Long wave asymptotics for the Euler-Korteweg system
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Abstract

The Euler-Korteweg system (EK) is a fairly general nonlinear waves model in
mathematical physics that includes in particular the fluid formulation of the NonLinear
Schrodinger equation (NLS). Several asymptotic regimes can be considered, regarding
the length and the amplitude of waves. The first one is the free wave regime, which
yields long acoustic waves of small amplitude. The other regimes describe a single
wave or two counter propagating waves emerging from the wave regime. In one space
dimension, it is shown that these waves are governed either by inviscid Burgers or by
Korteweg-de Vries equations, depending on the spatio-temporal and amplitude scalings.
In higher dimensions, those waves are found to solve Kadomtsev-Petviashvili equations.
Error bounds are provided in all cases. These results extend earlier work on defocussing
NLS (and more specifically the Gross—Pitaevskii equation), and sheds light on the
qualitative behavior of solutions to EK, which is a highly nonlinear system of PDEs
that is much less understood in general than NLS.

Key-words: Euler-Korteweg system, capillary fluids, Korteweg de Vries equation, Kadomtsev-
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1 Introduction

The Euler-Korteweg system is a dispersive perturbation of the Euler equations for compress-
ible fluids. In its most general form, it reads

Op+V-(pu)=0
(gEK)
du+ (u-Vju+V(©0.Z[p]) =0,
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for an isothermal or isentropic fluid whose velocity field is u, whose energy density % is
allowed to depend on the fluid density p and on its spatial gradient Vp, and §.% [p] denotes
the variational derivative of .# at p. The standard Euler equations correspond to .# = F(p)
only, so that 6.7 [p] = F'(p) (and the pressure of the fluid is p(p) = pF’'(p) — F(p)). The
most classical form of the Euler—Korteweg system corresponds to

1
7 = Flp)+ 5K(p)IVol*,

where the so-called capillarity coefficient K = K(p) can depend on the density p is an
arbitrary way, provided that K is smooth and takes only positive values. In this case, (gEK)
‘reduces’ to

Op+V - (pu) =0
(EK) 1
O+ (u- V)u+ V(g(p)) = V(K(0)Ap + 5K (0)|VoP)

where g P Would K be zero, the system (EK) would of course reduce to the standard
Euler equations again, in which the sound speed is given by +/pg’'(p) as long as g is a
nondecreasing function of p. In the special case when K = 1/(4p), the system (EK) can
be derived from the (generalized) NonLinear Schrédinger equation (NLS) via the Madelung
transform. An even more special case is g(¢) = ¢ — 1, which corresponds to the Gross—
Pitaevskii equation. In fact, (EK) is a ubjguitous system in mathematical physics, with
various choices of K and g, see for instance [3] for more details.

Associated with (gEK) is a local conservation law for the total energy 1plul?+.% (p, Vp).
However, the Cauchy problem for (gEK) has never been addressed for general energy densities
% . Because of analytical difficulties inherent in all systems involving high order derivatives
(namely here, third order derivatives), the Cauchy probl %ralr%ggi_slglas been concentrati DanDes
on (EK). The local well-posedness of (EK) is shown in % (one space dimension), and %
(arbitrary space dimension). Our purpose here is to investigate the behavior of solutions of
(EK) on longer times, by considering small perturbations of constant, thermodynamically
stable states. By small we mean small amplitude perturbations that are significant on large
space-time scales. By thermodynamically stable we mean reference densities o such that
¢'(0) is positive. For any p, the condition ¢’(9) > 0 is equivalent to the hyperbolicity of the
Euler equations at (p,0) (or (o, u) for any velocity u, by Galilean invariance) - and when
applied to the fluid formulation of NLS, it corresponds to what is known as the defocussing
case. This paper aims at justifying several asymptotic limits regarding small amplitude, long
wave solutions to the Euler-Korteweg system (EK), thus extending a series of recent work
on NLS - and similar results known for the water wave equations.

The starting point is as follows. Constant states (p,0) are obviously global solutions to
(EK) - and even (gEK), and small amplitude perturbations of (g,0) are formally governed
by the acoustic equations

Op+oV-1=0



For (gEK), it suffices to replace ¢'(0) by %27‘?(@, 0). We are only interested here in the case
when these equations are well-posed, which amounts to requiring that ¢’(¢) > 0. From now
on, we assume that g is as smooth as necessary near ¢ # 0 - vacuum being excluded from
our analysis, that ¢’(¢) > 0, and we denote by

def

¢ 0g'(0) >0

the sound speed at o. The acoustic equations admit particular solutions that are planar
traveling waves (p,a) = (p,a)(z — ecnt) propagating with speed ¢ in any direction n. A
natural idea is to seek genuine solutions to (EK) that are of small amplitude about (p,0)
and vary slowly in the frame attached to this linear wave.

In one space dimension, a prominent asymptotic regime corresponding to a weakly non-
linear limit can easily be identified by rescaling the solutions to the one D version of (EK) -
or even (gEK) - as

(1) pltz)=0+e%(0,Y), u(t, ) =e*u(0,Y), 0=ct, y=e(z—ct),

for a small parameter € > 0 (here above, the scalar, fluid velocities are denoted by u instead
of the bold letter u). Using that d; = €30y — ecdy and 9, = €dy, we see that for (p,u) to
solve (gEK) in one D we must have

. ¢ .1 N
89p — gayp + 8_26Y((Q + €2p)u) =0

1
Dyii — — Dyt + @y it + —(0.F [0 + £*f]) = 0.
€ €
Furthermore, by Taylor expansion we have
02T 1 ,0°F 02T
2 ~ 4 ~2 4
0 = 0 —
0 (0.0) p+ 3¢ o5 (0,0) p~ —¢ 0

which enables us to rewrite the system above as

(0,005 + O(£%),

0.F
0.F o +e%p) = a—p(@, 0)+e

- ¢ - - s
Dop — gayp + g—%ﬁyu + Oy (pu) =0

2
Ovit — <50y i + Wy i + ;TQM + 850y p — K8y = O(e)

with ,  OAF ot BT ot PF
= 0 0= == (0.0 KE =
C=0gn (0,0), 4 o5 (0,0), K o

If we go on at a formal level, we find by inspecting the O(g72) terms that necessarily ¢p ~ oi,

and by taking a linear combination of the O(1) terms in the system above, we see that

def q
w=3

(0,0).

(p + 21) should approximately satisfy the Korteweg-de Vries equation

89w + Fwayw = m@%w
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waveansatz

with 5 5 K
I déf _C + & , K déf Q_— .
20 2c 2c
When dealing with (EK), we merely have § = ¢”(0) and K = K(p). Of course, if K =0 we
recover the well-known Burgers equation

Opw + 'woyw = 0

as an asymptotic equation for the weakly nonlinear wave solutions to the Euler equations,
in which the parameter I' is nonzero provided that the characteristic fields are genuinely
nonlinear in the neighborhood of . Indeed, both characteristic fields of the Euler equations
are genuinely nonlinear in the neighborhood of g if and only if d,(p+/pg'(p)), # 0, and by
definition of ¢ we have

2
0 /¢
(P pg'(p))e = ¢ + 27(5 +09"(0)) = ol
In fact, the dimensionless number oI'/¢ is known as the Griineisen coefficient of the fluid,
which is positive in standard fluids.
More generally, in order to find relevant asymptotic regimes, we seek solutions to (EK)
of the form

(2) p(t, l‘) =0+ 77/5(5@ 537) ) u<t7 56) = nﬁ(gtv 51:) s

with n > 0 and € > 0 some small, a priori independent parameters. The former gives an
order of magnitude for the amplitude of solutions, and 1/e is a spatio-temporal scale on
which solutions are supposed to vary significantly. < linear

After the linear wave regime considered in Section m ftg’\g’e de Vrles regime de-
scrlbed.K% ove - which corresponds to the special case n = €2 in (u) - 18 quy Justlﬁed in Sec-
tion h_chsolutlons to (EK) with well-prepared 1I11t1a1 data, alonggltgﬂﬁematlve regimes
in which dispersive effects are weaker - i.e when €2 < 7. Section 5 is devoted to more gen-
eral initial data, and asymptotic regimes obtained by decoupling left-going and right-going
WaNes. Finally, multidimensional, weakly transverse effects are taken into account in Section

, in which we justify the so-called Kadomtsev-Petviashvili regime for (EK).

2 Preliminary material

2.1 Statement of uniforms bounds

[longwaveansatz
The ansatz (2) obviously transforms (EK) into the rescaled system

A~

Orp+ Vx - ((e+np)a) =0

(EK.) Ora+ (- Vx)a+g'(o+1p)Vxp

R R Ui R R
=e*Vy (K(@ +1p)Axp + §K/(Q + np)Ipr!2> :



where T' = ¢t, X = cx. Note that the acoustic equations are formally obtained by setting
n=0,e=0in (EK.,). For n > 0, € > 0, the local well-posedness of the Cauchy problem
associated with (EK,,) follows from the following result.

BenDanDes d . .
istenceloc| Theorem 1 ([4]) Let us take s > 1+§, and (p™,u™) € (g,0)+ H* T (RY) x (H*(RY))¢ such

that p™ is positive and bounded by below in R?. Then, there exists a mazimal time t, > 0
such that the system (EK) possesses a unique solution

(p.w) € (0,0) + ([0, t.], H*H(RT) x (H*(RY)!) n & ((0, £.], H*7(RY) x (H**(R7))")
such that (p,u)(0) = (p™,u™). Moreover, the mapping (p™,u™) — (p,u) is continuous.

However, we need refined estimates of solutions that: 1) keep track of the parameteyrs DanDes
(n,€); 2) take into account the nonlinear term ¢'(o +7p)Vxp - not as a source term as in%ﬁnﬁ
-, which will be possible thanks to the positiviy of ¢'(¢). Furthermore, the following result

shows that, as expected, the smaller the initial data, the longer the time of existence of the
solution.

d
suniformes| Theorem 2 Let s be a real number greater than 1 + 3 and n € (0,1]. For M > 0, we

consider
B.(M) = {(p,0) € H*T'(R) x (H*RN)); (5, 0) | (s weayyas + €llpll o may < MY

If 0> 0, ¢'(0) >0, and (p™, ™) € B.(M), then there exists T, > 0, depending only on M,
s and d, such that the mazimal solution to (EK.,) such that (p,0)(0) = (p™, 4™™) exists at
least on [0, T./n|, and (p,0)(T) € B.(2M) for all T € [0,T./n)].

etDanSme

A similar result is shown in %Tmem 1] for the hydrodynamical formulation of the
Gross—Pitaevskii equation obtained with the Madelung transform. However, it is stated in
terms of || (W, p)|| s x =+ instead of ||(p, @)[| = + €| p]| =+ (with our notations), which seems
to be a slight mistake. A priori estimates rely indeed on Proposition 1 in h%],lTwhich
some quantity denoted by z is controlled in H®, but the imaginary algt %f z is 2% with
p = 1+ ¢ep, so that only €||p||gs+1 is controlled. The estimate in %’[’he%"em 2] should
certainly be modi@eg]) Eziirfs(:n[(gardingly. Apart from this harmless correction, the main novelty
here compared to [6] 1s tTwofold. First, the capillarity is arbitrary, which means B% I]E)%rsticular
that it is not assumed to be proportional to 1/p. As already known from% priori
estimates are much trickier when pK(p) is not constant. The other point is that we do not
assume the vector field u to be potential - unlike what happens when dealing with the fluid
formulation of NLS. This is again known to make a priori estimates more complicated.

Remark 1 The special case n = 2 is called the Boussinesq regime. If, in addition, the
capillarity K is a positive constant and ¢ is a convex, quadratic polynomial (i.e. ¢ =

constant > 0), then (EK. .2) belongs to the (a,b,c,d)-class of Boussinesq type systems as

5



BonaCheffmaColinlLannes
introduced in [9] and [I0], with a = 0 = d = 0 and ¢ = —K < 0. In this case, the existence
ndt)quueness of (strong) solutions on the time scale R t%s been shown by Saut and Lu
)L2§ , using hyperbolic techniques (see The%rem 1.1. 1] :2§ case (12) in the sense of their

rnesuni or
deﬁn1t1on 1.2). Our own result (Theorem 2 here above) applied to n = €2, K = constant

> 0, ¢’ = constant > 0, provides an alternative proof of theirs in that case.

bornesuniformes
Theorem 271s a building block for the rigorous justification of asymptotic regimes. We

need some material in order to prove it.

2.2 Basic tools for the proof of uniform bounds
DanDes
As in ;ZE , we shall derive uniform Sobolev bounds through an extended formulation of the

system (EK). The idea is to introduce the complex-valued unknown z = u + iw which is
naturally involved in the global energy

1 1
6= [ (GotP+ F )+ 3KGIToR) do
Rd

p
This integral is indeed well defined provided that we redefine F(p) o / g, and conserved

4
along (smooth) solutions (p, u) to (EK) that tend to (g, 0) sufficiently fast at infinity. Now,
we have

. L 1 o K
Sl + 5K (VP = plal® withz=utiw, w™ Koy,

Then, if we also introduce

by differentiating the first equation in (EK) we obtain the following, equivalent system for

(p,2),
Op+V-(pu)=0
(ES)
Oz+ (u-V)z+i(Vz)w + b(p)w + iV (a(p)V - z) =

in which the notation (Vz)w stands for the standard product of the matrix-valued function
Vz = (0;21)1<jk<a and the vector field w, so that

d
Zazk YWy, = (0,z) - W.
k=1



chapichapo

degrezero

. . [longwaveansatz
The scaling in (2) urges us to define

K
w e ﬂvxﬁ, 7 <A+,

(3)

so that z(t,z) = n(a+iw) (7, X) = nz(T, X), and (ES) equivalently reads

Orp+nVx - (pa) =0
(ESc) 1
orz + T](fl . Vx)i + ZT](V)(Q)W + g b(p)\i’ + iaVX(a(p)VX . i) =0.

Our main purpose here is to derive some a priori estimates for solutions to (ES,,) that are
valid uniformly in (g,7). In this respect, we are going to use a modified version of the energy

2

n L2 2 R
&= Z(F —F d
2 J.. (pIZI +772( (0+np) (@))) Y,

obtained by expanding F' about o and by omitting the linear term in p. Indeed, the latter
does not contribute to - at least the lowest order - a priori estimates since p is conserved.
Forgetting also the harmless factor n?c~¢, the modified energy reads

~ ~7 def 1 N N N
Eolp, 2] = §/dp|Z|2+g/(p)p2 dy, p=0+np.
R

Clearly, even though FEjy depends on 71 through p, the assumption ¢’(¢) > 0 ensures that

Folp, z] is equivalent to the L? norm of (p,z) as long.as p and ¢'(p) remain bounded and
bounded away from zero. Moreover, going back to (l?'): ;, we may see Fj as a functional applied

to (p, 1), and, as such, Ey[p, a] enjoys the following estimates.

