. There are two examples 
of localization of spaces at 1 which come to mind easily. First, if X is the 
suspension of a connected space, then for each integer n there is a natural map 

X X. Picto3 
X -~X. Pictorially, X -~X is given by 
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It is clear that this map multiplies homology classes in positive dimensions 
by n. 

We can form the infinite mapping telescope of the maps 
n m 

X >X X >** 

2.1 

where n, m, etc. range through a cofinal set of those integers obtained from 
primes not in 1 by multiplication. 

We obtain a new space Xl containing X. An easy argument using the 
compactness of cycles and homologies shows X X, localizes homology, 

2.2 HEX- (H1X)1. 

In the second example Y is any space with a continuous multiplication 
of its points. Y e Y can be defined by raising points of Y to the n'h power. 
This map multiplies homotopy classes by n if Y has a unit. Again let Yj 
denote the infinite mapping telescope of 

n m 

n, m, etc., as above. The compactness of the sphere and disk implies Y-e Y, 
localizes homotopy, 

2.3 wi Y1 (wi Y)i 

The main theorem of this section on localization asserts 2.2 and 2.3 are 
equivalent for many such spaces. So we can deduce 

for the suspension example, wjX- (wrX), , and 
for the Hopf space examples, HjXj _ (H1X)j. 

Thus suspensions and H-spaces have good localizations from the point of 
view of the invariants of algebraic topology. 

The suspension construction for spheres was used by Adams in studying 
multiplications on spheres (away from 2). 
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The H-space construction was needed in [16] to express the results de- 
termining the structure of G/PL, the classifying space for surgery problems 
in geometric topology. The structure found there was very different "at 2" 
from that "away from 2". It was natural to wonder what more general 
localization of spaces was possible. Interestingly enough there is quite a 
general theory. 

In this section we generalize the suspension example to a cell by cell 
localization of a simply-connected cell complex. Each cell of the original 
space X is replaced by a "local cell" of the new space Xl. 

The H-space example generalizes to a stage by stage localization of any 
principal Postnikov system X. The homotopy groups and k-invariants of X 
are replaced by the localized groups and k-invariants of Xl. These construc- 
tions are very easy, given Theorem 2.1. 

In either case we obtain for a simple Postnikov space X a localization 
map X 

- X, which localizes homology and homotopy. Obstruction theory 
shows X, is universal for maps of X into spaces with local homotopy groups. 
Thus localizations are unique and we have a good localization functor on the 
homotopy category' generated by simple Postnikov spaces. 

We discuss briefly certain localizations of more twisted spaces. The 
section ends with some examples and certain propositions about the rational 
type of X which is obtained by inverting all the primes. 

Recall that K(7T, n) denotes the space with one homotopy group w in 
dimension n. Call a space X a simple Postnikov space if it can be approxi- 
mated up to any dimension by spaces constructed inductively from a point 
by principal fibrations whose fibers are K(r, n)'s, where the w are Abelian. 

We refer to such a sequence of approximations as a Postnikov decomposi- 
tion (or a simple Postnikov decomposition) of X.2 Such spaces were first 
emphasized by E. Dror and Dan Kan who aptly call them nilpotent spaces. 

PROPOSITION (Kan and Dror). X has a simple Postnikov decomposition 
as above if and only if each r,-module ffX has a finite filtration 

e = ]Fkr, c 'k-1,r c * ... c Fwrn = mrn 

so that the action of zr, is trivial on the successive quotients. 
Thus wr, is nilpotent and the action of wr, on yz,, is nilpotent. Their point 

is this-these spaces behave for many homotopy purposes like simply con- 
' The objects are spaces having the homotopy type of simple Postnikov spaces. The 

morphisms are homotopy classes of maps between these spaces. 
2 We refer to the more general decomposition with non-Abelian K(7r, 1)'s and non-principal 

fibrations as twisted Postnikov decompositions. 
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nected spaces. For example we have ordinary obstruction theory for maps 
into these spaces, the Whitehead theorem relating ordinary homology iso- 
morphism and homotopy equivalence, and so on. In fact they comprise a 
kind of maximal class of spaces where these "simply-connected" or homo- 
logical techniques work. 

Unless otherwise stated we shall work only with these simple Postnikov 
(or nilpotent) spaces in this section. We say that a simple Postnikov space 
is local if each wr occurring in some approximating Postnikov system is local; 
that is, IT is a Z1-module for the set of primes I under discussion. 

We refer to the w as the "homotopy groups" of X. We say that a map 
1 

of some space X into a local space X,, X Xl, is a localization of X if it is 
universal for maps of X into local spaces; i.e., given f there is a unique fL 
making the diagram 

X X, 

f\ ,,~ 
local 
space 

commutative.' 
Local spaces and localization are characterized by 

THEOREM 2.1. For a map 

X X" 

of simple Postnikov spaces (nilpotent spaces) the following are equivalent: 
i) I is a localization, 
ii) I localizes integral homology, 
iii) I localizes "homotopy".' 

Taking 1 = identity we have the 

COROLLARY. For a simple Postnikov space the following are equivalent: 
i) X is its own localization, 
ii) X has local homology, 
iii) X has local "homotopy". 

We note here that a map induces an isomorphism of local homology if 
and only if it does so on rational homology and on mod p homology for p e 1. 

The proof of the theorem is not uninteresting but it is long so we defer 

it to the end of this section. 
1 Maps are considered up to homotopy. 
2 We give a definition of 7riX(O ZL for irX nilpotent in the remark after Theorem 2.3. 
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We go on to our constructions of the localizations which make use of 
Theorem 2.1. Recall the local sphere described above as an infinite mapping 
telescope. The inclusion of Si Si as the first sphere in the telescope clearly 
localizes homology. In positive dimensions we have 

0 0, j +, 

Z lim Z= ZI, 

Thus by Theorem 2.1, 1 also localizes homotopy and I is a localization. 
This homotopy situation is interesting because the map induced on homotopy 
by a degree d map of spheres is not the obvious one; e.g., 

i) S' S' induces multiplication by d2 on Z c ,7S4. (H. Hopf) 
ii) S' S' induces a map represented by the matrix (? 0) on W8S4 

Z/2 & Z/2. (David Frank) 

COROLLARY. The map on d torsion of wj(Si) induced by a map of degree 
d is nilpotent. 

Definition. A local CW complex is built inductively from a point or a 
local 1-sphere by attaching cones over the local sphere using maps of the 
local spheres S, into the lower "local skeletons". 

Note. Since we have no local 0-sphere we have no local 1-cell. 
THEOREM 2.2. If X is a CW complex with one zero cell and no one-cells, 

there are a local CW complex Xl and a "cellular" map 

X_ XI 

such that 
i) I induces a bijection between the cells of X and the local cells of Xl. 
ii) 1 localizes homology. 

COROLLARY. Any simply-connected space has a localization. 

Proof of Corollary. Choose a CW decomposition with one zero cell and 
zero one-cells and consider 

X- XI 

constructed in Theorem 2.2. By Theorem 2.1, 1 localizes homotopy and is a 
localization. 

Proof of 2.2. The proof is by induction over the skeletons {X4}. Assume 
1. S ~~~~~~~~a we have constructed XI - X,1 satisfying i) and ii), and let So X7 be an 

attaching map for X"+1. Consider the diagram 
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a 
So 

a Xn 

I In 

S1 
a;4t 

Xl 

By Theorem 2.1, we have a unique factoring a'. We can then attach the 

appropriate local cells to Xl, to obtain Xn+1 -Xl + satisfying i). In+l satisfies 
ii) by an easy exact sequence argument. 

Then let Xl = U,, Xl' to complete the proof of the theorem. 

There is a construction dual to the cellular localization for simple 
Postnikov spaces. Let X be a Postnikov decomposition 

Xan 

\\ 1 ~~~~k-invariant K7,d, 

XO= 

We say X is a "local Postnikov decomposition" if each 7r is local. 

THEOREM 2.3. If X is any Postnikov decomposition there is a local 
Postnikov decomposition Xl and a Postnikov malp 

X- > XI 

which localizes "homotopy groups" and k-invariants. 

Proof. We induct over the number of stages in X. Assume we have a 

map of the n-stages Xn --.X,, localizing homotopy groups, and let Xn--+K 
be the primary obstruction (or k-invariant) of the (n + 1)-stage Xn+1 - x,". 
By Theorem 2.1 we have a unique extension k' in the diagram 

k ; k' 

K K, 
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where K, = K(A,, n + 2) if K = K(A, n + 2).1 The induced map on the 
fibers gives the desired X'+1 Xl+" and we are done. 

COROLLARY. Any simple Postnikov space has a localization. 

Proof. Apply Theorem 2.3 to a Postnikov decomposition of the space. 

Remark. This argument shows us what w 0 Z, should mean for a 
nilpotent group r. Let X = K(r, 1) with the Postnikov decomposition 
corresponding to the lower central series of w. We localize the Postnikov 
system using ii) iii) of Theorem 2.1 with the inductive interpretation of 
rX" 0) Z1. Then w 03 Z, is the fundamental group of the resulting space Xl. 

In w O9 Z1, x xi, is a bijection for (n, l) = 1. In fact 7r0D Z, is 
universal for maps of 7 into such "I-divisible groups". Also the fiber square 
1.10 is still valid. These points are easy to see using induction over the 
lower central series of r. 

So choose for each cell complex X a particular cell complex Xl and a 
I 

particular localization map X Xl, say an inclusion. Then given a map 
f ~~f X L Y the composition X 

- Y - Y1 has a unique extension up to homotopy 
over Xl by obstruction theory (see proof of 2.1). In particular we have 

THEOREM 2.4. There is a canonical localization functor on the homo- 
topy category generated by simple Postnikov or nilpotent spaces. 

Actually the obstruction theory argument allows much more precise 
functorial statements about localization in a given situation. For example, 
some function spaces and fibrations are localized (function by function) and 
(fiber by fiber) in Section 4. 

THEOREM 2.5. The localization functor X Xl 
a) preserves fibrations of connected, simple spaces, 
b) preserves cofibrations of simply-connected spaces. 

Proof. a) and b) follow respectively from the homotopy and homology 
properties of localization using Theorem 2.1. 

We note here that no extension of the localization functor to the entire 

S2 

double cover 

S1, .-S'---RP' 
double 
cover natural inclusion 

RP- = K(Z/2, 1) 
1 Using the universal coefficient sequence over Z1 one sees that a map which induces an 

isomorphism of Z1 homology also induces an isomorphism of Z1 cohomology. 
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homotopy category can preserve fibrations and cofibrations. For this, con- 
sider the diagram. The vertical sequence is a fibration (up to homotopy) and 
the horizontal sequence is a cofibration. If we localize "away from 2", i.e., 
if 1 does not contain 2, we obtain 

S2 

1. 
RPI *. 

If cofibrations were preserved RP2 should be a point. If fibrations were 
preserved RPI should be SI (which is not a point). 

It is interesting to ask what localizations are possible for more general 
spaces. 

Note (localization of twisted Postnikov spaces). 
A) The fiberwise localization of Section 4 allows some treatment of 

non-simple spaces X. For example, let X' - X be a covering corresponding 
to a normal nilpotent subgroup 7r of w1X which acts in a nilpotent manner 
on the higher homotopy groups. Then we can localize the fibers in the 
fibration 

X'-i > X >K(w1/r, 1) 
to obtain a partial localization of X. The new space Xl is the total space of 
a fibration 

Xli > Xl > K(w1/r, 1). 

Thus the higher homotopy groups of Xl are those of X localized; while 
7r1Xl is the natural extension 

1 > -o w1X4 -''- w/ - 1 

a partial localization of w1X. 
B) There is a more algebraic view of localization due to Bousfield and 

Kan. First of all Kan has a construction for converting an arbitrary space 
into a tower of nilpotent spaces. Then ordinary localization may be em- 
ployed [6]. In this approach the first step is to form the nilpotent completion 
of the Kan group complex for the space of loops on X. Then "algebraic 
localization" is possible. This "algebraic localization" is the natural exten- 
sion via inverse limit of localization of nilpotent groups (discussed above) to 
inverse limits of nilpotent groups. 
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This construction gives our localization on nilpotent spaces by uniqueness 
and has the advantage of being defined in a very rigid way for all semi- 
simplicial complexes. For non-nilpotent spaces the change in homotopy 
groups presents an interesting new problem in homotopy theory. 

C) For localization at Q, discussed specifically in the section, a com- 
pletely different approach is possible. On a triangulated space there lives a 
natural rational de Rham algebra of differential forms [17]. From this 
algebra a tower of Q-nilpotent spaces can be constructed. This tower agrees 
with the Kan-Bousfield localization of general spaces. 

The rational type of X. 
When 1 is vacuous we refer to Xl as the rational type of X and denote 

it XQ. Of course XQ is the most drastic localization of X since its higher 
homotopy and homology groups are converted into rational vector spaces, 
while 7r, becomes a group in which extraction of n nth-roots is always possible 
and unique. 

wriXQ-(wrX) (? Q. HiXQ - (HiX) ( Q. 

One use of XQ is that of a base for melding the more subtle p-primary 
structures of X. 

If 1 U l' is a partition of the primes into two disjoint sets, we can form 
the homotopy commutative square 

X X,X 

X -> XQ. 

Taking homotopy groups gives a fiber square by 1.10 so X has the homo- 
topy type of the path space fiber product of 

X, 

XvT XQ. 

Example. Consider G/PL, the union of the homogeneous spaces con- 
structed from the spaces Go of proper homotopy equivalences of Euclidean 
space R" and the spaces PLn of PL-homeomorphisms of R" as X approaches 
infinity. 

G/PL classifies surgery problems. Treating the classical surgery obstruc- 
tions as homotopy invariants leads to a complete homotopy analysis of this 
space. These calculations can be expressed in terms of the localizations of 
G/PL at 2 and away from 2. In fact 
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(G/PL)Odd - (Bo)Odd 
(G/PL), _- Y x JII00 K(Pip X) 

where B, is the classifying space for the stable orthogonal group, Y is the 
total space of the fibration over K(Z/2, 2) with fiber K(Z(2,), 4) and k-invariant 
SSq2, and Pi is the period-four sequence of groups, 

O Z/2, O Z(2,, O Z/2, O Z(2)f ....1 

Thus (G/PL)Q f K(Q, 4i), and we have that G/PL has the homo- 
topy type of the fiber product of the diagram 

Y x IfK(Pi, i) 

An 

(BO)Odd -> fiP K(Q, 4i) 

where p is the Pontrjagin character and n is the natural map induced by 
tensoring {P*} with the rationals. 

