Polynômes orthogonaux et quadrature de Gauss

Dans tout le problème, on fixe un intervalle fini I = [a, b] de \mathbf{R} et $\omega : I \to \mathbf{R}^+$ une fonction strictement positive. Pour toute fonction continue $f : I \to \mathbf{R}$, on pose

$$\mathcal{I}(f) := \int_a^b f(t)\omega(t)\mathrm{dt}.$$

I. Quadrature

Pour tout entier positif $n \ge 0$, on note $\mathbf{R}[X]_{\le n}$ l'espace des polynômes de degré < n. Dans cette partie, on fixe n points x_1, \ldots, x_n deux à deux distincts de I.

1. — A chaque $x \in I$, on associe la forme linéaire $\varepsilon_x : \mathbf{R}[X]_{\leq n} \to \mathbf{R}$ définie par

$$\forall P \in \mathbf{R}[X]_{\leq n}, \ \varepsilon_x(P) := P(x).$$

Montrer que $\{\varepsilon_{x_1}, \ldots, \varepsilon_{x_n}\}$ est une base de l'espace dual $\mathbf{R}[X]_{< n}^*$.

2. — En déduire qu'il existe des réels $\lambda_1, \ldots, \lambda_n$ (dépendant seulement des points x_i) tels que :

$$(\star) \qquad \forall P \in \mathbf{R}[X]_{\leq n}, \ \mathcal{I}(P) = \sum_{i=1}^{n} \lambda_i P(x_i).$$

Par la formule (\star) précédente, on peut s'attendre à ce que pour n grand la somme $\sum_{i=1}^{n} \lambda_i f(x_i)$ soit une bonne approximation numérique de l'intégrale $\mathcal{I}(f)$, d'où le terme de quadrature. Le but de ce problème est de justifier cette approximation et d'optimiser le choix des points x_i .

II. Polynômes orthogonaux

On note E l'espace $C(I; \mathbf{R})$ des fonctions continues de I dans \mathbf{R} .

3. — Montrer que la formule

$$\langle f, g \rangle_{\omega} := \int_{a}^{b} f(t)g(t)\omega(t)dt$$

définit un produit scalaire sur E. On note $\|\cdot\|_{\omega}$ la norme associée.

- 4. Montrer qu'il existe une unique famille de polynômes $(P_i)_{i \in \mathbb{N}}$ telle que :
 - i) pour tout entier positif i, P_i est unitaire de degré i
 - ii) pour tous entiers positifs $i \neq j$, $\langle P_i, P_j \rangle_{\omega} = 0$.

Justifier que pour tout $n \in \mathbb{N}$, la famille $\{P_0, \ldots, P_{n-1}\}$ forme une base de $\mathbb{R}[X]_{\leq n}$.

- 5. Le but de cette question est de montrer que pour tout entier n le polynôme P_n précédent a n racines distinctes dans l'intervalle I. Pour cela, on raisonne par l'absurde. On suppose que n'est pas le cas et l'on note y_1, \ldots, y_k les racines de P_n situées dans I qui sont de multiplicité impaire. Soit enfin L le polynôme $\prod_{i=1}^k (X-y_i)$.
 - a) Justifier que k < n.
 - b) Montrer que la fonction $I \to \mathbf{R}, t \mapsto P_n(t)L(t)$ ne change pas de signe.
 - c) En considérant $\langle P_n, L \rangle_{\omega}$, aboutir à une contradiction.
- **6**. Pour tout $n \ge 1$, montrer qu'il existe des réels α_n et β_n tels que l'on ait :

$$XP_n = P_{n+1} + \alpha_n P_n + \beta_n P_{n-1}.$$

Montrer que $\alpha_n = \frac{\langle XP_n, P_n \rangle_{\omega}}{\|P_n\|_{\omega}^2}$ et $\beta_n = \frac{\|P_n\|_{\omega}^2}{\|P_{n-1}\|_{\omega}^2}$.