Proposition 1 Let r € (0, 0/2] be such that ¢'(p) > 0 and K(p) > 0 if |p — o] < r. Then
for all (p,1) € H' x L? such that ||p||z~ < 7, for alln € (0,1], for all e > 0,

co([[@llZ: + 1A1Z2 + €2[1plFn) < Eolp, 0] < Co([allZ: + 141172 + €*[1ll7n) .
where cog > 0 and Cy > 0 depend only on r (and the functions g, K ).

Proof. We obviously have these inequalities with, explicitly,

w3 min win (p.g/ () VEGR) . Co™ 5 max max (5.0 VEGIP))

lp—ol<r lp—ol<r

Now, the following, zero-th order a priori estimate is reminiscent of the fact that the
exact energy & is conserved along solutions of (EK).



rezeroplus| Proposition 2 Let n € (0,1]. Assume that (p,0) € €([0,t.], H(R?) x (H*(RY))?) N
1[0, t.], H*7H(RY) x (H*2(R9))?) is a s%{gt%ggegé (EK.,,) for some s > 1+ d/2, such that

1P|l < r, where r is as in Proposition 1. en there exists C' > 0 depending only on r
such that p
7 Eolp, 0] < Ol (Vxp, V)| = Eo[p, 4] -

Proof. Of course, we are going to use that (p,z = a + ig%gc%%hges (ES:,) if pW = ca(p)Vxp
- this equality just being a different way of writing (EZF Recall also that a(p)b(p) = pg'(p).

The notation (-, -) will stand everywhere for real-valued inner products, and more precisely
(z,¢) = %Z;.l:l(ijcj +2,¢;) for all z, ¢ € C* (whatever d, including d = 1). Using (ES.,),
we find by straightforward differentiation that

d o o R . . A
2 Eolp ] =~ / Vi - (p0)[2f? — 7 / pi- Vil — 21 / P(i(V x2)W, 2)
2

- —/pb(p)(x?v,m — 25/,0(ivx(a(p)VX'i)vi>

+ / it V(209 (0)5 + n(pg" (0) — ¢ (0)?) -

By the relations recalled above and an integration by part, this reduces to

d

20 Bylp 1] = — 22 / a(p)(i(Vx2) - Vxp. 2)

=2 [ og () Vi) + 2 [ alp)iVx 2.2 Vp)
+ [ 6 Vx(2og () + o (o) - o ().

Now, using that a(p)Vp is potential, we see that the e-terms cancel out, and simplify-
ing/integrating by parts the remaining terms we obtain

d

2 Ealpvi) =20 [ 0,(6(9) 5 Vxi 4 [ o9(0) ~ (0)) 7 Vv

The claimed inequality thus holds true with

¢ == max (10006 ()] + 09"(0) 4 @) O

Co lp—ol<r

. Lo . A . . degrezeroplus
Since it involves the W1 norm of the solution (p, 1), the estimate in (bi 1S C eariy not
sufficient to get a priori estimates without loss of derivatives. In order to close the estimates,
we need higher order ones. If s is a large enough integer, we may use

~ a7 def i : A A
Ep,2z] = ZEU(p,Z),
o=0

8



B, [p, 2] % / L o) (Pl + ¢ (0)(0%9)?) dX, p= o+ np.
aeNg,
la| =0

where 9° stands for 91* /90X 110X 3. The coefficients Z—: here above, as well as the weights

a?, are chosen so as to eliminate bad terms in our a priori estimates, as we shall see. The

usefulness of these estimates will be lg geglcﬁ)anothe following, in which F; is viewed as a
%; as for £,

functional applied to (p, ), by using ( 0-

Proposition 3 Let s be a positive integer. Let r € (0,0/2] be such that ¢'(p) > 0 and
K(p) > 0if |p—o| <r. Then for all (p,0) € HH(RY) x (H*(RY))? such that ||p|lywr. <1,
for all n € (0,1], for all e > 0,

c(l[allz + 1pl7 + € l1pllF) < Bslp, & < C(l[all7 +11pll7- + 14|
where ¢ > 0 and C' > 0 depend only on r, s, d (and the functions g, K ).
d
Proof. As in the proof of Proposition I?vl;nggaodily see that

co([10°2] L + 10 72) < /Rd a(p)? (pl0°2|* + g'(p)(97p)°) dX < Co([|0°2 72 + [10°plI72)

with

¢ ™ min (a(p) min(p,g'(p), VE(p)/p)) Co & max (alp)” max(p, g'(p). VE(p)/p)))

lp—ol<r lp—ol<r

%[s«i»l ) 9

By summation we thus find ¢, > 0 and Cs > 0 such that

cs(12l 3 + 16l13-) < Eslp, 0] < Cs(l12ll5- + [1p117-) -
So the only point is to check that ||z]3. + ||p]|3- is equivalent to [|[al|3. + [|p]| % + €24l s

when z =u+ 1w, w = ec(o+ np)Vxp éggcgggrﬁ%} smooth function ¢ - here ¢(p) = \/K(p)/p.
This comparison relies on Proposition [A-T, which gives that

c()Vxpl

a1 + YN lwsoo(to=rior)) (141151 220)7 | Vx| oo
+27]|ef| Lo (o—r,0+)
< C(Ipllwre) 15|

and in a similar way, using the notation d for 1/c,
< d(o)[[w]

(o +np)

Hs+1l,

He + 7|!d/||ww<[g—r,g+r]) (L + 1l 2o ) | W] oo
+27||

C1p, w)ll=) 1ol + C( )

Here above, 7 stands for a ‘universal’ constant (depending only on s and d), and C'(¢q) stands
for a positive number depending only on ¢, whatever the quantity ¢q. We can thus conclude
that

1217+ + 14117 < max(L, C([lpllwr)®) ([allze + 1217 +*l1AlF)
a7 + 1Al + *llAlEs < max(L+2C( (5, W)l[z=)*, C(r)?) (Ilzl3s + 1All7-) -




iveezchapo

2.3 Proof of uniform bounds in the potential case

In this section, we are going to show that for any &gt%eg;%r% %ué +d/2, E; enjoys an a priori
estimate that is similar to the one in Proposition b_gor_E(T%ﬂ'east when the velocity vector
field u is potential. We start with this simpler case for the sake of clarity - all co H;fr?&égns
below are detailed enough to be readable without any pencil. As was noticed in %&{?_fmct
that u is potential or, equivalently, that u is curl-free is preserved along (smooth) solutions.
So it will be sufficient to assume that the initial velocity field is curl-free.

Proposition 4 Assume that (p,0) € €([0,t.], H(R?) x (H*(RY)))NE ([0, t.], H*H(RY) x
(H*"2(R%))?) is a solution of (EK. ) for some integer s > 1+ d/2, such that ||| < T,
where v is as in Proposition b._gmne moreover that (0) is curl-free. Then there ezists
C > 0 depending only on r, s and d such that

= EL[p 8] < Cn([|(Vcp, V@)l o + 2| Dyl ) (1 + me| Vxpll o) Exlp. ).

Proof. Let 0 < 0 < s be given and a € N& such that |a| = o. We work in the X variable
only, and use the s'c gliifé%(g rolotations 0; = Ox;, V.= Vx. We recall that when z is related
to (p, 1) through (%i,_%rﬂ?%latter satisfies (EK.,) then (p = o + np,z) satisfies (ES.,).
Applying 0 to the second equation in (ES.,), we obtain

(4) 0ro°z+ n(a-V)0°z +in(Vo*z)w + é b(p)0*W + ie0“V (a(p)V - z)
1 e
—pla -V, 0%z + in((V@ai)W - 8“((V2)W)) + = [blp). 0w =

Here above, the notation [-, -] stands for a commutator, that is,
0,0 V]2 = 0°((a- V)z) — (- V)(0°2), (0% b(p)]W = 0°(b(p)W) — b(p)0"W .

deriveezchapo
All pglgecg%nmutators in the right-hand side R of (&U can bo estimated by using the inequal-
ity (IA-3) recalled in the appendix, and by noting in addition that [0%, b(p)] = [0%, b(p) —b(0)]
(since p is constant), and, by definition of w, that

s < C(r)ev/ Eqp, z]

w1 < C(r)el|Vpl

o < C()2]|f)

[w]

(by definition of E;). We then infer that

. . L. . | .
R[22 < C(T>S7d)?7<||VZI|L°oHZ| e+ 2Pl [Wllzoe + 21V Lo [ W]

Hsfl>
< C(T‘, S, d)77||(Vi7 Vﬁ)HLC’o \% Es[ﬁ7 i] :
Here above and in what follows, C'(q) stands for a positive number depending only on ¢,

whatever the quantity ¢. For convenience, the actual value of C'(¢) may change from line to
line. Therefore, using that

0

a—T(a”(p)p) +nt - V(a®(p)p) +npd,(pa’(p))V -1 =0

10



by the first equation in (ES.,), we obtain after integrations by parts that

sseformule| (5)

d

dT Jg

6
a’(p)|0°2|* dX < ZIk +C(r,5,d)nll(V2, V)| < Es[p, 2],

1y [ (@ Ve (p))af dxX,

Y —77/ p3,(pa’(p))(V - 0)[0°2|* dX ,
Rd

def

7, % / (V- (pa® (p)0))[0°2? dX .

def

7,% gy / i (p) (T (02, 0°3) dX

def

Ts = 2¢ /Rd pa’ (p)(i0%z,0%(V(a(p)V - z))) dX .

We can expand the divergence in Z3 and notice that the term involving t- V(pa?(p)) cancels

out with Z;. As a consequence,

T+ Tot To=n [ (p07(0) = p0p(pa () (V- 0]0°2? X

== [ B0 ()T WIa aX < Clrs. Y - o B 2.

Concerning Zg, an integration by parts and the Leibniz formula give

Ty — — 9 /R {0V (pa” (0)0°2),0°(a(p)V - 2)) dX
=2 [ (i )V - ") +i(V (" () - 0%
a(p)V - (2°2)+ >

(g) 8% P (a(p))V - (8°2) + L> e
B<a,
Bl=0—1

where the lower order terms in L are such that

encorerate| (6)

VL < CCr, s, dyn(allae e D>l + ol [ V5] 1 )
< Clrs. )l (V. V&) |~V EL[7 ).

We now expand the big inner product involved in Zg, and notice that:

e the term (ipa’(p)V - (0°2),
for a for real-valued inner product);

a(p)V - (0°z)) vanishes point wise (recall that (-, -) stands

11



EKarambaencorerate . . .
e by (6) and an integration by parts, the contribution of L to Zs is bounded by

eC(r, s, d)nll(Vp, V2) || (1 +1l[Vpl| L) Exp, 2]

e the contribution of derivatives of z of order o, coming from the inner product of the
second term in the left factor and the sum on 3 in the right factor of the integrand, is
bounded by eC(r, s, d)n?||Vp||2«||z||%. by the Cauchy-Schwarz inequality.

This in turn gives

<=2 [ (pe@veen. X (§)0 )y 0°9) ix

B < a, b
Bl =0—1

+ 8+ C(r,s,d)nel|(Vp, V2)|| L= (1 + ||V || =) Es[p, 2],
def

S g / {i(V(pa”(p))) - 0%, alp) V- (9°9) X

ich
By (lICBiawtzcrgaoaily have that V(pa“(p)) = 77(;0 >8p(pa"(p))\fv, and integrating by parts once
ea(p

more we see that
S<2n /R POo(pa”(p)) iV (0°2)W, 0°2) dX + 2[|V (pd,(pa” (p)) W)l s p, 2] -

We now use that

W1V (0,0 (D))~ < O, dn (nlell o[Vl + 9]
< C(r,s, den(nlIVpl3= + 1D%] 1 )

to infer

S <2 [ ppa () iV(0°2)5,5°%) X +Clrvs. den(al] Vil + 1Dl ) Bl 1.
Since 9,(pa’(p)) = a’(p) + pd,(a’(p)), the addition of
Ti= 2 [ @ (p)oli(V(@°0)w.0°%) X

to Zs cancels out the term involving a?(p) in the bound found above for S, so that

(1) it Zo < Clr.s.d)en(| (V5. V2, D) 1 + 0l (V6. V2 i [Vl ) Elp. 2
+K + Z Js,

B < a,
Bl =0 —1
7% <2z [ () (iv- @) ()0 alo)¥ - 0°9)) ax.

def

K= 2n / p*0,(a’ (p))(i(VO*2)W,0°2) dX .
Rd

12



If, for any smooth enough mapping Z : R? — C? we denote by curlZ the matrix-valued
function defined by
(curlZ)jk = 8]Zk — 8kZ] y

we see that for W, Y any other smooth enough mappings R? — C¢,
(VZYW,)Y) = (W -V)Z,Y) + ((curlZ)W,Y) .

In particular, we can write

(8) K= 207}/ p*a’ (p)d (p)(iw - VO“%,0°2) dX
R4
+ 2077/ p?a’ (p)d (p)(i(0%curl )W, 0°z) dX .

On the other hand, using that 9*?(a(p)) = a'(p)0*"p when o — 3 has length one, we have

Ty =2 [ s (D) (0)@ )iV ('), 7 - (0°9) dX

X . . X X [tamecomm
which gives, after integrating by parts and using (A3,

Ty <2 / L (p)a ()@ Pp) (3075, V(V - (9°2) dX
+C(r,5,d)e|V (pa” (p)a' (p)0* )| 1 Es[p, 2] -
Now, observing that for any smooth enough mappings Z,Y : R? — C¢,
(Z,V(V-Y)) =(Z,AY) + (Z,V - (curlY)),
(where we have used the notation V-M for the vector field defined by (V-M); = 3¢ 9, My,

associated with the matrix-valued function M = curlY), we find that

Ts <Crys, d)en(n| Vil + 1Dl ) Bul, 2] + 22 / pa” (p)a () (9°~Pp) (10°2, A*2) dX

R4

+ 2¢ /Rd pa’ (p)a (p)(0°Pp)(i0°z, V - (0°curlz)) dX .

