Algèbre et Géométrie Partiel

Mardi 6 novembre 2018, durée : 2 heures

Les documents et les calculatrices ne sont pas autorisés. Les réponses doivent être justifiées.

Exercice 1

Soit \mathbb{K} un corps commutatif, $n \in \mathbb{N}^*$ et A une matrice de $\mathcal{M}_n(\mathbb{K})$ trigonalisable sur \mathbb{K} . On note p_A et μ_A le polynôme caractéristique et le polynôme minimal de A respectivement. Montrer par double implication que p_A et μ_A ont les mêmes racines.

Exercice 2

Soit $m \in \mathbb{R}$. On considère la matrice A_m de $\mathcal{M}_3(\mathbb{R})$ définie par

$$A_m = \begin{pmatrix} 3 & m+1 & -(m+5) \\ 2 & m & -(m+3) \\ 2 & m+1 & -(m+4) \end{pmatrix}.$$

- 1. Pour quelle(s) valeur(s) de m la matrice A_m est-elle diagonalisable sur \mathbb{R} ?
- 2. Déterminer le polynôme minimal de la matrice A_m en fonction de m.
- 3. Calculer les puissances entières positives de A_m quand A_m est diagonalisable sur \mathbb{R} .
- 4. Montrer que $(A_m)^{-1} = (A_m)^2 + A_m I_3$ quand A_m n'est pas diagonalisable sur \mathbb{R} . La formule est-elle valable pour tout m?

Exercice 3

On considère la matrice $A \in \mathcal{M}_3(\mathbb{R})$ définie par $A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 4 & -1 \\ 0 & 1 & 2 \end{pmatrix}$.

- 1. Montrer que A possède deux valeurs propres distinctes λ et μ avec $\lambda < \mu$.
- 2. Déterminer les espaces propres E_{λ} et E_{μ} de A. La matrice A est-elle diagonalisable sur \mathbb{R} ? Justifiez.
- 3. La matrice A est-elle trigonalisable sur \mathbb{R} ? Justifiez. Déterminer le polynôme minimal m_A de A. Déterminer les sous-espaces caractéristiques V_{λ} et V_{μ} de A.
- 4. Trouver une matrice $P \in GL_3(\mathbb{R})$ telle que $P^{-1}AP$ se décompose en blocs de Jordan. Calculer P^{-1} .
- 5. Déterminer la décomposition de Dunford de A. Quelles sont les propriétés qui déterminent cette décomposition de façon unique?