This analysis applies to G/Top using the triangulation work of Kirby 
and Siebenmann. Here we have 

(G/Top)Odd - (BO)odd 

(G/TOP)2 ][J~o 1 K(Pi f i) 

We shall pursue this discussion and the relation of G/PL and G/Top to 
the classification of manifolds in Part II. (See also [181.) 

In the next section we shall consider more drastic decompositions of X 
in terms of XQ and p-adic completions. To set the stage for this discussion 
we shall prove two propositions about rational homotopy types. 

As a corollary to the first (Lemma 2.6) we have the following principle: 
If a homotopy problem involving only finitely many simply-connected finite 
complexes can be solved for the corresponding rational types, then it can be 
solved for the localizations away from a certain finite set of primes. 

For example, the problem "does the finite complex X have a continuous 
multiplication with unit?" is expressible in terms of the finite diagram of 
finite complexes, 

Xx X 

inclusion 

XU X fold f X . 

Here the map , is the desired solution. 
1 Z(2) means the integers localized at the set of primes {2}. 
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From Lemma 2.6 we have an interpolating sequence of finite complexes 
between X and XQ, 

X- X>X1 )X2 ' ***XQ =U X.- 

where each map is a Q-equivalence. 
If XQ has a multiplication, consider the diagram 

XQ X XQ iQ XQ 

Ii J X X X X,,e 

XVX fold X. 

The factoring se,, exists since X x X is compact. The map in is a Q- 
equivalence between finite complexes so it is also an equivalence outside 
some finite set of primes S. If I is the set of primes complementary to S, 
then it follows that X, has a natural multiplication. 

To solve the original homotopy problem we have to concentrate on the 
finite singular set of primes for the rational solution. For this work the p-adic 
completions of the next section are often more useful than localizations. The 
assembly procedure is explained there by the concept of a coherent genotype. 

A proper discussion of this theory is simplified by the second proposition 
(Lemma 2.7) which asserts that there are no phantom maps into spaces 
whose "homotopy groups" are rational vector spaces of finite rank. 

Note (further remarks on multiplications in spaces). 
A) By the work of Hopf and Milnor-Moore the existence of a multiplica- 

tion for a rational homotopy type is equivalent to the vanishing of the 
k-invariants. For a finite complex this means X is Q-equivalent to a product 
of odd-dimensional spheres II S. The compactness argument above then 
shows X and II S are equivalent when we localize each away from a finite 
set of primes. 

At each prime of this finite set, X may be equivalent to localizations of 
various Lie groups as recent examples of Zabrodsky and others show. 

B) If we ask for an associative multiplication on a space homotopy 
equivalent to X, the set of singular (bad) primes for a rational solution may 
not be finite. For this question implicitly involves infinite spaces. This is 
clear from the reformulation, "find a space B so that X is equivalent to the 
space of loops on B". 
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For example, if X is the seven dimensional sphere, XQ = K(Q, 7) which 
is equivalent of course to loops on K(Q, 8). Thus we have an associative 
multiplication on S7 over the rationals. But it can be shown that the (unique) 
rational solution of this problem can only be lifted to the localization of S7 
at the set of primes which are congruent to one modulo 4. (See "Principal 
spherical fibrations" in Section 4 for a more complete discussion of this 
phenomenon.) 

Examples of rational types. 
i) SQn K(Q, 2n + -) RP12) + 

x2 

ii) SQ( fiber (K(Q, 2n) 
x' 

K(Q, 4n)) 
iii) CPQ fiber (K(Q, 2) 

x 
K(Q, 2n + 2)) 

iv) (B,,)9= II" K(Q, 2i) 
v) Let V be a finite polyhedron.' Then there is an integer k= 

k(dim V) so that if x e H2n(V, Z), k fx is naturally represented by the Thom 
class of a subcomplex Vx c V with a complex normal vector bundle Ex. In 
this representation x restricted to Vx gives the nth rational Chern class of 
Ex while the lower rational Chern classes of Ex are zero. 

Proofs. i)-iv) are checked by computing rational cohomology. The iso- 
morphism in iv) is given by the rational Chern classes and implies the uni- 
versal space for the geometry of v), MUn, has rational type 

cofiber (fl'n- K(Q, 2i) - II> K(Q, 2i)) 

Thus (MU,)Q has K(Q, 2n) as a canonical retract. By obstruction theory, 
for any d-skeleton of K(Z, 2n) there is an integer kd and a diagram 

K(Z, 2f)d-skeleton ) MiUn 

.kdl 
K(Q, 2n) -, (MU.)Q 

The desired subcomplexes are produced by transversality using L. 

LEMMA 2.6. Let X be a simply-connected space whose reduced integral 
homology consists of finitely many rational vector spaces of finite rank. 
Then X is equivalent to an increasing union of finite complexes whose 
integral homology groups (mod torsion) embed in those of X as an increasing 
union of subgroups of maximal rank. 

Proof. X is equivalent to some increasing union of finite complexes { Yj 
1 In case V is an oriented smooth manifold this example shows the smooth submanifolds 

of V generate the rational homology in every dimension. 



GENETICS OF HOMOTOPY THEORY 27 

which are simply-connected. We can assume each inclusion Ye, X is a 
surjection of rational homology, after discarding the first few spaces. 

Suppose H*(Yn; Q) - H*(X; Q), for some n, is actually an isomorphism 
for i < q - 1. Then consider 

0 Hq(X, Y.; Q) Hq( Y.; Q) Hq_(X; Q) -*0. 

Th 

7cq(X, Y,) 

By the Serre form of the relative Hurewicz theorem, image h contains 
a set of generators. We can then attach a finite number of q-cells to Y, in 
X, killing image j and making i into an isomorphism in dimension q - 1. 

The rational homology picture above dimension q - 1 is unchanged. So 
we can continue in this way to find a new finite complex XA so that 

i* 
Hq(Xn, Q) - Hq(XI Q) 

for q < dimension X". It follows that i* is an isomorphism for all q. 
Now X, is contained in some Y. for m > n. We can modify Y. to get 

X. and so on. Then X = U X,, and the theorem is proved. 

LEMMA 2.7. Let X be a space whose "homotopy groups" are finite 
dimensional Q vector spaces. Then if Y is a countable complex, two maps 

f 
Y = X are homotopic if and only if they are homotopic on each finite sub- 

complex of Y. 

Proof. Write Yas the increasing union of connected finite subcomplexes 
Ys Y=Ui0 Y,. Let Fn denote the (based) function space XI". Then we 
have 

i) an inverse system of spaces {F.}; 
ii) an inverse system of pairs of points {f. and g.} in {F.}; 
iii) paths in F. connecting fi, and go not necessarily compatible. The 

homotopy classes of such paths form an inverse system of sets {H.}; 
iv) an inverse system of groups {G.} = {w1(Fn, f")} acting on the system 

of sets {IH}. Each action is free with one orbit, and the maps Hn1, H1 
are equivariant with respect to the natural maps Gnat -p G-. 

Our tasks are to 
a) prove that lime HLf # 0; 

b) realize a formal homotopy in lim, H. by an actual homotopy between 
f and g. 

Now b) is easy if we think of Y as the infinite telescope on the Y.'s. a) is 
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more subtle and makes use of the hypothesis on X. 
The main point of the proof is to show that the groups Go are Q- 

nilpotent. That is, Go has a finite ascending central series with successive 
quotients finite dimensional vector spaces over Q. The argument proceeds 
in the following way. 

i) Consider two finite complexes K and K' where K is obtained from K' 
by attaching an n-cell. There is an easily derived exact sequence 

> w2(XKI, g ) - X w1(XK, g) no1 (XK', g') Z X. 

We will assume inductively that we have shown that 
a) wZ(XK', g') is Q-nilpotent and 
b) wn(XK', g') is a finite dimensional Q-vector space, n> 1. 

By exactness, our hypothesis on X, and b), image r7 is a finite dimen- 
sional Q-vector space. A direct geometric argument shows that image 72 
lies in the center of r1(XK, g).I Thus w1(XK, g) is a central extension of a 
rational vector space by image r = kernel v. 

Once we have shown kernel v is Q-nilpotent, we will have established a) 
for K. b) follows for K using the part of the exact sequence to the left of 
Zn+,X. 

ii) Now Q-nilpotent groups enjoy the properties 
a) kernels of maps between Q-nilpotent groups are Q-nilpotent, 
b) images of maps between Q-nilpotent groups are Q-nilpotent and 
c) any descending sequence of Q-nilpotent groups is finite. 

Now a) completes the discussion of i), and b) and c) then imply that 
the inverse system of groups {G.} = {wz(Fn, fn)} is Mittag-Leffler. That is, 
for any n, nfk> image (Gk - Gn) = image (Gk-n GO) for some k1c- 

The proof is completed by observing that the inverse system {H"} is 
Mittag-Leffler because {G.} is and the actions of Go on H. are free with one 
orbit. It follows easily that lim {Hn} t 0 and we are done given the 
algebraic properties a), b), and c) of Q-nilpotent groups. 

iii) Among nilpotent groups Q-nilpotent groups are characterized by 
a') (x F x") is a bijection for all n > 0, 
b') there is a finite set xl, * * *, x, in the group so that every element 

may be expressed as a word in the xl, ... X, x with rational exponents. 

Proof. An easy induction using the central series shows a Q-nilpotent 
group satisfies a') and b'). 

1 The idea is that two elements in 7r,(XK, g) commute if they have disjoint support. 
Elements in image g are concentrated on the n-cell while any element in 7r1(XK, g) is supported 
off the n-cell. 
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Calculating with commutators shows that the lower central series of a 
group satisfying a') and b') has successive quotients which are finite 
dimensional Q-vector spaces. 

This characterization of Q-nilpotent groups makes b) clear. c) is proved 
by induction on the nilpotent complexity of the ambient group. 

If G' denotes the commutator subgroup of G and * - - Gj, 
Ga s > * - > G is a descending sequence of Q-nilpotent groups, then 

* GP+, G! *- G' 

is a descending sequence of smaller nilpotent complexity. By induction 
*--= = G' for some i. But then the original sequence can have no 

more than 

i + dimQ (GI/G') 

distinct members. This proves c). 
To prove a) note that a kernel Kc G satisfies a'). Then it is easy to see 

that KS (ascending Q-series for G) is an ascending Q-series of K. The 
successive quotients are clearly finite dimensional Q-vector spaces so K is 
Q-nilpotent. This completes the proof of the lemma. 

Proof of Theorem 2.1. First we show ii) and iii) are equivalent. For 
this we need three general remarks. Remark a): For studying the map 

we can consider an associated map of Postnikov decompositions 

Xn (X 

in1 

1~~~~~~~~~~~~~~ 
1 31 I~~~ x-l (X')"-' X= 1, 2,3,**X 

k~( {lnth k-invariant of XI 

K(irq dna K(ir'y d,,) 

where XI = X= *, the vertical sequences are fibrations, and 

X X` = lim {X (X )} 

(The use of lim here is innocuous because of the skeletal convergence of 
Postnikov systems. In Section 3 we consider a more non-trivial lim situation 
and illustrate one of the pitfalls of lim.) 

Remark b): For studying the maps 
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K~ll, 
d 

) K(ir'q dna) 

which are induced by homomorphisms 
k 

we have the diagram 

II P > P 

K(wr, n + 1)-> K(r', n + 1). 

Here P, "the space of paths", is contractible and the vertical sequences 
are fibrations. 

Remark c): If we have a map of principal fibrations 

F f F' 

E - )E' 

'h 

then 
i) if all spaces are connected and nilpotent and two of the maps f, g, 

and h localize homotopy, then the third does also; 
ii) if two of the maps f, g, and h localize homology, the third does also. 

The proof of i) follows from the exact ladder of homotopy using 1.5 as in 
1.7, with a little care for r1. 

The proof of ii) has two points. First, by 1.8 if two of the homologies 

F1 Ft 'H*E H* B' 

are local the third is also. Second, if we know the homologies on the right 
are local then to complete the proof of ii) it is equivalent to check that f, g, 
h induce isomorphisms on 

H*(, Z1) 

since, e.g., 

B t*i(l) --pi cla Zs i o f, g% hi 

But this last point is clear since if two of f, g, h induce isomorphisms on 
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H*( , Z1) the third does also by the spectral sequence comparison theorem. 

With these remarks in mind it is easy now to see that a map of simple 
Postnikov spaces 

X - x' 

localizes homotopy if and only if it localizes homology. 

Step 1. The case 

(X 
1 

X') = (K(wr, 1) K(w', 1)), w and w' Abelian . 

If 1 localizes homology, then it localizes homotopy since w = H1X, w' = H1X'. 
If 1 localizes homotopy then 

(w - ') = (w - i- ) 

So 1 localizes homology if 
a) w = Z; for 1 is just the localization 

Si Si 

studied above. 
b) w = Z/pn; for w1 = 0 if p , 1 

7f = Z/pn if p E 1. 
c) general w; take finite direct sums and then direct limits of the first 

two cases. 

Step 2. The case 

1 1 

If 1 localizes homology, then it localizes homotopy as in Step 1 because 
- HnX, 7r' = HnX'. 

If 1 localizes homotopy, then we use induction, Step 1, diagram II in 
Remark b) and Remark c) to see that 1 localizes homology. 

Step 3. The general case X 
- X'. 

If I localizes homotopy then apply Step 2 and diagram I inductively to 
see that each XI (X')" localizes homology for all n. Then I = lim In 
localizes homology. 

If X R X localizes homology consider the following argument. We 
have now justified the steps of the proof of Theorem 2.3 by the first part of 
Step 3. Let Y denote the localized Postnikov system of X. Then we have 
a diagram 



32 DENNIS SULLIVAN 

X- X' 

If 
4P\ 

y 

and f exists by obstruction theory (see details below). The maps 1 and l, 
localize homology so f must be a homology isomorphism. Since X' and Y 
are simple Postnikov spaces f is a homotopy equivalence. Thus 1 localizes 
homotopy. 