To finish with the estimate of J3, we integrate by parts again, and arrive at

) Ty OG5, d)en(nl|VlEe + D)1= ) Euljp, 2

d
— 2 / pa® (p)a (p)(8°Pp ) (i0°°0,0°%,0,0°%) dX
R4

=1

— 2 / pa® (p)a (p) (825 <Z(‘3aDz aﬁcur1z> dx
Rd Md((c)
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where (A, B) m,(c) o Re(Tr(AB*)) is the usual real inner product on My(C), and Dz o

(Vz)".

The remaining term Zs will turn out to cancel out, up to a remainder term, with the time
derivative of [, ¢'(p)a”(p)(9*p)* dX. In order to see this, we differentiate the first equation
in (ES.,) and obtain

0r0%p + (G - V) + pV - 9% = —[d°, & - V] — [0°, pV-]a

tamecomm
By (A~ e commutators in the right-hand side here above have an L? norm bounded by

C(r,s,d) nl[(Vp, V)| e/ Es[p, 2] .
Furthermore, by the first equation in (ES.,) again, we have
Or(g'(p)a’(p)) + - V(g (p)a’(p)) + npdp(g'(p)a’(p))V -0 =0.
Arguing as for Z; + Z, + Z3, we thus find that

d 1N (N (A% Ut 55
T .9 (p)a?(p)(0°p)* dX < C(r,s,d) nl|(Vp, V) || Es[p, 2]

—/Rdngm *(0)0° PV - (0710) dX .

Integrating by parts, using again that

Hs-1 < Cs,dg V Es[pAa i]

pw =cea(p)Vp, |[|w]

tamecomm
and combining this with (A.B"i, we arrive at

(10) g'(p)a’(p)(9°p)* dX < C(r,s,d) nll(Vp, Via)l|L= Eq[p, 2]

ﬁRd

2 [ 29 (P) o0 \igas gag
+E/de 200) a’(p)(0°w,0%a) dX .

Since a(p)b(p) = pg'(p), the ipteeral in the r@ght h?%%o%lg%ggs IM Hore abov%lgfncels U etormale
with the integral Z5 in (%5 i herefore, using (8) and () 1n (I7), and combining (uU) with (\5

14



we obtain
d > / a A
1) == | pa(p)|0°z]* + g'(p)a’(p)(0%p)* dX
dT Rd
<G5, (V9. V2| i~ (1 + e[V llw) + 1Dl ) Bulp. 2
+ 207]/ p*a’ (p)d (p)(iw - VO“%,0°2) dX
Rd

+2017/ p*a” (p)d (p)(i(0%curl )W, 0°z) dX
R4

d

-2 ) e<0‘) / pa® (p)al (p)(0°Pp) Y (i0°P0,0%2,0,0°2) dX
Ferd B) Jra =
Bl =0—1
-2 Z e(a)/ pa“(p)a’(p)(@a’ﬁp)<i8aDZ,8ﬁcurli> ax .
ﬁ<a ﬁ Rd Md((C)
Bl=0—1

At this stage, we use the hypo &1 sis that z is a gradient vector field, so that the two terms
involving the curl operator in ( Eancel out. Summing over o with |a| = o then gives

d . . . ) -
7 e (p,2) SC(r,5, dnl|[(V, V) |1 (1 + e[V L= ) Ei[p, 2]
(12) + 2500 S L | pRam N p)d (o) (i - V2, 0°5) dX
A JRrd

d
€ (o o o a— . -
201y Y a<5>4dpa( )(0°Pp §1j (i0°7P0;0°%,0;0°2) dX .
’ J=

1 1
In the double sum, there holds — (g) = E, since o — § has length one. Exchanging the
a! !

order of summation on « and f, then summing at fixed o/ = 5 + ¢;, and using again that
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ea(p)Oxp = npwy, we can rewrite this double sum as

d d
1
o / . ﬁA BA
e D, @;/M pa® (p)a' (p)Owp > (i040;0°2,0;0°2) dX

Bl=o-1 j=1

d
1 B , - R A
=0 Y0 5 [ a0 Y o Vo5, 0,0°%) dx

|Bl=0—1 J=1

d /
o' ) I
—0 3 Y [ )i V02, 077) ax

N
|0/‘:O' jil (O{ )

— 1 2 o—1 / o o' A~ aal A
= no Z (a/>!/dea (p)d'(p)(iw - VO 2,0% z) dX

Cousteau
since the integral does not depend on j and > i oy = 0. Therefore, the two sums in (IZ;

cancel out (this is due to the coefficients 1/a! in the definition of E,). The conclusion then
follows by summation over o. [

| =0

2.4 Proof of uniform bounds in the general case

. . . L. bornesuniformes
In this section, s is any real number greater than 1+ d/2. Our aim is to prove Theorem 2in

the general case. As we have seen in the a priori estimates above, t er%ggﬁggin some ‘bad’

terms when the velocity field u is not potential. This is why, as in [4], The solenoida part .
. . . . rnesuniformes

of u requires a different weight than the potential p t'DeIfﬁDfeasCt’ our proof of Theorem 2 will

parallel very closely the proof of Proposition 3.4 in % , except that we pay attention to the

parameters (7, ), and insert the ﬁ%r%%rg]gi%trion of the nonlinear function ¢'(p).

As in the proof of Proposition 4, V stands for Vx in what follows. As a preliminary step,
def

we rewrite the second equation in (ES,,) as an equationcoar 1Zc = O\/ﬁi instead of z. Using
that pnw = ea(p)Vp (which is just a reformulation of (3], the first order term in(Vz)w

can combined with the second order one eV (a(p)V - z) to obtain

A ~ 1 A ~
OrZ +n(ua-V)Z+ - b(p)W + eV (a(p)V - Z) +ica(p)(VoZ)Vlog \/p =
. v/
1 A .
—sn(V-0)Z +1icV(a(p)V —,
20V -1) (a(p) \/ﬁ)\/ﬁ
where the operator Vj is defined by

(VoZ)jr = 0;Z), — (V - Z) 6;1,, or equivalently, VoZ & VZ — (V- Z) 1.

The advantage of this @rmulation is that it trivializes the proof of zeroth order estimates
o egrezeroplus
(Proposition %i, since

/ (i(VyZ)W,Z) = 0
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for all potential vector fields W, and in particular for W = a(p)Vlog,/p. The idea is
to keep this nice structure for higher order derivatives, which means writing equations for
Z° = /pA°z instead of A°z, where A® denotes the Fourier multiplier operator

AS déf ( o A)S/Q.

However, we have to cope with a ‘bad” commutator, namely in V]a(p), A*]V-, which lrggnd% <
appears in the equation for A°z. Pointing out its principal part, we can write as in %

~ def

Via(p), A*]V -2 = Rg + sV(Va(p) - A *V(V - 2))
' Ry + Roo — sValp) - V(QA*2),

where
IRollze S 1D%a(p)llgs—1 IV - 2| + | D*alp)| oo IV - 2] o1

Roollz2 < IValp)llwro~|2]

and Q is the L?-orthogonal projector onto potential vector fields. Consequently, by applying
A® to the second equation in (ES, ), multiplying by /p, and using also the first equation in
(ES:,,), we see that

Hs

A A 1 A
OrZ + (- V2" + = blp) AW + iV (a(p) V - Z°)+
+ica(p)(VoZ®)V log \/p + ies\/pVa(p) - V(QA’z) =

(V- R)Z" + iV (a(p)V V) @

+ Z&T\/_p (Ro + Roo) + \/ﬁR

with
of ra L e s 1 .
Ryl V, Az + in((VA'R)W — A(V2)W) ) + = [b(p), A"}V
being bounded as in the proof of Proposition Eoﬁtgafntler
R[22 < C(r,s,d)nl|(VZ, V)l = | (p, 2)| - ,

and also

lie(Ro + Rao) |2 < C(r, 5, d)l|(V2, V)| < | (5, 2)]

by the estimates mentioned above and the fact that e||p||gs+1 < C(r,s,d)||(p,2)||gs. There-
fore, apart form the term £ b(p),/pA*W that we will deal with afterwards, the only trou-

HS

blesome term regarding the time derivative of ||Z*||2 is the one involving V(QA®%), which
corresponds to derivatives of order s + 1. This is where the use of an appropriate weight
comes into play. In fact, whatever the positive-valued weight (or gauge) v = ¢(p), the
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equation above for 7° and the first equation in (ES. ) give, after some manipulations,

)

+ica(p)(VoY*)V log

—ies\/pb(p)(VPA2)Va(p) + ica(p)(V - Y*)V log

“@

Cn

- (V(a(p)Vy/p)  V(a(p)VY(p))
“5( Vi el T

. R . 1 .
GTYS+77(u'V)YS—|—gb( PNV PY(p) AW + ieV(a(p)V - Y¥)
< VPa'(p
¥(p)
( a*(p) )
*(p)
(V- ) (1 + pd, log(¢*(p)))Y
8 p S
(o) (Viog v(p) @ Viog (54 ) ¥
+iey/p¥(p) (Ro + Roo) + /oY ()R
with Y* & W(p)Zs = VP (p)N°z, and P = 7 — Q. From this expression and previous
estimates, we see that the loss of spatial derivatives in the time derivative of ||Y*|| 2 is only
due to the terms in the third row. Of course, these terms vanish when 1, and thus also z, is
potential (hence PA*z = A*Pz = (), provided that we choose 1%(p) = a*(p). Provided that
the term =1 b( g%éé\lsgf is properly handled, this gives a shorter proof, compared to that
of Proposition E, of uniform bounds in the potential case. In the general case, the idea is
to estimate separately ||QY*||;2 and ||PX?||;> wher X;;n% egg(p)zs = /pe(p)A°z for some
other weight ¢. These estimates will be based, as in BZE , ol a preliminary observation using
only integration by parts and the properties V - P = 0, curlQ = 0, which gives that
ﬁ%HQYSH%Q = / (QY*, (0y+na-V)Y?) dX +n / (V-0)(QY*, 1QY* + PY?) dX
R4

R4

—n / (PY?, (Va)QY?) dX
Rd

—T%IIPXSH%Q=/Rd<PXS,(8t+nu-V)XS> dX +n / (V- )1(PX*, PX*) dX

Rd

+n / (PX?, (Va)QX®) dX
Rd

Using the equations satisfied by Y* and X° - the latter being identical to the former if we
substitute X* for Y* and @ for ¢ -, and summing the equations here above, we are left with
harmless remainder terms, bounded in by C(r, s, d)n||(Vz, V)| L=/ (p, Z)||%s, plus a number
of terms that must be handled carefully. Among these delicate terms is

def

T 2 [ OV bp)Abp)Aw) + (PR Mo (A dX

Noting that both e~'b(p),/p¢(p)A*W and £b(p)/pe(p)A*W are ‘almost’ potential, that is,
equal to a gradient up to a remainder term bounded in L? by C(r, s, d)n||(Vz, V)| r=||(p, Z)|

Hs

18



(like R), we see that Z reduces to

T2 [ (Vb polpaw) dX + R =~ [ bplp(p)Atu- A dX + R

€ Jrd g
with [R| < C(r,s,d)n||(Vz,Vp)|lL<|l(p,2)|%s. Similarly as what is done in the potential
case (in the previous section), this remaining O(¢~") in Z can be cancelled out by adding to
L 1(]|QY*||2, + ||PX*||2,) the time derivative

&l

< /R 3V(P)g (P)(Np)* dX = — / (G- V(¥ (p)g'(p)) + pdp(¥*(p)g (p)V - W) (A*p)* dX

Rd

+ 7 RdV (W2 (p)g (p))0)(A°p)? dX — 9 P (p)g (p)(N°P)V - At dX =

R+ / () ())V(A%) - A% dX

with [Ry| < C(r, s, d)nl|(V2, V)| < [|(p, 2)]

2. Now, observing that

V(ASﬁ)zlAs(pW): P Asw + Ry

e \a(p)/  ealp)
with |Ry||z2 < C(r,s,d)n|[(Vz, V)| L<||(p,2)||ms (like R again), and recalling that b(p) =
29 (0) e arrive at
a(p)
d .. o .
‘I+ a7 I 3V (p)g (p)(A5)° dX‘ < O(ry5,d)n[(V2, V)| 1| (5, 2) [ 7y -

A ropriate choices of ¥ and ¢ will enable us to get rid of the other tricky terms, exactly
as in % Of course, there is no reason to change 1, and we set ¥?(p) = a*(p) as in the
potential case. As regards ¢, it turns out that a good choice is

A(p)

¢*(p) = —, Wit A'(p) = a*(p) = pd,y(a’(p)) -

For convenience, we keep abstract notations for ¢ and ¢ in what follows, and use only that
P*(p) = a®(p) to simplify the equation satisfied by Y*. From the computations above and
the fact that the second order terms do not contribute - indeed, because V - P =0,

(V¥ alp)Y - X) = [ (Vi alp) T X)) 0.

/R (PXiV(alp)V - X)) =0,
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eptreturns

we find that
a
dT

| —

(13 (10X + PRI + [ 0 )9 ax ) = s

+ [ (@Y ~iza(p) (VX )V 1o (i (p) + icsy/F(p)(VPAE) Valp) dX

+ /R d <73Xs,—i5a(,0)(V0XS)V10g (\/Z‘(L;gp )> +i65\/_pcp(p)(V7DAsi)Va(p)> dX

—/Rd <79X$,i5a(p)(V-Xs)V10g (ZQ((Z))» dX

with [Ral < C(r, s, d)nl|(Vz, V)| =|(p, Z z)||%.. Let usc ncentrate for a while on the second
133 h QZL pp.151

line in ( cre above. By the same computations as in 6-1517], which heavily use
that 1?(p) = a*(p) and rely on successive integrations by parts together with commutator
estimates, it is found to be equal to

Rs +§ / pa*t1(p) <QASZ,i(V7?ASi)Vlog (#» dX
R4

DanD
with |Rs| < C(r,s,d)ne HD%}H}(J%JA%IL%S' Furthermore, by a similar approach - as in BZIe,n S
p.1518]-, the last two lines in (IS; can be written as

Ry / palp)?(p) (QA7, ((VPA2)V log(pg () dX

with |Ry| < C(r,s,d)ne ||D?p||= ||z||%s. Therefore, the appropriate choice of ¢ is dictated
by the fact that we want to get rid of the terms involving s + 1 derivatives of z. If we set ¢

so that

s a’(p
a*(p)V log (#) — *(p)Vlog(pp*(p)) = 0,
which is merely equivalent to

Vipe®(p)) = (a*(p) — pOy(a*(p)))Vp

EKchemar
we deduce from ( a

d 1
173 (10 4 1P+ [ 20 (0029 ax ) = Rat R+ R

The estlmat%s of R 1?11%% mentloned above and the comparison result below complete the proof
of Theorem 2 by a standard Gronwall-type argument.

