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Abstract

The purpose of this paper is to relate two notions of Sobolev and BV spaces into metric spaces,
due to N. Korevaar and R. Schoen on the one hand, and J. Jost on the other hand. We prove
that these two notions coincide and define the same p-energies. We review also other definitions,
due to L. Ambrosio (for BV maps into metric spaces), Y.G. Reshetnyak and finally to the notion
of Newtonian-Sobolev spaces. These last approaches define the same Sobolev (or BV) spaces,
but with a different energy, which does not extend the standard Dirichlet energy. We also prove
a characterization of Sobolev spaces in the spirit of J. Bourgain, H. Brezis and P. Mironescu in
terms of “limit” of the space W s,p as s → 1, 0 < s < 1, and finally following the approach

proposed by H.M. Nguyen. We also establish the W s−
1

p
,p regularity of traces of maps in W s,p

(0 < s ≤ 1 < sp).
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1 Introduction

The aim of this paper is to relate various definitions of Sobolev and BV spaces into metric spaces.
The first one is due to N. Korevaar and R. Schoen (see [12]), which follows the pioneering work of
M. Gromov and R. Schoen [9]. The second one is the approach of J. Jost ([11]). We will next focus
on other approaches. For the domain, we restrict ourselves to an open bounded and smooth subset
Ω of R

N , N ∈ N
∗. Many results extend straightforwardly when Ω is a smooth riemannian manifold.

Extensions are also possible when Ω is a measured metric space (see [11], [20], [10]). However, we do
not aim such a generality. For the target space, we will work with a complete metric space (X, d).

First, we recall the definition of Lp(Ω, X), for 1 ≤ p ≤ ∞. A measurable map with separable
essential range u : Ω → X is said to be in Lp(Ω, X) if there exists z ∈ X such that d(u(·), z) ∈
Lp(Ω, R). If Ω is bounded (and more generally if |Ω| < ∞), then the point z is not relevant: if
u ∈ Lp(Ω, X), then for any z ∈ X, d(u(.), z) ∈ Lp(Ω, R). The space Lp(Ω, X) is complete for the
distance

dLp(u, v) ≡
(

∫

Ω
d(u(x), v(x))p dx

)
1

p
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if 1 ≤ p < ∞ and for p = ∞, is complete for the distance

dL∞(u, v) ≡ supessx∈Ωd(u(x), v(x)).

We recall the definitions of Sobolev spaces W 1,p(Ω, X), 1 < p < ∞ and BV (Ω, X) spaces proposed
by these authors. These spaces naturally appeared in the theory of harmonic functions with values
into spaces coming from complex group actions, or into infinite dimensional spaces. This is the reason
why [12] developped in the context of metric spaces targets the well-known theory of Sobolev maps:
compact embeddings, Poincaré inequality, traces, regularity results for minimizing maps for non-
positively curved metric spaces (even though X is only a metric space, the notion of “non-positively
curved metric space” does make sense, and we refer to [12] for instance for the definition)... Since
we allow the target space X to be singular, one can not reasonably define Sobolev spaces of higher
order. Our interest for these spaces was motivated by the study of topological defects in ordered
media, such as liquid crystal, where an energy of the type Dirichlet integral plus a potential term
appears naturally for maps with values into cones (see [6]). It is then important that this Sobolev
theory extends naturally the usual Dirichlet integral.

1.1 Definition of W 1,p(Ω, X) and BV (Ω, X).

Let 1 ≤ p < ∞. We recall in this subsection the definition of Sobolev spaces of N. Korevaar and
R. Schoen given in [12], naturally based on limits of finite differences in Lp. For ε > 0, we set

Ωε ≡ {x ∈ Ω, d(x, ∂Ω) > ε}.

For u ∈ Lp(Ω, X) and ε > 0, we introduce1

eε(u)(x) ≡















1

|SN−1|

∫

Sε(x)

d(u(x), u(y))p

εN+p−1
dHN−1(y) if x ∈ Ωε,

0 otherwise.

Here, SR(x) is the sphere in Ω of center x and radius R > 0. For u ∈ Lp(Ω, X), eε(u) has a meanning
as an L1(Ω, R) function. We then consider the linear functional Eu

ε on Cc(Ω) defined for f ∈ Cc(Ω)
by

Eu
ε (f) ≡

∫

Ω
f(x)eε(u)(x) dx.

Next, we set

Ep(u) ≡ sup
f∈Cc(Ω), 0≤f≤1

(

lim sup
ε→0

Eu
ε (f)

)

∈ R+ ∪ {∞}.

Definition 1 ([12]) Let 1 ≤ p < ∞. A map u ∈ Lp(Ω, X) is said to be in W 1,p(Ω, X) for 1 < p < ∞
or in BV (Ω, X) for p = 1 if and only if Ep(u) < ∞.

We summarize now some of the main properties of the spaces W 1,p(Ω, X) and BV (Ω, X), which
come from the theory developped in [12] (section 1 there).

1Notice that we have chosen to divide the original density measure eε(u) of [12] by the factor |SN−1| so that all
approximate derivatives are based on averages.
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Proposition 1 ([12]) Let 1 ≤ p < ∞. Then, for every u ∈ Lp(Ω, X) such that Ep(u) < ∞, there
exists a non-negative Radon measure |∇u|p in Ω such that

eε(u) ⇀ |∇u|p

weakly as measures as ε → 0 (hence Ep(u) = |∇u|p(Ω)). Moreover, if 1 < p < ∞,

|∇u|p ∈ L1(Ω, R+).

Remark 1 We lay the emphasis on the fact that the weak convergence of eε(u) to |∇u|p as ε → 0
holds for the real parameter ε → 0 and not for a sequence εn → 0. This is due to a “monotonicity”
property (see Lemma 5 below).

The last statement in Proposition 1 is valid only for p > 1, which motivates the definition of the
space W 1,1(Ω, X).

Definition 2 ([12]) We define W 1,1(Ω, X) ≡ {u ∈ BV (Ω, X), |∇u|1 ∈ L1(Ω, R+)}.

Let us define for 1 ≤ p < ∞, the constants 0 < Kp,N ≤ 1 by

Kp,N ≡ 1

|SN−1|

∫

SN−1

|ω · ~e|p dHN−1(ω), (1)

~e denoting any unit vector in R
N . Definitions 1 and 2 extend the classical Sobolev spaces W 1,p(Ω, R)

and BV (Ω, R).

Theorem 1 ([12]) Assume X = R is endowed with the standard distance. Then, for 1 ≤ p < ∞,

W 1,p(Ω, X) = W 1,p(Ω, R) and BV (Ω, X) = BV (Ω, R).

Moreover, if u ∈ W 1,p(Ω, R) for 1 ≤ p < ∞ or u ∈ BV (Ω, R), then

Ep(u) = Kp,N

∫

Ω
|∇u|p or E1(u) = K1,N |∇u|(Ω),

Remark 2 If p = 2 and X = R
n (euclidean), n ∈ N

∗ arbitrary, then, by Theorem 1, we have

E2(u) = K2,N

∫

Ω
|∇u|2,

hence E2 coincides, up to a constant factor K2,N with the usual Dirichlet energy. This remains true
if X is a smooth complete riemannian manifold. However, for X = R

n but p 6= 2, |∇u|p or |∇u|1 (in
the sense of measures) may not be equal (even up to a constant factor) to the standard quantities
|∇u|p or |∇u| (in the sense of measures).

The second result is the lower-semicontinuity of Ep for the Lp(Ω, X) topology.

Theorem 2 ([12]) Let 1 ≤ p < ∞. Then, the p-energy is lower semicontinuous for the strong
Lp(Ω, X) topology. In other words, if un → u in Lp(Ω, X) as n → +∞, then

Ep(u) ≤ lim inf
n→+∞

Ep(un) ∈ R+ ∪ {+∞}.
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1.2 Alternative definition (J. Jost)

We recall now the alternate definition proposed by J. Jost ([11]). We mention that this work
considers a metric measured space as a domain instead of an open subset of R

N or a riemannian
manifold as in [12]. We will however not consider this general setting. Let, for x ∈ R

N and ε > 0,

µε
x(y) ≡ dy Bε(x), (2)

and consider the functionals for 1 ≤ p < ∞

Jp
ε (u) ≡

∫

Ω

∫

Ω d(u(x), u(y))p dµε
x(y)

∫

Ω |x − y|p dµε
x(y)

dx.

Note that the initial point of view of J. Jost was to deal with harmonic maps, and thus he only
considered the case p = 2. The definition relies on Γ-convergence (see [7]), and is as follows. First,
we define Jp : Lp(Ω, X) → R+ ∪ {∞} to be the Γ-limit of J p

ε as ε → 0, or for a subsequence εn → 0
as n → +∞, for the Lp(Ω, X) topology. We recall that this means that for any sequence uε → u as
ε → 0 (or un → u as n → +∞) in Lp(Ω, X),

lim inf
ε→0

Jp
ε (uε) ≥ Jp(u)

(

or lim inf
n→+∞

Jp
εn

(un) ≥ Jp(u)
)

,

and there exists a sequence uε → u as ε → 0 (or un → u as n → +∞) in Lp(Ω, X) such that

lim
ε→0

Jp
ε (uε) = Jp(u)

(

or lim
n→+∞

Jp
εn

(un) = Jp(u)
)

.

The existence of this Γ-limit for some subsequence εn → 0 as n → +∞ is guaranteed if Lp(Ω, X)
satisfies the second axiom of countability (see [7]).

Definition 3 ([11]) Let be given 1 ≤ p < ∞ and u ∈ Lp(Ω, X). Then, u is said to be in W1,p(Ω, X)
for 1 < p < ∞ or in BV(Ω, X) for p = 1 if and only if

Jp(u) < ∞.

We denote for the moment W1,p(Ω, X) and BV(Ω, X) since we do not know yet that these spaces
are actually W 1,p(Ω, X) and BV (Ω, X). Notice that the approach of J. Jost does not allow to define
directly W 1,1(Ω, X).

Let us point out that the notion of Γ-convergence is in general stated for a countable sequence
εn → 0, and not for a real parameter ε → 0. One main problem with Definition 3 is that we do
not know at this stage if the Γ-limit has to be taken for the full family ε → 0, or for a subsequence
εn → 0. In particular, it is not shown in [11] that the functional J does not depend on the choice
of the subsequence εn → 0. This will be however a consequence of our result, and in fact that the
Γ-convergence holds for the full family ε → 0.

Theorem 3 Let 1 ≤ p < ∞. As ε → 0 (resp. for any sequence εn → 0 as n → +∞), the functional
Ep is the pointwise and the Γ-limit, in the Lp(Ω, X) topology, of the functionals J p

ε (resp. Jp
εn). The

functional Jp is now well-defined and
Jp = Ep.

In particular, for 1 < p < ∞,

W 1,p(Ω, X) = W1,p(Ω, X) and BV (Ω, X) = BV(Ω, X).
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This theorem clarifies the notion of W 1,p(Ω, X) (for 1 < p < ∞) and BV (Ω, X) (for p = 1) of J.
Jost: Jp does not depend on the choice of some subsequence.

Although natural, we have not been able to find in the literature a result concerning the fact
that these two definitions coincide. If the definition of J. Jost allows to derive existence results more
general than in [12] for harmonic maps into homotopy classes in non-positively curved metric spaces,
[12] gives regularity results (namely lipschitzian). Fortunately, these two notions coincide for the
Sobolev space H1(Ω, X) ≡ W 1,2(Ω, X), with the same energy thus, one can apply, for harmonic maps,
the existence results of [11] and the regularity results in [12]. Notice however that [13] establishes
existence results similar to those of [11] in a slightly different context.

Our second result concerns the pointwise and Γ-limit of the functional Eε : Lp(Ω, R) → R
+,

defined as

Eε(u) ≡
∫

Ω
ee(u)(x) dx = Eu

ε (1) = sup
f∈Cc(Ω), 0≤f≤1

Eu
ε (f),

as ε → 0 in the Lp(Ω, X) topology.

Proposition 2 Let 1 ≤ p < ∞ and εn be a positive sequence, εn → 0 as n → +∞. Then, the
functional Ep is the pointwise and the Γ-limit for the Lp(Ω, X)-topology of the functionals Eε (resp.
Eεn) as ε → 0 (resp. n → +∞).