Now we show that i) and ii) are equivalent. 
If X -) X' is universal for maps into local spaces Y, then by taking Y 

to be various K(w, n)'s with z local we see that I induces an isomorphism of 
H*( , Q) and H*( , Z/p), p e 1. Thus 1 induces homomorphisms of 

H*(, Q) and H*(, Z/p), PC I 

which must be isomorphisms because their dual morphisms are. Using 
the Bockstein sequence 

> Hi( Z/ps) Hi( Z/pls+') >Hi( s Z/pn) > @ 

and induction we see that 1 induces an isomorphism on 

H*( , Z/pn) for all n . 

Thus 1 induces an isomorphism on 

H*(, ~Z/p-) 

since taking homology and tensoring commute with direct limit, and 

Z/p- = lm Z/pn Ppet. 

Finally I induces an isomorphism of 

H*( Z1) 

using the coefficient sequence 

? > Z, > Q > Q/Zj 0 

and the equivalence 

Q/Z1 Z/P 

Now X' is a local space by definition. Thus the homology of X' is local 
by what we proved above. This proves i) implies ii). 

To see that ii) implies i) consider the obstruction to uniquely extending 
f to f, in the diagram 
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X- 
X' 

f\ 
y. 

These lie in 

H *(X', X; "w* Y") 

Now "wz* Y" is a Z,-module and I induces an isomorphism of Z, homology. 
Using the natural sequence (over Z1) 

0 - Ext (Hi( , Z1), Z1) - H$+(, Z1) - Hom (H+1( , Z1), Z) - 0 

we see that I induces an isomorphism of Z1-cohomology. By universal 
coefficients (over Z1) the obstruction groups all vanish. 

Now think of Y as the actual inverse limit of its n-stages, Y lim Yn. 
The above calculations show 

f 
i) each composition X Yf Y- Y extends over X', 
ii) any two such extensions are homotopic, and 
iii) any two homotopies between two such extensions are homotopic. 
i) and ii) enable us to find an actual extension of X f Y over X'. 
ii) and iii) enable us to construct a homotopy between any two such 

extensions.' 
Thus there is a unique extension fi, and I is a localization. Q.E.D. 

3. Completions in homotopy theory 

In this section we discuss finite and p-adic completions in homotopy 
theory. The first motivation is to be able conveniently to treat the informa- 
tion coming from algebraic geometry via etale cohomology theory. Thus 
algebraic varieties and morphisms will provide a rich supply of p-adic spaces 
and mappings between them. 

The second motivation is to understand how the p-primary and rational 
information in a homotopy type interact. The last theorem of the section 
describes an explicit equivalence of categories which shows how the spaces 
and morphisms of classical homotopy theory are constructed from rational 
spaces, p-adic spaces, and homotopy classes of maps between them respecting 
a rational coherence condition. 

We begin by constructing the finite completion X X of a connected 
cell complex X. X is a cell complex with the extra structure of a compact 

1 This argument shows that the localization construction implicitly admits the construc- 
tion of associated "infinite homotopies". 
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topology on the mapping sets [ Y, X]. In many cases the homotopy theory 
of X is simply related to that of X (Theorem 3.1) and even determines this 
extra topological structure. 

We also define l-adic completions X-* Xl for I a set of primes. Under 
the appropriate assumptions on X there is a "continuous" equivalence 

where p ranges over the set of primes. A formal completion X Xf is 
defined for treating rational homotopy types. 

These construction are combined to make the genetic analysis described 
in the introduction. 

One somewhat surprising result of the section is a Hasse principal for 
maps which asserts that f is homotopic to g if and only if f and g are homo- 
topic after p-adic completion for each prime p (Theorem 3.2). 

The construction of the finite completion X was motivated by the work 
of Artin and Mazur. They viewed the completion more formally as the 
inverse system determined by the category of all maps of X into spaces 
with finite homotopy groups. We construct the single space X from this 
inverse system using a little theory about "compact Brownian functors". 

Construction of the finite completion X. 
We outline the construction and begin with the following observation. 

Let F denote a space with finite homotopy groups. Then the functor defined 
by homotopy classes of maps into F, [ , F] may be topologized in a natural 
way. This (compact) topology arises from the equivalence 

[Y. F] >lima [ Ya, F] 

where Ya ranges over the finite subcomplexes Ya of Y. 
Now given X, consider the category {f}x whose objects are maps 

X 2 F, r1F finite, F connected 

and whose morphisms are homotopy commutative diagrams 

F 

X/I 

F'. 

This category is suitable for forming inverse limits (Proposition 3.3 below) 
and a functor X is defined by 
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X(Y) - im(f1x [Y, F]. 

The compact topology on [Y, F] extends via the inverse limit to a com- 
pact topology on X( Y). Using the compactness we find that the functor X 
is represented by the homotopy functor [, k] for some CW complex X 
(property II of compact Brownian functors below). 

Assuming all this for the moment, we make the 

Definition (finite completion). The finite completion of a connected cell 
complex X is the map of connected cell complexes X X where X is con- 
structed from the inverse system of spaces {F} above and has the compact 
topology on the mapping sets [X, I determined by the inverse limit. 

As a result of finite completion, X2 can be thought of as a "profinite 
space" with profinite homotopy groups, profinite mapping sets [, X], etc. 
It is clear from the definitions that the finite completion is a natural con- 
struction on the homotopy category. 

To justify our definition of the finite completion and to aid future com- 
putations we discuss a little theory about "compact Brownian functors". 

Recall Brown's theorem that a contravariant functor from the category 
of cell complexes and homotopy classes of maps to sets (everything based), 

Y - G(Y), 
is equivalent to Ye [Y. B] for some cell complex B if and only if two 
axioms hold. The Brown axioms are 

i) the natural map 

G(V , Yp) fIp G(Yp) 
is a bijection. ("V" denotes one point union.) 

ii) the natural sequence 

G(X U Y) - G(X) x G(Y) 'iG(X n Y) 

is exact.' Here X and Y are subcomplexes of X U Y (for a proof see [13]). 
Motivated by this characterization we make the 

Definition. A "compact Brownian functor" is a contravariant functor 
from the homotopy category to the topological category of compact Hausdorff 
spaces satisfying the properties i) and ii) of Brown. 

Note that a set bijection in property i) implies homeomorphism because 
the natural map is continuous, G(V, Yp) is compact and Jl G(Y~) is 
Hausdorff. 

A B- BLO C is exact when f(b) = g(b) if and only if b = j(a) for some a eA. 
g 
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We will often use the following two properties of compact Brownian 
functors. 

I. (Extension property). Let G be a compact Brownian functor defined 
only on the subcategory generated by finite cell complexes. (We assume 
Brown's axioms hold when they make sense.) Then the underlying set- 
valued functor has a unique extension' to the entire homotopy category 
satisfying Brown's axioms. 

This unique extension is given by the formula 

(*) G(Y) = lima G(Yer) 

where Ya ranges over the finite subcomplexes of an arbitrary complex Y. 
Thus the unique extension is again a compact Brownian functor. 

Proof of I. One can check easily that the right hand side of (*) defines 
a compact Brownian functor. The first axiom of Brown is checked formally. 
The second axiom uses the compactness and the basic fact that the inverse 
limit of non-void compact Hausdorff spaces in a non-void compact Hausdorff 
space. For more details see the proof of property II below. 

This proves there is at least one Brownian extension of G to the entire 
homotopy category. To prove uniqueness, note that any extension of G maps 
to this inverse limit extension. This map is clearly an isomorphism for 
finite complexes and so it is for all complexes by Whitehead's theorem. 

II. (Inverse limit property). The arbitrary inverse limit of compact 
Brownian functors is again a compact Brownian functor. 

Note on II. In property II we may allow ourselves2 to form inverse 
limit over any small filtering category C, namely, 

i) (smallness of C) the objects of C form a set, 
ii) (directedness of C) every pair of objects c, d of C can be embedded in 

a diagram 

c 

d 

iii) (essential uniqueness of maps in C) if c d is a pair of maps of C 
there is a map d e so that the composed maps c e are equal. 

Proof of II. If {Ga} is an inverse system of compact Brownian functors, 
define the inverse limit by 

1 Up to canonical equivalence. 
2 See the appendix to Artin-Mazur "Ptale Homotopy" [51 for the formal discussion of 

general limits. 



GENETICS OF HOMOTOPY THEORY 37 

(lima Ga)( Y) = lima (Ga( Y)). 

The values are naturally compact Hausdorff spaces and the first axiom of 
Brown is again checked formally. The second axiom is checked as follows: 
Let Go. = lima Ga. Then if (x, y) e Goo(X) x Goo(Y) and x and y agree in 
Go,(X n Y), we have for each index a at least one Ala in Ga(XU Y) so that 
,",, restricts to the projections of x and y in GarX and Ga Y respectively. The 
set of such [ta is determined by two closed conditions and so forms a compact 
subspace of Ga(X U Y). The inverse limit of these subspaces is again non- 
void so we have at least one element [p,,, in Goo(X U Y) restricting to x and y 
in Goo(X) and Goo(Y) respectively. This proves the non-obvious half of 
exactness in 

Go,(XU Y)-> Go(X) x Goo(Y) -4G,(xn Y) 

Examples. 
I. Profinite K-theory. Consider one of the natural K-theory functors 

defined on finite complexes by associating to Y the group of stable equi- 
valence classes of vector bundles over Y. Since K( Y) is a finitely generated 
Abelian group the new functor K defined by 

K(Y) = lime K(Y) ? Z/n 

is a compact Brownian functor on finite complexes. By property I, K has a 
unique extension satisfying Brown's axioms, and we have a natural defini- 
tion of "profinite K-theory". 

II. Spaces with finite homotopy groups. Consider a space F with finite 
homotopy groups. It is easy to see by obstruction theory that 

[ Y, F] is finite 

for each finite complex Y. Thus [ , F] is a compact Brownian functor when 
restricted to finite complexes. 

By property I we have that the total functor [, F] must be the unique 
extension of this partial Brownian functor given by the inverse limit formula 

[Y. F I _~- lima [ Yaw F I 

So the functor [, F] has a natural compact topology. 

III. Spaces with profinite homotopy groups. If {Fa} is any inverse 
system' of spaces with finite homotopy groups, we can use the above 
remarks to form an inverse limit space F so that 

1 Over a suitable indexing category. 
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(*)7WiF = lima 7riF. 

By Example II the homotopy functor [, Fj has a natural compact 
topology. By property II of compact Brownian functors 

lima [ , Fa] 

is again a compact Brownian functor and is thus represented set theoretically 
by [, F] for some cell complex F. Putting in Si gives the equation (*) and 
we see that F has profinite homotopy groups. 

In case the index category contains a countable cofinal subcategory it is 
possible to represent the topology on [, F] by a second topology on the 
cell complex F. The second topology on F induces, via the compact open 
topology on the function spaces FI, the above compact topology on [Y, F]. 
For example, for an infinite product the product topology on 

F= llF, 

plays the role of the second topology. 

IV. A counterexample. The essential nature of compactness for forming 
inverse limits of homotopy functors is easily illustrated by an example. Let 
L denote the inverse limit of the homotopy functor [ , S2] using the endo- 
morphism induced by the degree 3 map of S2. It is easy to check that L(SI) 
and L(S2) each have one element but L(RP2) has two elements. Thus L is 
not represented by [ , B] for any space B. 

V. Cohomology with profinite coefficients. If A is the profinite group 
limi At, Ai finite, then from Example III it is clear that 

K(A, n) - limi K(Aj, n) 

as compact Brownian functors. Thus for all spaces X 

H*(X, A) = limi H*(X, Ai), 

and the A-cohomology has a natural topology. For example, 

H* (X, Z) - limi H*(X, Z/i) 

for all spaces X. 
For finite complexes it follows from the universal coefficient formulae 

that we also have 

H*(X. Z)sAce f limi H*(X, Z/i) . 

VI. The classifying space for profinxite K-theory. The profinite K-theory 
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Y - K( Y) constructed in Example I is classified by maps into some space B 
because K is a compact Brownian functor. This space B has homotopy 
groups 

Z o Z 0 Zo o ... 

for the complex case and 

Z/2 Z/2 0 Z 0 0 0 Z Z/2 Z/2 0 Z 0 0 0 Z... 

for the real case using the classical results of Bott on K(Si). This follows 
from 

cRiB = [Si, B] K(Si) -lim. K(St) ? Z/n. 

In either case B may be described in two ways, 
i) B is just the finite completion of the classifying space B of the usual 

K-theory, the union of Grassman manifolds, 

B -Unk Gn,k (over R or C) 

(See Theorem 3.7 below.) 
ii) B is also the inverse limit of the classifying spaces Be, for K-theory 

with coefficients in Z/n, 

B = lime Be and K(Y) = lima K(Y, Z/n) . 

This relation follows because for finite complexes we have the isomorphism 

K( Y) _= lima K( Y. Z/n) 

because of the long exact sequence for coefficients. 

Our justification and discussion of the definition of the finite completion 
will be completed by 

PROPOSITION 3.3 (Artin-Mazur). The category {f}l whose objects are 
maps X FF, w1*F finite, and whose morphisms are commutative diagrams 

F 

X/ 

F' 

is suitable for forming inverse limits. 

Proof. First, {f}x contains an equivalent small sub-category. We can 
find one by picking a representative from each homotopy type of the F's. 
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Second, the directedness of {f}x is clear. To X-+ F1 and X f2 F2 we 
associate X F1 x F2. 

Third, the essential uniqueness of maps in {f}x is clear from the co- 
equalizer construction in homotopy theory. Given 

F' 
7r 

X ". 

F 

let F" be an appropriate component of 

{(p, x) e F' x F': p(O) = f(x), p(l) = g(x)} I 

Then F" has finite homotopy groups using the exact sequence 

***,rF w - rF' f* 9* wg F -> * * 

and using a homotopy between f o wr and g o wr we can form the commutative 
diagram 

F"" 

X yFf 

F. 

This completes the proof that {f}x is equivalent to a small filtering 
category. 

General remarks, computations, and examples. 

We study some properties of the cell complex X, its extra structure, 
and its relationship to X. 

