Final exam

3 hours

The three exercises are independent one from each other.

You can answer either in French or in English.

Exercise 1. - Let S^{1} be the circle $\{z \in \mathbf{C},|z|=1\}$ and let D^{2} be the closed unit disk $\{z \in \mathbf{C},|z| \leqslant 1\}$.

Given a matrix $A=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right] \in \mathrm{M}_{2}(\mathbf{Z})$ (with integer coefficients), we denote by f_{A} the following map:

$$
\begin{array}{rlll}
f_{A}: & S^{1} \times S^{1} & \rightarrow & S^{1} \times S^{1} \\
(u, v) & \mapsto & \left(u^{a} v^{c}, u^{b} v^{d}\right)
\end{array}
$$

Note that for 2 matrices $A_{1}, A_{2} \in \mathrm{M}_{2}(\mathbf{Z})$, we have $f_{A_{1} A_{2}}=f_{A_{1}} \circ f_{A_{2}}$.
a) Compute the fundamental group $\pi_{1}\left(\mathrm{~S}^{1} \times \mathrm{S}^{1} ;(1,1)\right)$.
b) What is the induced group morphism

$$
\left(f_{A}\right)_{*}: \pi_{1}\left(\mathrm{~S}^{1} \times \mathrm{S}^{1} ;(1,1)\right) \rightarrow \pi_{1}\left(\mathrm{~S}^{1} \times \mathrm{S}^{1} ;(1,1)\right) ?
$$

Justify your answer!
c) Give a necessary and sufficient condition on A so that f_{A} is a homeomorphism.
d) Give a necessary and sufficient condition on A so that f_{A} can be extended to a (continuous) map $g_{A}: \mathrm{S}^{1} \times \mathrm{D}^{2} \rightarrow \mathrm{~S}^{1} \times \mathrm{S}^{1}$.

Exercise 2. - Let I be the segment $[0,1]$ and $S=I \times I$ denote the unit square. The Klein bottle K is defined to be the following quotient of S :

with the identifications $(0, t) \sim(1, t)$ and $(t, 0) \sim(1-t, 1)$ for all $t \in[0,1]$.
Let $q: S \rightarrow K$ be the canonical quotient map. We denote by ∂S the boundary of S (the union of the 4 coloured segments in the picture); by A the subspace $q(\partial S) \subset K$ and by $\overline{0}$ the base point $q(0,0)$.
a) Show that $\pi_{1}(A, \overline{0})$ is a free group on two generators.
b) Use Van Kampen's theorem to prove that $\pi_{1}(K ; \overline{0})$ is the quotient of the free group on two generators a, b by the normal subgroup generated by $a b^{-1} a b$.
c) Show that there are exactly 4 non isomorphic 2 -fold covering spaces of K.

The aim of the rest of the exercise is to describe the universal cover of K.

Let τ and σ be the following homeomorphisms of \mathbf{R}^{2} :

$$
\tau(x, y):=(x+1, y) \quad \sigma(x, y):=(1-x, y+1) .
$$

We denote by $G:=\langle\tau, \sigma\rangle$ the group generated by these two homeomorphisms and by $\widetilde{K}:=$ $G \backslash \mathbf{R}^{2}$ the space of orbits of the action of G on \mathbf{R}^{2} (endowed with the quotient topology).
d) Show that in G we have $\tau \circ \sigma \circ \tau=\sigma$.

Deduce that any element in G can be written uniquely as $\sigma^{n} \tau^{m}$ for some integers $n, m \in \mathbf{Z}$.
e) Show that the canonical quotient map

$$
\pi: \mathbf{R}^{2} \rightarrow \widetilde{K}
$$

is a covering space.
f) Conclude by showing that K and \widetilde{K} are homeomorphic.
g) Give an example of a 2-fold covering space of K which is not trivial and describe its monodromy.