We turn now to other approaches to the definition of Sobolev spaces into metric spaces, based on
a characterization through post-composition with lipschitz maps.

1.3 Characterizations of Sobolev and BV maps by post-composition

In this Section, we are interested in characterizations of BV and Sobolev maps with values in X
by composition with 1-lipschitzian maps ϕ : X → R.

1.3.1 BV maps into metric spaces

In [1], L. Ambrosio has proposed another approach to define the space BV (Ω, X) when X is
a locally compact and separable metric space. First, let us define for u ∈ L1(Ω, X) the measure (of
possibly infinite mass) |Du| on Ω to be the least measure such that for every borelian set B ⊂ Ω and
every 1-lipschitzian map ϕ : X → R,

|ϕ ◦ u|BV (Ω,R)(B) ≤ |Du|(B).

Here, |ϕ ◦ u|BV (Ω,R) is the usual measure in the BV sense. From [1], such a measure exists.

Definition 4 ([1]) We define BV(Ω, X) ≡ {u ∈ L1(Ω, X), |Du|(Ω) < ∞}.

Here, we do not know at this stage that BV(Ω, X) = BV (Ω, X) in the sense of Definition 1, which
justifies that we denote BV(Ω, X) this space to avoid confusions.

Proposition 3 Assume X is locally compact and separable. Then,

BV(Ω, X) = BV (Ω, X).

Moreover, for u ∈ BV (Ω, X), we have in the sense of measures

K1,N |Du| ≤ |∇u|1 ≤ |Du|.
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Remark 3 In the case N = 1 (since then K1,N = 1) or X = R, then E1(u) = |∇u|(Ω) and the two
BV energies are equal. However, in general, the two constants K1,N and 1 are optimal in the sense
that for X the euclidean space R

N and with v1, v2 : Ω → R
N defined by v1(x) ≡ (x1, 0, ..., 0) and

v2(x) ≡ x, then

K1,N |Dv1| = K1,N dx = |∇v1|1 > 0 and |∇v2|1 = dx = |Dv2| > 0.

Therefore, the two BV energies are only equivalent and not equal up to a constant factor even in the
usual euclidean (vectorial) case: the minimizers of |Du|(Ω) or E1(u) (in some subset of BV (Ω, X))
may then be different. To overcome this difficulty, when X has dimension n, we should choose maps
ϕ with values into R

n instead of R.

L. Ambrosio has developped in this framework the well-known results concerning BV maps, in
particular the definition of the regular part of the measure |Du|, the definition of the jump set of of
a BV map as a rectifiable set of locally finite HN−1 measure and the notion of approximate limit
along the orthogonal direction to this jump set. By Proposition 3, one can use equivalently any of
these two definitions, when X is locally compact and separable.

1.3.2 Reshetnyak’s characterization of Sobolev spaces

In [19], Y.G. Reshetnyak proposed a similar approach to define the Sobolev maps for a metric
space target. Let 1 ≤ p < ∞ and u ∈ Lp(Ω, X). Set

R(u) ≡ inf

{

||w||pLp(Ω,R), ∀z ∈ X, |∇(d(u(·), z))| ≤ w a.e. in Ω

}

∈ R+ ∪ {∞}.

Definition 5 ([19]) Let 1 ≤ p < ∞ be given. The Reshetnyak-Sobolev space is defined to be the set
R1,p(Ω, X) ≡ {u ∈ Lp(Ω, X), R(u) < ∞}.

Paralleling the proof of Proposition 3, we have the following result (see also [10] for a similar
result when X is a Banach space).

Proposition 4 Let 1 ≤ p < ∞. Then, we have

R1,p(Ω, X) = W 1,p(Ω, X).

Morever, for u ∈ W 1,p(Ω, X), we have

Kp,NR(u) ≤ Ep(u) ≤ R(u).

Remark 4 When X is locally compact and separable, we could also have defined the Reshetnyak-
Sobolev space as the set of maps u ∈ BV(Ω, X) in the sense of L. Ambrosio such that the measure
|Du| belongs to Lp(Ω, R), with p-energy || |Du| ||pLp(Ω). This gives, in this case, the existence of a

minimizer w for R(u) for any 1 ≤ p < ∞ (this is not obvious for p = 1).

Remark 5 As in Remark 3, if N = 1 or X = R, then Ep = R. Moreover, the constants Kp,N and 1
are optimal (consider the maps v1, v2 : Ω → R

N defined in Remark 3). Therefore, if we are interested
in the minimization of the Dirichlet energy into a riemannian manifold with singularities, then R
does not extend the standard Dirichlet integral (up to a constant factor).
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1.4 Link with the Newtonian-Sobolev and Cheeger-Sobolev spaces

The paper [10] generalizes a definition of Sobolev spaces introduced in [20] as Newtonian-Sobolev
spaces, for an arbitrary metric space as target space.

Definition 6 ([10]) Let 1 ≤ p < ∞ be given and u ∈ Lp(Ω, X). Then, u is said to be in the
Newtonian-Sobolev space N 1,p(Ω, X) if there exist ρ, w ∈ Lp(Ω, R) such that for any 1-lipschitzian
curve γ : [0, `] → Ω,

d(u ◦ γ(`), u ◦ γ(0)) ≤
∫ `

0
ρ ◦ γ or

∫ `

0
w ◦ γ = ∞.

The Newtonian p-energy of u is then the infimum of ||ρ||pLp(Ω) for all the possible ρ’s:

N(u) ≡ inf
ρ

∫

Ω
ρp.

The maps ρ are called upper gradients for u. Theorem 3.17 in [10] establishes that the Newtonian-
Sobolev energy is the same as the Reshetnyak-Sobolev energy. In particular, for p = 2, this energy
R(u) is not equal to the standard Dirichlet energy

∫

Ω |∇u|2 dx (up to a constant factor).

Proposition 5 ([10]) Let 1 ≤ p < ∞. Then, in Lp(Ω, X), we have R = N . In particular,

N 1,p(Ω, X) = R1,p(Ω, X) = W 1,p(Ω, X).

We emphasize that neither [19] nor [10] (extending [20]) allow to define the space BV (Ω, X).
Moreover, neither compactness result (as Theorem 1.13 in [12], when X is locally compact) nor
lower-semicontinuity (see Theorem 2) result for the energy are given. In fact, R = N is not lower
semi-continuous for p = 1 and for the L1(Ω, X) topology.

Finally, [16] extends the notion of Cheeger type Sobolev spaces (see [5]) to a metric space target.
Let 1 ≤ p < ∞ be given and u ∈ Lp(Ω, X). We set

H(u) ≡ inf

{

lim inf
j→+∞

∫

Ω
gp
j

}

∈ R+ ∪ {∞},

where the infimum is computed over all sequences (uj) ∈ Lp(Ω, X) and (gj) ∈ Lp(Ω, R) such that
uj → u in Lp(Ω, X) as j → +∞ and for any j ∈ N and any 1-lipschitzian curve γ : [0, `] → Ω,

d(uj ◦ γ(`), uj ◦ γ(0)) ≤
∫ `

0
gj ◦ γ. (3)

Definition 7 ([16]) Let 1 ≤ p < ∞. The Cheeger type Sobolev space is defined to be the set
H1,p(Ω, X) ≡ {u ∈ Lp(Ω, X),H(u) < ∞}.

Remark 6 We would like to emphasize the role played by the target space for all these definitions
of Sobolev and BV maps. Let (X̄, d̄) be a complete metric space and let X be a closed subset of X̄
endowed with the induced distance, so that X is also a complete metric space. Then, if we view u as
a map ū in Lp(Ω, X̄) instead of Lp(Ω, X) the quantities Ep(u), Jp(u), |Du|(Ω), R(u), and N(u) do
not change2. However, it is not clear whether H(u) = H(ū) or not since the computation of H(ū)
uses sequences (uj) X̄-valued instead of X-valued. In view of Proposition 6 below, we have at least
H(u) ≤ C0H(ū), for some constant C0 ≥ 1, when X is a length space.

2This follows from the definitions. For |Du|, we use the well-known fact that any 1-lipschitzian map ϕ : X → R can
be extended in a 1-lipschitzian map ϕ̄ : X̄ → R, for instance by the formula ϕ̄(x) ≡ supξ∈X(ϕ(ξ) − d(x, ξ)).
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Actually, Proposition 5 is a direct consequence of Remark 6 and Theorem 3.17 in [10], using
an embedding of X into `∞(X). In the statement of the following Proposition, we will need the
definition of a length space.

Definition 8 Let (X, d) be a complete metric space. Then, (X, d) is said to be a length space if, for
every points x, y ∈ X, there exists a 1-lipschitzian map γ : [0, d(x, y)] → X such that γ(0) = x and
γ(d(x, y)) = y.

The result in the next Proposition is already known for 1 < p < ∞ and X a Banach space in [20]
(Theorem 2.3.2.). However, for sake of completeness and in view of Remark 6, we have included a
proof here when X is an arbitrary metric space. Furthermore, the following Proposition takes into
account the case p = 1 when X is a length space.

Proposition 6 Assume 1 < p < ∞. Then, in Lp(Ω, X), we have H = N = R. In particular,

H1,p(Ω, X) = N 1,p(Ω, X) = R1,p(Ω, X) = W 1,p(Ω, X).

Assume p = 1 and, moreover, that X is a length space. Then H 1,1(Ω, X) = BV (Ω, X), and there
exists a constant C = C(Ω, N) ≥ 1 such that for every u ∈ BV (Ω, X),

K1,NE1(u) ≤ H(u) ≤ C(Ω, N)E1(u).

Remark 7 We emphasize that for p = 1, the result may be false if X is not a length space. Indeed
(see [16]), if X = {0, 1} ⊂ R, then u : (−1, 1) → X defined by u(x) = 1 if x > 0 and 0 if x ≤ 0
belongs to BV ((−1, 1), R) = H1,1((−1, 1), R) (by Proposition 6) but not to H1,1((−1, 1), X), since
X is not path-connected (see also Remark 6).

Remark 8 Actually, the 1-energy in the space H1,1(Ω, X) is “close” to the BV energy in the sense
of L. Ambrosio (see Lemma 8 in section 2.7).

1.5 Other characterizations of Sobolev spaces

In [2], J. Bourgain, H. Brezis and P. Mironescu have introduced a new characterization of
the usual Sobolev spaces W 1,p(Ω, R) of real-valued maps, viewed as the limit of the spaces W s,p,
0 < s < 1, as s → 1. This does not require a notion of gradient, and is very close to the two previous
definitions ([12] and [11]). We generalize in the following Theorem the results of [2] and [8] in the
case of a metric space target.

We consider a family of radial mollifiers (ρε)ε>0 (or a sequence (ρn)). We recall that this means
that ρε is in L1(RN ), radial, ρε ≥ 0,

∫

RN ρε = 1 and for all δ > 0,
∫

|x|>δ
ρε(x) dx → 0 as ε → 0.

Then, given 1 ≤ p < ∞, we define, for u ∈ Lp(Ω, X),

Fε(u) ≡
∫

Ω

∫

Ω

dp(u(x), u(y))

|x − y|p ρε(x − y) dxdy ∈ R+.

Theorem 4 Let 1 ≤ p < ∞ and (εn) be any positive sequence, εn → 0 as n → +∞. Then, for every
u ∈ Lp(Ω, X), limε→0 Fε(u) and limn→+∞ Fεn(u) exist in R+ ∪ {+∞} and

lim
ε→0

Fε(u) = lim
ε→0

∫

Ω

∫

Ω

dp(u(x), u(y))

|x − y|p ρε(|x − y|) dxdy = lim
n→+∞

Fεn(u) = Ep(u).