Property i). For the space X, the finite completion X X, and the 
inverse system {F} over {f}x we have 

a) X = l1im~f x F by definition, 
b) (w11X) li 2m(f x wr1F, 
c) H*(X, M) limWfjx H*(F, M) 

for all finite coefficient systems M. 
Conversely, the map X - X and the topology on [ , X] are characterized 

by this situation; namely, if {Fa} is any inverse system of spaces with finite 
homotopy groups into which X maps so that (WiX)A - lima, WFa and 
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H*(X, M) _ lima H*(Fa,, M) then there is a "continuous" homotopy equiva- 
lence 

X _ lima Fr. 

Proof of property i). b) follows easily from the definition by covering 
space arguments. For example, for any map X f F consider a lifting X F 
where F is the covering of F corresponding to the image of f on 11. Now f 
is surjective on 11. Also any finite quotient w of w11 occurs. For example, 
take the map X-~ K(wr, 1). So the sub-category of {X L F} wheref is sur- 
jective is cofinal and b) clearly holds. 

c) is also easy to prove. Any class in Hi(X, M), for M a finite coefficient 
system, is induced by a map X - F where F is a space with (at most 2 non- 
zero) finite homotopy groups. So the left map of c) is onto. Conversely if a 
class in Hi(F, M) goes to zero in X, use the class as a k-invariant to con- 
struct a (twisted) fibration over F into which X maps. This shows the class 
is zero in the direct limit group, and c) is proved. 

For the converse, first note that we can replace the big category {X-)F} 
by the sub-category Us {X- F4n} = {f}# where Fn has zero homotopy groups 
above n. It is clear that the natural map X - limf Is Fn is a "continuous" 
homotopy equivalence. 

Now let Fcn, be the space obtained from Far by killing homotopy above n. 
Then clearly For = lima, Fn and lima For = limnsr Fn. We may regard the {Fn} 

as a subsystem of the system Us {F4} above. 
Properties b) and c) for the {Fa} hold also for the {Fa} and elementary 

obstruction theory may be used to show that {X ,For} is cofinal in 
U, {X ) F"} = {f}#. So the converse is proved. 

Main example. Let V, denote the underlying topological space of a 
(finite type) complex algebraic variety V. So V is made up of a finite 
number of affine varieties V? c Cn defined by polynomial equations, 

Vow = I(Z,, * * *s Zn,) C; C7i iP?(Z1, .. * * Zn) = ?} . 
Then the Zariski open sets, the complements of subvarieties of V, and 

finite covering spaces of these have algebraic meaning. Of course the first 
fact is a tautology while the second is a deep theorem of complex analysis. 

Anyway, we can treat finite etale coverings of V, 

U1 U2 U" 

LU image U. = V 

V 
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where each Us is a finite covering space of some Zariski set open in V, in a 
Cech-like manner and construct associated nerves which record the combi- 
natorial information in the cover; that is, in the category whose objects are 
the Ui and the morphisms are maps U- Uj which commute with the pro- 
jections to V([10]). 

We obtain an inverse system of complexes {Na} indexed by the etale 
coverings of V. Using the corresponding complexes associated to coverings 
of V by tiny contractible sets-say the stars of vertices in triangulations of 
V-we obtain a map of V, into the system of etale nerves {Na}. 

The basic comparison theorem of Artin-Grothendieck [51 is that under 
mild assumptions on V (say, V is normal'), the homotopy groups of No are 
finite and 

(zl Vt)= lima zNa and H*( Vt, M) -lima H*(Na,, M) 

for all finite w,-modules M. 
Thus lima N, is the finite completion V, of V, described above and 

defined now here in a purely algebraic way. 

Remarks on the proof. The fundamental group statement follows im- 
mediately from the statement that a finite covering of a complex algebraic 
variety is algebraic. 

The cohomology statement for the case when V is a non-singular pro- 
jective variety depends on the following geometric fact: If p e V is contained 
in a Zariski open set U c V, then there is a smaller Zariski open set W c U 
containing p which is a K(w, 1). Moreover, we can choose W so that the 
group w is built up inductively from a point by extending finitely generated 
free groups. 

For dim V = 1, this fact is easy since a Riemann surface minus a finite 
number of points is a K(w, 1) where w is an f.g. (free group). 

For v = dim V > 1, let S = V- U and consider P the (v - 1) dimen- 
sional projective space of planes Pk containing a given k - 1 plane PO, 
where k + v = 1 + ambient dimension. 

If P0 intersects V transversely and then only in the complement of S 
and p, a Zariski open set X in the space P of the k-planes Pk will i) intersect 
V transversely; ii) intersect S only in S - sing S and there transversely in 
d points where d is constant on X; iii) be such that, for some x0 e X, the 
corresponding Pxk passes through p. 

If we remove, for each x e X, (PO A Pk) U (Pk n s), we are removing 
(degree V) + d points from each smooth curve Pk n v. 

Roughly, the singularities have codimension at least two. 
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The family of these deleted curves forms a Zariski open W' in V con- 
taining p and contained in U. Moreover W' is patently fibered by punctured 
Riemann surfaces over X. By induction we may choose a Zariski K(r, 1) in 
X containing x.. Then the desired W is the restricted fibration over this 
K(w, 1). 

Projection defined 
outside P 

f pk n~~~~~ 
P~~~~ 

AMBIENT PROJECTIVE SPACE 

This geometric fact leads rather quickly to the eventual finite acyclicity 
required in the nerves Na to get the correct cohomology. 

Example 2. Let X = K(Q/Z, 1). Then (WiX)A = 0 and a cohomology 
Bockstein ^ 

check shows X -* {K(Z/n, 2)} is suitable for computing X. There- 
fore X = lim, K(Z/n, 2) = K(Z, 2). Similarly K(Q/Z, n)A _ K(Z, n + 1). 

Example 3. If X is the classifying space B,2 of the orthogonal groups 
02, then the twisted fibrations K(Z/n, 2) Enp- K(Z2, 1) where Z/2 acts on 
Z/n by x +-x are suitable for computation, and X lim En, the total space 
of the fibration 

K(Z, 2) - X-* K(Z/2, 1) 

with the action x F - x on Z. Theorem 3.1 below generalizes this situation. 

Example 4. Let X be a K(r, 1) where w is the direct limit of the finite 
symmetric groups. Let F denote the direct limit under suspension of the 
spaces of degree zero maps of SI to itself. 
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We can approximate X by the space, {sets of n-distinct points in RN; n, 
N large}. Given n points x,, - - *, xa in RN, define a degree n map of SN by 
mapping little disjoint islands around the xi onto SN with degree 1, with 
the boundary of each island and the sea in between mapping to eo e SN. 

We can translate these maps to the component of degree zero, and it 
has been checked' that 

K(r, 1) > F 
induces an isomorphism of - = Z/2 - w1F and of the cohomology. 

Thus K(r, 1)' - F, and the infinite symmetric group w is converted by 
finite completion into the stable homotopy groups of spheres, wOF. 

Property ii) (The cohomology and higher homotopy groups of X). In 
the previous paragraph we found (wX)A - rX as topological groups. What 
about the higher homotopy groups of X? 

We also found lima H*(Fa, M) -H*(X, M). What about H*(X, M)? 
To study these questions we formulate the notion of "good homotopy 

groups" of a space. Then we prove the 

THEOREM 3.1. i) Groups commensurable2 with solvable groups of finite 
type3 are "good" fundamental groups. Finitely generated Abelian groups 
are "good" higher homotopy groups. 

ii) If X has "good" homotopy groups then 

(w*X)A - wiX and Hi(X, M) _ Hi(XI M) 

for all finite coefficients system M. 

COROLLARY. If X has "good" homotopy groups every map X-)F extends 
uniquely over X. Thus X and X have isomorphic finite completions, and the 
topology on [, X] is intrinsic to the homotopy type of X. 

Proof of Corollary. This follows immediately by obstruction theory. 
To begin our discussion we note that the statement (wkX)A -- kX of 

the theorem is not at first sight the natural statement. 
Consider the diagram 

7rnX > 
(2rX)A 

1 1~~P 

This was contributed to by Barratt, Kahn, Milgram, Priddy, Quillen, et al. 
2 Two groups are commensurable if there is a third group which is isomorphic to a 

subgroup of finite index in each one. 
3 Such groups can be described as solvable groups in which every subgroup is finitely 

generated. 
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where (wlXX1 denotes the "equivariant profinite completion of wnte the in- 
verse limit of the finite w1-quotients of wn. q exists because 77nX is by 
definition an inverse limit of finite w1-modules. 

Now p is always onto but not always an isomorphism. Thus it is more 
natural to ask when q is an isomorphism. 

Example. Let X = S' V E RP2, the one point union of a circle with the 
suspension of the real projective plane. One can check that {K(Z/n, 1) V E RP2} 
is an appropriate system for determining X by computing cohomology. The 
universal covering space of K(Z/n, 1) V E RP2 is the infinite sphere with 
n-copies of E RP2 attached along symmetric points of a great circle. So 
r2(K(Z/n, 1) V ERP2) is the direct sum of n(Z/2)'s with the cyclic action of 
r, Z/n. It follows that r2k lima (II> Z/2) = fld Z/2 with (w1X= Z) c 
(w1X-Z) acting by shift of coordinates. 

Now the universal cover of X is the real line with a copy of YRP2 
attached at each integer point. Thus r2X is (r,3, Z/2 with w1X acting by the 
shift again. 

Then an algebraic calculation shows (w2X),1', Z/2)' f iH Z/2 = 
r2X. Thus q is an isomorphism. 

On the other hand, one can compute the finite completion of the counta- 
ble vector space V = r2X to be the double dual of V, 

(w2X)A _ Hom (Hom (V, Z/2), Z/2) 

which has a greater cardinality than (w2X)Z = r2X. So p is not an iso- 
morphism. 

We do not understand this phenomenon in general, but we can impose 
conditions that insure that both p and q are isomorphisms. 

We say that w1 is a "good" fundamental group if the system of finite 
quotients {ra} of w1 has a countable, cofinal subsystem and 

Ht(w1, M) _ lima Hi(Wa, M) _ Hi(lima Wa, M) < 00 

for each finite w1-module M, and all i. 
This condition is equivalent to the analogous condition using only 

simple coefficients for all subgroups of finite index in w1 (see below and [5]). 
For any w1 we say that the w1-module wn is a "good" nth homotopy group 

if the system of finite w1-quotients {Wa} has a countable, cofinal subsystem 
and 

Hi(rn, A) _ lima Hi(7a, A) - Hi(lim, Wa, A) < Ko 

for all finite coefficient groups A, and all i. 
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Now we prove Theorem 3.1 with the more refined statement 

(7rX) -(lrX)Al (lynX)AS 

as topological groups. 
Proof. We have already treated the case n = 1. For n > 1 the p iso- 

morphism is easy. Since w = wn is a "good" homotopy group we can take 
i = 1, A = Zik to deduce, 

finite group _ Hom (w, Zik) -lim Hom (Wa, Zik) -Hom (lima War, Zik) 

From this it is not hard to see that lima Wa _. But lima nrW (wX),1 by 
definition of {ga}. Thus p is an isomorphism. 

Now we consider q. Let Xn denote the space with the first n-homotopy 
groups of X and riX, = 0, i > n. Consider the inductive statement: there 
is a countable simply-ordered inverse system, {Fi} of spaces with (< n) 
finite homotopy groups into which X maps such that 

i) (i1*X,),Z, - lima, i>z*Fcn 

ii) for each finite wul-module M, 

Hi(Xn, M) lima H*(F , M) z H'(lima, F~,, M) < c.o 

This is true for n 1 since wz, is a good fundamental group. 
Assume we have this for n. Let k denote the k-invariant of X,+1 X" 

in Hn+2(X,, wr), where wz denotes the coefficient group wr,+,X,+1 = 2r +lX 

twisted by izlXl, = w1X. Let kp denote the image of k in Hn 2(Xn, Wp) 

where Wzp ranges through some linearly ordered cofinal family of finite Wrl- 
quotients of wz. By the surjectivity of ii) kp comes from Fn for some ap. 
Use this class over FC to form a fibration 

K(Zip, X + 1) Eaf n F n. 

We do this for every , and use the infectivity of ii) to fit these together 
to form a linear inverse system {Ep} mapping to {Fp} where the ,8's form a 
cofinal family contained in the a's, and the fibers are {Ki} = {K(wp, n + 1)}. 

From our construction it is clear that X,1- {Ep} and that i) is true 
for i = n + 1. 

Now consider a finite wrl-module M. M defines a local system over a 
cofinal subset of the fl's, whose elements we also denote Is. We have the 
Leray-Serre spectral sequence {E,}, 

E2= HP(Fp, Hq(Kp, M)) -- HP+q(Ep, M) = E. 

f or the fibration Kp - E-* Fi. 
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We can compare the direct limit spectral sequence to those for the 
fibrations 

K(w, n + 1) , X.+-, X,,X 

and 

K((7) fn + 1) limp Ep - limp F. 

We compute the E2-term of the limit sequence, 

limp HP(Fpi, Hg(fM)lm (lim,,p HP(F,,, Hq(Kp, M))) 
limp HP(Xn, HI(Kp, M)) , and 

= limp HP(lim,x F.n, H(KM) 

by property ii) applied to the finite wzl-module Hq(Kp, M). 
Now by the Addendum below, limp Hq(Kp, M) is a finite group isomorphic 

to each of Hq(K(r, n + 1), M) and Hq(K((w)-,, n + 1), M). 
Since this limit is finite we may interchange the operations of taking 

cohomology and direct limit (because lima HomR (C, Ma) _ HomR (C, lima Ma) 

if {Ma} and lima Ma are finite R-modules and C is a free R-module). 
Since this limit is isomorphic to the groups mentioned, we have an iso- 

morphism of the E2-term of all three spectral sequences. The isomorphisms 
needed in the analogue of ii) for X,+1 and {En} follow from the spectral 
sequence. The induction is thus completed and the second part of the 
theorem is proved given the fact proved below. 

Addendum. The desired statements follow by induction on n + 1 using 
the path fibrations K(A, n + 1) * K(A, n + 2) for A = wrp, w, and (w)?. 
The statement for n = 0 is our hypothesis on the wrl-module wr. The induc- 
tion is again proved by forming the limit of the spectral sequences for the 
fibrations with A = {op} and by comparing it with the two spectral sequences 
for A = wz and (4z)'. 