Proposition 5 Let s be a positive real number. Let r € (0, 0/2] be such that ¢'(p) > 0 and
K(p) > 0if|p—o| <r. We denote by ¢ and ¢ the positive functions defined for |p — o] < r
by

a*(p) =pK(p),  V(p)=a(p),  p¥’(p) = 2/p a* +2 max (0a*(9)) — pa*(p),

|6—o|<r
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by A° the operator (1 — A)*/2, by Q the L?-orthogonal projector onto potential vector fields,

and by P = I — Q the L?-orthogonal projector onto solenoidal vector fields. Then for all

(p,0) € HTL(RY) x (H*(RY))? such that ||p|lwrie <7, for all n € (0,1], for all € > 0,
1o+l

c(llalf + 4] He+1)

<
1Q(vpU(p)A2) 72 + 1P (Vo () A2) 122 + 11V g (p) () AplI7> <

C(llallz + NIl +<*llal7

Hs+1 ) 9

where p = 0+ np, z =0 + ie =2 p Vp, and the constants ¢ > 0 and C' > 0 depend only on r,
s, d (and the functions g, K ).

3 Free wave regime

s:linear

d
paraisonde| Theorem 3 We choose a real number s with s > 1+ > and a positive real number M. For

H

n >0, >0, any initial data

(5", 6") € Bo(M) = {(p %) € H*P (R x (HO R (| (5. 0) s eoyyes el ll e ey < M)

bornesuniformes

is associated with the solution (p,0) € €([0,1./n], B:(2M)) of (EK.,) given by Theorem [2.
Let (v,u) € 6,(Ry, H*(R?) x (HS(Rd)) ) solve the acoustic equations

Oort+oVy -u=0
(W)
Oru+g'(9)Vxr =0,
with initial data (v, u)r—g = (p™,0™). Then at each time T € [0,T,/n] we have
(14) 1(p, @) = (v, u)]
and

JamesBonde | (15) |(p,0) — (r,u)

where C' depends only on M, s and d.

Hs—2(R4) x (H5—2(R%))d C(n+€)T

H5*3(Rd)><(HS*3(Rd))d < C(T] + 82)T,

Remark 2 It is clear from (W) that the divergence free part of the vector field u remains
constant in time.

Bonde |JamesBonde
Notice that the difference beEwe(?n the Jestm%at%s in (\14) and (I5) 1s the regularity index.

When ¢ < 7, both estimates (14) and (ub) provide an O(nT) error. By contrast, when
e? <7 < ¢, they yield respectively an O(eT) and an O(nT) error, so that the second one is
smaller. Therefore, n = ¢ appears to be a threshold at which we lose one derivative. Note
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Bond JamesBond d
finally that estimates (lozﬂ (resp. (I%iei Splc“)(l)lvfde an L*> error bound only for s > 2 + > (resp.

d
s>3+ 5)
In the special case corresponding to the Gross—Pitaevskii equation (K(p) = 1/(4p),
g(o) = 0 — C}Sothe first rigorous justification of the free wave regime was given by Colin
and Soyeur in terms of weak conver%erégghs?ngrong convergence was proved much more

recently by Béthuel, Danchin and Smets

comparaisond R .
Proof of Theorem 13. %y iEKgm) and (W), we see that (p — ¢, — u) solves

Or(p—v)+oVx-(0—u) =-nVx-(pu)
Or(a—t) + ¢ (0)Vx(p—1) =—na-Vxa—I[g(e+np) —g(0)]Vxp
+e2Vx (K (04 np)dxj+ LK (o + np)| Vxil?)

. Lo . tDanSme omparaisonde . .
with null initial data. As in roof og Theorem lB amounts to estimating the source

. ) nesuniformes
terms in this system. By Theorem u we have

[V x - (pQ)|| s < C(s,d, M)n

|- V= 190+ mp) — (@) Vxp + 2V (Ko + 1) Axp+ 5K (0 + ) Vxil)||
< C(s,d, M)(n+e+e*n) < C(s,d, M)(n+e),

where we have used the bound on €p in H*™! for the term £V xAxp, and

H—nﬁ - Vxta—[g'(e+1p) — ¢ (0)]Vxp+£°Vx (K(Q +np)Axp + gK/(Q * 77‘3)|VX'5|2> HHH

< C(s,d, M)(n+e>+en) < C(s,d,M)(n+¢e?),

using this time that e?VxAxp in H*~3 is bounded by &?||||zrs. The conclusion follows from
Duhamel’s formula and the fact that the wave group is unitary on H?®. 0

In one space dimension (d = 1), solutions to the acoustic equations in (W) are exactly
combinations of left-going and right-going waves. More precisely, there exist w™ and w™
such that

SEr ) m ) =er -y and (o= L)@ ) e (X e,

In what follows, we aim at characterizing the counterpart of these linear waves at the weakly
nonlinear, and possibly weakly dispersive level.
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4 One-way propagating waves on the line

In this section, the space dimension is d = 1, and the fluid velocities are denoted by u
instead of the bold letter u. We are going to show that the evolution of the two weakly
nonlinear / weakly dispersive counter propagating waves is governed by Burgers equations
if the parameters 1 and ¢ are of the same order, by weakly dispersive Korteweg-de Vries
(KdV) equations if 2 < 1, and by regular KdV equations if  and 2 are of the same order.
What remains of the reference density p in these equations lies in the two quantities pointed
out in the introduction and defined by

F:— :—K
2% 2 Mgt

det 3¢ 049" (0) def 0 ()

. . . . . |IChiRou2,ChiMar,C1
which already appeared in a special form in earlier results on NLS by the first author [I5,

14, 12, 11].

4.1 Statement of errors bounds in various asymptotic regimes

A first, simpler result holds \xﬁ%%laethe }faf%é%%io%%ewave.w_ is negligib}e, so that ¢p ~ Q.?l (at
least for small enough T') by (14) and (II5). More precisely, we are going to show that, if the
initial norm of the difference p — oti/¢ is small enough, then both p and gu/c are either close
to solutions 3 to the (inviscid) Burgers equation

O3 +T30x3=0

if e <nore? <, or close to solutions ¢ to the KdV equation
£2
9pC + I'COx( = g“ag’(g

if e2 = O(n). Note that this equation is clearly weakly dispersive if ¢2 < 7, and reduces to
99 + TCOxC = kD% C
when 7 = 2. Precise error bounds are given in the following.

HamBurgers| Theorem 4 We assume d = 1, and take an integer s > 4, and a real number M > 0. For
n € (0,1], € € (0,1], any initial data

(p", ™) € B(M) = {(p, @) € H*H(R) x H*(R); (5, @)l (myy2 + ellpllzrsrwy < M}

is associated with the solution @dﬁJe?uﬁ%L%%mL B.(2M)) of (EK.,,) such that (p,u)(0) =

(p™, u™), as given by Theorem 12 in the case d = 1. We also introduce 3 € €([0,0.), H*(R))
the maximal solution of the inviscid Burgers equation

fatBurgers| (16) 093 +T130x3=0
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it:exii

it:exi

such that 3(0) = p™, where the mazimal time of existence 0, depends continuously on M,
and ¢ € €([0,4+00), H*(R)) the global solution of the KdV equation

(17) 0pC +T'COx(¢ = 677—2/@?((

~in

such that (0) = p™. Then there exists a constant C', depending only on s and M, so that
for 0 < T < min(7%,0.)/n, the following hold:

(i). For all integers o such that 0 < o < s —4,

2

R 0. € i 0 .
e T UL R W

lp—3(n Il ®t ; 3(n T) o) 77+5+n+ P i .

16 = T = D)l gogey + |2 = T = eT)| < C(nret|in = 2o ).

He(R) C He (R) c He(R)
(i). If in addition s > 5, for all integers o such that 0 < o < s — 5,

6= 300, = D)ooyt = 307 —en)| <o - 2o )
J— 7._ - —u— 7-— NS —_— ——u s

p U HoR) || ¢ U Ho®) U - P ; 1o ®)

. 0 . 2 ||ain _ Q4in
T, — <T)|| 0 +H— - T,-—CT‘ el +e+) ¢ ).

16— C(n ) e ® ¢ ¢(n ) Ho®) Ui P cu o)

Observe that both 3 and ( are shifted to the right at speed ¢ in the estimates above.
This theorem provides various types of errors, depending on the relation between 1 and

. Roughly speaking and neglecting the term ||p™ — Qﬂinégﬂlﬁ[&@&ghich be small enough
provided that the initial data are well-prepared, Theorem ¥ ensures that p ~ ou/c is close,

up to a rescaling in time and space shifting, to the solution to

. lowfatBurgers .
e the Burgers equation (I6§ ife S <1, with an O(n) error;

. . loyfatBurgers .
e still the Burgers equation (I6i el n < e < 1, with an O(g?/n) error;

lainKd, 1lainKdV
. bpt alsg the KdV equation (I 7t EQ <KnKexl1 (.WhiCh makes x(ll ?ilxr?lveakly disper-
sive), with a smaller error O(n) (because n < £2/n) if we use [ii);

lainK
e and the KdV equation (l opi 6é ~n < 1, with an O(n) error.

When n < €2, the comparison estimates with the solution 3 of the Burgers equation
g.iven in the first inequalities of (i) and (i) are meaningless .since e2/n >>.1 in the .right—hand
side. Note also t %t both statements I(z) and [(2z) hold true if s > 5. .ljzor instance in the case

1t:exll[it:ex1l 1Ct:eXxl1l .
e <n < 1, bothlfz)and [(zz) yield O(n) errors, but the advantage of [(z)1s That it controls ne. ss
more derivative. However, this advantage is lost in the case e < n < ¢ < 1, for which I(z)
provides O(g) errors instead of the ‘natural’” O(n). In this sense, the case € ~ 7 corresponds
to a threshold across which the natural, O(n) estimates lose the control of one derivative.
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EKravane

EKoutchouc

lainKdV
The coefficient €2/n in the dispersiﬁel tierllr%gvin (I [ ;Hrlnay be removed using the scaling

invariances of KdV. Indeed, if ¢ solves ( en the function

G0. %) £¢ (50, x)

solves
FpGy + TGOx Gy = ROXGy
with associated initial datum ¢;(6 = 0,X) = (n/£?)¢(0, X), which may be large or small

2 _ _

depending on n/e*. In particular, H%gtc Wl = (n/e QHQ (0 = 0)||gs for any s. errorbounds
Our result recover the results of [8] and [T1I] as partlcular cases. In Corollary 1 of [T1],

there is a misprint: the two H* norms in the statement of the result should be H*~® norms

instead.

4.2 Proof of error bounds for right-going waves

Since we concentrate on right-going waves, we can work in a moving frame, and introduce

def

p(T,Y) = p(T,Y +¢T) WT,Y) ¥ (T, Y +¢T).
This changes (EK. ) into

Orp — cdyp+dy((0+np)a) =0

(18) Ortl — Oy + nudyt + ¢ (0 + 1np)dyp

= 20y (K (o +np)dkp+ S K (o +np)(Orp)?)

In a first step, we estimate the L? norm of p — oc~ 4.

) HamBurgers .
Lemma 1 We assume that s > 3.5. Then, in the framework of Theorem b, there exists a
constant C', depending only on s and M, so that

sup H[) — QaH <ol = Zam
0<T<T\ /7 ¢ L2 [

. L . tGraSauSme2 L . errorbounds
Proof. We argue as in the proof of Proposition 14 in see also Proposition 2 in

Throughout the following computations, C' will denote a positive constant dependmg only on
Kpitaine 1~
s and A that may change from line to line. From ([I 8; we sce that the difference v & p oc U

satisfies

L +C(n+e%).

(19) Orv — 2¢0yv — ngvﬁy’u = oyv(G,
where
(20)
ef O - 0 - . ~ - ¢ p?
G p —(g(o+np) — g(o) —ng'(0)p) — 62; (K(Q +np)05yp + gK/(@ + np)(ayp)2> - 775% :
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EKlamar

EKoutchouc
The terms Eg)ﬁgc%%gccﬁyv in (IQ; do not contribute to the time evolution of ||v||z2, and more

precisely, (T9) implies that

d

2
T v dY—Q/RvayG dY:—E/R(cayv)GdY.

EXoutchouc
Using again (T9 i, we can substitute Orv — névﬁyv — Oy G for 2¢Oy v in the previous identity,
which gives after integration in time,

(21) /Rv2 dy =

Of course the integral fR GOy G dY vanishes at all times. Moreover, by another integration
by parts and the following L*>° estimate for dy G,

Ain Q ~ 1n

/ / — v +n— vayv—i-@yG)GdeT

10y G|l e < nllpllee 1pllwree + 2|l waee

in which all norms of p are controlled since it is in H® and we have assumed that s > 3.5,
we obtain

/n(vayv) GdY = —g/ 2Oy G dY < Cn(n+e )/v2 dy .
. - ) o : . ) Fcahuete
Therefore, integrating by parts in time the remaining integral in (21), we deduce

/v2dY<
R

41 /R [U(O)G(O) —v(T)G(T)} dy

Ain gain

L2 ¢

1 (T T
+—/ /vaTGdeT+C’n(n+52)/ /UQdeT.
CJo Jr o Jr

EK jou
We now use that |G|z < C(n + €?), and substitute the actual expression in (20} of G in

the integral of v0,G to infer the inequality

/v dY <
R

2
L +C(n+¢&?)

~in 0 ~in

p ——u

A 0 .;
pln 2 gin
¢

L+ C+2) ol
+0n(n+52)/0T/v deT+—/ / (0+np) — d'(0)(0:p) vdY dr
£/T/v K(o+1p)02d,p dY dr
(22) w2l [ o Ko @) ar ar
—ne —/ /v K'(0+np)(0yp)(Ov0,p) dY dr

229// K"(0+np)(0,p)(0yp)? deT——/ /UpandeT

2¢2
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EKpitaine
Now, notice that from the first equation in (IS; we have 0.p — cOyv = —ndy (pu), so that

(23) 10,5 — cdyvllze < Cn.