Moreover, the functionals (Fε) (and (Fεn)) Γ-converge as ε → 0 (and as n → +∞), in the Lp(Ω, X)
topology, to Ep.
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Theorem 4 combined with Theorem 1 extend the results of [2] and [8] which correspond to the
case of real-valued maps. Indeed, from [2] and [8], given 1 ≤ p < ∞ and f ∈ Lp(Ω, R), then

lim inf
n→+∞

∫

Ω

∫

Ω

|f(x) − f(y)|p
|x − y|p ρn(|x − y|) dxdy = Kp,N

∫

Ω
|∇f |p dx ∈ R+ ∪ {∞}. (4)

The quantity (4) is ∞ if f 6∈ W 1,p(Ω, R) (if 1 < p < ∞) or f 6∈ BV (Ω, R) (if p = 1). Moreover,
the right-hand of (4) has to be understood as the mass of the measure |∇u| in the BV case. This
approach defines the same p-energy as [12] (thus extends the classical Dirichlet energy), but does not
allow to define W 1,1(Ω, X).

Remark 9 Theorem 4 emphasizes that the result of J. Bourgain, H. Brezis and P. Mironescu (and
also J. Dávila) does not require a linear structure, neither usual Sobolev tools, such that density of
smooth functions or integration by parts.

Remark 10 It is a natural question to wonder what may occur if one chooses non-radial functions
ρn. The problem is that in the non-radial case, there can be privileged directions for ρn, for instance,

in R
2, ρn can be the characteristic function of the thin rectangle in the x1 direction

[

− 1
n , 1

n

]

×
[

1
n2 , 1

n2

]

suitably normalized, and then we have

lim inf
n→+∞

∫

R2

∫

R2

|f(x) − f(y)|p
|x − y|p ρn(|x − y|) dxdy =

∫

R2

∣

∣

∣

∂f

∂x1

∣

∣

∣

p
dx.

However, for ρn’s which do not privilege any direction, A. C. Ponce (see [17]) proves the existence
of a non-negative measure µ on the sphere such that the results of [2] still hold with the right-hand
side of (4) replaced by

∫

Ω

∫

SN−1

∣

∣ω · ∇f
∣

∣

p
dµ(ω)dx.

Therefore, it is reasonable to take radial distributions of masses to define W 1,p(Ω, X) and BV (Ω, X).

Remark 11 Finally, we mention that if N ≥ 2, then A.C. Ponce in [18] (theorem 1.2) showed that
for a family uε ∈ Lp(Ω, R) (or for a sequence εn → 0), the inequality

lim inf
ε→0

Fε(uε) < ∞

yields precompactness in Lp(Ω, R) for (uε) as ε → 0 (if Ω is bounded). This result is false if N = 1
(see [2], counterexample 1). It is plausible that these result extend to the case where R is replaced
by a complete metric space X, at least locally compact.

We conclude this section with a generalization of the paper [15] of H-M. Nguyen. This arti-
cle gives a generalization of the previous work [14] of H-M. Nguyen and the paper of J. Bourgain
and H-M. Nguyen [3]. For this approach, we consider a sequence of functions gn : R+ → R+ such that:

(a) for every n ∈ N, gn is non-decreasing;

(b) supn∈N

∫ +∞

0

gn(t)

tp+1
dt < ∞ and for every n ∈ N,

∫ 1

0

gn(t)

tp+1
dt = 1;

(c) (gn)n∈N converges locally uniformly in (0,+∞) to 0.

9



Define then for n ∈ N and u ∈ Lp(Ω, X) (comparing with the quantity used in [15], we have just
introduced the factor 1

|SN−1|
)

Gn(u) ≡ 1

|SN−1|

∫ ∫

Ω×Ω

gn(d(u(x), u(y)))

|x − y|N+p
dxdy.

Theorem 5 Let 1 < p < ∞, and (gn) be a sequence verifying (a), (b) and (c). Then, for every
u ∈ Lp(Ω, X), limn→+∞ Gn(u) exists in R+ ∪ {+∞} and

lim
n→+∞

Gn(u) = Ep(u).

The key point in the proof of Theorem 5 is the generalization of the result by J. Bourgain and
H-M. Nguyen in [3] (Lemma 1) given in theorem 4 in [15].

Remark 12 The above theorem remains true when we replace the sequence gn by a familly gδ,
0 < δ < 1 satisfying the corresponding hypothesis to (a), (b) and (c). It would be interesting to know
whether the functionals Gn Γ-converge as n → +∞, in the Lp(Ω, X) topology, to Ep. When X = R,
see the partial result Theorem 5 in [15].

Remark 13 As shown by an example due to A. Ponce, these results do not hold for p = 1. Namely,
there exists a map f ∈ W 1,1(0, 1), R) such that Gδ(f) → +∞ as δ → 0, with gδ(t) = pδpχt≥δ.
However, the inequality E1(u) ≤ lim infn→+∞ Gn(u) for u ∈ L1(Ω, X) remains true.

1.6 Metric topology for W 1,p(Ω, X) and BV (Ω, X)

It is a natural question to wonder whether the spaces W 1,p(Ω, X), 1 ≤ p < ∞, and BV (Ω, X)
can be endowed with a metric topology. Actually, one may propose (at least) two distances on these
spaces. Then, we define:

D1
p(u, v) ≡ dLp(Ω,X)(u, v) +

∣

∣

∣
Ep(u)

1

p − Ep(v)
1

p

∣

∣

∣
if Ep(u) + Ep(v) < ∞,

D2
W 1,p(u, v) ≡ dLp(Ω,X)(u, v) +

∣

∣

∣

∣

∣

∣
|∇u|

1

p
p − |∇v|

1

p
p

∣

∣

∣

∣

∣

∣

Lp(Ω,R)
if u, v ∈ W 1,p(Ω, R), 1 ≤ p < ∞

and
D2

BV (u, v) ≡ dL1(Ω,X)(u, v) +
∣

∣

∣

∣

∣

∣
|∇u|1 − |∇v|1

∣

∣

∣

∣

∣

∣

[C0(Ω,R)]∗
if u, v ∈ BV (Ω, R).

Note that these quantities are well-defined on the spaces W 1,p(Ω, X) for 1 ≤ p < ∞, and on the
space BV (Ω, X). Moreover, it is easily checked that they define distances on these spaces.

The first natural question is to ask if D1
p, D2

W 1,p and D2
BV induce, for X = R, the same topology

as the classical one on W 1,p(Ω, R) and BV (Ω, R), induced by the norm

||f ||W 1,p ≡ ||f ||Lp(Ω,R) + ||∇f ||Lp(Ω,R) if f ∈ W 1,p(Ω, R), 1 ≤ p < ∞,

||f ||BV ≡ ||f ||L1(Ω,R) + ||∇f ||[C0(Ω,R)]∗ if f ∈ BV (Ω, R).

Given u, v ∈ W 1,p(Ω, R) or BV (Ω, R), there holds (by Theorem 1 and note that Kp,N ≤ 1)

D1
p(u, v) ≤ D2

W 1,p(u, v) ≤ ||u − v||W 1,p and D1
1(u, v) ≤ D2

BV (u, v) ≤ ||u − v||BV . (5)
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Lemma 1 Assume X = R. If 1 < p < ∞, then D1
p and D2

W 1,p induce the same topology as the
classical one on W 1,p(Ω, R).

Proof. Assume first 1 < p < ∞. If un → u in W 1,p(Ω, R) in the topology of the norm, then (5)
implies that D1

p(un, u) → 0 and D2
W 1,p(un, u) → 0. Assume then that D1

p(un, u) → 0 as n → +∞.

Then, un → u in Lp(Ω, R) and (∇un) is bounded in Lp(Ω, RN ), hence (1 < p < ∞) ∇un ⇀ ∇u in
Lp(Ω, RN ). Furthermore, since D1

p(un, u) → 0 and using Theorem 1,

Kp,N

∫

Ω
|∇un|p dx = Ep(un) → Ep(u) = Kp,N

∫

Ω
|∇u|p dx,

thus by strict convexity of Lp(Ω, RN ) (since 1 < p < ∞), we have ∇un → ∇u in Lp(Ω, RN ), so that
||un − u||W 1,p → 0. �

We have nevertheless some negative results for these metrics.

Lemma 2 (i) The distance D1
1 does not induce the classical topology on W 1,1(Ω, R) and BV (Ω, R).

(ii) For 1 ≤ p < ∞, the space W 1,p((0, 1), R) (resp. BV ((0, 1), R)), endowed with the metrics D1
p or

D2
W 1,p (resp. D1

1 or D2
BV ) is not complete.

Proof. We consider the sequence vn : (0, 1) → R defined in the following way. Let, for 0 ≤ k < n,
I+
k ≡ [ k

n , k
n + 1

2n [, and I−k ≡ [ k
n + 1

2n , k
n + 1

n [. Then, let, for 0 ≤ k < n, vn(x) ≡ x − k
n if x ∈ I+

k and

vn(x) ≡ k+1
n − x if x ∈ I−k . The map vn is Lipschitz continuous, and we have (χ is the characteristic

function)

||vn||L∞((0,1)) =
1

2n
, v′n =

n−1
∑

k=0

χ
I+

k
− χ

I−k
.

As a consequence, vn → 0 in L∞((0, 1)) as n → +∞, but |v′n| = 1 a.e. in (0, 1). Therefore, (vn) is
not convergent in BV ((0, 1), R), but (vn) is a Cauchy sequence for D1

p, D2
W 1,p and D2

BV . This proves
(ii). Consider now un(x) ≡ x + vn(x) in (0, 1). We have then un → u(x) ≡ x in L1((0, 1), R) but
(un) does not converge in BV ((0, 1), R). However, we have |u′

n(x)| = 1 + v′n(x) (since v′n = ±1 a.e.)
and |u′(x)| = 1, hence E1(un) =

∫ 1
0 1 + v′n(x) dx = 1 and E1(u) = 1, so that, as n → +∞,

D1
1(un, u) = ||un − u||L1 = ||vn||L1 → 0.

Hence D1
1(un, u) → 0 but ||un − u||BV = ||un − u||W 1,1 = ||v′n||L1 = 1 6→ 0. This proves (i). �

1.7 The trace problem

In [12] (Section 1.12), the trace of a map in W 1,p(Ω, X) is defined, namely, for 1 ≤ p < ∞ and a
smooth Ω ⊂ R

N , there exists a map

tr : W 1,p(Ω, X) → Lp(∂Ω, X)

such that tr(u) = u|∂Ω for u ∈ W 1,p(Ω, X) ∩ C(Ω̄, X). Moreover, for 1 < p < ∞, the map tr is
“continuous” in the sense that if un ∈ W 1,p(Ω, X) is such that (Ep(un))n∈N is bounded and

un → u in Lp(Ω, X),

then tr(un) → tr(u) in Lp(∂Ω, X). In view of (5), this implies that the trace map is continuous from
W 1,p(Ω, X) endowed with the distances D1 or D2 into Lp(Ω, X), 1 < p < ∞. We complete this
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notion of trace by proving the W
1− 1

p
,p

regularity of the trace. First, given a compact submanifold
M of R

N of dimension M (such as Ω̄ or ∂Ω), we define, for 0 < s < 1 and 1 ≤ p < ∞,

W s,p(M, X) ≡
{

u ∈ Lp(M, X), |u|pW s,p(M,X) ≡
∫

M×M

d(u(x), u(y))p

|x − y|sp+M
dxdy < ∞

}

.

Proposition 7 Let 1 ≤ p < ∞ and 0 < s ≤ 1 such that sp > 1 or s = 1. Then the trace map

tr : W s,p(Ω, X) → Lp(∂Ω, X) is well-defined and has values into W
s− 1

p
,p
(∂Ω, X). Moreover, there

exists C, depending on Ω, s and p such that for every ξ ∈ X,

|tr(u)|
W

s− 1
p ,p

(∂Ω,X)
≤ C(|d(u, ξ)|Lp(Ω,R) + |u|W s,p(Ω,X)).

Similarly to W 1,p(Ω, X), we may endow W s,p(M, X) (0 < s < 1) with the distances defined by

D1
s,p(u, v) ≡ dLp(M,X)(u, v) +

∣

∣

∣
|u|W s,p − |v|W s,p

∣

∣

∣
,

D2
s,p(u, v) ≡ dLp(M,X)(u, v) +

∣

∣

∣

∣

∣

∣
d(u(x), u(y)) − d(v(x), v(y))

∣

∣

∣

∣

∣

∣

Lp
(

dxdy

|x−y|sp+M

).

The following Lemma summarizes the properties of these distances on W s,p.