Now it is sufficient to treat the case when M is a field of coefficients, 
say FX, the field of p elements. Then the E2-terms with coefficients in Fp are 
respectively 

limp (HP(K(wrp, n + 2)) 0 Hq(K(ilp, n + 1))) 

HP(K(w, n + 2)) 0 Hq(K(7w, n + 1)), 

and 

HP (K((7), n + 2)) 0 H(K((7w) 1, n + 1)) 

The first is isomorphic to 
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limp Hv(K(wrp, n + 2)) ? limp Hq(K(7Wp, n + 1)) 

So the E2-terms of these multiplicative spectral sequences split into 
tensor products of algebras with isomorphic (fiber) factors by induction. 
They all converge to the same thing (zero) so the other factors must be 
isomorphic by the comparison theorem. This completes the induction. 

Corollary of proof. If X has "good" homotopy groups and X -) Y is a 
map which is finite completion on wz1 and satisfies either of 

i) the higher homotopy groups of Y are profinite wr,-modules and c 
induces an isomorphism of cohomology with finite w1-coefficients, or 

ii) c is wr,-finite completion of the higher homotopy, 
then c is equivalent to finite completion. 

Now there are abundant examples of "good" homotopy groups. To 
check whether wz1 is good, it is equivalent to check whether each subgroup of 
finite index in wz1 satisfies the "good" condition using only ordinary coefficients 
M. This follows from the same sort of spectral sequence argument used in 
the proof of the theorem. For example, to see that Z is a good fundamental 
group we need only check the condition for M = Zik. A direct computa- 
tion shows the first isomorphism if we take {Wa} = {Z/n}. The second isomor- 
phism follows from the first using the fibration 

K(Z, 1) - K(Z, 1) - K(Z/Z, 1) 

and the fact that Z/Z is a Q-vector space. Thus K(Z/Z, 1) is acyclic for 
finite coefficients. 

Now it follows easily that any finitely generated Abelian group is a 
good fundamental group. But then any finitely generated Abelian group wz 
is a good ith homotopy group for any z1. This follows since the {1w 0 Z/n} 
form a natural system of w1-quotients satisfying the condition (which was 
just verified in the statement that wz is a good fundamental group). 

Now we can deduce that any solvable group of finite type is a good 
fundamental group; that is, if wz has a normal series with successive quotients 
finitely generated Abelian' then consider K(r, 1) built up inductively from a 
point by fibrations with fiber K(A, 1) for A finitely generated Abelian. 

We can regard these A's as the "homotopy groups" in the proof of the 
theorem. Since these are "good" the proof goes through to construct a 
countable family of finite quotients of wz satisfying the cohomology pro- 
perties desired. 

1 One of the characterizations of these groups. 
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From what we said above, a group commensurable with a "good" 
fundamental group is also "good." 

Property iii) (topology on X). To study X topologically one can put a 
"countable type" hypothesis on X (Hom (wX, finite group) and Hi(X, M) are 
countable) and find that X can be constructed from a simple inverse system 
(000 F. F -+?? *-+000- )Fo). 

We can make the maps in the simple system into fibrations and consider 
the inverse limit space F,. One can show that k is homotopy equivalent to 
the singular complex of Fo. and the topology on [ Y, X]I is determined by the 
compact open topology on the function Fy. Thus XV is "represented by a 
space with two topologies". 

There is perhaps a more geometric approach to the completion. In this 
picture X is a cell complex with a coarser topology in which 

(X)n-skeleton - (X)(n-i)-skeleton 

might be homeomorphic for example to 

Rn x cantor set (E. Dror) . 
Finally, there is a further structure on X. Each homotopy set [Y, XI 

has natural uniform structure coming from the inverse limit expressions 

[Y X] = limtf}x [Y. F], or [Y X] = limlf #Y [Y. F]I 

The uniform topology is associated to the discrete topology on [ Y. F]. 
More examples. 
i) If G is finitely generated and Abelian then 

K(G, n K(G, n) K(G ( Z. n). 
ii) If w*X is finite, X- X. 
iii) An is not the Moore space M(Z, n). S has non-zero rational homo- 

logy in infinitely many dimensions (Bousfield). 

A faithfulness property of finite completion. 
Now we show that no information about maps of finite complexes into 

nice spaces is lost by passing to the completion. 

THEOREM 3.2. Let Y be a finite complex2 and let B be a simple Postnikov 
space with finitely generated homotopy groups.3 Then if two maps Ye B 

I The sub-category {f}# is then essentially countable, and so has a linearly ordered cofinal 
subsystem (Lucy Garnett). 

2 Actually cohomological finiteness conditions are sufficient. 
3 That is, B is nilpotent of finite type. 
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are homotopic in the completion of B 

Y f B - B. 

f and g are actually homotopic in B, 

Y. f B Y 9B. 

Proof. Since Y is finite we can prove the theorem by induction over 
the stages in the Postnikov system of B. Consider a commutative diagram 

r 
K - . B n?1 

|/fn 

where 
fn+1 and fA are constructed from f, 
r is a principal fibration with fiber K, 
K is the K(wr, n + 1) with wz = wrn+lBn+l, 
B, has the first n-homotopy groups of B,+,.' 

We can apply the based function space and obtain another principal 
fibration 

K-* J3Y Bny 

The tail of the exact homotopy sequence with f,?1 and f., as base points 
looks like 

7c1(Byy fin) 7oKY --71>oBY-,. ~Bny 

where 

*fn+1 denotes the map given by the action of w0oKY on (f.+1) e rOBYn+; 
image I= I(f.+?) is the isotropy subgroup for the point (f.+1) e 7roBy 1; 
r precisely collapses the orbits of the action of wroKy = Hn+1( Y. w). 

There is a similar situation for maps into the completions B, and B,+, 
and we can extract from all this a ladder, 

0 -) I(fn+?) - Hn+'(Yy Uw) - orbitf.+1 - 0 

{Co {c {el 

0 - > I(f?+1) - Hn+'( Y, 7) - orbit fl+l -+ 0 

We know that c is just finite completion by Property I of compact 
1 Here again we think of the homotopy groups as the successive quotients in a nilpotent 

filtration of z*B. 
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Brownian functors (or by direct computation). 
The burden of the argument is to show that c0 is finite completion. 

Assuming this, the theorem is proved as follows: 
i) Since the upper row is a sequence of finitely generated groups and 

finite completion is exact for these, c1 is finite completion. In particular cl 
is an injection. 

ii) Assume the theorem true for Be. Then if f+?1 g,+l we must have 
gn. But then g,+1 lies in the orbit of fn+?. Since c1 is an injection we 

have that f?+, is homotopic to gn+,. 
iii) As far as the finite complex Y is concerned, B= Bn for n large 

enough so we are done. 
To study c,, consider the square 

7r,(B Yy fn) >f If+ 1) 

d co 

7r,(B 
Y. f .) If Af + l) 

We claim that I is in a natural way a continuous surjection of topological 
groups. Furthermore, with respect to this topology d is just finite comple- 
tion of a finitely generated nilpotent group. 

It follows that I(fn+1) is a compact group and c0 imbeds the finitely 
generated group I(f?+1) as a dense subgroup. Thus c, is finite completion, 
given our statements about d and I. 

Discussion of I: The topological structure on the situation arises as 
usual from the approximation by "finite" spaces. 

The proof of Theorem 3.1 shows there is an inverse system of principal 
fibrations with finite homotopy groups 

* ~ ~- - 

approximating 

K - , B+ > B . 

If we can assume the maps 

K -+1 K, , Ei+1 -- , Fi+1 > F. 

are fibrations, then K B, B. is obtained by taking the singular com- 
plexes of the inverse limit spaces, KILk E- o I Foot. as we remarked above. 

Since lim (XfY) XL as topological spaces it follows that the sequence 

,71( n~s f M) > 7:oY ~~action n+1 
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is the inverse limit of the finite sequences 

7rl5 ft) l wKf action 

This explains the topological structure in the map I above. 

Discussion of d: Now we use the exact sequence of Lemma 2.7, induc- 
tion on the number of cells of Y, and the fact that finite completion is exact 
for these groups to compare BY and B Y and prove that 7w,*(BY)f. 7- *(B Y), 
is finite completion, and w,(By, f.) is finitely generated, nilpotent. 

Remark. The proof has a corollary. The argument shows BY has "good" 
homotopy groups and 7w*BY -r 7BfY is finite completion. Thus BY BY is 
finite completion. 

I-finite completion. 

One can carry out the preceding discussion replacing finite groups by 
i-finite groups. (I is a set of primes and I-finite means the order of the group 
is a product of primes in 1.) The constructions and propositions go through 
without essential change. If we take I = {p} we have X-* Xp, the p-finite 
or p-adic completion. 

Now spaces whose homotopy groups are finite p-groups are nilpotent so 
XP = lima FP is "nilpotent at infinity" in the sense that there is an (infinite) 
nilpotent filtration of the homotopy groups giving a neighborhood base at 
the identity.' So the p-completions can be treated like nilpotent spaces, 
with (untwisted) homological methods. 

For example, any inverse limit of finite p-spaces F~P such that 

(wX)' = limp 7rFP and H*(X, Z/p) _ limp H*(FP2, Zlp) 

gives Xp; that is, Xp limo FIp. We do not need twisted coefficients to 
characterize XP. 

This follows as in the argument above for X). Now, however, only ordinary 
obstruction theory is needed. For example if X is the classifying space of 
02 B02, the 2-completion is the total space of the fibration K(Z2, 2)- )-X 

K(Z/2, 1) with the twist x - x in Z2. 

However, the p-completion for p odd is the same as the p-completion of 
infinite quaternionic projective space, QP- = classifying space of S3. Thus 
the homotopy groups of Xp are the p-completions of the homotopy groups 
of the three-sphere. This can be seen using the map 02 S3 relating 02 to 

1 Such "pro-nilpotent spaces" are studied by a former student of Dan Kan, Emmanuel 
Dror. 
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the normalizer of the maximal torus in S3. 
This lack of coherence in the p-completions arises from the fact that 

Z/2 is an "l-good" fundamental group precisely when I contains the prime 2. 
For example, for p odd, H0(Z/2, M) = MzI2 # M = H0((ZI2)X, M)) for general 
Z/2-modules M. 

Now consider the natural map 

X I IP X 

Since the right hand side is essentially nilpotent X must be essentially 
nilpotent if h is an isomorphism. For example: 

THEOREM. If X is nilpotent of finite type then X P Xp is an 
isomorphism. 

This follows from the fact that the finite approximations constructed 
in the proof of Theorem 3.1 are nilpotent if we use a simple Postnikov system 
for X. But a Postnikov argument shows such finite nilpotent spaces are 
precisely the ones which factor over the primes: 

F = fp Fp if and only if F is nilpotent. 

As a corollary to Theorem 3.2, we have the Hasse principle for maps 
of a finite complex into a nilpotent space of finite type: two maps X Y 
are homotopic if and only if f and g are homotopic at every prime. (That 
is, for each p the compositions to Yp, X= Y e Yp, are homotopic.) 

f 
This theorem has the simple reformulation: if two map X Y are not 

homotopic there is a space P with only finitely many non-zero finite p-groups 
for homotopy and a map Y - P so that the compositions X= Y - P are 
still not homotopic. 

Note also that in this situation of nilpotent spaces of finite type, each 
map X L Y canonically splits into a product (over the primes) of maps, 
Xp f Yp, by obstruction theory. 

The formal completion. 

Now we consider a modified form of the finite completion called formal 
completion. This construction will be used in the next section where the 
problem of characterizing the relation of the category of profinite homotopy 
types to the classical homotopy category is considered. 

We need the formal completion to treat rational homotopy types. If 
the homotopy groups of a space X are Q-vector spaces, then any map 
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X > space with finite homotopy groups 

is trivial. Thus the finite completion of X is a point. 
However, we can construct a non-trivial completion of X by finitely 

completing its finite subcomplexes and fitting these together. For con- 
venience we treat only countable complexes X. Then X is an increasing 
union of finite complexes 

X= U. X. 

If we apply the finite completion construction to the system 

Xo -* > * Xn ) X., ?1 > 

we obtain a system 

Xo > X,, > X.+J,1 

We define the formal completion Xf of X to be the infinite mapping 
telescope of the complexes X". This formal completion Xf inherits additional 
structure from the {Xn}. Any map of a finite complex into Xf goes into a 
finite part of the telescope, which has the homotopy type of some X,. This 
shows that 

[K, Xf] _- lim. [K, X.] 

for K a finite complex. 
It follows that the functor [X, f] has a natural topology on the sub- 

category of finite complexes. Furthermore, the higher homotopy groups of 
Xf have a natural Z-module structure since the homotopy groups of X, do 
(being profinite). 

Finally note that since X is equivalent to the telescope of X. X, 
X, X, ~ l * * *, we have a natural map X Xf. 

We conclude our discussion with the 

PROPOSITION. i) The formal completion X Xf is natural on the homo- 
topy category generated by countable complexes. 

ii) If X is nilpotent, then Xf is nilpotent and for the "homotopy 
groups" we have "zu*X" ?g) Z. 

iii) If X is nilpotent of finite type, then Xf = X. 

Proof. The first part follows easily from the compactness idea used 
above. 

For the second part consider the simple Postnikov system ... )X *+ 
X. ... -p * for X. Suppose we have constructed nilpotent spaces of finite 
type Ya such that X, Ua Ycr. Let {wr} be a sequence of finitely generated 
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groups whose union is the homotopy group wr of the fiber Xn+1 - X,. Now 
Hi(Ys, w) = Hi( Ye, limj 7r) = limj Hi( Ys, ;j) since the homology of Ye can 
be constructed from finitely generated chain complexes. Thus we can 
restrict the k-invariant for constructing X,+1 - X, to Yc and realize it in 
one of the Hi( Ys, it!) Such classes enable us to construct finite type approxi- 
mates to Xn,,. Extend this replication process to infinity to construct nil- 
potent spaces of finite type P so that lima YP - X. 

Now consider the skeletons Y2B of Pa. The Y~a are nilpotent of finite type 
up to a certain dimension, so finite completion first completes the homotopy 
groups at least up to that dimension by Theorem 3.1. For the successive 
quotients we obtain "w1 YB" ? Z. 