Therefore, we find that
T T
| [@es ) -g@n@.n vay ar<c [ ol ar
o Jr 0
T
+ [ (e np) - g10) voyv ay ar
o Jr
T
§C?73T+Cv7/ v||32 dr
0

after using Young’s inequality in the a%%tregral and integrating by parts the second one.
We can deal with the last integral in (22) in the same manner. For the remaining integrals,
we may use the rough estimate ||0.p||y: < C, and deduce

T T
ne? /0 /R v K'(0+np)(0:-p) (0%p) dY dr +ne? /0 /R 0 K(g 13} (50 P)(OuBu) Y dr
T
+n’e’ / / v K"(0+np)(0:p)(Oyp)* dY dr

C(ne* + n?e? /||v|L2 dr < /||v||L2 dr + Cne'T

. . : . . . EKlamar .
by Young’s inequality again. Inserting these estimates into (b?i, we obtain

/deYg
R

. 12 . )
~in 9 .in 4 C(U + 82) ﬁln - g,&m
L? ¢

— =1
P c

+C(n+e”)vllLe
L2

T
+Cn(m* +eHT +Cn(1 +n + 52)/ / v? dY dr
o Jr

. 2 1 !
R N e L / vt dY + Cn(p* + T + Cn/ /v2 dy dr.
c L2 2 Jr 0 JR

<

~

Finally, we can absorb the term % [, v* dY in the left-hand side and use Gronwall’s lemma

to arrive at
/1}2 dY < C(
R

which completes the proof. [

an o O ainll?
pln _ _uln
C

+(n+ 52)2) e

L2

We can also estimate higher order, Sobolev norms of 5. — oc ‘4. The n EH%%I, aiu(liga would
be to differentiate the equation with respect to Y and argue as for Lemma [I. However, this
yields a non optimal result in terms of loss of derivatives. Indeed, we used the L* bound
on Oy (G, which would become, for an H estimate on v, an L* bound on dyA°G. This
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naturally requires G to be bounded in H°"5*0 Since we only have ||G|

Hs—2 < C(T] + 52)

and [|G||gs-1 < C(n + g), this restrict us to ¢ < s —3.5 or ¢ < s — 2.5. In the following
lemma, we argue as in Flmly Or to the equation and perform an H°~! estimate on
Or(p, ) to derive a b t%rrfss;lulgm\év%lere we may consider o < s— or o < s—. In comparison
with Proposition 4 in %E , we gain derivatives.

HamBurgers
Lemma 2 [In the framework of Theorem [}, the %ollowmg estimates hold true.

If s > 3.5, then, for any 0 < o < s — 3.5, there exists C', depending only on s, o and M, so
that

A 0 .
sup pm — Zgin
0<T<Tx/n ¢

<o

ﬁ—gﬁ‘ —|—77+52>.
¢ llge He

If s > 2.5, then, for every 0 < o < s — 2.5, there exists C, depending only on s, o and M,

so that

~in 0 in
— =1

<C<p )

- 0.
sup p——-u
0<T<Tx /7 ¢

+77+5>.

He H

Note that, for s > 3.5, the second estimate here above may be poorer than the first one
(if n < ¢e) in tfarms of the error value, but ggi%%ntrolg one more derivative. .
Proof. Applying Or to the system (I8§ written with the complex extended formulation,
namely

1
Orz — cOyz + nudyz + in(Oyz)W + B b(p)W + icdy (a(p)Oyz) = 0,
we see that Zr o Orz solves

(24) Orzy — Oyzr + nudyZr + in(Oyzr)W + é b(p)Wr + icdy (a(p)dyzr)
= —irdy — in(dy2)¥r — 2V (p)0rp W — iendy (a/(p)Orp Ov2).
and for T' = 0, since b(p)w = £¢'(p)dy p, ¢* = 0¢'(0) and o + 1 < s, we have
127 (T = 0) || zre—1 < ||¢dyZir—o — € b(pir—0)WiT—0 — 1€0y (a(piT—0) Dy lijT=0) || FHo-1 + C (1) + %)

< ||ty @ — o (0)0r5) gy + i (D (40) 9 (9)Oy ) = O (alp)v ) |

Ho—1
+ C(n +€?)
EKapedepee | (25) < C||0y (p — oc~ ') r—o| go—1 + Cel|Oy (p — 0¢ ™ @) r=ollme + C(n +£%).
EKpitul
The source term in the right-hand side of (bZ[ i]g%iﬁegsggl(.jfeo(% in H =1 by Cnl|zr|| go-1. Therefore,

following the lines of the proof of Theorem 2, we inter, for 0 < T' < T /7,
|Z7|| o1 < Cl|zr(T = 0)|| o1 -
As a consequence, considering the real part of the equation for z,
10y (5 — o™ @) | o1 < C|Re(zr + nudxz + in(Oxz)W + icdx (a(p)Ox2)) | o
<Cloy (5™ — o™ @™l o1 + Cel|Oy (5™ — oe™ ™) || e + C'(n + %)
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ftf
(pr, ur) = (Orp, Orti) solves

Orpr — Oy pr + Oy ((0 + np)ur) = —ndy (pru)
(26) 1
8T2 + 7]@8){2 + Zn(axi)VAV + g b(p)W + ia@X (a(p)axi) =0.

HamB
Proof of Theorem bago%plegfsed. RGE% ru that for (ii), we have s > 4.5 and 0 <o <s—5.5. In

particular, we may apply Lemma 2 With o + 3 < s — 2.5 tq deduce [[v[|go+s < C(n + g2 +
|p™ — oc~ 4™ || go+3). Combining the two equations in (I8i, we infer that

satisfies
20pw + 2nTwdyw — 26 kdyw = %) [9/(@ +np) — ¢'(0) — ng’/(@)ﬁ] By p

(27) + n(g — %g”(g))vﬁyw + n(é — %g”(g))ﬁﬁyv + 2e% k05w

+ <2y (K (o +mp) = K (2|05 + K (0 +1p) (Dv5)?)

. bornesuniformes . . EKryote
E}E?zg}a%%e uniform bounds of Theorem 2 and the estimates on v provided in Lemmas 2 and
[, we infer the consistency estimate, for 0 < o < s — 4,
Ho'+3 ) ’

|0rw + nTwdyw — 52m8§w||HG < C(n+ 62)<77 + &2+ ’

ﬁin o gﬁin
¢

The conclusion

K 0 .
pm — Eqin

= T = D)oy < C (2 + 7 = £

He (R) > '

then follows from very st&%dard estimates on the KdV equation. If s > 4, we use the second

I
estimate in Lemma }‘Z

4.3 The KdV regime for travelling waves

Under fairly general assumptions on the energy density ., (gEK) admits rich families of
planar travelling wave solutions. Indeed, for (p,u) = (R,U)(x — ot) to solve the one D
version of (gEK) the profile (R, U) must solve the ODEs

(RU—-0))=0



which is equivalent to the existence of three constants (j, A, 1) such that

RU—-0)=j
(28) o ,
7 J
R R,R)— Z(R,R)+ ==+ AR =
G () = F(R )+ T+ M=,
(See Fﬁgfor more details.) If o > 0 and (j, \) are such that (g,0) is a strict local minimum
. L OF . . 2
of the mapping 7 : (R, R) — R %(R, R)— 7 (R,R) + 5_1% + AR then the level sets
. . O0F . ) 52
R, R); R—(R,R)— F(R,R)+ ==+ AR =
(R SR = F(RA) + MR =11

consist of closed curves for u greater than, and close to —% (g, 0)+ g +Ao. These correspond
to periodic travelling wave solutions to (gEK) oscillating around p. Note that, since the
Hessian matrix of 5 at (p,0) is given by

PF
Hess 7 (0,0) = 0p*

-2
J
(0,0) + e

2 2

0 _ C_2 0
62(]0‘[ 1Y )
op3

bw|§

0 (0,0) 0 K

the strict local minimization condition for J# at (p,0) is ensured by the inequalities K > 0,
j% > 0*c?, provided that (p,0) is a critical point of ., which requires that

0.F 52
A= "1(0,0) + 2.
o (0, )+292

This means that (gEK) admits periodic travelling waves solutions with large enough mo-
mentum in the frame attached to them. Solitary waves with endstate p arise when (p,0)
is a saddle-point of 7. They are of small amplitude if this saddle-point is close to local
minimum of 7. This happens only if (g, 0) is close to a critical point of 7 where the Hes-
sian of J# is singular. In other words, small amplitude solitary waves occur when ¢%¢? — 52
is positive and close to zero. Note that for small amplitude waves around (g, 0), we have
j = R(U — o) ~ —p0, so that p*¢* — j2 being close to zero is equivalent to 0% being close to
c2.

Let us consider a travelling wave (p, u)(z,t) = (R, U)(z — ot) solution to (gEK), of small
amplitude around some reference state (p,0). Assume moreover that its speed o is close to
¢, say 0 = ¢ + €26 with € > 0 small. Then of course we can write

r — ot = (e(x — ct) — 53) /e,
KQv
so that if we use the KdV rescaling in (1 i, S
(p, u)(z,t) = (0,0) +&*(p, ) (e(x — ct), %),
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we have ~
.00 = %5 (RO(ZT) = (@0)) = (RO - 36)

g2 €
if we set

(R,U)(z) = (0,0) + %R, U)(ex) .

HamB of 1.
As far as (EK) is concerned, we know by Theorem hmfﬁgfr ii)lzsu) is such that w < o+
approximately solves the KdV equation

a)

o

Oyw + I'woyw = n@%w )

Therefore, W & %(}? + %’U ) is close to the profile of a travelling wave solution to this KdV
equation with speed . This can also be seen on the profile equatj a%%utrh%%selves, which
is interesting for (gEK) since we do not have a result like Theorem g for tiss more general
system.

Theorem 5 Let o > 0 be such that 6;7‘;@(9, 0) >0 and %27‘?(@, 0) > 0. We denote as before

| 929 3 o PF 0 OF
¢ 05 (0,0), 50 2 Rr (0,0), k=15 77 (0,0),

and assume that I' > 0 (which is the case in ‘standard’ fluids). Let w = W(Y — G0) be a
travelling wave of speed ¢ > 0 solution to the Korteweg-de Vries equation

Oow + Twoyw = Kdyw ,
and more precisely such that

def 26_3

%HWIQ - %FW3+%6W2 =me (O,m()), mo = ﬁ

Then there exists €9 > 0 such that for all € € (0,e0], there is a one-parameter family of
periodic trggeyng waves (p,u)(z,t) = (R,U)(x — ot) solution to (gEK) with 0 = ¢ + €7,

verifying (28) with
4 _ 0F 52 0F 32 2
=— 1e26), A= =—(0,0) + ==, p=0—(0,0) — F(0,0) + = + —&°
J o(c+ 5¢79), 8p(97)+2927ﬂ Qap(@ ) (Q,)+Q+Q5m7
and o
(R, U)(z) = (0,0) + *(R, U)(ex)
with

inf [[R(- + 5) — Wlwio = O(E).
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lonesome

s:counter

bleBurgers

From a straightforward phase portrait analysis of the KdV travelling wave ODEs, using
that & is positive we see that the wave profile W is indeed periodic for m € (0,mg), and

homoclinic to pg Lfos /T in the limiting case m = mg. As explained above, there is no hope
to get a solitary wave solution to (gEK) that is homoclinic to g if 7% > ¢?c?. This explains
why the KdV regime for solitary waves requires & < 0, so that j = —p(c + %525) implies
42 < 0*c? for € small enough. The KdV regime for solitary waves is a little simpler than for
periodic waves, and can be justified as follows.
eriodic

Theorem 6 With the same notations as in Theorem 15, we consider a travelling wave of
speed 6 < 0, w = W(Y — &0) such that

TRW? —ITW? + 16W? = 0.
Then there exists eg > 0 such that for all € € (0,e0], there is a one-parameter family of

solitary traveling waves (p,u)(z,t) = (R,U)(z — ot) solution to (gEK) with o = ¢ + 25,
verifying (158; with

, i 0.F 52 0.F j?
— _ 1.2 )\ _ 7 J — g A J
i Q(C+2€ 0)7 ap (970>+2£)27 % Qap (970) C%<an)—’— Q’
and o
(R, U)(x) = (0,0) + £*(R, U)(ex)
with

inf [[R(Y + 5) — W(Y)[lwiw = OE).

1
This result was already known for the KdV regime associated with NLS, see hc'fﬁ

5 The approximation by counter propagating waves on
the line

5.1 Statement of error bounds for counter propagating waves

HamBurgers . . .
We can extend Theorem h by taking into account both left and right-going waves. In order
to secure the interaction between these two waves, we %h%llwassgmg a agdiEional bound on
L. . . chnWay,BetGrasausme
the initial data, in terms of the M-norm defined as in [24, 8] Dy

b
[l
Theorem 7 We assume d = 1, and take an integer s > 4, and a real number M > 0. For
n € (0,1], € € (0,1], any initial data

def
[Allm = sup
a,beR

(p", ™) € B(M) = {(p, @) € H*H(R) x H*(R): (5, )l s (myy2 + ellllsrsrwy < M}

32



isﬁasa;gcz’ated @ith the solution \gﬂ:t@sﬁnﬁg@me@*/n]’ B€(2M))- of (EK.,) such that (p,0)(0) =
(p™, ), as given by Theorem 1Zn the case d = 1. We also introduce 3* € €([0,0%], H*(R))

solutions of the uncoupled, inviscid Burgers equations

tBurgerspm| (29) 0p3T +T3%0x3T =0

such that 3%(0) = (p™ & 0a™/c)/2, where the mazimal times of existence 0= depend con-
tinuously on M, and (¥ € €(]0,+00), H*(R)) the global solutions of the uncoupled KdV
equations

2
plainKdVpm| (30) OpCE £ T¢FOxCE = :l:g—/fag’((i
n
such that ¢£(0) = (p™ + pa™™/c)/2. If, in addition,

1™, a™) e < M,

then there exists a constant C, depending only on s and M, so that for 0 < T < min(T%, 07,0, ,)/n,
the following hold:

(i). For all integers o such that 0 < 0 < s —4,

Lo+ 2a)() =370 — )|+

L(p— 20)(1) = ¢ (T + 7|

Lo+ 20— o - )|+

(i1). If in addition s > 5, for all integers o such that 0 < o < s — 5,

|46+ 2a)m) = 30T, — )| ][50 - L)@ -3 6T +eT)| < (n+ 5) ,

HO'

54
<O<n+52+—) .
He n

L(p— 20)(T) = ¢ (T + 1)

Hp+ 20)(T) ~ T = )|+

tGraSauSme2
The proof relies in particular on a careful estimate of the interaction terms, as in %]7
However, we believe that our computation is simpler. The idea is the following. Assume
that ¢t and ¢~ are smooth functions of (T, X') approximately satisfying transport equations
with opposite propagation speeds,

GTCJF — c8X§+ = 0(1) and 8T<_ + C@Xc_ = 0(1) ,
with sufficiently fast decay at | X| — oo, as it will turn out to be the case for

T, X) Y %(ﬁ+§ﬁ)(T,X)—g+(nT,X—cT) and 2 (T, X)% %(ﬁ—%ﬁ) (T, X)—¢~ (T, X+¢T).
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The point is to show that quantities like the interaction term fOT fR(axf T)(~dXdr are small.
This is done by successively integrating by parts in space, substituting —c¢ =107~ + o(1) for
JOx (™, integrating by parts in time, and finally substituting ¢cdx(* + o(1) for 9y, which
formally gives

/T/(axﬁ)c dXdr = _/T/c+(axc) dXdr :cl/T/g+(aTg) dXdr + o(T)

//ag*g dXdr — ¢ /g* T) dX + ¢ /C (0) dX + o(T)
//axg+g dXdr — ¢ /c* T) dX + ¢ /ﬁ (0) dX + o(T).