Lemma 3 Assume 0 < s < 1.
(i) If X = R and 1 < p < ∞, D1

s,p and D2
s,p induce the usual topology on W s,p(Ω, R).

(ii) For 1 ≤ p < ∞, the space W s,p((−1, 1), R) endowed with the metric D1
s,p is not complete.

(iii) If 1 ≤ p < ∞, W s,p(Ω, X) endowed with the metric D2
s,p is complete.

Proof. Assertion (i) follows as in Lemma 1 since, for 1 < p < ∞, W s,p(Ω, R) is uniformly convex. To
prove (ii), let w : R → R be defined by: w(x) ≡ 1− |x| if |x| ≤ 1, w(x) ≡ 0 otherwise. Consider then
wn : (−1, 1) → R defined by: wn(x) ≡ n−sw(nx). Then, ||wn||L1 = n−s → 0 as n → +∞. Moreover,
simple scaling yields |wn|W s,p = |w|W s,p = Cte > 0. Hence, (wn) is Cauchy for D1

s,p but does not con-
verge in W s,p((0, 1), R). Assertion (iv) is straightforward: if (un) is Cauchy for D2

s,p, then (un) and

(d(un(x),un(y))

|x−y|
s+M

p

) are Cauchy sequences in Lp(Ω, X) and Lp(Ω × Ω, R), hence converge. Thus, un → u

in Lp(Ω, X) and d(un(x),un(y))

|x−y|
s+M

p

→ g in Lp(Ω× Ω, R). Clearly, g = d(u(x),u(y))

|x−y|
s+M

p

, so D2
s,p(un, u) → 0. �

We have not investigated whether the trace map is continuous or not, from W s,p(Ω, X) into

W
s− 1

p
,p
(∂Ω, X) for the distances we have defined.

The plan of the paper is the following. Section 2 contains the detailed proofs of Proposition 2
(subsection 2.2) Proposition 3 (subsection 2.4), Proposition 4 (subsection 2.5), Proposition 6 (subsec-
tion 2.7). For the main results, Theorem 3 is proved in subsection 2.3, then Theorem 4 in subsection
2.8 and finally Theorem 5 in subsection 2.9. We conclude with the proof of Proposition 7 about
traces, given in Section 3.

2 Proofs of the main results

2.1 An extension Lemma

Here is a standard extension lemma for smooth domains (a lipschitz boundary is enough).
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Lemma 4 Let 1 ≤ p < ∞ and Ω ⊂ R
N be smooth. Then, there exists δ0 > 0, depending only

on the smoothness of ∂Ω, and C, depending on p and the smoothness of ∂Ω such that, for any
u ∈ W 1,p(Ω, X) or BV (Ω, X), there exists U ∈ W 1,p(Ωδ0 , X) or BV (Ωδ0 , X) such that

U = u in Ω and Ep(U) ≤ CEp(u).

Proof. The extension is done by standard reflection across the boundary. Hence, by standard
localization and using local charts, we may assume for simplicity that Ω is locally the half-plane
R

N
+ ≡ R

N−1 × R
∗
+. Then, we define U : R

N → X as U(x) ≡ u(x) if xN > 0 and if xN < 0,
U(x) ≡ u(x1, ..., xN−1,−xN ). It then follows directly that eε(U)(x) ≤ 2eε(u)(x), which establishes
the Lemma. �

2.2 Proof of Proposition 2

A useful fact we will need in the sequel is to allow other approximate derivative than eε(u), for
instance ball averages instead of sphere averages. Therefore, we consider as in [12]

νeε(u)(x) ≡
∫ +∞

0
eλε(u)(x) dν(λ),

where ν is a probability measure on (0,+∞), and we define νEε : Lp(Ω, X) → R
+ ∪ {+∞} by

νEε(u) =

∫

Ω
νeε(u)(x) dx.

Note that in [12], it is required that ν satisfies

Supp ν ⊂ (0, 2) and

∫ 2

0
λ−p dν(λ) < ∞. (6)

When ν = δ1, νEε(u) is simply the norm of the linear functional Eε(u) : Cc(Ω, R) → R. Therefore,
Proposition 2 is a particular case of Theorem 6 below when ν = δ1.

Theorem 6 Let 1 ≤ p < ∞ and ν be a probability measure on R
∗
+. Then, the functional Ep is

the pointwise and the Γ-limit for the Lp(Ω, X)-topology of the functionals νEε as ε → 0 (or for any
sequence εn → 0 as n → +∞). Moreover, the following inequality holds, for u ∈ Lp(Ω, X),

νE
p(u) ≤ C(Ω, p)Ep(u).

Proof. Let us first assume that u ∈ W 1,p(Ω, X) or BV (Ω, X). Using Lemma 4, we first extend u,
defined in Ω, in a map U defined in the δ0 neighborhood Ωδ0 of Ω. The energy of the extension is
finite and

Ep(U,Ωδ0) ≤ C(Ω, p)Ep(u).

Combining Theorem 1.8.1 and Lemma 1.9.1 in [12] about directional energies, we infer, for |h| < δ0
∫

Ω
dp(U(x + h), U(x)) dx ≤ C(Ω, p,N)|h|pEp(u). (7)

Therefore, using Fubini’s Theorem,

νEε(u) ≤ 1

|SN−1|

∫

Ω

∫ +∞

0

∫

Sλε(x)
dp(U(x), U(y))

dHN−1(y)

(λε)N+p−1
dν(λ) dx

=
1

|SN−1|

∫ +∞

0

∫

Sλε(0)

∫

Ω

(d(U(x + h), U(x))

|h|
)p

dx
dHN−1(h)

|h|N−1
dν(λ). (8)
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By (7), we then deduce

νEε(u) ≤ C(Ω, p)
Ep(u)

|SN−1|

∫ +∞

0

∫

Sλε(0)

dHN−1(h)

|h|N−1
dν(λ) = C(Ω, p)Ep(u),

which concludes the proof of the last assertion.

Proof of the liminf inequality. Let u, uε ∈ Lp(Ω, X) be such that uε → u in Lp(Ω, X) (the case
of a sequence is analogous). We wish to prove that

Ep(u) ≤ lim inf
ε→0

νEε(uε), (9)

and we may assume without loss of generality that the right-hand side is finite. There exists a
decreasing sequence εj → 0 such that

lim inf
ε→0

νEε(uε) = lim
j→+∞

νEεj
(uεj

) < ∞.

We argue as in Lemma 1.4.2 in [12], letting, for ε > 0, nj be the integer part of ε/εj . Therefore,
njεj → ε as j → +∞. Since uεj

→ u in Lp(Ω, X), then νenjεj
(uεj

) → νeε(u) pointwise almost
everywhere, thus by Fatou’s lemma,

νEε(u) =

∫

Ω
νeε(u) ≤ lim inf

j→+∞

∫

Ω
νenjεj

(uεj
) = lim inf

j→+∞
νEnjεj

(uεj
). (10)

We apply now the following Lemma, stating a result analogous to the fact that the approximate
length of a lipschitz curve with respect to a partition is increased if the partition is refined. This
Lemma comes from [12], Lemma 1.3.1, with the only change that we take f ≡ 1 (the proof clearly
works for this f).

Lemma 5 Assume ν is a probability measure on (0,+∞). Let 1 ≤ p < ∞, and u ∈ Lp(Ω, X). Then,
given n ∈ N

∗ and λi > 0, 1 ≤ i ≤ n such that
∑n

i=1 λi = 1, we have for every ε > 0

νEε(u)
1

p ≤
n

∑

i=1

λi

(

νEλiε(u)
)

1

p
.

Applying Lemma 5 with u = uεj
, n = nj, ε = njεj and λi = 1

nj
> 0 (thus

∑

λi = 1) we obtain

νEnjεj
(uεj

)
1

p ≤ νEεj
(uεj

)
1

p ≤ νEεj
(uεj

)
1

p .

Passing to the limit as j → +∞ and using (10), we infer

νEε(u) ≤ lim inf
j→+∞

νEnjεj
(uεj

) ≤ lim inf
j→+∞

νEεj
(uεj

) = lim inf
ε→0

νEε(uε).

As a consequence,
lim sup

ε→0
νEε(u) ≤ lim inf

ε→0
νEε(uε) < ∞,

and (9) follows.

Proof of the pointwise limit. Let u ∈ Lp(Ω, X). We wish to prove

lim
ε→0

νEε(u) = Ep(u) ∈ R
+ ∪ {+∞}.
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We know from (9) (with uε = u) that the equality is true if Ep(u) = +∞, hence we may assume
Ep(u) < +∞, and, still with (9) (and uε = u), it suffices to show

lim sup
ε→0

νEε(u) ≤ Ep(u) < +∞. (11)

First, by monotone convergence, ν((1/R,R)) → 1 if R → +∞, hence for R > 1 large enough (so that
ν((1/R,R)) ≥ 1/2 for instance), we can define the measure

νR ≡ ν (1/R,R)

ν((1/R,R))
.

This probability measure satisfies

Supp νR ⊂ (0, R) and

∫

R∗
+

λ−p dνR(λ) ≤ R−p

∫

R∗
+

dνR = R−p < ∞.

This is not exactly (6), but this is sufficient however to apply Theorem 1.7 in [12], which asserts that

limε→0

(

νR
Eε(u)

)

exists and

lim
ε→0

(

νR
Eε(u)

)

= Ep(u). (12)

Therefore, using (7) and arguing as for (8), we deduce that, for R > 1 large enough,

∣

∣

∣νEε(u)−ν((1/R,R))
(

νR
Eε(u)

)
∣

∣

∣

≤ 1

|SN−1|

∫

R∗
+\(1/R,R)

∫

Sλε(0)

∫

Ω

(d(U(x + h), U(x))

|h|
)p

dx
dHN−1(h)

|h|N−1
dν(λ)

≤ C(Ω, p)ν(R∗
+ \ (1/R,R))Ep(u).

Now, letting ε → 0 and using (12) gives

lim sup
ε→0

νEε(u) ≤ ν((1/R,R))Ep(u) + C(Ω, p,N)ν(R∗
+ \ (1/R,R))Ep(u).

We may now let R go to +∞ to deduce, since ν(R∗
+ \ (1/R,R)) → 0 and ν((1/R,R)) → 1, that

lim sup
ε→0

νEε(u) ≤ Ep(u).

This finishes the proof of (11), and hence of the pointwise limit. Combining the liminf inequality
together with the pointwise limit, we deduce Theorem 6. �

2.3 Proof of Theorem 3

Proof of the liminf inequality. First, we have, for x ∈ Ωε and µε
x defined by (2),

∫

Ω
|x − y|p dµε

x(y) = |SN−1|
∫ ε

0
rp+N−1 dr =

|SN−1|
N + p

εN+p.

Thus, denoting dν = (N + p)λN+p−1 dλ (0, 1) the measure giving ball averages, we infer that for
every u ∈ Lp(Ω, X)

Jp
ε (u) ≥

∫

Ωε
νeε(u) dx = νEε(u).
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Therefore, for any family uε → u in Lp(Ω, X) as ε → 0 (or for a sequence un → u in Lp(Ω, X) with
εn → 0 as n → +∞), we deduce from Theorem 6 that

lim inf
ε→0

Jp
ε (uε) ≥ lim inf

ε→0
νEε(uε) ≥ Ep(u),

or the corresponding statement for the sequence εn → 0. In particular, if Jp(u) < ∞, that is if
u ∈ W1,p(Ω, X) (or u ∈ BV1,p(Ω, X)), then u ∈ W 1,p(Ω, X) (or u ∈ BV 1,p(Ω, X)).