Since Xf = limr, Y25, and "iz*X" = limaA "Z* Ya", part ii) is done. 
Part iii) is also done because this construction shows the natural map 

Xf -h X is an isomorphism of "homotopy groups". 

Example. The formal completion of K(Q, r), the space with one non- 
zero homotopy group Q in dimension n, is K(Q ?D Z, n). 

Using the Z-module structure we can regard the homotopy group as the 
free module on one generator over the ring of finite Adeles, 

Af = Q ? Z = restricted product (over all primes) of the p-adic 
numbers. 

The ge'netics of a homotopy type. 

Now we shall try to reconstruct a homotopy type X from its irreducible 
pieces. Recall that we have the rational type XQ constructed by localization 
and the finite type X constructed by finite completion. To allow these spaces 
to interact we need a common medium. The medium is dictated by each. 

From XQ's point of view the medium is the formal completion X1Q con- 
structed above. Recall XQf was obtained by fitting together the finite com- 
pletion of finite subcomplexes X1 of XQ, 

(XQ) = =- lima XQ . 

From X's point of view the medium is obtained by localizing finite 
collections of the 1-adic types and fitting these together, 

Xf-lims (tpes(lQ X Mo0s 1 

where S ranges over the finite sets of primes. XAf might be called the finite 
Adele type of X. 
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Now suppose X is nilpotent of finite type. Then we know that the 
finite type splits completely, 

X-IXIIX 
where 1 ranges over the primes. 

We refer to the natural array of spaces {XQ, X2, *, X* , } as the 
genotype of X. 

Also in this case all of our constructions are easily followed by what 
happens on the "homotopy groups". For example the natural map X Xf 
is an equivalence and X'- XAf is equivalent to localization Xk- XQ. 

So if we apply formal completion to X - XQ we obtain a natural 
equivalence 

Ce: (XQ)2ormal XAf 

Cx is a class of homotopy-equivalences which preserves the Z-module struc- 
ture on homotopy. We refer to Cx as the coherence of the homotopy type. 

If we adjoin Cx to the genotype we obtain the coherent genotype of X, 

{XQ, X2S X3, * C;A } 

Now we can use these conditions to formulate the notion of an (abstract) 
coherent genotype {XQ, X2, X3, ** ; C}, and these form a category As in a 
natural way. 

An object of G, is an array of nilpotent spaces whose "homotopy groups" 
are finitely generated over the appropriate ground rings together with a 
class of homotopy equivalences 

C: (XQ)ormal (IL XV)Q 

preserving this module structure. 
A morphism of G, is an array of homotopy classes of maps {fQ, f2, f3, * } 

respecting the coherence; that is, 

(TJfp)QOCdomain = Crangeo(fQ)formal 

Our constructions so far give us a functor from the homotopy category 
generated by nilpotent spaces of finite type to this category of coherent 
genotypes. 

We can say a bit more, however, about maps. To X Y we associate 
the array {fQ, f2, ., fp, ***}. Now by Lemma 2.7, fQ is determined by the 
homotopy class of f restricted to each finite subcomplex of X. The same is 
true for the f, by Property I of compact Brownian functors. 

So we can collect the maps between X and Y into their "visible" 
homotopy classes (i.e., maps homotopic on each finite subcomplex). We 
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obtain the category A1 and a functor to the category of coherent genotypes 

A0 o,, which is a kind of arithmetization. 
There is a natural construction in the other direction: interaction. 

Start with a coherent genotype {XQ, X2, * ; e}. Form X= X, and 
consider XQ and X as subspaces of the mapping cylinder OR of a representa- 
tive of the coherence C. An interaction is a path in the medium ORl whose 
endpoints lie in XQ and X respectively. The space of all interactions is a 
nilpotent space of finite type over Z. 

Similarly, given maps of coherent genotypes {fQ, f2, } we choose 
representatives and a map of media which agrees with these representatives. 
By mapping paths we obtain a map on the corresponding interaction spaces. 

The homotopy class of this assembled map on every finite complex is 
independent of the choices because of the Hasse principle for maps. 

So we obtain by interaction a natural functor from the category of 
coherent genotypes to the category generated by nilpotent spaces of finite 
type (over Z) and visible homotopy classes of maps, , A_ 01. 

THEOREM. Arithmetization DI 
a and interaction ' +1 are mutually 

inverse equivalences of categories. 

Proof. Let I... '} be the interaction space of the coherent genotype 
... }. Let {X} denote the coherent genotype of X. From our constructions 
we have natural maps X-+ {X}i, and {... * }i} I ... }. An inductive argument 
over the simple Postnikov system using the arithmetic square 1.26 and 
Theorems 2.1 and 3.1 shows these naturally constructed maps are homotopy 
equivalences. 

At the inductive stage we use the exact sequence of homotopy for a 
path fiber product of spaces to see that we have isomorphisms of the 
homotopy groups. 

Remarks. I) There is a certain fluidity in the coherence C. If 1, U 
12 U ... U it is a partition of the set of primes, then C, can be factored into 
an r-fold product of the 

Ce: (XQ)li-formal (JIg. l p)Q 

If we carry out the interaction on this level we obtain instead of X, 
the localization of X at li. We have the analogous structure theorem for 
nilpotent spaces whose "homotopy groups" are finitely generated modules 
over Z1. 

II) The structure of coherent genotypes is rather like that of the 
spectrum of the ring of integers. We have one space for each point of 
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specZ={Q,2,3, ..}. 

C binds the rational type to each prime space, k , and from C we may factor 
off a finite collection of independent p-coherences. This reflects the topology 
of spec Z. 

III) This "picture" of the nilpotent finite type category clarifies the 
nature of the information in the etale homotopy type of a complex variety 
V; that is, if V is nilpotent of finite type, to determine the actual homotopy 
type of V we must find the Q-type VQ and the coherence C,. We add this 
to the etale homotopy type V and we have the homotopy type of V. 

IV) A good illustration of the genotype method in a classical homotopy 
problem is provided by the infinite quaternionic projective space. The 
problem in its stark form is to construct self-mappings QP- - QP- with 
any odd square degree on the four dimensional homology. By the theorem 
it suffices to construct a coherent family of mappings on the spaces of the 
genotype of QP-. The rational type of QPO is K(Q, 4). So here we have 
endomorphisms of any rational degree, coming from the endomorphisms 
of Q. 

The p-adic type of QP- can be constructed using etale theory, and the 
Galois symmetry in the construction leads to automorphisms of any degree 
equal to the square of a p-adic unit. To do this we regard QP- as the fiber 
of Bu CP_ 

At this point we have no actual endomorphism of QP- beyond the 
identity. The coherence condition is expressible solely in terms of the degree 
since 

K(Q, 4)A - K(Q X Z. 4). 

The requirement is met only by the degree + 1. 
However, for odd p, the p-adic type of QP- has a second description in 

terms of the classifying space of the orthogonal group of degree 2. In fact, 
as remarked above 

(QPA (Bo2) , p odd. 

Now 02 has endomorphisms for each integer k leading to endomorphisms 
of (QP-) of any degree equal to the square of a p-adic integer. So for the 
square of an odd integer k we obtain an endomorphism of QP- using 

i) at Q: the endomorphism k12 of Q, 
ii) at 2: some Galois automorphism corresponding to raising the 2nth 

roots of unity to the kth power, 
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iii) at p: the endomorphism of 02 which is raising to the kth power on 
SO2 C 02. 

Note that only these odd squares of integers are visible in the classical 
context. The endomorphism situation on the spaces of the genotype of QP- 
is considerably richer. 

V) (Varieties in characteristic p.) The etale theory applied to varieties 
over fields of characteristic p yields q-adic homotopy types for each prime q 
not equal to p. Thus we have all but two of the spaces in a genotype. 

If the variety in question can be lifted to the complex numbers, then 
the missing spaces XQ and Xp and the coherence Ce can be constructed from 
the complex variety. Thus we have homotopy-theoretical necessary condi- 
tions for the existence of a lifting. 

The analysis of this obstruction should be interesting, especially the 
relation between the sought-after Xp and XQ and the two de Rham coho- 
mology theories: the crystal theory in characteristic p and the analytical 
theory in characteristic zero. 

4. Spherical fibrations 

In this section we develop the theory of fibrations where the fiber is 
the localized or completed sphere. 

One of the main points is to relate these theories to the standard 
spherical fibration theory. For example, we show that the stable profinite 
theory is isomorphic to the ordinary oriented stable theory "direct product 
with"-theory of Z local coefficient systems. In particular, fiberwise comple- 
tion (on the stable level) embeds the standard theory of spherical fibrations 
into the profinite spherical theory as a direct factor. We use this fact to 
prove the Adams conjecture for real or complex K-theory. 

The proof gives an interesting unstable form of the Adams conjecture 
which can only be formulated in the local or profinite context. 

Definition. A Hurewicz fibration' $: S - E - B where the fiber is the 
local sphere Sr-, n > 1, is called a local spherical fibration. The local 
fibration is oriented if there is given a class in 

Ue Hf(E - B; Z) 2 

which generates Hf(Sn-1 *; Z,) - Z, upon restriction. 
When 1 is the set of all primes the theory is more or less familiar: 

1 E -* B has the homotopy lifting property for maps of spaces into B. 
2 Hn(E -* B) means Hn of the pair (mapping cylinder of E -- B, E). 
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i) the set of fiberwise homotopy-equivalence classes of S'-'-fibrations 
over X is classified by a homotopy set 

[X, BG0J; 

ii) BGn is the classifying space of the associative H-space (by composition) 

Gn = {Sn-1 _f )S`- I degf e {1} = Z*1 ; 

that is, QBGn-G. as infinitely homotopy associative H-spaces [14]; 
iii) the oriented theory' is classified by the homotopy set 

[X, BsGJ 

where B.,, may be described in two equivalent ways: 
a) BsG. is the classifying space for the component of the identity map 

of SI` in G,, usually denoted SG,, or 
b) BSGn is the universal cover of BGns where w1rBG, = Z/2; 

iv) the involution on the oriented theory obtained by changing orienta- 
tion U -- U, corresponds to the covering transformation of BSG ; 

v) there are natural inclusions G. Gn-r BGn BG,,,, corresponding 
to the operation of suspending each fiber. The union 

BG = Un BGn 

is the classifying space for the "stable theory". 
The stable theory for finite dimensional complexes is just the direct 

limit of the finite dimensional theories under fiberwise suspension. This 
direct limit converges after a finite number of steps, so we can think of a 
map into BG as classifying a spherical fibration whose fiber dimension is 
larger than that of the base. 

For infinite dimensional complexes X we can say that a homotopy class 
of maps of X into BG is just an element in the inverse limit of the homo- 
topy classes of the skeletons of X. This uses the finiteness of the homotopy 
groups of BG (see Section 3). Such an element in the inverse limit can then 
be interpreted as a compatible family of spherical fibrations of increasing 
dimension over the skeletons of X. 

The involution in the "stable theory" is trivial' and there is a canonical 
splitting 

BG _ K(Z/2, 1) x BSG. 

Some particular examples can be calculated: 
1 The fiber homotopy equivalences have to preserve the orientation. 
2 This is the germ of the Adams phenomenon. 
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BG1 RPO, BSG1=S' * 

BG2-BO2, BSG2-CP _BSO2. 

All higher BG,'s are unknown although the (finite) homotopy groups of 

BG = U1 BGa 

are much studied: 
stable 

1*+1BG _- i-stem- limk ri+k(Sk) 

Stasheff's explicit procedure does not apply without (semi-simplicial) 
modification to S7 '-fibrations for I a proper set of primes. In this case Si'o 
is an infinite complex (although locally compact). 

If we consider the I-adic spherical fibrations, namely, Hurewicz fibra- 
tions with fiber S3-1, the situation is even more infinite. 3j-' is an un- 
countable complex and therefore not even locally compact. 

However, Dold's theory of quasi-fibrations can be used (see [8], p. 16.8) 
to obtain abstract representation theorems for theories of fibrations with 
arbitrary fiber. 

THEOREM 4.1 (Dold). There are connected CW complexes B1' and B11 so 
that 

{S-1 theory of'}~[ " 
fibrations, BIbase 

Sfibrations 

then divide each set into the respective 7rB orbits to obtain the free homo- 

topy statements of the theorem. 

The Main Theorem. We shall use the idea of fiberwise localization and 

completion to construct a canonical diagram of theories (n > 1), 

fSi -fibration1 I theory J 
(*) fiberwise localization/ \fiberwise completion 

/1 ~ ~ ~ C 

S n-I-fibration c Si''-fibrationl 
l theory ) fiberwise l theory fs 

completion 
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Using Dold's theorem we have a corresponding diagram of classifying 
spaces 

Ben 

(* *) 7\ 

THEOREM 4.2. If n > 1, 
i) the diagram (*) exists; 
ii) for the corresponding diagram of classifying spaces (**) we have 

a) the diagram of fundamental groups is isomorphic to 

/7* Z1 

/ \\ 
Z* >Z1* 

b) the diagram of universal covering spaces is equivalent to 

(Bsa.) I 

localization/ \ completion 

BsG, oniio (BsG,)1 ncom pletiont 

iii) the latter diagram classifies the diagram of oriented theories with 

the covering-space symmetry corresponding to the action of the appropriate 
group of units on the orientations. 

Before giving the proof of Theorem 4.2 we shall discuss some of its 
corollaries. 

Let Aut X denote the singular complex of automorphisms of X: a 
simplex a is a homotopy equivalence a x X - X. 

COROLLARY 1. We have the table of computations: 

Aut Sj'1 Aut S - 

group of components Zl Z 

homotopy type of the component (SG,), (SG,) 
of the identity 

Remark. i) The fiberwise construction of the proof of the main theorem 
gives a natural class of maps 

Gin fi Aut Sin-1. 
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The construction shows f1 has all the homotopy multiplicative properties 
one might desire. For example fi is equivalent to the loop of a map of 
classifying spaces. 

ii) Similar remarks apply to the monoid of all self maps of S1-' of 
degree prime to 1, Gj(l). Fiberwise localization again gives a natural map 

G,(l) A Aut Sj-1 
This map is equivalent to the natural notion of group completion for topo- 
logical monoids. Thus these monoids have homotopy equivalent classifying 
spaces. This common classifying space is the classifying space for the 
localized spherical fibration theory discussed in the theorem, 

BI I = B G,,()- B u(S n-1) 

We will not use these facts although they explain somewhat the con- 
nection of our computations with those of Adams in the J(X) papers [1]-[4]. 