As a consequence,

//axg+g dXdr = ¢ /<+ ) dX — ¢ /C* T) dX + o(T),

which means that the integral in time fOT Jo(0xCT)¢™ dXdr is controlled by [, (H(T)¢(T) dX
and [ ¢*(0)¢(0) dX, even though T may be large. This is the basic idea used to bound
the interaction terms.

5.2 Detailed proof of error bounds for counter propagating waves

In order to handle the two counter propagating waves we can no longer change frame. We

just define
wdﬁf1<A—|—§ﬁ> vdﬁfl<A—gﬁ>
pru), 5P —cu)

From (EK., ), we deduce that w satisfies

207w + 2¢dxw + ndx (pa) + gnﬁﬁxﬁ + % [9’(@ +np) — g’(@)} Ixp
=c —8x< (0+np)0%p + gK’(g + nﬁ)(axﬁ)2> :

that is
207w + 2c0xw + 0 (Hit) + Qnﬁaxﬁ n n%g”(g)ﬁ@xﬁ
@ .0 . 1o
= 82; (0)0%p — h [g’(@ +np) — g'(0) — ng”(p)p} dxp

+20x (IK (0 + mp) — K (@)% + 3K (0 + 1) (9xp)”) -
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Using that p = w+ v and @ = ¢o~ ! (w — v), we obtain

| o

Ox ((w +v)(w — v)) + g(w — 0)x(w — v)
29"(Q)(w + 0)9x (w +v)
+ g”(@)) wdxw + (—5 + %!f’(@)) vOxv

¢
0 ¢ 0
+ )ax< w).

x (i) + %)ﬁaxﬁ + §g (0)pOxp =

_|_fb

3

+

o
Q ¢’
Therefore, using the definitions of x and I, w solves

2070w + 2c0xw + 2l woxw — 2 k0% w = — %) [g’(g +np) — 4'(0) — ng”(g)ﬁ} Oxp

E o g " E o g " 2 3
EKw| (31) +77<Q 9 (Q))@X(vw) +77<Q 9 (Q)>vaxv+25 KOx v
+220x ([K (0 +np) — K (@))% + 3K (0 +1p)(9x)°)

and, similarly, v satisfies

2070 — 2¢0xv — 2nTwixv + 2% K03V = g [g (o+np) —4'(0) — ng”(g),ﬁ} Oxp

. E . Q " . E . Q " 92,93
eqpourv| (32) 77(@ 9 (g))@x(vw) n(g -9 (Q))M@Xw 2e” KO w
— 220y (K (0 + 1p) — K(2))0%p+ 31 (0 + np)(Oxp)?)

As a consequence, the function W % w — z* with 2T, X) o Ct(nT, X — ¢T'), satisfies

W (T = 0) = 0 and solves

(33)  OrW + cOxWHnIWOxW + nlox (z7W) — 2k W = 0xQ + 2e*kd% v,

where
2
def 0 A . A 77_ 1" A2
Q= G [9(@+77p) g(0) —ng'(0)p 59 (Q)p]
+ &0 (IK (o +mp) = K(2)0%kp+ 5K (0 -+ np)(0x0)’)

+ n(f - gg”( ))Ox(vw) + n(é - %9”(@))1@){@-

Note that the term @ enjoys the estimates (since s > 5/2)

EKartouche| (34)
Q]

me=2 < O || pllgs— + C™nllplls < Cn(e® +m) and Qs < Ce +m)
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We shall work for s > 5, the modifications for s > éKbgggrstraightforward.E e low assume
0<o<s —é a%ltdo&%gform an H? estimate on (33). Using once again (77) for the term

WoxW and (}BZS,TndThen integrating in time, we deduce:

[@swr ax <cy / [0x W (7) | IV (7) [ dr = T / [ Box(=" W r)egw (r) dxar

@l (35) + C(e? +n)? nT—i—n c _ 2 q"( / / [0x (vw) + voxv|(T)0W (1) dXdT
+ &%k / ' / a;aiv(T)a;W(T) dXdr .

bornesuniformes
In view of the uniform bounds given by Theorem 2, we may botnd 1OV (7 )| 10 for 7 < T/
by C. The last term in the first line of (B5) 1s es Enated by using (A~ I?;i which provides

W(r)|ze dr

T T
—nF/ / 0%0x (zH ()W (7))0%W (1) dXdr < C’n/ 27 () ||
0o JR
- nf/ / T)0%OxW (T)0X W (1) dXdT
(36) e / W) dr.
EKrambol
after integration by parts PE space for the last integral. For the last integral in (}35 i?mwg a?r%e%eambar

as in the proof of Lemma [I: we mtegrate by parts once in space, then report dxW from (
and finally integrate by parts in time or space. This yields

T
e’k / / 0%0%v(T)OXW (1) dX dr = / O% 2 ( W(T) dX
0 R

/ / O%20,v(7)0%W (1) dXdr

- mr/ / O 20(T)0% [W2(r) + 2W (7)27 (7)) dXdr

W(r) dXdr

//a“”Q YOS W () dXdr .

For the last integral in the first line, we use that 0,v = cOxv + Opo+2(n + €2), hence

g2k (T
£ /0 /R O7H20.0(r)LW (7) dXdr < — 2% / / 07 3u(1) LW (7) dXdr

8
+n/ W ()| d7+054+0%.
0
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Reporting the term e Iifo J 0% 0(T)03W (1) dXdr in the left-hand side and estimating
the integrals as before, it follows that

T 1 T 8
P / / O Ru(r)O W () dXdr < / (OTWA(T) dX + Cny / W ()% dr + C=t + C%.
0 R R 0

EKrambol
Concerning the integral in the second line of (£3Biamfﬁoe torm involving vdxv = dx(v?/2) is

treated similarly. This gives

//aaax W(r) dXdr =" /aa W (T) dX
i / / %0, (v?)(1)%W (1) dXdr

/ / 0% (V) (1) W2A(T) + 2W (1)2" (7)) dXdr

e2nk

W(r) dXdr

x \U)\T)0x
o Jr
n [T
+;/ /33’(@(7)8}’(1/[/(7) dXdr.
o Jr

Using once again that 9,v = ¢dxv + Opyo+2(n+&?), hence 9, (v?) = ¢dx(v?) + Ogo+2(n+?),
we infer from estimates similar to those already used that

277 ——gg” / /8‘78)( (T)OXW (1) dXdT < i/(@UW)( )dX+C?7/ W ()3 dT
(38> +COn(n+) + Cln+e)nT .

EKbesfdbestan2EKbestan3[EKrambolage
Inserting (86), (87) and (88) nto (3b) provides, for 7" < 7. /7,

[y >dx<cn/ W) dr+ g [@WPT) aX + O+ o +c;—i

(39) 05 -4910) / | ogoxtow)mogw () axar

L. . . EKrensac . .
For the remaining integral in ()39{, we can no longer argue exactly as we did, since the
interaction term vw does not solve a transport equation. Nonetheless, since Orv = ¢Oxv +
O(n+e?) and Orw = —cOxw+O(n+e?), we may observe that dr(vw) = ¢dx (vw) —2cvdxw+
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O(n + &%) (the error O(n + £?) being uniform for T < T, /n in H*™3). As a consequence,

77(5 - gg”(@)) /0 ' /R 0%0x (vw) (T)0F W (1) dXdr

Y ¢

<n(S-200) [ [ ot axar

Y ¢

+ 277(; -29'(0)) / ' / 0% (vdxw) ()0 W (r) dXdr
1

0 [ W dr+ 1 (@RI ax + O

. . . L. . EKrensac
and reporting the first term in the left-hand side and combining the result with (%9& gives

T 1 1 8
/(8§W)2(T) dX < Cn/ W ()13 dr + (Z + E) /(8§(W)2(T) dX +C(e2+1n)* + O%
R 0 R

T

(40) +n(§ - 29'(0)) / / 0% (v0xw) (T)OGW (r) dXdr .
0o JR

Repeating this argument o times, we arrive at

o

—) /(8§(W)2(T) dX 4+ C(e® +n)? + C;—z

T
1
/(a;W)Q(T) dX <Cn/ W ()30 dr + (— +
R 4  4s

(41) +n c 9" // P)O%dxw(T)ILW (1) dXdr .

EKsstoidla
At this stage, we can not apply the same argument to the remaining integral in (hl 5 :
Thg 1(%easla s fhen to write v(T) as a X-derivative. The final argument in the proof relies as
i proot o

in emma 1 there) on the following estimate for the M-norm.
Lemma 3 There exists C, depending only on M, such that, for any 0 < T < T./n,
(42) 15, @)(T)[lae < CI(E™, 0™l ag + Cn + )T .

Proof. Recall that (EK.,) becomes, in dimension d =1,

Orp + 0x((e+np)a) =0
(43)

LK o+ np)loxl?)

Ora + nadxa+ g'(0 + 1p)Oxp = e°0x (K(@ +np)0%p + 5

in which we recognize the acoustic equations
8T,5 + Q@Xﬁ =0
Ora+g'(0)0xp =0,
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which is diagonal in the variables (p + ou/c,p — gu/c) (recall that ¢ = og'(0)). We thus
compute

[0 + cOx] <f) +

o

ﬁ) = —1dx(ptt) — " Ox (g(o +1p) — ng'(0)p)

)
+€20x< (0+np)o%p + ZK’(Q+np)[0xp] ) =0xT.

We fix a < b. Using the characteristic method, we obtain

T
(p+ ) (T, X) = (p”n 49 ”ﬂ) (X — <T) +/ Ox Y (T, X — o(T — T)) dT,
0
hence, integrating in space,

b b
/ (;3 + %ﬁ) (T, X) dX‘ < / (ﬁin + %ﬁm) (X —¢T) dX‘

OxT(T. X — (T —T)) deX‘

b—acT ) 0.
/ <pA1n + _ﬁm) (X) dX‘
a—cT ¢

/T T(T,b— (T = TY) = (T a — (T — T)) dT’

<

+

<CN(p™,a")|lag + Cln + )T,

which implies
A g A AIH A11’1
(1) + £8(0)| < O™ 0w+ O+ )T

Since a similar estimate holds for p(T) — gc™'a(T), the proof is finished. [J

We fix arbitrarily some a € R and we consider

X
Vu(T, X) def/ o(T, X) dX ,

. . ) eqpourv
which solves, in view of (3Z],

207V, — 2¢0xV, =nl[v* — v*(T, a)] — 2*k[0%v — O3 v(T, a)]
- [g’(g +np) = g'(0) — 779”(9)/3] Oxp + 2ek[0xw — Oxw(T, )]

(= ¢9"(@) o~ v(T )] + 5 (= $o'(0)) ? — w(T,0)]

0« 2
+ 220y ([ (o + 1) — K(@)0hi + T (0 + mi) 0xi)?).
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hence

(44) 107V — OxVa(T) |1 = 102Va — co(T)|| 1 < Cn+€2) .

Therefore,

15 - ¢o' ) /O ' [ e umom ) axir

:”<§ —2g( / / OxVal7)0F w0 (r)OZ W (1) dX dr
— (% - 29 / / 0% w(r)OL W (r)] dXdr
gg (5L / / 0,107 ()05 W (7)] dXdr

+0n/ IWir ||Hadr+1/<ax P(T) dX + O + )

<22 -2y / / OV (PO ()OS ()] dX dr
it §g"<g>) [ vuyizswmosw ) ax

+C’n/ W (7)][3 d7+1/(8(’ W)*(T) dX + C(e* + n)?

_HE_QH / / \OT w(r)OGW (7)] dX dr
_ ;<_ _g, @)) AVG(T)[8§+1w(T)6§W(T)] dX
—i—Cn/ W ()| 5- dT—i—l/(a(’W) (T) dX + C(e* +n)?,
we have used E%Ef%llTethe last inequality. Since ||V, (T~ < ||v(T)||m < C by Lemma

BRASEG 3%
6 mifer that the integral in the second line is < Cn||W(T)|ur < HIW(D)|}e + Cn?.
Consequently, we may report the first term in the left-hand side and deduce

nc Q" // 7O w(r)dGW (r) dXdr

rambonille] (45) Cn/ Wi ||Hadr+1/<ax P(T) dX + C(e + ).

EKrambouiFKestoidla
Inserting (A5) nto (A1) yields, since o < s,

[ @swra )dX<Cn/ Wl ar+ 5 [ @D x40 4 vog.
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waveansatz

Incorporating the second term of the right-hand side in the left-hand side, we arrive at
T 8
[@WR@ ax <cn [ 1wl dr+ o np+ 05,
R 0

and conclude by the Gronwall lemma.
oubSligEg(Iertle}l@Serror estimate between v and (~(n7T), -+ ¢T') is analogous, the proof of Theorem

D
7 1s completed. 0]

6 The (KP-I) asymptotic regime

In this section, we concentrate on the case n = £2. In one space dimension, we have obtained
as asymptotic equations the KdV equation for well-prepared initial data, and two decoupled
KdV equations for more general initial data. In higher dimensions, if one considers a weakly
transverse perturbation, we expect Kadomtsev-Petviashvili (KP-I) type equations

(KP-1) 0pC +TC0., ¢ = kDB ¢ — %AZLa;llg .

Throughout this section, we shall assume that the vector field u is curl-free, which is a
natural hypothesis for the KP-I asymptotic regime.