Proof of the pointwise limit. We now prove that there will be equality in the above inequality
for the particular family uε = u for all ε > 0 (or un = u for all n). First, we extend by Lemma 4 u in
U of finite p-energy in the δ0-neighborhood of Ω. Furthermore, we have for any ε > 0 and x ∈ Ω\Ωε,
since Ω is smooth,

∫

Ω
|x − y|p dµε

x(y) ≥ 1

C(Ω)

∫

Bε(x)
|x − y|p dµε

x(y) =
1

C(Ω)

|SN−1|
N + p

εN+p,

where C(Ω) depends only on the smoothness of ∂Ω. As a consequence, fixing 0 < η < δ0, we have
for every 0 < ε < η/2

0 ≤ Jp
ε (u) − νEε(u) =

∫

Ω\Ωε

∫

Ω d(U(x), U(y))p dµε
x(y)

∫

Ω |x − y|p dµε
x(y)

dx ≤ C(Ω)

∫

Ωη\Ωη
νeε(U)(x) dx,

from which we deduce, using Theorem 6,

Ep(u) = lim inf
ε→0

νEε(u) ≤ lim inf
ε→0

Jp
ε (u) ≤ lim sup

ε→0
Jp

ε (u)

≤ lim sup
ε→0

(

νEε(u) + C(Ω)

∫

Ωη\Ωη
νeε(U)(x) dx

)

= Ep(u) + C(Ω)

∫

Ωη\Ωη

|∇U |p dx.

Letting η → 0, the last term tends to 0. Indeed, |∇U |p ∈ L1 if 1 < p < ∞, and if p = 1, |∇U |1
is a measure such that |∇U |1(∂Ω) = 0 (since U is the extension by reflection across the boundary).
Thus, we infer

lim
ε→0

Jp
ε (u) = Ep(u),

which is the desired equality: J p
ε Γ-converge at u to Ep(u), which is finite if u ∈ W 1,p(Ω, X) or

u ∈ BV (Ω, X) and infinite otherwise. �

2.4 Proof of Proposition 3

In this subection, we prove the equivalence of the two definitions of BV maps into a locally
compact metric space X, namely Definitions 1 and 4.

First, if u ∈ BV (Ω, X), and ϕ : X → R is a 1-lipschitzian map, then for every ε > 0 and x ∈ Ωε,

eε(ϕ ◦ u)(x) =
1

|SN−1|εN

∫

Sε(x)
|ϕ ◦ u(x) − ϕ ◦ u(y)| dHN−1(y)

≤ 1

|SN−1|εN

∫

Sε(x)
d(u(x), u(y)) dHN−1(y) = eε(u)(x).
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Passing to the limit as ε → 0 and using Proposition 1 and Theorem 1, we obtain

K1,N |D(ϕ ◦ u)|BV ≤ |∇u|1.

Since this is true for any 1-lipschitzian map ϕ : X → R, we deduce that u ∈ BV(Ω, X) and
K1,N |Du|(Ω) ≤ |∇u|1.

Let now u ∈ BV(Ω, X) be given. We claim that for every ε > 0 and |h| ≤ ε, we have

∫

Ωε

d(u(x), u(x + h)) dx ≤ |h| · |Du|(Ω). (13)

Proof of (13). If N = 1 and Ω = (a, b), then (13) follows from the inequality for x ∈ (a + ε, b − ε)
and 0 < h < ε

d(u+(x), u+(x + h)) ≤ |Du|(]x, x + h])

valid for the right-hand side continuous representative u+ of u. Integrating this inequality yields

∫ b−ε

a+ε
d(u(x), u(x + h)) dx =

∫ b−ε

a+ε
d(u+(x), u+(x + h)) dx ≤ h|Du|([a, b]),

which is the desired inequality for N = 1. The general case follows by slicing in the direction h and
using (2.5) in Proposition 2.1 in [1] (see the analogous proof of (ii) in Lemma 3.2 in [1]).

We conclude now the proof of Proposition 3. For ε > 0 and ν = (N + 1)λN dλ (0, 1) giving ball
averages, we have, using (13),

∫

Ωε
νeε(u)(x) dx =

N + 1

|SN−1|εN

∫

Bε(0)

∫

Ωε

d(u(x), u(x + h)) dx dh

≤ N + 1

|SN−1|εN

∫

Bε(0)
|h| · |Du|(Ω) dh =

N + 1

εN
|Du|(Ω)

∫ ε

0
rN dr = |Du|(Ω)

From Definition 1, we infer u ∈ BV (Ω, X) and

E1(u) ≤ |Du|(Ω).

We have therefore K1,N |Du|(Ω) ≤ E1(u) ≤ |Du|(Ω) for any u ∈ L1(Ω, X), which implies that
BV (Ω, X) = BV(Ω, X). Given now u ∈ BV (Ω, X) and an open ball B ⊂ Ω, we may apply this to
u ∈ BV (B,X) to infer K1,N |Du|(B) ≤ |∇u|1(B) ≤ |Du|(B), hence K1,N |Du| ≤ |∇u|1 ≤ |Du| as
borelian measures. This concludes the proof of Proposition 3. �

2.5 Proof of Proposition 4

Given 1 ≤ p < ∞ and u ∈ W 1,p(Ω, X), we have Kp,NR(u) ≤ Ep(u). Indeed (as in section 2.4),
for any z ∈ X, since d(·, z) is 1-lipschitzian,

Kp,N |∇(d(u(·), z))|p = |∇(d(u(·), z))|p ≤ |∇u|p ∈ L1(Ω, R).

Hence, one can take w ≡ (K−1
p,N |∇u|p)

1

p and infer Kp,NR(u) ≤ Ep(u) for u ∈ W 1,p(Ω, X). The
inequality Ep(u) ≤ R(u) will follow as in section 2.4 from the inequality, for |h| < ε,

∫

Ωε

dp(u(x), u(x + h)) dx ≤ |h|pR(u), (14)
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which is the analogue of (13). Let us first consider some w ∈ Lp(Ω, R) such that for all z ∈ X,

|∇(d(u(·), z))| ≤ w

a.e. in Ω. Using Fubini’s Theorem, for a.e. x ∈ Ωε and |h| < ε, [0, 1] 3 t 7→ d(u(x+ th), u(x)) ∈ W 1,p

and | d
dt (d(u(x + th), u(x)))| ≤ |h|w(x + th), thus by integration

dp(u(x), u(x + h)) ≤
(

∫ 1

0
|h|w(x + th) dt

)p
≤ |h|p

∫ 1

0
wp(x + th) dt. (15)

Integrating over Ωε and using Fubini’s Theorem, we obtain
∫

Ωε dp(u(x), u(x + h)) dx ≤ |h|p||w||pLp ,
and the conclusion follows by taking the infimum over all such w’s.

This proves (as in section 2.4) that Ep ≤ R in Lp(Ω, X). This concludes the proof of the second
assertion of Proposition 4, together with the fact that if p > 1, R1,p(Ω, X) = W 1,p(Ω, X), and (if
p = 1) W 1,1(Ω, X) ⊂ R1,1(Ω, X) ⊂ BV (Ω, X). In order to finish the proof, we have then just to
prove that R1,1(Ω, X) ⊂ W 1,1(Ω, X). Consider then u ∈ R1,1(Ω, X), and a function w ∈ L1(Ω, R)
associated, so that (15) holds (with p = 1). Therefore, by integration and changing variables, one
has for ε > 0, χΩε standing for the characteristic function of Ωε,

eε(u)(x) ≤
χΩε

|SN−1|

∫ 1

0

∫

SN−1

w(x + εty) dtdHN−1(y).

We notice that the right-hand side is in L1(Ω, R) and converges to w in L1(Ω, R) by dominated
convergence, thus, by Proposition 1, eε(u) converges as measure to |∇u|1 ≤ w ∈ L1(Ω, R), thus
|∇u|1 ∈ L1(Ω, R) and u ∈ W 1,1(Ω, X). This ends the proof. �

2.6 An approximation result

Before going to the proof of Proposition 6, we prove the following approximation result. Such a
result is analogous to Theorem 3.3 in [1], which is an approximation result in L1(Ω, X) of BV maps
by maps constant on cubes, with a control on the energy. Theorem 3.3 in [1] is stated for X a locally
compact separable metric space, and we will state first this approximation result when X is just a
complete metric space.

Lemma 6 Let N ≥ 1. For n ∈ N
∗, Pn is the usual partition of ]0, 1[N in nN cubes of edge 1

n . There
exists a constant C0 = C0(N,X) such that, for every n ∈ N

∗ and every u ∈ BV (Ω, X), there exists
vn ∈ BV (Ω, X) such that vn is constant on each cube of Pn,

dL1(]0,1[N ,X)(u, vn) ≤ C0

n
E1(u) and E1(vn) ≤ C0E

1(u).

Proof. The proof is based on the following Poincaré type inequality (see Theorem 1.4.1 in [13] for a
general version in W 1,p(Ω, X), 1 ≤ p < ∞). There exists a constant C0, depending only on N such
that, for every ` > 0 and every u ∈ BV (]0, `[N , X), there holds

inf
ξ∈X

∫

]0,`[N
d(u(x), ξ) dx ≤ C0`|∇u|1(]0, `[N ). (16)

Proof of (16). By simple scaling, it suffices to treat the case ` = 1. For u ∈ BV (]0, 1[N , X), we first
extend u as a map U :] − 2, 3[N→ X by successive reflections across the boundary (as in Lemma 4).
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Next, we may write, using (13),

∫

]0,1[N×]0,1[N
d(u(x), u(y)) dxdy ≤

∫

]−1,1[N

∫

]0,1[N
d(U(x), U(x + h)) dxdh

≤
∫

]−1,1[N
|h| · |∇U |1(] − 2, 3[N ) dh ≤ KN |∇u|1(]0, 1[N ).

As a consequence, by the mean value formula, there exists y ∈]0, 1[N such that ξ ≡ u(y) verifies (16).

We complete now easily the proof of Lemma 6. Let u ∈ BV (]0, 1[N , X) and n ∈ N
∗ be given. For

any cube Q ∈ Pn, there exists by (16) some ξn(Q) ∈ X such that

∫

Q
d(u(x), ξn(Q)) dx ≤ 2KN

n
|∇u|1(Q). (17)

Therefore, we may define vn :]0, 1[N→ X, constant on each cube Q of Pn, of value ξn(Q). Summing
(17) over all Q’s in Pn yields the first estimate for vn

dL1(]0,1[N ,X)(u, vn) ≤ 2KN

n
E1(u).

We turn now to the second estimate. We have easily

E1(vn) =
1

2

∑

Q∼Q′∈Pn

1

nN−1
d(ξn(Q), ξn(Q′)),

where Q ∼ Q′ means Q 6= Q′ and Q̄, Q̄′ have one face in common. Moreover, for Q ∼ Q′ ∈ Pn, say
Q = [0, 1

n ]N and Q′ = [ 1
n , 2

n ] × [0, 1
n ]N−1 = Q + 1

n~e1, with ~e1 = (1, 0, ..., 0) ∈ R
N for simplicity, we

have by the triangle inequality

1

nN
d(ξn(Q), ξn(Q′)) ≤

∫

Q
d(u(x), ξn(Q)) dx+

∫

Q
d(u(x), u(x+

1

n
~e1)) dx+

∫

Q
d(u(x+

1

n
~e1), ξn(Q′)) dx.

The last integral is simply
∫

Q′ d(u(x), ξn(Q′)) dx. Thus, using (13) and (17),

1

nN
d(ξn(Q), ξn(Q′)) ≤ 2KN

n
|∇u|1(Q) +

1

n
|∇u|1

(

[0,
2

n
] × [0,

1

n
]N−1

)

+
2KN

n
|∇u|1(Q′).

Summing this inequality for Q ∼ Q′ ∈ Pn yields the desired estimate. �

This Lemma 6 will enable us to establish the following approximation result when X is a length
space (the proof is not very different from that of Theorem 3.3 in [1]).

Lemma 7 Let N ≥ 1 and assume X is a length space. Then, there exists a constant C0, depending
only on N such that for every u ∈ BV (]0, 1[N , X), there exists a sequence un ∈ W 1,1(]0, 1[N , X) such
that |∇un|1(]0, 1[N ) ≤ C0|∇u|1(]0, 1[N ) for every n ∈ N and, as n → +∞, un → u in L1(]0, 1[N , X).