Symmetry in the unstable theories. We have exhibited the spaces 
(BsGa)1 and (BsGn)l as universal covering spaces with Galois (or covering 
transformation) groups Z* and Z*. Thus we have interesting self-homotopy 
equivalences of these universal spaces. 

For I {p=}, Zl is isomorphic to Z/2 QD (the free Abelian group generated 
by the primes other than p). The corresponding automorphisms of (BsG,)L 
determine automorphisms of the completion (Bs,1)' which coalesce topo- 
logically as a dense subgroup of the compact group of automorphisms, 
Z2 -Z/p- I) Zp for p odd (or Z _-Z/2 Q Z2 for p-2). 

We shall see below (Corollary 3) that the homotopy groups of Bs.. are 
finite except for one dimension, 

WflBsG = Z 0 torsion for n even 
w2f-,2BSG, = Z 0 torsion for n odd . 

The first segment of finite homotopy groups corresponds to the first 
segment of stable homotopy groups of spheres. 

Then (BsG,)' has for homotopy the i-torsion of these groups plus one 
Z, (in dimensions n or 2n - 2, respectively). 

The units Z* act trivially on the low dimensional, stable groups but 
non-trivially on the higher groups. For example, for n even we have the 
natural action of Zj* on 

7w n(B,0.)l/torsion 
2ZI 

On the higher groups the action measures the effect of the degree a map 
on the homotopy groups of a sphere. This action is computable up to ex- 
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tension in terms of Whitehead products and Hopf invariants. It seems 
especially interesting at the prime 2. 

The Rational Theory. If I is vacuous, the local theory is the "rational 
theory". Using the fibration 

[(Qn1S n-1) SGn > S]ocalized at 1=0 

it is easy to verify 

COROLLARY 3. Oriented SI-' fibrations are classified by 
i) an Euler class in Ha (base, Q) for n even, 
ii) a Hopf class in H2'-2 (base, Q) for n odd. 

It is also not too difficult' to see an equivalence of fibration sequences 

Lonn>SG2n > SG2n +1 >SG2,+,/SG2. BsG2,,- Bs92,n+1]Q 
I evalu- | _ Euler | Hopf 
ation =class Iclass 

> 
2n-- 

1 
S- 

n-1 - -n K(Q, 2n)- - K(Q, 4n). Q Q ~~White- 'Qcup 
head square 

product 

Corollary 3 has a "twisted analogue" for unoriented bundles. Stably 
the oriented rational theory is trivial. The unoriented stable theory is just 
the theory of Q coefficient systems, H'( , Q*). 

Note that Corollary 3 (part i), twisted or untwisted, checks with the 
equivalence 

S 2f-1 -K(Q, 2n - 1). 

The group of units in Q, 

Q* = Z/2 D free Abelian group generated 
by the primes, 

acts in the oriented rational theory by the obvious action for n even and 
by the square of the obvious action for n odd. 

The Stable Theory. As remarked above we construct a stable theory of 
spherical fibrations by considering compatible2 families of spherical fibrations 
of increasing fiber dimension over the skeletons of the base. 

The stability of the homotopy groups in the direct systems 

{BGn}, {B} l, {Bn} 

It is convenient to compare the fibrations 
Son ) SO.+, ) Sn y (Q nSn), SG.+, Sn. 

2 This means compatibility under fiberwise suspension (followed by fiberwise completion 
in the 1-adic case). 



GENETICS OF HOMOTOPY THEORY 65 

shows that such stable spherical fibrations are classified by a single map 
of the base into the appropriate direct limit space, 

BG, B , Bol. 

A further simplification results from the computations below. The 
compactness phenomenon discussed in Section 3 implies for each of the 
spaces B above 

[X, B] -limskeletons Xk of X [Xk, B] 

Thus a stable fibration is determined up to isomorphism by the iso- 
morphism classes of the various fibrations over the skeletons of X, and the 
compatibility isomorphisms are relevant only in that they exist. 

Similar remarks apply to the stable oriented theories which are classified 
by mapping into the appropriate universal covering spaces. 

COROLLARY 4. 

i) For the stable oriented theories, we have the isomorphisms 

oriented stable _ oriented stable - [ 
i-local theory = 1-adic theory =[ ' Hp6e (BSG)P]X 

ii) The unoriented stable theory is canonically isomorphic to the direct 
product of the oriented stable theory and the theory of Z1 or Z1 coefficient 
systems. 

stable 1-local 
theory [ K(ZI, 1) x Jpel (BSG)P]I 

stable [adi [ K(Z"*, 1) x llpei (BSG) P] 

iii) The action of the Galois group is trivial in the stable oriented 
theory. 

Proof. i) Because of the rational structure, 

lim", ((BSG,)l (BS~~ ) 

is an isomorphism. This proves the first part of i) since these direct limit 
spaces classify the stable oriented theories. 

On the other hand, since BSG has finite homotopy groups, 

Hlp l(BSG)P = (BSG)l _ lim. (BS G)1 

which completes the proof of i). 
ii) Consider the local case. A coefficient system, o e H'( , Zl ), deter- 

mines an S1'-fibration a by letting the units act on some representative of 
Si by homomorphisms. (A functorial construction of K(Z1, 1) will suffice.) 
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Now for any oriented S,"+'-fibration -Y, a*'y is a (cohomologically twisted) 
S1n+'-fibration, where a*-y means fiberwise join. 

One easily checks (using the proof of Theorem 4.2) that this construc- 
tion leads to a homotopy equivalence 

K(Z*, 1) x lim, (BsG,)l I im Bn1 

The 1-adic case is similar. a*') is constructed by fiberwise join followed by 
fiberwise completion. 

iii) The action of the Galois group is clearly trivial using ii). Or, more 
directly, note that the fibration S*'Y has automorphisms which change the 
orientation, when -Y is any oriented fibration and S is the trivial SI or S1- 
fibration. 

Remark. Part iii) of Corollary 4 is a kind of purely homotopy-theoretical 
Adams conjecture. 

Also the proof of part ii) shows how Whitney join' makes the stable 
theories into additive theories. 

The Adams conjecture. Let K denote the profinite K-theory discussed 
in Section 3 (either real or complex). Recall that K associated to each cell 
complex a compact topological ring which for finite complexes is the finite 
completion of the usual K-ring. 

K is classified for all spaces by maps into the finite completion B where 
B is the infinite grassmannian classifying ordinary K-theory. 

K has a beautiful symmetry which we shall discuss from two points of 
view. 

The group of symmetries is the group of units in Z. 
The first description uses the famous operations of Adams 

K 
k 

K, keZ. 

Recall that /k is defined in terms of the Newton polynomials in the 
exterior powers of a vector bundle 

*'V = A'V = V 
*2V = V? V - 2A2V 

and gives ring endomorphisms of K. 
The integer k defines an element (k) e Z* by giving the automorphism 

of Z= ,Z 

1 Followed by fiberwise completion in the 1-adic case. 
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(k)x k.x if xeZ , (k, p)=1 
x if xeZ , (k,p) 1. 

The set of such elements is dense in Z*. 
Similarly *k defines an automorphism of K = jJ, k by (a yak) where 

e E K, and 

) p()if (k, p) = 1 

It is possible to show by direct computation [1]-[41 that the family of 
automorphisms {(k): k e Z} extends by continuity to a continuous group 
action of the profinite group Z* on K. This will also follow directly from 
our second description. We shall refer to this group of symmetries of K, 
which embodies the isomorphic part of the Adams' operations, as the Galois 
group Z* acting on K. 

Now note that an element in K has a naturally associated stable fiber 
homotopy type. This follows from the existence of the natural extension 
J in the diagram of universal spaces 

B 
finite completion/ \J 

/ \X 
B -'BGX 

J 

J exists because BG has finite homotopy groups. J is defined as usual by 
classifying the increasing sequence of canonical sphere bundles over the 
increasing union of finite grassmannians comprising B. 

One of the main points of this work is to prove the 

THEOREM (Adams conjecture). The stable fiber homotopy type of elements 
in profinite K-theory (real or complex) is constant on the orbits of the Galois 
group. 

This theorem follows most naturally from the second description of 
the symmetry in K. We will sketch this description which uses ideas from 
algebraic geometry. 

Consider the grassmannians used to construct B. For the complex 
K-theory these grassmannians are beautiful compact complex varieties 
naturally embedded in complex projective spaces (via the Plucker coordinates). 

For the real K-theory we have the real grassmannians which we think 
of as homogeneous spaces of the real orthogonal group. For homotopy 
purposes we may also consider homogeneous spaces of the complex orthogonal 
group 
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O(n, C) = {A e Gl(n, C): (Ax, Ay) = (x, y)} 

where x e C' and (x, y) is the ordinary inner product (x, y) = = This 
follows since O(n, C) has the same homotopy type as the real orthogonal 
group. 

Forming homogeneous spaces of these groups, e.g., O(n + k, C)/O(n, C) x 
O(k, C), gives non-singular affine complex algebraic varieties having the 
homotopy types of the corresponding real grassmannians. 

So in either case (real or complex) the classifying space for K-theory 
may be expressed as an increasing union of complex algebraic varieties. 
Furthermore, these varieties are defined by equations with coefficients in 
the field of rational numbers. 

This means that transforming the points of C' or projective space by 
mapping the coordinates by any field automorphism a of C 

a e Gal (C/Q) 

gives rise to (wildly discontinuous but) algebraic automorphisms of these 
varieties. 

Now as remarked above there is an algebraic construction of the finite 
cohomology of complex algebraic varieties very much like Cech theory in 
topology. From the Zariski open sets of a variety V and their finite 
(Uberdeckung) coverings an inverse system of nerves Nor (actual complexes) 
are constructed [10] and these are natural maps V - {Na} giving 

(*) (w, V)- lim,, WriNa and Hi(V, M)- lim,, Hi(Na, M) 

for all finite coefficients M (twisted or untwisted) [5]. 
Now as noted in Section 3, equation (*) implies that the finite completion 

of V can be constructed from the nerves Nao for example 

V - lim,, N. 

in the sense of compact functors if WiNa is finite.' 
On the other hand, since the construction of each Nar only involves the 

abstract algebraic structure of our variety V, each automorphism a of C 
(fixing the coefficients field of V) determines a simplicial automorphism of 
Nor (reflecting the algebraic continuity of the "classically discontinuous" 
automorphism of the point set of V mentioned above). 

Thus Gal (C/Q) acts on the profinite homotopy type of any complex 
algebraic variety defined over Q. For example Gal (C/Q) acts on the classify- 

1 Otherwise V -lima,$ Nap: where Na = limp Nap. 
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ing space B of profinite K-theory by automorphisms preserving the filtra- 
tion by completed grassmannians. 

Now consider the natural homomorphism (a surjection) 

Gal (C/Q) A Z* 

obtained by letting a e Gal (C/Q) act on the roots of unity. 
One checks easily that Gal (C/Q) acts on Us CPn-K(Z, 2) via A and 

the natural action of Z* on K(Z, 2). (A single computation of the nerves 
N., for CP' is required.) 

It follows by naturality and the splitting principle that Gal (C/Q) acts 
through Z* on profinite K-theory and that this action is compatible with 
the isomorphic part of the Adams' operations discussed above. 

Let B, (Bn) denote the union over k of the (completed) grassmannians 
of n-planes in n + k-space. Now the total space of the canonical sphere 
bundle -n over B, is homotopy equivalent to Bn1-. Thus by Theorem 3.1 
B._1 is the total space of a completed spherical fibration 1rn over By. The 
restriction of this fibration B. is clearly the fiberwise completion of Ins 

The Adams conjecture is proved using the composition 

d* 67- 

where v* is the tautological map of Qn = c and v-' is a fiber-preserving 
inverse of the automorphism a of B,,-, Y, corresponding to a e Gal (C/Q). 
This composition covers the identity of By. So Jo and van have the same 
unstable profinite fiber homotopy type. This is a kind of unstable Adams 
conjecture for profinite vector bundles. 

Let I denote the stable profinite spherical fibration over B determined 
by {67n} over {Bn}. From the above we have that y - Yg as stable profinite 
spherical fibrations. 

Now our computations show that the map from stable fiber homotopy 
types to profinite stable homotopy types is injective. In fact on the classify- 
ing space level we have 

stable profinite theory: BO, BsG X K(Z*, 1), 
stable theory: BG BsG X K(Z/2, 1) 

so BG is a factor of Boo and we are done. 

We close with a more precise formulation of the unstable Adams' 
phenomenon. 

Define profinite vector bundle theory in dimension n by mapping into 
the completion B, of the classifying space for the ordinary vector bundle 
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theory Bn. For example, in the complex case we have 
the classifying space: B. = Uk Gk,n +k = BGl(f,C) 

J. 
the natural map: BGI(ac) -+ G2n 

the symmetry group: Gal (C/Q) for BGc(ac), 
the symmetry group: Z* for B; 2n. 

The map Ja. assigns an oriented, completed (2n - 1) spherical fibration 
[CJ to the profinite complex n-bundle C classified by a map into B' = B l(AC) 

If a e Gal (C/Q), let (a) = Au e Z* be the element constructed by letting 
a act on the roots of unity. The argument above gives the 

(unstable complex Adams conjecture): [(2] = .()n 

There is an analogous statement for real profinite vector bundles, 

the spherical fibration map BG (n,R) GB~, and the symmetry groups 
Gal (C/Q)/Gal (C/R)- and Z*/Z*.l Now we have 

{[2)](0)n12 n even 
(unstable real Adams conjecture) : [1,2] = 1[,](a)(fl)12 n odd 

The inertia of intrinsic stable fiber homotopy types. 

In order to begin to understand philosophically the proof just given 
of the Adams conjecture we consider a more general, related phenomenon. 
Let ". denote a compatible sequence of spherical fibrations of increasing 
fiber dimensions over an increasing union of spaces 

B1CzB2 c A C c C B, CB C. *+C 

Our basic assumption about the stable bundle Y = "JUny. I" over B - 
Un Bn is that it is intrinsic to the filtration of the base B. This is, 'Y, is 
approximated by the inclusion B. ci B., More precisely, for arbitrarily 
large integers n the composition 

B itnl - i aYn 
cross 

section 

is a homotopy equivalence over the d(n)-skeleton where 

d(n) - fiber dimy,+- ) 0cc as n .o 

In the Lie group examples considered above, this composition was actually 
a homotopy equivalence. 