6.1 Main results

longwaveansatz
We replace the long wave ansatz (2) Dy the weakly transverse long wave ansatz

(46) p(t,z) = o+np(T, 2) u(t,z) = n(ay,ou,) (T, 2), T=ct, z=(exy,edx)),

where ¢ is another small parameter (we have changed X to z to keep in mind that the
scaling is now weakly transverse). Usually, we take n = &2 = 6% to derive (KP-I) but we
may consider weakly dispersive KP-I equations similar to weakly dispersive KdV equation
we have already obtained. Then, the Euler-Korteweg system (EK) becomes

( Orp+ 0., ((0+np)y) +6°V., - (e +np)uL) =0

Oray + 77111az1f11 + 77521A1L : szﬁl + 9,(9 + 77:6)821:5
(47) = <%0, (K(g +0p)[02, + 0*A 1+ gK’(Q +1p)[(0,0)° + 52\Vnﬁ\2])
Oray +no,a, + né*a, - V. u+9¢(0o+np)V.. p

= 22V, (K(o+np)l02 + A, 1o+ 1K (0 +1p)[(0.,9) + 6%V pf))

\

We first state a result providing uniform bounds on the time scale T ~ n~! (that is
t ~ e p7!) and need to define, for s > 0 and M > 0, the set

Baes(M) < {(p,0) € H(RY) x (HY RN ||(p, 0, 201, 6V 19) || s meayyrs < M}
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Theorem 8 Let s be a real number greater than 1+ d/2 and n € (0,1]. If 0 > 0, ¢'(0) > 0,
and (p™,0™) € B, .5(M), ¢ B}%}&;ﬂ there exists T, > 0, depending only on M, s and d, such that
the mazimal solution to (47) such that (p,0)(0) = (p'™, a™) ewists at least on [0,T./n|, and
(p,0)(T) € B,.5(2M) for all T € [0, T, /77].

In this asymptotic regime, one might expect an approximation by the two counter prop-
agating waves described by the two uncoupled KP-I equations

+ fo o sy © 52 -
a@C +FC 6216 - F’L{azlg - 5 ’ ? z1 zl C
(48)
2 2
0 —TC 0,0 = =R ¢+ 5 T AL

instead of the two KdV equations. However, D. Lannes in %Fg]'@l%as shown that, in the
case 1 = €2 = §? to fix ideas, the natural O(e?) error estimate does not hold due to the
singularity of the symbol associated with the operator A, L d,, 1 unless you impose the zero
mass assumption [, A(z1,21) dz; = 0 for every z, R4! which is not physical. This is
the reason why Lannes and Saut have proposed in %O] weakly transverse Boussinesq type
systems for which we can prove the natural error estimate and for which no zero mass
assumption is made. This weakly transverse Bouss(mes% tyne S}ést% is formally equivalent
tgngléﬁpﬁy%ts%rgt é)f fwo uncoupled (KP-I) equations (45), and it can be shown to converge to
(%LZS) (without optimal error estimates) under extra regularity and zero mass type hypothesis.

In our context, a natural weakly transverse Boussinesq type system is the following:

( Orp + 00., 01 + 00, (puy) + 6°V., - (o +np)aL) =0

Orty + ¢'(0)0., p + Ny 0., 0y + nd*ay - V., 4y + npg”(0)0., p
(B:sm) =e’K(0)0.,02 + 6°A.,1p

aTﬁJ_ + g/(Q)VZLﬁ + nﬁlazlﬁJ_ + 7752ﬁJ_ : szﬁL + UPAQH(Q)VZL[;
= 2K (0)V., [0%, + 84, ).

\

Let us observe that system (B.,,) may be seen as a particular case of system (E[%vihen
g is a quadratic polynomial and the capillarity K has constant value K(p). The weakly
transverse Boussinesq system (B. s,) may also b% seel) a%]g%% VXeaEIX transverse analogue to
the systems of the (a,b, ¢, d) class introduced in [9] and [10] when a = b=d=0andc<0.

Theorem 9 Let s be a real number such that s > 1+ d/2 and n € (0,1].

(i) If 0 > 0, ¢'(0) > 0, and (p™,0™) € B,.s5(M), then there exists T, > 0, depending
only on M, s and d, such that the system (B.s,) with initial datum (p™,0™) has a unique
solution (p,a) € €([0,T,/n], H*T1(RY) x (H*(R))4). Moreover, for any T € [0,T,/n], we
have (p,0)(T) € By 5(2M).

42



EKlembour

(i4) Assume that (=™ belong to 8., H**"(R?) and that A, (™™ € 02 H*"3(R?). Then,
there exists Qm%ogblggggggg% only on s, d and the initial data (¥ such that the uncou-
pled system (A8) has a unique solution (¥ € €([0,6,], H**¢(R?)) N Lip([0, 6,], H*T3(R%)).

Moreover, one has (¥ € L>([0,6,],0., H**(R?)). Let us also assume that

1 ~in 0 ~in in ]' ~in 0 ~in —.,in 0 ~in — in —,in
(49) §<P + ;u1) =, 5(0 - W ) =G Jur= V., O ¢ = ()
and that
(50) 5 < n and 2 <.
luncoupledsystemKP

Then, the following comparison estimate with the uncoupled system (A8) holds as n — 0:

1
sup ‘—(ﬁ %) (1) = ¢ (T — 1) -0
0<T<min(0+,T%)/n 2 ¢ Hs—1(Rd)
and .
sup - (,5 - Qﬁl) (T) — ¢~ (T, - + cT)‘ 0.
0<T<min(0«,T%)/n 2 ¢ Hs—1(R4)

emark 3 gggigﬁgpertiesi o.f .the soluFif)n ¢ iE}E eltn}ggu(rKf"—I) equatiqn given in (i7) come ferr'n
and : e compatibility condition (49) on u'' is natural since the vector field u is
curl-free.

diamants
Remark 4 Statement (i) is a consequence of Theorem 8 1n the particular case where g is

quadratic and K = K(p aistﬁlcl)nstant. An alternative approach would be to use the result
given in Theorem 1.1 of )2§ with a =b=d =0 > ¢, i.e. case (12). However, this result is
stated in the Boussinesq scaling and not the weakly transverse one. It is plausible that their
method extends to the weakly transverse case, but we have not checked this fact.

errorbounds

Remark 5 In ﬁl']iwme proposed (in the case n = 2 = §%) another weakly transverse
Boussinesq system which is adapted to the case where one wave, say the left-going one,
is negligible. This system has the structure of a symmetrizable hyperbolic system plus a
constant coefficient skew adjoint term (which is not affected by the symmetrization), which
is a simpler structure than (B ;,). We would like to point out that one may think that the
dispersive terms €?0?A,, 9, p and €20*A,, V., p in the lagf two equations in (B.,) should
be removable in view of their formal order O(n?) (by ?EU!}_VHowever, our existence and
uniqueness result relies on a nonlinear symmetrization type argument which breaks down
without these terms. Moreover, our estimates provide a uniform control on p, €0;p and
g0V, p in H*, so that the high order derivatives of 26%A, 0,,p and €%6?A, V., p are not
that small.

DrNo
Our last result gives a quantitative comparison estimate between system (&I/% and the
weakly transverse system (B s.,).
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istoletdor| Theorem 10 Let s >3+d/2 (s integer), n, €, § € (0,1] and assume that ¢ >0, g'(0) > 0,
and let (p™, ™) # Then, there exists T, > 0, dependmg only on M, s and d, such
that the two systems resp. (Besn), with initial datum (p™, 0™) have a unique solution
(p, ), resp. (p,u), in € ([0, T./n], HTH(R?) x (H*(R%))?). Moreover, for any T € [0,T, /7],
(p, 1) and (p,0) belong to Bs,€75(2M) Then, there exists a constant C, depending only on
s, d and M, such that, for 0 <T < T./n, we have

e-s < C(n+ %)

|(p, 4y, 60, ) — (p, 0y, 00|

and

||(pA7 ﬁhéﬁL) - (,57 1~11,(51~1L>| Hs—2 < C(T] —|—5) .

6.2 Uniform bounds in the weakly transverse scaling

diamants
Proof of Theorem I§. The complex vector field z is now

ss:prelKPI
Bartilage] b= (31,082) = i = (1,00 + | = 2 (009,07
artilage| (51) z=(21,0z,) =a+iw = (0,00, ) + ie T(&p,dVLp),

and the assumption that the vector field 1t is curl free reads now

curly| (52) ou, =V ;.

The L2-type functional E; reads now

o def 1 . . . .
Ejlp.2) = §/dplzl|2+52p!m2 +d(p)p*dy, p=o+np,
R

and the H*-type functional E; becomes

where we have denoted

s g def s e QA ~
Bipa) Y /—a (Pl0"n 2 + 8201075, > + ¢ (0) (0°0)?) d=, p=o+np.
aENd
|a|—cr

degresept
Under the assumptions of Proposition }3, we now have

c(llall + o] #e) < Ellp,a] < O([alz +1pllz: +IV°plE),

he + %[Vl

where ¢ > 0 and C' > 0 depend only on r, s, d (and the functions g, K).
The system (ES. ) is now, setting V° o (01,0V 1),

1
(53) orz +n(t-V)z + in(V°z)w + . b(p)W + eV (a(p)V° -2) =0,
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and applying 0%, where |a| < s, gives

1
(54)  0p0°z +n(a-V°)0°z +in(V°2)0*W + . b(p)0°W 4 ic0°V° (a(p)V° - 2) = R,

where
of . L1 N e e
R = (Ry,0R.) “ pla- V7,072 + = [b(p). "]w + m((véaazm - aa<<v5z)w)) .
tamecomm
In view of (AZ3), we have

IRy, 6RL)[z2 < C(r, 5, d)e%|[(V2, V)|l E2lp. 2],

EKrott
since, recalling that 02 <np < 1land &2 <n < 1by (%(li? .

nll[a-v°,0%z]|1. < C(S:GD??(HVﬁ! e | V0z]| e + | V2|

et [Vl )

<C(s,d)n||V2l 1=/ Ei[p, 2],

n|[(V20°2)w — 0%((V°z)W)

|2 <C n(ITW e [ V2|10 + V72

< CO(s,d)n|| V|| 1/ Ei[p, 2]

g1 < C(r,s,d)el|pl

o [V 1 )

we < C(r,s,d)er/EX[p,2] and that ||W|i~ <

Hs—l)

and, using that ||w|
C(r,s,d)e||VOp| oo,

2000

n - A A A
<O, )L (|1l er V51l e + ¥l o<1V

<C(r,s, d)n|Vpl =/ Elp. 2] .

en, lf?éloewmg the same lines as in the proof of Proposition @, but working with the variables
and the operator V° = (9;,6V 1), we infer

L2

d .. . . ) -
B39 2] <C(rs,dnl|(Vp, V) | (1 + en[ Vil 1) B[, 2]

Notice that the computation is actually slightly simplified since we assume that the vector
field 1 is curl-free. OJ
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6.3 Proof of Theorem 9 (i1)

S
As already mentioned, the argument follows the lines of the proof of Theorem 1 in %ZU] We
briefly recall the ideas.
We look for an approximate solution (p*P, 4**P) to (B.s,) under the form

(55) (™, 0P (T, 2) = (p°, ") (T, 0T, 2) +n(p', @' ) (T T, 2)

where @° and @' are curl free. We set # = nT. Recall that 62 < 1 and £2 < 7, and we wish
to construct an approximate solution so that the consistency error is o(n), since we consider

T < n~!. Notice that we simplify the computations by guming an expansion in e(%wglrgo%g ds
€2, but an expansion in powers of ¢ is also possible (see [20] in this case and also I [[1f one
considers only one wave propagating to the right). We then compute

Err, €05 + 00, 0™ + nd., (F*PPaiPP) + 62V, - ((0 + npP)a’)
- (8T,60 + Qaz1ﬁ0) + n (aTlé1 + Qamﬁ% + 89ﬁ0 + aZI (ﬁoﬁ(b + 9(52/77)VZL : ﬁ(J)_) + R,

Erry Sopa0 + g/(0)0., 5 + 20000, 0 + 6P - V., 6 + e (0)5 700,
— 2K (0)0.,[02, + A, |p™P
= (0ra] + ¢'(0)0,17) + € (Orty + g'(0)0:, 4 + Optay + 070., 47 + ¢"(0)0.,0° — K (0)9%,1°)
+&*8u1 + %861 + %851,

and

Err . COraT? + ¢'(0)V., p7PP + 2P0, 0P 4 1P V. WP + 29" (0) 5PV, pPP
— 2K(0)0,,[02 + 2 A, ]p*P
= (00} + ¢'(0)0.,0}) + € (0ru] + ¢'(0)0:, 0] + et} + )0, 0] + ¢"(0)0.,p° — K(0)2 1)
+ 5484,L + 5686,l + 68887L,

where the Ry; and Sy, 2 < 7 < 4, will be explicited later on. The point is that we are not
able to prove that t! remains of order one on the time intervals we consider.
Cancellation of the terms of formal order n° yields

Orp° + 00,4 = drta] + ¢'(0)0.,0° = 0,
with general solution (p°, oc™'Q9)(T,0,2) = Z1(0, 21 —cT, 2, ) (1, 1)+ Z (0, z1+<T, 21 ) (1, —1)
for some functions Z*.
Cancellation of the terms of formal order n provide
Orp' + 982111% + 0z, (ﬁoﬁ(l)) + 9pp° + 9(52/77)sz : ﬂ(J)_ =0
Ortiy + ¢'(0)0:,p" + 09t} + 070.,43 + g"(0)0., " — K(0)(e*/0)02,p° = 0.
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Therefore, using the expressions for p° and gc™1a?,
or (ﬁl + %ﬁ}) +ed., (ﬁl + %ﬁ})
N 0q A0 A N 0. N
= = 0pp" = 20y} — 0.,(p"0) — (6% /) V-, - U] — —030 4y

= 29(0)§"0.. 7" + £ (/) K ()32, 1°
=(—20p2% — 2270, 2" — «(6° /) A, 0., 2T + 2k(e* /)02 Z27) (0,21 — T, 21)

zZ1 Yz

+ (=20 = 2¢/0) 270, 2~ + ¢(8° /) A, 0. 27 + 2k(e /)02 27) (0, 21 + T, 21)

- (g + 2/{(52/7])) 8:61 [Z+(0> 2 — T, ZL)Z_ (9’ S ZL)] ’

Then, p' + oc~tal solves a transport equation with source terms. Notice that the first
source term is a function of z; — ¢T', thus is a solution to the associated homogeneous
transport equation. Therefore, it has to vanish in order to remove secular growth (using the
characteristic method). Hence,

B2t +T2%9, 2+ + %(52 AL, 02 2T — k(€2 m)dP 2T =0,

which is precisely the right-going KP-I equation: we then choose ZT = (*. In a symmetric
way, we shall take Z~ = (7. Recall that we assume A,, (¥(0 = 0) € 92 H***(R?). There-
fore, 0p(* € [2([0,0.], 0., H**?) and A, (* € L=([0,6.], 92 H**®), as it follows from the
arguments in (see (3.9) and (3.10) there). Indeed, 9p¢* solves
¢ _
0p(D0C™) + 0=, (CH(90C™)) + 5(0%/m) A=, 0,1 (00CT) — w(e? /)2, (90C™) = 0

and 9p¢*(0 = 0) = —T0.,((¢*)*(0)/2) — (¢62/(2n))A:, 971 (¢CF(0)) + (ke2/0)E, (C(0)) €

0., H*™ by assumption, hence, F denoting Fourier transform,
F(06¢F)(0) = exp (—i0(k(e?/m)EF + (6% /n) |61/ (261))) F(96¢*(0))
0
—il'& /0 exp (—i(0 — 0)(w(*/m)&; + (6 /m)|€L 1/ (261))) F(CH(0¢))(0) d6 .