Remark 14 The map un ∈ W 1,1(]0, 1[N , X) we construct is actually in a smaller space. If N = 1,
un is by construction Lipschitz continuous. For N ≥ 2, un is continuous except at Σn, where Σn

is a finite union of subsets Σi
n, 1 ≤ i ≤ qn, where each Σi

n is the image by a linear injective map
R

N−2 → R
N of [0, 1]N−2. If N = 2, Σi

n is by convention a point.
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Proof. Let u ∈ BV (]0, 1[N , X). For n ∈ N
∗, we consider the approximation vn given by Lemma

6, constant on each cube of the partition Pn. The map vn is not in W 1,1(]0, 1[N , X), thus we now
approximate the vn’s. We denote v = vn for simplicity, and let 0 < ε < 1/(2n). Assume first
N = 1. For 1 ≤ j ≤ n, v = aj on Qj = ( j−1

n , j
n). Let 2`j ≡ d(aj−1, aj). We fix, for every

1 ≤ j ≤ n, a unit speed geodesic γj : [−`j, `j ] in X from aj−1 to aj. These geodesics exist since X
is assumed to be a length space. We define then naturally uε(x) = aj if x ∈ ( j−1

n + ε, j
n − ε) for

some 1 < j < n, uε(x) = a1 if x ∈ (0, 1
n − ε), uε(x) = an if x ∈ (n−1

n − ε, 1), and for 1 < j < n and

x ∈ ( j
n − ε, j

n + ε) ≡ Iε
j , uε(x) = γj(

`j

ε (x − j
n)). We easily check that uε → v a.e. in [0, 1], hence in

L1(]0, 1[N , X) by dominated convergence, and |∇uε|1 =
∑n

j=1
`j

ε
χIε

j
→ |∇v|1 =

∑n
j=1 `j in measure

as ε → 0, with |∇uε|1(]0, 1[N ) = |∇v|1(]0, 1[N ) (here, χIε
j

stands for the characteristic function of

Iε
j ). Since uε ∈ W 1,1(]0, 1[N , X), the proof is complete if N = 1.
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a a

aa

1 2

34 a

a

a

a 1 2

34

ε

constant

homogeneous
    extensioninterpolation

  geodesic

The map v (left) and its approximation uε (right)

We assume now N = 2. We follow the approximation scheme given in the figure above, where
we assume for simplicity that n = 2. By geodesic interpolation, for the upper rectangle for instance,
we mean that, as in the 1-dimensional case, uε(x) = γ( `

ε(x1 − 1
2)), where 2` ≡ d(a1, a2) and γ :

[−`, `] → X is a unit speed geodesic from a1 to a2 (in this rectangle, we have |x1 − 1
2 | ≤ ε). Finally,

by homogeneous extension, we mean that in the square Cε ≡ a + [−ε, ε]2, where a = ( 1
2 , 1

2), we have
uε(x) = uε(a + ε x

|x|∞
). Notice indeed that at this stage, uε is already defined on the boundary of the

square. The map uε is therefore continuous except at a (if we are not in the case a1 = a2 = a3 = a4),
and in W 1,1(]0, 1[N , X) since uε is lipschitz outside Cε and a direct computation gives

∫

Cε

|∇uε|1 dx = ε

∫

∂Cε

|∇uε|1 dH1(x).

Since |∇uε|1 ≤ Cε−1 on ∂Cε, where C = C(a1, a2, a3, a4), we infer
∫

Cε
|∇uε|1 dx ≤ Cε. As a

consequence, from the computations in the 1-dimensional case, we have

|∇uε|1 = χRε
12

d(a1, a2)

ε
+ χRε

23

d(a2, a3)

ε
+ χRε

34

d(a3, a4)

ε
+ χRε

41

d(a4, a1)

ε
+ OL1(ε),

where Rε
12 is the rectangle “between” a1 and a2, where uε is a geodesic interpolation between a1 and

a2 (and similarly for the other rectangles). Then, as ε → 0, uε → v in L1(]0, 1[N , X) and

|∇uε|1 → |∇v|1
as measure. This concludes the proof in the case N = 2. Finally, one extends easily this construction
to an arbitrary N ≥ 2. The map uε we construct in this case clearly belongs to W 1,1(]0, 1[N , X), and
this completes the proof of the lemma. �
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2.7 Proof of Proposition 6

First, given 1 ≤ p < ∞ and u ∈ N 1,p(Ω, X), consider some functions w, ρ ∈ Lp(Ω, R) as in
Definition 6. With the sequences uj = u and gj = ρ+ w

j , (3) is always satisfied for any 1-lipschitzian

curve γ : [0, `] → Ω (even when
∫ `
0 w ◦ γ ds = ∞) one has immediately u ∈ H1,p(Ω, X) and

H(u) ≤ N(u).

The case p > 1. Let us embed X “isometrically” into a Banach space, for instance into `∞(X) by
the Kuratowski embedding

ι : X → `∞(X)

defined by ι(x) ≡ (d(x, z) − d(x, y0))z∈X . Here, y0 ∈ X is an arbitrary fixed point and “isometric”
means that ||ι(x) − ι(y)||`∞(X) = d(x, y) for every x, y ∈ X. It is clear that H(ι(u)) ≤ H(u). Hence,
by [16], Theorem 3.2, there exists (since p > 1) a function g ∈ Lp(Ω, R) such that H(ι(u)) =

∫

Ω gp dx
and for any 1-lipschitzian curve γ : [0, `] → Ω,

||ι(u) ◦ γ(`) − ι(u) ◦ γ(0)||`∞(X) = d(u ◦ γ(`), u ◦ γ(0)) ≤
∫ `

0
g ◦ γ ds.

Therefore, u ∈ N 1,p(Ω, X) and N(u) ≤
∫

Ω gp dx = H(u). Thus, if 1 < p < ∞, then, in Lp(Ω, X),

H = N.

The case p = 1. We assume now p = 1. Let u ∈ H1,1(Ω, X). Then, there exist sequences
uj ∈ L1(Ω, X) and gj ∈ L1(Ω, R+) such that uj → u and

∫

Ω gj dx → H(u) as j → +∞, and, for any
1-lipschitzian curve γ : [0, `] → Ω,

d(uj ◦ γ(0), uj ◦ γ(`)) ≤
∫ `

0
gj ◦ γ ds.

In particular, we have uj ∈ N 1,1(Ω, X) (take w = 0, ρ = gj) and N(uj) ≤
∫

Ω gj dx. As a consequence
of Propositions 4 and 5, we infer uj ∈ W 1,1(Ω, X) and

K1,NE1(uj) ≤ R(uj) = N(uj) ≤
∫

Ω
gj dx.

Taking the liminf as j → +∞ and using the lower semi-continuity of E1 in L1(Ω, X) (Theorem 2),
we deduce

K1,NE1(u) ≤ K1,N lim inf
j→+∞

E1(uj) ≤ H(u).

Therefore, H1,1(Ω, X) ⊂ BV (Ω, X), and K1,NE1 ≤ H on H1,1(Ω, X).
Assume now u ∈ BV (Ω, X). To prove that u ∈ H1,1(Ω, X), we have to construct a sequence in

W 1,1(Ω, X) approximating u in L1(Ω, X) with controled 1-energy. First, since Ω is smooth, we may
extend u by an arbitrary constant outside Ω, so that the energy of the extension is ≤ C(Ω)E 1(u).
We may now assume, without loss of generality, that Ω is a cube, and by scaling, that this cube is
]0, 1[N . Now, we apply Lemma 7: there exists a sequence un ∈ W 1,1(Ω, X) such that un → u in
L1(Ω, X) as n → +∞ and E1(un) ≤ C0E

1(u) for every n ∈ N
∗. Therefore, u ∈ H1,1(Ω, X) (take

gn = 1
K1,N

|∇un|1 as in section 2.4) and we obtain the second inequality

H(u) ≤ lim inf
n→+∞

∫

Ω
gn dx ≤ 1

K1,N
lim inf
n→+∞

E1(un) ≤ C0

K1,N
E1(u). �

In the case where X is locally compact and separable, the link between H(U) and the BV energy
|Du|(Ω) in the sense of L. Ambrosio can actually be made more precise.
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Lemma 8 Assume that X is locally compact and separable. Then,

|Du|(Ω) ≤ H(u) if u ∈ BV (Ω, X), |Du|(Ω) = H(u) if u ∈ W 1,1(Ω, X).

If, furthermore, X is a length space, then there exists C0(N,X,Ω) such that for every u ∈ BV (Ω, X),

H(u) ≤ C0|Du|(Ω).

Proof. The last inequality follows from Propositions 3 and 6. Let us prove the first one. Let
u ∈ L1(Ω, X) and g ∈ L1(Ω, R+) be such that

d(u ◦ γ(`), u ◦ γ(0)) ≤
∫ `

0
g ◦ γ (18)

for any 1-lipschitzian curve γ : [0, `] → Ω. Then, if ϕ : X → R is 1-lipschitzian, v ≡ ϕ ◦ u : Ω → R

satisfies

|v ◦ γ(`) − v ◦ γ(0)| ≤
∫ `

0
g ◦ γ.

Hence, given ε > 0, ω ∈ S
N−1 and taking, for x ∈ Ωε, γ(s) = x + sω, s ∈ [0, ε], one obtains

|v(x + εω) − v(x)| ≤ ε

∫ 1

0
g(x + εtω) dt.

Assume for the moment that v, g : Ω → R are smooth. Dividing by ε and letting ε → 0 yields

|ω · ∇v|(x) ≤ g(x)

for every ω ∈ S
N−1, which implies

|∇v| ≤ g.

The general case follows easily by standard regularization. As a consequence, u ∈ W 1,1(Ω, X) and

|Du|(Ω) ≤
∫

Ω
g dx. (19)

If u ∈ H1,1(Ω, X), then there exist sequences uj ∈ L1(Ω, X) and gj ∈ L1(Ω, R) such that (18) holds
for any j and H(u) = limj→+∞

∫

Ω gj dx. Therefore, |Duj|(Ω) ≤
∫

Ω gj dx by (19) gives at the limit

|Du|(Ω) ≤ lim inf
j→+∞

|Duj |(Ω) ≤ lim inf
j→+∞

∫

Ω
gj dx = H(u).

Here, we have used that u 7→ |Du|(Ω) is lower semi-continuous for the L1(Ω, X) topology (see [1],
section 1). This finishes the proof of the first inequality.

Assume now u ∈ W 1,1(Ω, X). Let γ : [0, `] → Ω be a 1-lipschitzian curve, and consider the
1-lipschitzian function ϕ ≡ d(·, u ◦ γ(0)) : X → R. Then, v ≡ ϕ ◦ u ∈ W 1,1(Ω, R) and |Dv| ≤ |Du|.
Moreover, since v is real valued, |Dv| = |∇v| ∈ L1(Ω, R) (in the classical sense, see [1], Remark 2.2).
This implies

d(u ◦ γ(`), u ◦ γ(0)) = |v ◦ γ(`) − v ◦ γ(0)| ≤
∫ `

0
|γ′(s) · (∇v) ◦ γ(t)| dt ≤

∫ `

0
|Du| ◦ γ(t) dt.

Since |Du| ∈ L1(Ω, R), we infer that u ∈ H1,1(Ω, X) and H(u) ≤
∫

Ω |Du| dx = |Du|(Ω). The second
inequality is proved. �
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2.8 Proof of Theorem 4

Let (ρε) be a family of mollifiers (or (ρn) be a sequence of mollifiers), and recall

Fε(u) =

∫ ∫

Ω×Ω

(d(u(x), u(y))

|x − y|
)p

ρε(x − y) dxdy.

We first prove that for any u ∈ Lp(Ω, X),

lim sup
ε→0

Fε(u) ≤ Ep(u). (20)

Proof of (20). We may assume Ep(u) < ∞, that is u ∈ BV (Ω, X) (if p = 1) or u ∈ W 1,p(Ω, X) (if
1 < p < ∞). First, we have

Fε(u) =

∫

RN

(

∫

Ω∩(Ω−h)

(d(u(x), u(x + h))

|h|
)p

ρε(h) dx
)

dh.

Let us fix ξ ∈ X and η > 0. Then,
∫

RN\Bη(0)

(

∫

Ω∩(Ω−h)

(d(u(x), u(x + h))

|h|
)p

ρε(h) dx
)

dh ≤
(2dLp(u, ξ)

δ0

)p
∫

RN\Bη(0)
ρε(h) dh

and the last integral tends to 0 as ε → 0. Therefore, for any η > 0,

Fε(u) =

∫

Bη(0)

∫

Ω∩(Ω−h)

(d(u(x), u(x + h))

|h|
)p

ρε(h) dx
)

dh + oε→0(1). (21)

Moreover, letting U be the extension by reflection across the boundary of u on Ωδ0 as in Lemma 4,
and using Theorem 1.8.1 and Lemma 1.9 in [12], we infer, assuming |h| ≤ η < δ0/2,

∫

(Ω∩(Ω−h))\Ωη

dp(u(x), u(x + h)) dx ≤ C(p,Ω)|h|p
∫

Ω2η\Ω2η

|∇U |p dx.