For the other classifying spaces of geometric topology 

Gal (C/R)- means the normal subgroup generated by complex conjugation. 
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BPL , BTOP I and BG 

the corresponding stable bundles satisfy the more general hypothesis. In 
fact d(n) is approximately 2 (fiber dimension of Yn~i) for the "block bundle" 
filtrations of BPL and BTOP and the usual filtration of BG. 

We justify our terminology by the 

THEOREM. The stable fiber homotopy type of -r can be constructed from 
the filtration {BJ} of B. 

Now let B A B be any filtered automorphism of B; that is, a = Us au,, 
where a7,, is an automorphism of B,. Denote au*y by yGa Then we have the 

COROLLARY. Y- -Y, i.e., tYG is fiber homotopy equivalent to a. 

Proof of Corollary. Clearly y0 = a*SY is intrinsic if -r is. So -ya y 
follows from the theorem. 

Proof of Theorem. Let dn be an integer a little less than d(n)-fiber 
i 

dim Yn~ls and consider a fibration approximating Bn Bn,+ restricted to the 

dn-skeleton of B,+,, say Yn ( ) Xn. 
Now our hypothesis means that (fiber i) (fiber Yn~i) is a homotopy d(n)- 

equivalence. So the induced map over Xn, Yn , Yn, l X, is a homotopy 
d(n)-equivalence. But Xnl Xn has dimension a little less than d(n). 

i 
Thus the part of jn~? over Xn can be constructed from Bn Bn+, using 

the composition 

k (i 
'.+ 1 I Xn ) Yn Xn 

where j.k k 1. Since j and k are homotopy d(n)-equivalences the space 
'yn+l I Xn and the map YYn,+ I Xn Xn are well-defined by this procedure. 

Note. This proof provides something like a converse to our proof of 
the Adams conjecture; namely, let a be any automorphism of B, and let e 
be any stable equivalence lya . ty. Let Xn be a skeleton of Bn,+ so that e 

en 
induces an equivalence -Yn? I Xn Yn~l Xn. We can also assume that X. is 
a skeleton of B by the intrinsic hypothesis. 

Now we can assume that the automorphism a preserves the skeleton 
X, of B. Then the composition 

IYn+l I X. In Yn+1 I X 

is an automorphism of a high unstable skeleton of Bn I Xn covering a I Xn. 
Thus in proving the Adams conjecture over Bu, say, one has to con- 
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struct automorphisms of a large unstable subcomplex of BU, containing a 
stable skeleton.' 

Remark. One might hope from the corollary to find filtered auto- 
morphisms of the geometric theories BPL and BTOP leading to homotopy 
relations between different geometric bundles, as we did for the K-theories 
above. This turns out to be the case. There is a Galois group and a kind of 
Adams conjecture (or phenomenon) for PL and Top which we will discuss in 
a sequel to this paper. 

Of course for the spherical fibration theory the corollary means that 
there are no symmetries preserving the filtration. Thus any compatible 
sequence of automorphisms of Bn determines the identity map of B,. 

When is an 1-adic fibration the completion of a local fibration? 

According to Sections 1 and 3 there are the fiber squares 

Zi > Z, (BsG,,)l ,~~ 

Q A> Ql S (BsG,)Q >((BsGn, )Q 
N-ZI 

This leads to the 

COROLLARY 4. An oriented Sn-'-fibration is the completion of a S?,-'- 

fibration if and only if 
a) for n even, the image of the Euler class under 

Hn(base, Zi) Hn(base, Qf) 

is rational, namely in the image of 

Hn(base, Q) --- H?(base, Qf) 
(&Z1 

b) for n odd, the Hopf class, which is only defined in 

H2 2(base, Qf) 

is rational. 

Proof. The fiber square above is equivalent to (n even) 

(BsG - (BSg*)A 

rational Euler class{ {l-adic Euler class 

K(Q, n) - K(Qf, n). 
I Quillen did this by considering the approximations of BG(cnc) Bu, given by the 

K(r, 1) spaces, BG(zn,k), where k is the algebraic closure of the prime field. The symmetry 
is given by Frobenius [12]. 
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The corollary is a restatement of one of the properties of a fiber square; 
that is, in the fiber square of CW complexes, 

A )B 

.1 _ .1 
C yD 

maps into C, and B together with a class of homotopies between their 
images in D determines a class of maps into A. 

Addendum. Another way to think of the connection is this: since 

(BsGn~ -T lpe (Bn) 
A 

a local S-'-fibration over a finite complex is a collection of S3-W-fibrations, 
one for each p in 1, together with the coherence condition that the charac- 
teristic classes (either Euler or Hopf, with coefficients in Q.) they determine 
are respectively in the image of a single rational class. 

This uses the Hasse principle of Section 3 which implies that the class 
of the map into (Bs,,)1 is independent of the homotopy used to assemble it. 

Principal spherical fibrations. 

Certain local (or 1-adic) spheres are naturally homotopically equivalent 
to topological groups. Thus we can speak of principal spherical fibrations. 
The classifying space for these principal fibrations is easy to describe and 
maps into the classifying space for oriented spherical fibrations. 

PROPOSITION (p odd). Sn-1 is hornotopy equivalent to a topological group 
(or loop space) if and only if n is even and n divides 2p - 2.' 

COROLLARY. SI"-' is homotopy equivalent to a loop space if and only if 

1 C {p: Z/n ; p-adic units}. 

Remark. Let SI-' have classifying space P-(n, 1); then 

QP-(n, 1) - SI?-' . 

The fibration 
Sln- * * P(n, 1) 

implies 
i) H*(P-(n, 1), Zl) is isomorphic to a polynomial algebra on one generator 

in dimension 2n. 
ii) For each choice of an orientation of Sl2,a- there is a natural map 

1 For p - 2, it is well-known that only SI, S3, and S7 are H-spaces, and S7 is not a 
loop space. 
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P-(n, 1) -+(Bsg 

In cohomology the universal Euler class in (Bs,2,)1 restricts to the poly- 
nomial generator in P-(n, 1). 

Proof of the proposition. A rational argument implies a spherical 
H-space has to be odd-dimensional. 

If S3-1 is a loop space, QBn, it is clear that the mod p cohomology of Be 
is a polynomial algebra on one generator in dimension n. Steenrod opera- 
tions imply X divides (p - 1)pk for some k, where n = 2x. Secondary opera- 
tions, using Liulevicius' mod p analysis generalizing the famous mod 2 
analysis of Adams, show k = 0; that is, X divides p - 1. 

On the other hand, if X divides p - 1 we can construct Be directly: 
i) Embed Z/x in Z/p-1 ic Z*. 
ii) Choose a functorial K(Zp, 2) in which Z* acts freely by cellular 

homeomorphisms. 
iii) Form 

Bn= (K(Zp, 2)/(Z/x))P . 

We obtain a p-adically complete space which is simply connected, has 
mod p cohomology, a polynomial algebra on one generator in dimension n, 
and whose loop space is S3p. 

In more detail, the mod p cohomology of K(Zp, 2)/(Z/\) is the invariant 
cohomology in K(Zp, 2) under 

(1, XI X2, X3, .. .) aY (1, ax, a2X21 ... ), a;' 

This follows since X is prime to p and we have the spectral sequence of the 
fibration 

K(ZP, 2) - K(Zp, 2)/(Z/x) -- K(Z/x, 1) . 

Now we can regard Be as the p-adic completion of the simply connected 
space 

(K(Z., 2)/(Z/x)) U cone (S' U , e2) 

So B. is simply connected and by the arguments of Section 3 has the correct 
mod p cohomology. 

The space of loops on B, is an (n - 2) connected p-adically complete 
space whose mod p cohomology is one Zlp in dimension n - 1. By Section 3 
we have the p-adic sphere SPW. 

Proof of the corollary. If 1 is contained in {p: n divides (p -1)1, 
construct the "fiber product" of 

1 The case left out is taken care of by S3. 
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HPel B2n 

K(Q, 2n) - K(Qf, 2n) 

where B1, is the de-loop of S2n-1 constructed above. 
If we take loop spaces, we get the fiber square 

S2n1 I 2n -1 

1Q 1, 
Thom isomorphism. 

An Sl-'-fibration with orientation 

Ue e HII(E X, Zi) 

determines a Thom isomorphism 
U Ue H i(X9 Zj) U eHi+f(E X, Zi). 

This is proved, for example, by induction over the cells of the base using 
Mayer-Vietoris sequences (Thom). 

Conversely (Spivak), given a pair A 2 X and a class 

Ue HII(A ,X, Zi) 

such that 
uU 

Hi (X9 Z) u Hi+'f(A X, Zi) 

is an isomorphism, then under appropriate fundamental group assumptions 
f A fp X determines an oriented S1-'-fibration. For example, if the funda- 

mental group of X acts trivially on the fiber of f, then an easy spectral 
sequence argument shows that 

H*(fiber of f, Z1) _ H*(Sn-l, Z1) 

If further, the fiber of f is a nilpotent space, a fiberwise localization' is possi- 
ble, and this produces an Sn-'-fibration over X, 

fiberf - A >- X 

localizationl fiberwise l localization localization 

Sn-1 ,E -+X. 
See proof of Theorem 4.2. 
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A similar situation exists for l-adic spherical fibrations. 

Whitney join. 

The Whitney join operation defines pairings between the Si', S1' 
theories and S +m'- theories. We form the join of the fibers (S'-1 and Sr-') 
over each point in the base and obtain an Sl +-l-fibration. This of course 
uses the relation 

-l * Sm-1 Sn.+ m-1 

The analogous relation is not true in the complete context. However, we 
can say that 

(So *SI 1J)A S'n+m-1 

Thus fiber join followed by fiberwise completion defines a pairing in the 
1-adic context. 

Proof of Theorem 4.2 (page 62). 
i) The map 1 is constructed by fiberwise localization. 
Let d be a fibration over a simplex a with fiber F, a nilpotent space, and 

let at 

-+8 ad' 
\ / 

a,,, 

be a fiber-preserving map which localizes each fiber. Then filling in the 
diagram 

arbitrary 
trivialization 

g~~s 
$ 

a x F 

at I jprojection 
t localization 

gives an extension of the fiberwise localization at to all of a; that is, 

e -d---5' = mapping cone of t 
\ /)1 

a axE1. 

But t exists by obstruction theory, 

H*(a$', I/aa; z*F) _H*(aa x (Fi, F); Zi-module)-= 0. 

Thus, fiberwise, we can localize any fibration with nilpotent fiber by 
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proceeding inductively over the cells of the base. We obtain a "homo- 
topically locally trivial" fibration which determines a unique Hurewicz 
fibration with fiber F,. 

The same argument works for fiberwise completion, 

F - F, whenever H*(F1, F; Z1) 0- . 

But this is true, for example when F = S-n or Si'. 
This shows we have the diagram of i) for objects. The argument for 

maps and commutativity is similar. 
To prove ii) and iii) we discuss the sequence of theories 

U: {oriented SR-fibrations} l {SR-fibrations} -v - H'( , R*) 

where SR = S-', S-', or Sr'; and R is Z, Z1, or Z1. 
The first map forgets the orientation. 
The second map replaces each fiber by its reduced R-homology. This 

gives an R coefficient system classified by an element in H'( , R*). 
Now the covering homotopy property implies that an SR-fibration over 

a sphere Si+1 can be built from a homotopy automorphism of Si x SR pre- 
serving the projection St x SR - St. We can regard this as a map of S' 
into the singular complex of automorphisms of SR, Aut SR. We can assume 
that a base point of the equator Si goes to the identity of Aut SR. 

For i = 0, the fibration is determined by the component of the image 
of the other point on the equator. But in the sequence 

w0, Aut SR 1 [SR, SR] > 7r%_1SR > H.-lSR 

the first map is an injection and the second and third are isomorphisms. 
Thus 

w0 Aut SR - R - Aut (H,,-,SR) . 

This proves ii) a) and the fact that oriented bundles over S' are all 
equivalent. 

More generally, an orientation of an SR-fibration determines an em- 
bedding of the trivial fibration SR -. * into it. This embedding in turn 
determines the orientation over a connected base. 

Thus if the orientation sequence U corresponds to the sequence of 
classifying spaces 

BR -BR- K(R ,1), 

we see that 7rBR = 0 and for i > 0, 
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7r+lBR [Si', BRIfree 

oriented bundles over Si+ 
based bundles over Si+' 

[Si?' BR]based 

-7r+BBR 

So on homotopy we have 

* 9 R W ,R* for w, 

r+?, -+ * for wr1i. 

Therefore, U is the universal covering space sequence. 
Also the correspondence between based and oriented bundles shows 

the R* actions correspond as stated in iii). 
We are left to prove the second part of ii). The cell by cell construc- 

tion of part i) shows we can construct (cell by cell) a natural diagram 

G= Aut S-' Aut Sl- 

C\1 
Aut Si-1, 

corresponding to fiberwise localization for fibrations over suspensions. 
The proof is then finished by calculating the induced maps on homotopy 
groups for the connected components of the identity. For example, to study 
c look at the diagram 

(n-1 sn-l based ( 3 1 l , -l based 

1~ completion 1~ 
(S~ ? Sc Sl)t 

completion completion 

Now c0 just tensors the homotopy with Z1. 
An element in wr of the upper right hand space is just a homotopy class 

of maps 
fnl 

Si XSR-SR SR Si= 

which is the identity on * x SR and constant along St x *. We can measure 
the deviation of f from the projection on the second factor Si x SR SR by 
the single obstruction to a homotopy between them in 
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H +-((S.9 *) X (SRI *), 7r*+,-SR) -F+-S 

It is not hard to see that this obstruction determines an isomorphism of 
groups 

wr(Aut SR), - 7r+.-1Sl 

The naturality of this obstruction shows that cl radically completes 
the homotopy groups. 

Since the vertical sequences are fibrations, it follows that c completes 
the homotopy groups. 

This proves that BsG, -* universal cover B$ is 1-adic completion. 
The localization statement of ii) b) is treated similarly, and the proof 

of Theorem 4.1 is complete. 
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