Indication: On pourra remarquer (en la justifiant) l'égalité $\langle XP_n, Q \rangle_{\omega} = \langle P_n, XQ \rangle_{\omega}$.

7. — Soit
$$M_n$$
 la matrice tridiagonale

7. — Soit
$$M_n$$
 la matrice tridiagonale
$$\begin{bmatrix} \alpha_1 & \sqrt{\beta_1} & 0 & \dots & 0 \\ \sqrt{\beta_1} & \alpha_2 & \sqrt{\beta_2} & & \vdots \\ 0 & \sqrt{\beta_2} & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & \sqrt{\beta_{n-1}} \\ 0 & \dots & 0 & \sqrt{\beta_{n-1}} & \alpha_n \end{bmatrix}$$
. Montrer que l'on a

dét $(X \operatorname{id} - M_n) = P_n$. En déduire grâce au principe du minimax (c.f. exercice 22 de la feuille bilinéaire) qu'entre deux racines succesives de P_n il y a une racine de P_{n-1} .

III. Quadrature de Gauss

8. — Soit $n \ge 0$ fixé. On note y_1, \ldots, y_n les racines de P_n ; pour tout $g: I \to \mathbf{R}$, on pose :

$$S_n(g) := \sum_{i=1}^n \lambda_i g(y_i).$$

a) Montrer qu'il existe des réels $\lambda_1, \ldots, \lambda_n$ tels que pour tout polynôme Q de degré < 2n, on ait:

$$\mathcal{I}(Q) = \sum_{i=1}^{n} \lambda_i Q(y_i).$$

Indication: Commencer par montrer l'identité ci-dessus pour Q de degré < n. Dans le cas général, considérer la division euclidienne de Q par P_n .

b) En utilisant a), montrer, pour tout $j \in [1, n]$, les identités :

$$\lambda_j = \mathcal{I}\left(\prod_{i \neq j} \frac{X - y_i}{y_j - y_i}\right) = \mathcal{I}\left(\prod_{i \neq j} \frac{(X - y_i)^2}{(y_j - y_i)^2}\right)$$

et en déduire que $\lambda_j > 0$.

c) En utilisant a), montrer que la somme $\sum_{j=1}^{n} \lambda_j$ est constante égale à $\int_a^b \omega(t) dt$.

9. — On garde les notations de 8. On veut montrer que pour f fixée, $S_n(f) \xrightarrow[n \to \infty]{} \mathcal{I}(f)$.

Pour cela, on fixe $\varepsilon > 0$. Puisque I est fini, d'après le théorème de Weierstrass, il existe un polynôme $P \text{ tel que sup } |f(x) - P(x)| < \varepsilon.$

a) Montrer que pour $n > \deg(P)$, on a :

$$|\mathcal{I}(f) - \mathcal{S}_n(f)| \leq |\mathcal{I}(f) - \mathcal{I}(P)| + |\mathcal{S}_n(P) - \mathcal{S}_n(f)|.$$

b) Montrer que l'on a $|S_n(P) - S_n(f)| \leq \varepsilon \cdot \int_a^b \omega(t) dt$. Indication: Utiliser 8.b) et 8.c).

c) Conclure.

— Fin du sujet –

Note culturelle : En pratique, les cas particuliers suivants sont utilisés (1) :

I	ω	Nom
[-1, 1]	1	Polynômes de Legendre
[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$	Polynômes de Tchebychev de première espèce
[-1, 1]	$\sqrt{1-x^2}$	Polynômes de Tchebychev de seconde espèce
$[0,+\infty]$	e^{-x}	Polynômes de Laguerre
$[-\infty, +\infty]$	e^{-x^2}	Polynômes de Hermite

^{1.} Attention, lorsque l'intervalle I n'est pas fini, les résultats de 1. à 8. restent vrais mais nécessitent de justifier la convergence des intégrales. Par contre, 9. n'est plus vrai tel quel.