As a consequence,
∫

Bη(0)

∫

(Ω∩(Ω−h))\Ωη

(d(u(x), u(x + h))

|h|
)p

ρε(h) dx
)

dh ≤ C(p,Ω)

∫

Ω2η\Ω2η

|∇U |p dx.

Inserting this into (21) yields for η < δ0/2

lim sup
ε→0

Fε(u) ≤ lim sup
ε→0

∫

Bη(0)

∫

Ωη∩(Ω−h)

(d(u(x), u(x + h))

|h|
)p

dx
)

ρε(h)dh

+ C(p,Ω)

∫

Ω2η\Ω2η

|∇U |p dx (22)

We denote ρ̄ε ∈ L1(R∗
+) defined by ρε(x) = ρ̄ε(|x|). Finally, ωEp(u) standing for the p-energy in the

direction ω ∈ S
N−1 (see [12], section 1.8), we have, using polar coordinates and [12],

∫

Bη(0)

∫

Ωη∩(Ω−h)

(d(u(x), u(x + h))

|h|
)p

dx
)

ρε(h)dh

≤
∫ η

0
ρε(r)r

N−1

∫

SN−1

∫

Ωη

(d(u(x), u(x + rω))

r

)p
dxdHN−1(ω)dr

≤ |SN−1|
∫ η

0
ρε(r)r

N−1
[ 1

|SN−1|

∫

SN−1

ωEp(u) dHN−1(ω)
]

dr.

23



From [12], Theorem 1.8.1, the term between brackets is Ep(u), and |SN−1|
∫ η
0 ρε(r)r

N−1 dr =
∫

Bη
ρε → 1 as ε → 0, hence

lim sup
ε→0

∫

Bη(0)

∫

Ωη∩(Ω−h)

(d(u(x), u(x + h))

|h|
)p

dx
)

ρε(h)dh ≤ Ep(u).

Combining this with (22) gives, for η < δ0/2,

lim sup
ε→0

Fε(u) ≤ Ep(u) + C(p,Ω)

∫

Ω2η\Ω2η

|∇U |p dx.

As in the proof of Theorem 3, the last integral tends to 0 as η → 0. This finishes the proof of (20).

We now prove that if uε → u (or un → u) in Lp(Ω, X), then

Ep(u) ≤ lim inf
ε→0

Fε(uε) or Ep(u) ≤ lim inf
n→+∞

Fn(un). (23)

This will conclude the proof of Theorem 4, since for the pointwise limit, it suffices to take uε = u
(or un = u) to obtain by (20) and (23) limε→0 Fε(u) = Ep(u) (or limn→+∞ Fn(u) = Ep(u)), and the
proof of the Γ-limit follows from (23) and the pointwise limit.

Proof of (23). We will prove (23) only in the case of the sequence ρn → δ0, since the general case
will then follow. We may also assume without loss of generality that the “lim inf n→+∞” is actually
a “limn→+∞”. We denote ρ̄n(r) ∈ L1

loc(R
∗
+) defined by ρn(x) = ρ̄n(|x|). First, for any u ∈ Lp(Ω, X),

Fn(u) =

∫ ∫

Ω×Ω

(d(u(x), u(y))

|x − y|
)p

ρn(x − y) dxdy

=

∫

Ω

∫ ∞

0

[

ρ̄n(r)

∫

Sr(x)∩Ω

(d(u(x), u(y))

r

)p
dHN−1(y)

]

drdx

≥
∫ ∞

0
|SN−1|rN−1ρ̄n(r)

(

∫

Ωr

er(u)(x) dx
)

dr =

∫ ∞

0
Er(u)µn(r) dr, (24)

where µn(r) ≡ |SN−1|rN−1ρ̄n(r) is a probability measure on R
∗
+ such that µn ⇀ δ0 as n → +∞, i.e.

for all δ > 0,
∫ ∞

δ
µn(r) dr → 0 as n → +∞. (25)

Suppose for a while that un = u for all n ∈ N. Then, since Er(u) → Ep(u) ∈ R+ ∪ {+∞} as r → 0,
one infers easily that since µn ⇀ δ0 as n → +∞, then

∫ ∞

0
Er(u)µn(r) dr → Ep(u) ∈ R+ ∪ {+∞} as n → +∞.

Hence, lim infn→+∞ Fn(u) ≥ Ep(u) ∈ R+∪{+∞} as desired. To prove the result in the general case,
we will prove in fact that there exist a subsequence nj and a sequence rj > 0 such that

∀j ∈ N
∗, rj ≤

1

j
and Erj

(unj
) ≤ Fnj

(unj
)(1 +

1

j
). (26)

We proceed by induction on j, and for j = 0, there is nothing to prove. Assume now rj−1 ∈ (0, 1
j−1)

and nj−1 constructed (satisfying (26)), such that (n1, ...nj−1) is increasing. We fix, by (25), nj large
enough so that nj > nj−1 and

∫ 1

j

0
µnj

(r) dr ≥
(

1 +
1

j

)−1
.
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Then, by (24) with n = nj , one has

Fnj
(unj

) ≥
∫ 1

j

0
Er(unj

)µnj
(r) dr.

Thus, by the mean-value formula, there exists rj ∈ (0, 1
j ) such that

Erj
(unj

) ≤
∫

1

j

0 Er(unj
)µnj

(r) dr
∫

1

j

0 µnj
(r) dr

≤ Fnj
(unj

)(1 +
1

j
).

This concludes the proof of (26) by induction.
From (26), we infer unj

→ u in Lp(Ω, X) (it is a subsequence of (un)) and rj → 0, hence we may
apply Proposition 2 (with ν = δ1) to infer, by (26),

Ep(u) ≤ lim inf
j→+∞

Erj
(unj

) ≤ lim inf
j→+∞

Fnj
(unj

)

which concludes the proof. �

2.9 Proof of Theorem 5

The proof is divided in two steps.

Step 1: u ∈ W 1,p(Ω, X). We assume first N = 1, and, by scaling, that Ω = (0, 1). Let
u ∈ W 1,p((0, 1), X). Since p > 1, we may assume u (Hölder-)continuous up to a modification on
a negligible set. The proof of the pointwise limit for Gn relies on the dominated convergence theorem.

Pointwise convergence. We first show that for almost every x ∈ (0, 1),

Λn(x) ≡
∫ 1

0

gn(d(u(x), u(y)))

|x − y|p+1
dy → 2|u′|p(x) as n → +∞. (27)

Indeed, we know from [12] that for almost every x ∈ (0, 1),

d(u(x), u(y))

|x − y| → |u′|1(x) =
(

|u′|p(x)
)

1

p
as y → x.

We fix such an x ∈ (0, 1) and assume first |u′|1(x) > 0. Then, for 0 < ε < |u′|1(x), there exists δ > 0
(depending on ε and x) such that, if |x − y| ≤ δ, then

0 ≤ |u′|1(x) − ε ≤ d(u(x), u(y))

|x − y| ≤ |u′|1(x) + ε.

Without loss of generality, we may assume (x − δ, x + δ) ⊂ (0, 1). Thus, since gn is non decreasing,

∫ x+δ

x−δ

gn(|x − y|(|u′|1(x) − ε))

|x − y|p+1
dy ≤

∫ x+δ

x−δ

gn(d(u(x), u(y)))

|x − y|p+1
dy ≤

∫ x+δ

x−δ

gn(|x − y|(|u′|1(x) + ε))

|x − y|p+1
dy.

By simple change of variables, we have

∫ x+δ

x−δ

gn(|x − y|(|u′|1(x) ± ε))

|x − y|p+1
dy = 2(|u′|1(x) ± ε)p

∫ δ(|u′|1(x)±ε)

0

gn(t)

tp+1
dt.
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Using hypothesis (b) and (c) on (gn), we infer that, on the one hand,

∫ δ(|u′|1(x)±ε)

0

gn(t)

tp+1
dt → 1 as n → +∞,

and on the other hand (u is bounded),

∫

{|y−x|>δ}

gn(d(u(x), u(y)))

|x − y|p+1
dy → 0 as n → +∞.

Consequently, for every 0 < ε < |u′|1(x), there holds for n large enough (depending on ε and x)

2(|u′|1(x) − ε)p(1 − ε) − ε ≤
∫ 1

0

gn(d(u(x), u(y)))

|x − y|p+1
dy ≤ 2(|u′|1(x) + ε)p(1 + ε) + ε,

and (27) follows. If |u′|1(x) = 0, then it suffices to consider only the right-hand side inequalities to
infer (27). We can notice that (27) holds even for p = 1 if u ∈ W 1,1((0, 1), X).

Domination. We now try to find an integrable function dominating the Λn’s on (0, 1). Here, the
hypothesis p > 1 is crucial, since we use, as in [15], the theory of maximal functions in Lp. We let
U ∈ W 1,p((−1, 2), X) be its reflexion across the boundary. We denote, for x ∈ (0, 1), M the maximal
function

M(x) ≡ sup
0<h<1

1

2h

∫ x+h

x−h
|U ′|(t) dt.

For x ∈ (0, 1), we have

d(u(x), u(y)) ≤
∣

∣

∣

∫ y

x
|u′|(t) dt

∣

∣

∣
≤ 2|x − y|M(x).

Therefore, since gn is non decreasing,

Λn(x) ≤
∫ 1

0

gn(2|x − y|M(x))

|x − y|p+1
dy.

This last integral can be estimated by direct computation:

∫ 1

0

gn(2|x − y|M(x))

|x − y|p+1
dy ≤ 2

∫ 1

0

gn(2tM(x))

tp+1
dt = 2p+1M(x)p

∫ 2M(x)

0

gn(τ)

τp+1
dτ.

In view of hypothesis (b) for (gn), the last integral is bounded independently of x and n by a constant
A, hence, for x ∈ (0, 1),

Λn(x) ≤ 2p+1AM(x)p.

Since p > 1, we know from the theory of maximal functions that M ∈ Lp((0, 1), R), hence the
functions Λn are dominated by 2p+1AM(x)p ∈ L1((0, 1), R).

Consequently, we may use Lebesgue’s Theorem to deduce that for u ∈ W 1,p((0, 1), X),

Gn(u) =
1

2

∫ 1

0
Λn(x) dx → 1

2

∫ 1

0
2|u′|p(x) dx = Ep(u) as n → +∞.

Assume now N ≥ 1 arbitrary. Then, using polar coordinates,

Gn(u) =
1

|SN−1|

∫

Ω×SN−1

∫

Ix,ω

gn(d(u(x), u(x + tω)))

tp+1
dtdHN−1(ω)dx,
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where Ix,t ⊂ R+ is open and contains the interval (0, dist(x, ∂Ω)). If u ∈ W 1,p(Ω, X), then for almost
every x ∈ Ω and ω ∈ S

N−1, u ∈ W 1,p(Ix,ω, X), so that, using the case N = 1,

∫

Ix,ω

gn(d(u(x), u(x + tω)))

tp+1
dt

tends to ωe(u)(x) (note that t ≥ 0, hence there is no longer the factor 2 as in (27)) as n →
+∞ and, M(x, ω) standing for the maximal function along the half-line x + R+ω, is dominated by
C(p,Ω)AM(x, ω)p ∈ L1(Ω × S

N−1, R) (since p > 1). Hence, by dominated convergence, we have

lim
n→+∞

Gn(u) = Ep(u).

Step 2: (Gn(u))n∈N is bounded. We assume now u ∈ Lp(Ω, X) and the sequence (Gn(u))n∈N

bounded, and show that this implies u ∈ W 1,p(Ω, X). The proof relies on Lemma 4 in [15] and
follows the lines of the proof of Theorem 3 in [15].

