Final exam 3 hours

The three exercises are independent one from each other. You can answer either in French or in English.

Exercise 1. — Let S¹ be the circle $\{z \in \mathbf{C}, |z| = 1\}$ and let D² be the closed unit disk $\{z \in \mathbf{C}, |z| \leq 1\}$.

Given a matrix $A = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \in M_2(\mathbf{Z})$ (with integer coefficients), we denote by f_A the following map:

$$\begin{array}{rcccc} f_A: & S^1 \times S^1 & \to & S^1 \times S^1 \\ & & (u,v) & \mapsto & (u^a v^c, u^b v^d) \end{array}$$

Note that for 2 matrices $A_1, A_2 \in M_2(\mathbf{Z})$, we have $f_{A_1A_2} = f_{A_1} \circ f_{A_2}$.

- a) Compute the fundamental group $\pi_1(S^1 \times S^1; (1, 1))$.
- b) What is the induced group morphism

$$(f_A)_*: \pi_1(S^1 \times S^1; (1, 1)) \to \pi_1(S^1 \times S^1; (1, 1))?$$

Justify your answer!

- c) Give a necessary and sufficient condition on A so that f_A is a homeomorphism.
- d) Give a necessary and sufficient condition on A so that f_A can be extended to a (continuous) map $g_A : S^1 \times D^2 \to S^1 \times S^1$.

* *

Exercise 2. — Let I be the segment [0, 1] and $S = I \times I$ denote the unit square. The Klein bottle K is defined to be the following quotient of S:

with the identifications $(0, t) \sim (1, t)$ and $(t, 0) \sim (1 - t, 1)$ for all $t \in [0, 1]$.

Let $q: S \to K$ be the canonical quotient map. We denote by ∂S the boundary of S (the union of the 4 coloured segments in the picture); by A the subspace $q(\partial S) \subset K$ and by $\overline{0}$ the base point q(0,0).

- **a)** Show that $\pi_1(A, \overline{0})$ is a free group on two generators.
- b) Use Van Kampen's theorem to prove that $\pi_1(K; \overline{0})$ is the quotient of the free group on two generators a, b by the normal subgroup generated by $ab^{-1}ab$.
- c) Show that there are exactly 4 non isomorphic 2-fold covering spaces of K.

The aim of the rest of the exercise is to describe the universal cover of K.

Let τ and σ be the following homeomorphisms of \mathbf{R}^2 :

$$\tau(x,y) := (x+1,y) \qquad \sigma(x,y) := (1-x,y+1).$$

We denote by $G := \langle \tau, \sigma \rangle$ the group generated by these two homeomorphisms and by $\widetilde{K} := G \setminus \mathbf{R}^2$ the space of orbits of the action of G on \mathbf{R}^2 (endowed with the quotient topology).

d) Show that in G we have $\tau \circ \sigma \circ \tau = \sigma$.

Deduce that any element in G can be written uniquely as $\sigma^n \tau^m$ for some integers $n, m \in \mathbb{Z}$. e) Show that the canonical quotient map

$$\pi: \mathbf{R}^2 \to \widetilde{K}$$

is a covering space.

- **f**) Conclude by showing that K and \widetilde{K} are homeomorphic.
- g) Give an example of a 2-fold covering space of K which is not trivial and describe its monodromy.

Exercise 3. — Let $X = \mathbf{S}^1 \subset \mathbf{C}^*$ be the circle and $p: Y \to X$ a covering space on X with fiber $p^{-1}(1) = E$. For an open subset $W \subset X$ denote by $\mathfrak{S}(W)$ the set of sections $s: W \to Y$ of p defined on W.

*

Let $0 < \varepsilon < \frac{\pi}{4}$ and consider the connected open subsets $V = X \setminus \{1\}, U = \{e^{it} \mid t \in] - \varepsilon, \varepsilon[\}, U_{-} = \{e^{it} \mid t \in] - \varepsilon, 0[\}, U_{+} = \{e^{it} \mid t \in]0, \varepsilon[\}.$

- **a)** Explain why the map $\sigma : \mathfrak{S}(U) \to E$ defined by $\sigma(s) = s(1)$ is bijective.
- b) Show that the restriction maps $\rho_U^+ : \mathfrak{S}(U) \to \mathfrak{S}(U_+), \rho_U^- : \mathfrak{S}(U) \to \mathfrak{S}(U_-), \rho_V^+ : \mathfrak{S}(V) \to \mathfrak{S}(U_+), \rho_V^- : \mathfrak{S}(V) \to \mathfrak{S}(U_-)$ are bijective.
- c) Denote by μ the composition $\sigma \circ (\rho_U^-)^{-1} \circ \rho_V^- \circ (\rho_V^+)^{-1} \circ \rho_U^+ \circ \sigma^{-1}$. Let γ be the loop $\gamma(t) = e^{2\pi t i}$. Show that for all $y \in E$ the monodromy action of $[\gamma] \in \pi_1(X, 1)$ is given by $y \cdot [\gamma] = \mu(y)$.

[**Hint:** By choosing $x_+ \in U_+$, $x_- \in U_-$ decompose γ into three parts and construct the lift of γ using suitable local sections.]

Let $f: X \to X$ be the map $f(z) = z^3$ and S be a set. Our aim is to describe $f_*(S_X)$ (where S_X denotes the sheaf of locally constant functions from X to S).

We fix $0 < \varepsilon < \frac{\pi}{4}$ and set $U_k = \{e^{(\frac{2k\pi}{3}+t)i} \mid \frac{-\varepsilon}{3} < t < \frac{\varepsilon}{3}\}$ for k = 0, 1, 2. Note that the U_k are the connected components of $f^{-1}(U)$.

- d) Show that f_*S_X is a local system on X and calculate $(f_*S_X)_1$ as well as $f_*S_X(X)$. Deduce that f_*S_X is not the sheaf of sections of the covering space $X \times S \to X$; $(z, s) \mapsto z^3$.
- e) Identify f_*S_X to the sheaf of sections of its étalé space $p: E(f_*S_X) \to X$ and describe $f_*S_X(U), f_*S_X(U_-), f_*S_X(U_+)$ as well as the maps $\sigma, \rho_U^+, \rho_U^-$ using the decomposition $f^{-1}(U) = U_0 \cup U_1 \cup U_2$.
- **f)** Using your identifications from the previous question describe the map $\rho_V^- \circ (\rho_V^+)^{-1}$. [**Hint:** for any $x \in V$ we may choose a small neighborhood U_x of x similar to $U = U_1$ such that $f^{-1}(U_x)$ has three connected components and $\rho_V^x : f_*S_X(V) \to f_*S_X(U_x)$ is bijective. Describe first $\rho_V^x \circ (\rho_V^+)^{-1}$ in the case that $U_x \cap U_+$ is not empty, then iterate the procedure to deduce $\rho_V^- \circ (\rho_V^+)^{-1}$.]
- g) Describe the orbits of the monodromy action on $(f_*S_X)_1$. Deduce the isomorphism class of the covering space associated to f_*S_X in the case that S is a set with 2 elements.
- **h)** Deduce that $f^{-1}f_*S_X$ is a constant sheaf.