It then follows that 9,(* € L>([0,6,],0., H*™) (and the argument does not depend on
the space dimension). Consequently, we may rewrite the source term in the equation for
P+ oc tal as a z-derivative:

A1, Q. A1, 9.
3T<p + cu1> +¢d,, (p + ; 1)
= azl{ — (T —2¢/0)[C (0,21 +¢T,zy) + 2%(82/7])831C_(8, 21+ T, z))
— (é + 2/@(52/77)) CH(0,20 — T, 2.)¢C (0,21 + T, 21)

+ (0 )AL, O (0,2 + Ty z1) }
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The characteristic method then provides
1 0.1 _(~1in , @aAlin
p +Eu1 (T,0,z)=(p" —i—;ul (21— T, 21)

+ (0= 2¢/0)[C 20, 21 — T, 21) — 2ic<r —2¢/0)[C 26, 21 + T, 21

2¢
(56) £ (0,20 + ) = (M (020 - <T)
1 z1+cT
- (2—9 + f(e%)) 0,05 —eT2) [ Y]
52 52

+ %Aﬂ@,—f _(0, z1 + CT, ZL) - %AMGZZQ _<9,Zl - CT, Zl) .

All the terms in the second, third and fifth %Ss in (%}t%—eg—cei]rol%lgr; to L7 (0. 0.] éﬂ;f’). For the
term in the last line, we do not use (as in [20]) Proposition 3.6 in or an estimate by
o(v/T), but write it under the form
(57)

1

(g HE ) 00 [0 = T, 20) (051 O+ €T = 051 012 - ) ],

to see that is is bounded in H*™ by a constant uniformly for 0 < 8, 7T < 0,. This allows us
to derive the estimate

sup <C.

0<T <0/

N 0 .
(pl + ;lﬁ) (T, nT, ~)‘

Hs+3
In a similar way, we show that

sup H(ﬁl—fﬁD (T,nT,-)( <C,

0<T<b+ /1

Hs+3
from which we deduce

Hs+3 < C

(58) sup || (pq? ﬁ%)(T7 77Ta ) |
0<T<0«/n

EKmisole
As a consequence, the approximate solution (%5; enjoys the estimate

(59) sup ||(p*P, a*P)(T)||ps < C'.

0<T<0: /7

The error terms R and S contain #-derivatives of p! and Gj that we wish now to bound.

Let us observe that we have 0pCE € L>([0,6.],0., H*3) N L>([0, 0.], H*°), but the direct
. o endrier )
differentiation of (56) with respect to 6 would require to have 9p¢* € L*°([0,6,], 9% H*+?),

)’ zZ1

or at least A, 9p¢* € L>([0,6,],0? H**?). This is by no way possible if d = 2 or 3 since

» Y2

the term A, 071[(¢*)?] appearing in 9p¢* is meaningless. Indeed, ((*)? € L' has a Fourier

217z
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transform which is continuous in R? and positive at £ = 0 (unless (* = 0), but | ; 2 is not
I
integrable near the origin for d = 2, 3. We thus proceed to the estimate for dy(p!, i}) by first

rewmtmg the term A, 0.%¢ (0, 21 +¢T', 2z ) — A, 0.2¢C (0,21 — T, z1 ) in the right-hand side

d ; EKlend
nder 1+CT @jh@g;gl_e(e’y’ﬁ) dy. Consequently, differentiation of (%Gien rler

of ( under the form [
with respect to 6 gives, usmg (

Oy (ﬁl + %ﬁ%)
:%{ — (T —2¢/0)CF0pCT (0,21 4+ T,z ) + (D — 2¢/0)¢0pC (0,21 — T, 21)

+ k(&2 /) 2,09C (0, 21 + T, 21) — k(€% /)02, 06 (0, 21 — T, ZL)}
1

- (% - %052/77)) 0,00 |CH(0, 21 = T,21) (95°C7 (0,21 + €T, 20) = 031C7 (0,21 — (T, 21)) |

+cT
T (8/) / AuL 07 00C (B,y+ 21, 21) dy,

T

. n . . . esecular
thus the estimates on (* we have at hand and applying Proposition 3.6 in [ for the last
term yield

Hag (o + %ﬁ}) (T, T, )HH <C+o(T) = o).

Since a similar estimate holds true for 9p(p' — pc™'al), we deduce

(60) sup (|00, &) (T T, )| . = ol ™)

0<T<0. /1

EKlendri
On the other hand, the formula (56 iegré\lffares, since 0! is curl free,
(Vo + 20,01 ) (T.6.2)
<VZL plin Qazl Alm) (z21— T, zy)

1 z1+cT

+ 5 { - ( - QC/Q)anVZJ_ [67]2(9’ Y ZJ‘) dy

2C z1—cT

21+CT
+ ¢(6%/n) QZI/ A, z1 C(0,y,2z1) dy

1—¢T

+ 2/1(62/77) 21 ZJ_ [Ci(ea 21+ CT) - Ci(a A1 CT)] }

1 z1+cT

(3 Eem) v, [0 - e [

1—tT

¢ (0., 21) dy]

and a similar equality holds for V, p' — oc™'9,, 0} . Thus, taking the difference of the two
equations and integrating in z;, we obtain

(61) sup (8 (7, )l

0<T<0+/n

<C+o(T)=o(n™),

49



sinoroyale

araisonKPI
trousselle

. . " . [Lannesecular . . z1+¢T
using once again Proposition 3.6 in or the terms involving le_cT .

Let us now explicit

R =0’0pp" + 00, (p"4} + p"y) + °nV., - (ou] + p™07)
V. - (PR 4 ) + P8V, - (ML)

EKten#&Kbd 11audEKssoulet
It follows from (\btﬁ), (oU) and (bl) that

(62) sup ||Err,||gs < sup ||R||us = o(n).
0<T<T./n 0<T<64/n

Similarly, from the explicit relations

S =10ty + 170z, (41847) + 1o 0] - V., 07 + 179" (0)0:, (6'4")
- 527]K(Q)8§1151 —e?0°K ()9, A, p°
+ 0P 0s, 0y 0% - Ve 0 0% - Ve By + 07" (00010200 — 070 K ()0, A

3¢241 .1
+n°oa; -V, ay,

we infer

(63) sup ||Erry||gs = o(n),
0<T<Ty /1

and from

Sy =100 + n’010:,05 + n*afd., 0} +no*al - V., 05 +n’¢"(0) V-, (6'5°)
— K (Q)V., &0 — 8K (o) V., A f
+ ot 0 + n?tal - v, al +n2e%al - V., 4l +0’g"(0)p' V., pt — 262K (0)V., A, bt
NGRS

we deduce

(64) sup ||eErr |
0<T<T, /&2

eternels . . . . .
EX dﬁogggelﬂgte the proof of Theore&mbe z‘ﬁ@&émm?sg%rrlg%ﬁ%on est1_mate given in Proposition
6 below and the consistency errors (62), (63), (64) we have established. [J

s =o(n).

istoletdor
6.4 A comparison estimate and proof of Theorem 10

Proposition 6 Assume thats > 1+d/2 (s integer). Assume that (p,0) € €([0,T], H*' (R%)x
[H*(RY)]) solves

Orp+V° - ((o+np)a) = Err,
(65)
Orta+ g'(0)V°p +na-Vou+ng"(0)pV°p = 2K (0)V°[02 + 6°A,,]p + Errg,

20



where (Err;, Errg) € L=([0,T), H* (R x[H*(RH)]%). Let us denote (p,0) € €([0,T], H*+' (R?) x
[H*(RY)]?) a solution of (Bes,) with (p,0)(0) as initial condition. Assume that M > 0 is
such that for any 0 < T < min(T,T), (p,0)(T) and (p,0)(T) € B.(2M). Then,

C(s,r,d, M)

17, 8,6V°5) = (p, 4,V p)] "

pe1 < [(Errs, Exra)l| poc (0,min(7 7)), ro-1) -

Proof. The difference (p, 1) o (p, 1) — (p, 1) satisfies the system

Orp+V° - (0 +np)a) +nV° - (pa) = —Err,

EK 1 R . . . R . . .

Ekasserole] (66) Oru+ ¢ (0)V°p +na- Vo +na - Vi +ng"(0)pV°p +ng"(0)pV°p
= ezK(g)V‘s[azl + (52Azl]/§ — Errg,

with null initial condition. Then, the complex vector field

. def . . . def K(Q) 5~ K(Q) 5«
9 o+ v, w & ,/ ey LV = ey | V4 O (e
9+?7p otnp otmp P (=)

is a solution, with zero initial datum, of
orz + nﬁ V024 i - Vz + in(Vz)w + in(Vz)w
+ bu(@ +np)W + — (bﬁ<Q +np) — bi(o+ np))

+ wvé(aﬁ(e + np)V5 -2) + iV’ ((az(0 + np) — az(0 +np)) V° - 2)

K
= —FErrg — ¢ (o) V‘SE
o+mnp

where

e aer P(9'(0) + (p — 0)g"(0))
Ii(p) K(Q) ) bﬂ(p) aﬁ(ﬂ) :

We see that in order to perform an H? estimate on z, we need Err; bound d in r}gg“.
The terms ni - V°z and in(V°zZ)W are easily estlmated in H5~!, using (A [), by

C(s, )|z e | V2|

-1 < C(s, d, M)n|z|

Hs—1.
For the term e *(by(0 + np) — bs(0 + np))W, we write that its H*~! norm is

< C(s,d,m)ne | pll -1 | W] o1 |V pll s—1 < C(s, dyr, M)n||p|| s -

gs—1 < C(s,d,r, M)e||p|

The H*~! norm of the term ieV° ((as(0 + 1p) — az(0 +np)) V° - z) is

< C(s,d,r) (enllpllss +n|l=V7p) me < C(s,dr, M)l (p,eV°p)|

e ) IV 2

Hs—1.

o1



Therefore, z is a solution of
. L N U . y
Ort + - V24 in(V'a)W + ~by(o + np)W + iV (ag(0 +np)V° - 2) = G,

with zero initial datum and where

G+ < €. . M) ([[(Brxa, eV Brxy) ecs +ll (5. £9°8) 1)
Letting
s—1
B! \(p2) S Eip.z),
o=0
where

b oy def o! 1, . RPN NPV
Eipz) < ) ol foa32° (9+77,0)<(@+77p)|5 z|* + (¢'(0) + ¢"(0)np) (0 p)z) dz,
aeNg, '
o] =0

diamants ~
and arguing as in the proof of Theorem %, we arrive, for 0 < 7' < min(7',7T), at

d .
— 5,7) <
dTEsfl(p7 Z) ~

C(s,r,d, M)

|(Errp, Errg)||%e-s + C(s, 7, d, M)nE'_ (5, 2),

since Vz and Vp are uniformly bounded in L*°. Indeed, there is on Lone ]lace where we
have to pay attention to the extra terms in the first equation in (65), namely when we

compute
d 1

dT Jgpa 2

These extra terms are controled in the following way:

[9'(0) + npg" (0)]ag (040)(0%p)? dz .

/ 16/(0) + ndg” (0)]af (0 + np)0"p (0°Erey 4+ nd™V° - (51)) d-
Rd

<CO(s,r, M)\ Bi_y(p,2)||Exry|

+1 /Rd [9'(0) +npg"(0)lag (0 +np)d°p G- V°O* jdz

C d. M
<G M)y g Birg)
n

He=1 T 0(37 r, M)WE§—1(ﬁa Z)

2+ C(s,rd, MnE*_(p, 2)

‘tamecomm

with another use of (IA-3), Young inequality and integration by parts. This implies, by the
Gronwall lemma, the result. [
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Proof of Theorem T0. From (Eﬂoand the uniform bounds (p,0) € B.(2M) for any
0 < T < T./n, we infer that

((0rp+ V- ((0+np)0) =0

Ort+na - Voa+ ¢'(0)V°p +ng"(0)pV°p — 2K (0)V°[02 + 0°A.|p

\ =— <g’(g +np) — ¢'(0) — ng”(g)ﬁ) VP
. . &2 R .
+e2VO (K (o +np) — K(0))[62 +0°A., 1o+ S K (o +np)| Vol?)
\ = OLOO([O7T*/7]}7H573)<T]2 —+ 7’/82) and OLoo([07T*/n]7H572) (7’/2 + 775)

. . EKdetrousselle
The conclusion then follows from Proposition 6. TJ
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Appendix
Proposition A.1 e Fors >0, for all u,v € H*(R?),
(A1) [wollms < C(d, 8) ([l 0]l s + 0]l oo 1l 1) -

o Fors €N, if F '€ Wo>=([—r,r]) vanishes at zero, for all v € H*(R?) taking values in
[_T7 7"],

vameconp] (A.2) IE@le < O 5,7) [Flweoe orepy (1 + 0l 0
e For s> 0, for all u,v € H*(RY), for a € N¢ such that |a| < s,

tamecomm| (A.3) [0%(uv) — ud™v||2 < C(d, s)(||Vu|

w1 [0l e [ Vul[pe |[v] 1) -

This is also true when 0% is replaced by A® = (1 — A)*/2.
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