Examen du 12 février 2015

$1 \, heure$

La correction tiendra compte de la clarté et de la concision de la rédaction. L'utilisation de calculatrices et de téléphones portables est interdite.

* * * *

Exercice 1. On considère la permutation $\sigma \in \mathfrak{S}_6$ définie par

i	1	2	3	4	5	6
$\sigma(i)$	5	3	6	4	1	2

- a) Décomposer σ en produit de permutations cycliques à supports disjoints.
- b) Quel est l'ordre de σ ? Quelle est sa signature? Quelles sont ses puissances?
- c) Montrer que σ est conjugué dans \mathfrak{S}_6 à la permutation $\sigma' = (12)(345)$ en explicitant un $\tau \in \mathfrak{S}_6$ tel que $\tau \sigma \tau^{-1} = \sigma'$.
- d) Expliciter un $\sigma'' \in \mathfrak{S}_6$ ayant même ordre que σ mais n'étant pas conjugué à σ .

* * *

Exercice 2. Soit D_8 le groupe diédral à 8 éléments, c'est-à-dire le sous-groupe de $O_2(\mathbb{R})$ engendré par la rotation ρ d'angle $\frac{\pi}{2}$ et la symétrie σ qui envoie $(x,y) \in \mathbb{R}^2$ sur $(x,-y) \in \mathbb{R}^2$.

- a) Décrire la transformation orthogonale $\sigma \rho \sigma^{-1}$.
- **b)** Soit X l'ensemble $\{(1,0),(0,1),(-1,0),(0,-1)\}\subset\mathbb{R}^2$. Vérifier que pour tout $x\in X$, on a $\rho(x)\in X$ et $\sigma(x)\in X$. En déduire un morphisme de groupes $\varphi:D_8\to\mathrm{Bij}(X)$.
- c) On identifiera X à l'ensemble $\{1,2,3,4\}$, et donc $\mathrm{Bij}(X)$ à \mathfrak{S}_4 . Expliciter $\varphi(\sigma)$ et $\varphi(\rho)$. Montrer que φ est injectif.
- d) En déduire que l'image de D_8 par φ est un 2-Sylow de \mathfrak{S}_4 .