$$
\begin{gathered}
* * \\
*
\end{gathered}
$$

Exercise 3. - Let $X=\mathbf{S}^{1} \subset \mathbf{C}^{*}$ be the circle and $p: Y \rightarrow X$ a covering space on X with fiber $p^{-1}(1)=E$. For an open subset $W \subset X$ denote by $\mathfrak{S}(W)$ the set of sections $s: W \rightarrow Y$ of p defined on W.
Let $0<\varepsilon<\frac{\pi}{4}$ and consider the connected open subsets $V=X \backslash\{1\}, U=\left\{e^{i t} \mid t \in\right]-\varepsilon, \varepsilon[\}$, $U_{-}=\left\{e^{i t} \mid t \in\right]-\varepsilon, 0[\}, U_{+}=\left\{e^{i t} \mid t \in\right] 0, \varepsilon[\}$.
a) Explain why the map $\sigma: \mathfrak{S}(U) \rightarrow E$ defined by $\sigma(s)=s(1)$ is bijective.
b) Show that the restriction maps $\rho_{U}^{+}: \mathfrak{S}(U) \rightarrow \mathfrak{S}\left(U_{+}\right), \rho_{U}^{-}: \mathfrak{S}(U) \rightarrow \mathfrak{S}\left(U_{-}\right), \rho_{V}^{+}: \mathfrak{S}(V) \rightarrow$ $\mathfrak{S}\left(U_{+}\right), \rho_{V}^{-}: \mathfrak{S}(V) \rightarrow \mathfrak{S}\left(U_{-}\right)$are bijective.
c) Denote by μ the composition $\sigma \circ\left(\rho_{U}^{-}\right)^{-1} \circ \rho_{V}^{-} \circ\left(\rho_{V}^{+}\right)^{-1} \circ \rho_{U}^{+} \circ \sigma^{-1}$. Let γ be the loop $\gamma(t)=e^{2 \pi t i}$. Show that for all $y \in E$ the monodromy action of $[\gamma] \in \pi_{1}(X, 1)$ is given by $y \cdot[\gamma]=\mu(y)$.
[Hint: By choosing $x_{+} \in U_{+}, x_{-} \in U_{-}$decompose γ into three parts and construct the lift of γ using suitable local sections.]
Let $f: X \rightarrow X$ be the map $f(z)=z^{3}$ and S be a set. Our aim is to describe $f_{*}\left(S_{X}\right)$ (where S_{X} denotes the sheaf of locally constant functions from X to S).
We fix $0<\varepsilon<\frac{\pi}{4}$ and set $U_{k}=\left\{e^{\left(\frac{2 k \pi}{3}+t\right) i} \left\lvert\, \frac{-\varepsilon}{3}<t<\frac{\varepsilon}{3}\right.\right\}$ for $k=0,1,2$. Note that the U_{k} are the connected components of $f^{-1}(U)$.
d) Show that $f_{*} S_{X}$ is a local system on X and calculate $\left(f_{*} S_{X}\right)_{1}$ as well as $f_{*} S_{X}(X)$.

Deduce that $f_{*} S_{X}$ is not the sheaf of sections of the covering space $X \times S \rightarrow X ;(z, s) \mapsto z^{3}$.
e) Identify $f_{*} S_{X}$ to the sheaf of sections of its étalé space $p: E\left(f_{*} S_{X}\right) \rightarrow X$ and describe $f_{*} S_{X}(U), f_{*} S_{X}\left(U_{-}\right), f_{*} S_{X}\left(U_{+}\right)$as well as the maps $\sigma, \rho_{U}^{+}, \rho_{U}^{-}$using the decomposition $f^{-1}(U)=U_{0} \cup U_{1} \cup U_{2}$.
f) Using your identifications from the previous question describe the map $\rho_{V}^{-} \circ\left(\rho_{V}^{+}\right)^{-1}$.
[Hint: for any $x \in V$ we may choose a small neighborhood U_{x} of x similar to $U=U_{1}$ such that $f^{-1}\left(U_{x}\right)$ has three connected components and $\rho_{V}^{x}: f_{*} S_{X}(V) \rightarrow f_{*} S_{X}\left(U_{x}\right)$ is bijective. Describe first $\rho_{V}^{x} \circ\left(\rho_{V}^{+}\right)^{-1}$ in the case that $U_{x} \cap U_{+}$is not empty, then iterate the procedure to deduce $\rho_{V}^{-} \circ\left(\rho_{V}^{+}\right)^{-1}$.]
g) Describe the orbits of the monodromy action on $\left(f_{*} S_{X}\right)_{1}$.

Deduce the isomorphism class of the covering space associated to $f_{*} S_{X}$ in the case that S is a set with 2 elements.
h) Deduce that $f^{-1} f_{*} S_{X}$ is a constant sheaf.