Let us first consider the extension of u by reflection across the boundary U ∈ Lp(Ωδ0 , X) (Ω is
smooth). It follows then straightfowardly that

Gn(U,Ωδ0) ≤ C(p,Ω)Gn(u,Ω).

This allows, for u, to reduce the problem to the following: Ω = B2(0) ⊂ R
N , (Gn(u,B2(0)))n∈N is

bounded and let us prove that Ep(u,B1(0)) < ∞.
Next, we follow word for word the lines of subsection 3.2 in [15], just replacing, for k ∈ N,

{10−(k+1) < |g(x)− g(y)| < 10−k} by Ak ≡ {10−(k+1) < d(u(x), u(y)) < 10−k}. This implies that for
every s > 0,

∫∫

{d(u(x),u(y))>s}

dxdy

|x − y|p+N
< ∞, and lim inf

k→+∞

∫∫

Ak

10−p(k+1)

|x − y|p+N
dxdy < ∞. (28)

We set, for k ∈ N and ω ∈ S
N−1, Ak(ω) ≡ {(x, h), 10−(k+1) < d(u(x), u(x + hω)) < 10−k}. From

(28), passing to polar coordinates and using Fatou’s Lemma, we deduce

∫

SN−1

lim inf
k→+∞

∫∫

Ak(ω)

10−p(k+1)

hp+1
dhdx dHN−1(ω) ≤ lim inf

k→+∞

∫∫

Ak

10−p(k+1)

|x − y|p+N
dxdy < ∞

and

for every s > 0,

∫

SN−1

∫∫

{d(u(x),u(x+hω))>s}

dxdh

hp+1
dHN−1(ω) < ∞.

As a consequence, for every s > 0 and almost every ω ∈ S
N−1,

∫∫

{d(u(x),u(x+hω))>s}

dxdh

hp+1
< ∞, V (ω) ≡ lim inf

k→+∞

∫∫

Ak(ω)

10−p(k+1)

hp+1
dhdx < ∞ (29)

and V ∈ L1(SN−1). In view of [12], section 1.10, we first show that, for these ω ∈ S
N−1,

ωE(u) ≤ V (ω). (30)

Pick then one such ω ∈ S
N−1. Up to a rotation, we may assume ω = (0, ..., 0, 1). We write

x = (x′, xN ), and use once again Fatou’s Lemma to infer from (29) that for every s > 0,
∫

|x′|≤1

∫∫

{d(u(x′,xN ),u(x′,xN+h))>s}

dxNdh

hp+1
dx′ < ∞

27



and
∫

|x′|≤1
lim inf
k→+∞

∫∫

Ak(ω,x′)

10−p(k+1)

hp+1
dxNdh dx′ ≤ V (ω) < ∞, (31)

where Ak(ω, x′) ≡ {(xN , h), 10−(k+1) < d(u(x′, xN ), u(x′, xN + h) < 10−k}. Therefore, for almost
every |x′| ≤ 1 and every s > 0,

∫∫

{d(u(x′ ,xN ),u(x′,xN+h))>s}

dxNdh

hp+1
< ∞, V (ω, x′) ≡ lim inf

k→+∞

∫∫

Ak(ω,x′)

10−p(k+1)

hp+1
dxNdh < ∞.

(32)
Now, we are reduced to one-dimensional problem. Let ε > 0, x′ as above and let us prove the estimate

∫

|xN |≤
√

1−|x′|2−ε

ωeε(u)(x′, xN ) dxN ≤ CpV (ω, x′). (33)

For that purpose, we argue as in the proof of theorem 4 in [15]. Let us define J ∈ N such that
(J − 1)ε <

√

1 − |x′|2 − ε ≤ Jε. Hence, we have

∫

|xN |≤
√

1−|x′|2−ε

ωeε(u)(x′, xN ) dxN ≤
J

∑

j=−J

∫ (j+1)ε

jε

ωeε(u)(x′, xN ) dxN . (34)

Let now −J ≤ j ≤ J , xN ∈ [jε, (j + 1)ε], and let g(t) ≡ d(u(x′, xN ), u(x′, xN + t)) : (−2ε, 2ε) → R.
In view of (32), it follows from Theorem 4 in [15] that g ∈ W 1,p((−2ε, 2ε), R). In particular, g is
continuous and then, Lemma 4 in [15] yields the estimate

(

sup
(−2ε,2ε)

g − inf
(−2ε,2ε)

g
)p

≤ Cpε
p−1 lim inf

k→+∞

∫∫

Ak(ω,x′)∩(jε,(j+1)ε)×(−2ε,2ε)

10−p(k+1)

hp+1
dxNdh,

where Cp depends only on p. Consequently, since inf (−2ε,2ε) g = 0 (g is continuous, non-negative and
g(0) = 0), we infer

sup
(−2ε,2ε)

g ≤ Cpε
p−1 lim inf

k→+∞

∫∫

Ak(ω,x′)∩(jε,(j+1)ε)×(−2ε,2ε)

10−p(k+1)

hp+1
dxNdh.

Thus,
∫ (j+1)ε

jε

ωeε(u)(x′, xN ) dxN

=
1

2εp

∫ (j+1)ε

jε
dp(u(x′, xN ), u(x′, xN + ε)) + dp(u(x′, xN ), u(x′, xN − ε)) dxN

≤ Cp lim inf
k→+∞

∫∫

Ak(ω,x′)∩(jε,(j+1)ε)×(−2ε,2ε)

10−p(k+1)

hp+1
dxNdh.

We now sum this inequality for −J ≤ j ≤ J , and use the fact that, for any sequences (an) and (bn)
bounded from below, lim inf an + lim inf bn ≤ lim inf(an + bn). By (34), this leads us to

∫

|xN |≤
√

1−|x′|2−ε

ωeε(u)(x′, xN ) dxN ≤ Cp lim inf
k→+∞

J
∑

j=−J

∫∫

Ak(ω,x′)∩(jε,(j+1)ε)×(−2ε,2ε)

10−p(k+1)

hp+1
dxNdh

and (33) follows. Integrating then (33) in x′ and using (31) yields (30).
To conclude the proof, we integrate (30) for ω ∈ S

N−1 and apply [12], section 1.10, to deduce
that Ep(u) < +∞, i.e. u ∈ W 1,p(Ω, X). This finishes the proof of theorem 5. �
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3 Traces of maps in W s,p(Ω, X)

Let Ω be a smooth bounded domain in R
N (with lipschitz boundary is enough), and let 1 ≤

p < ∞, 0 < s ≤ 1. Then, arguing as in Lemma 4, there exists δ0 > 0, depending only on Ω, and
a constant C depending on Ω, p and s such that for any u ∈ W s,p(Ω, X), the extension U of u by
reflection across the boundary on Ωδ0 is in W s,p(Ωδ0 , X) and for any ξ ∈ X,

|U |W s,p(Ωδ0
,X) ≤ C(1 + |d(u, ξ)|Lp(Ω) + |u|W s,p(Ω,X)).

We now introduce the quantity

‖u‖p
W s,p(Ω,X) ≡

N
∑

i=1

∫

Ω

∫ δ0

0

d(U(x), U(x + t~ei))
p

tsp+1
dxdt,

where (~e1, . . . , ~eN ) is the canonical basis of R
N and U is the reflection of u across the boundary.

We expect, as it is well-known for real-valued Sobolev maps, that the “semi-norm” ||u||W s,p(Ω,X) is
“equivalent” to |u|W s,p(Ω,X).

Lemma 9 Let 1 ≤ p < ∞, 0 < s < 1 and u ∈ Lp(Ω, X), where X is a length space. Then, there
exists a constant C > 0, depending on p, s and Ω, such that for any ξ ∈ X,

‖u‖W s,p(Ω,X) ≤ C(|d(u, ξ)|Lp + |u|W s,p) and |u|W s,p(Ω,X) ≤ C(|d(u, ξ)|Lp + ‖u‖W s,p).

3.1 Proof of Lemma 9

First, note that for any ξ ∈ X,

∫

{|x−y|≥δ0}

d(u(x), u(y))p

|x − y|sp+N
dxdy ≤ Cδ0 |d(u, ξ)|pLp(Ω),

hence, it suffices to show that

C1‖u‖p
W s,p ≤ Λ(u) ≡

∫

{|x−y|<δ0}

d(u(x), u(y))p

|x − y|sp+N
dxdy ≤ C2‖u‖p

W s,p . (35)

Proof of the right-hand side of (35). For a.e. x and y ∈ Ω such that |x − y| < δ0 and 0 ≤ i ≤ N ,
we define zi ≡ (x1, . . . , xi, yi+1, . . . , yN ). Since |x − y| < δ0, we have zi ∈ Ωδ0 . Moreover, z0 = y and
zN = x, hence, by the triangle inequality,

d(u(x), u(y)) = d(U(x), U(y)) ≤
N

∑

i=1

d(U(zi), U(zi−1)).

Noticing that d(U(zi), U(zi−1)) does not depend on y1, . . . , yi−1, xi+1, . . . , xN , we infer

Λ(u) ≤
N

∑

i=1

∫

Gi(x1, . . . , xi−1, yi+1, . . . , yN )d(U(zi), U(zi−1))
pdx1 . . . dxidyi . . . dyN , (36)

where

Gi(x1, . . . , xi−1, yi+1, . . . , yN ) ≡
∫

{|x−y|<δ0}

dy1 . . . dyi−1dxi+1 . . . dxN

|x − y|sp+N
.
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By equivalence of norms | · |∞ and | · |2, there exist positive constants K1, K2 such that

K1G̃i ≤ Gi ≤ K2G̃i, (37)

where

G̃i(x1, . . . , xi−1, yi+1, . . . , yN ) ≡
∫

{|x−y|∞<δ0}

dy1 . . . dyi−1dxi+1 . . . dxN

|x − y|sp+N
1

.

Using {|x− y|∞ < δ0} = (x1 − δ0, x1 + δ0)× . . .× (xi−1− δ0, xi−1 + δ0)× (yi+1 − δ0, yi+1 + δ0)× (yN −
δ0, yN + δ0), Fubini’s theorem and the inequality

∫ δ0

0

dt

(α + t)σ
≤ 1

(σ − 1)ασ−1
,

valid for α > 0 and σ > 1, and (37), we deduce

C1(s, p,N, δ0)

|xi − yi|sp+1
≤ K1G̃i ≤ Gi ≤ K2G̃i ≤

C2(s, p,N, δ0)

|xi − yi|sp+1
. (38)

Inserting (38) in (36) yields

Λ(u) ≤ C2

N
∑

i=1

∫

d(U(zi), U(zi−1))
p

|xi − yi|sp+1
dx1 . . . dxidyi . . . dyN . (39)

Using the change of variables xi+1 ≡ yi+1, . . . , xN ≡ yN and yi − xi ≡ t ∈ (−δ, δ), we see that the
right-hand sides of (39) and (35) (since zi−1 becomes x + t~ei and zi becomes x) are equal.

Proof of the left-hand side of (35). To prove the left-hand side of (35), it suffices to show

∫

Ω

∫ δ0

0

d(U(x), U(x + t~e1))
p

tsp+1
dxdt ≤ C1Λ(u).

First, note that, by (38),
1

tsp+1
≤ G1

C1
= C ′

1

∫

BN−1

δ0

dξ

|(t, ξ)|sp+N
,

where BN−1
δ0

= {ξ ∈ R
N−1, |ξ| < δ0}, hence

∫

Ω

∫ δ0

0

d(U(x), U(x + t~e1))
p

tsp+1
dxdt ≤ C1

∫

Ω

∫ δ0

0

∫

BN−1

δ0

d(U(x), U(x + t~e1))
p

|(t/2, ξ)|sp+N
dxdtdξ

By the triangle inequality, for any ξ ∈ BN−1
δ0

,

d(U(x), U(x + t~e1)) ≤ d
(

U(x), U(x + (0, ξ) +
t

2
~e1)

)

+ d
(

U(x + (0, ξ) +
t

2
~e1), U(x + t~e1)

)

,

thus

∫

Ω

∫ δ0

0

d(U(x), U(x + t~e1))
p

tsp+1
dxdt ≤ C1

∫

Ω

∫ δ0

0

∫

BN−1

δ0

d
(

U(x), U(x + (0, ξ) + t
2~e1)

)p

|(t/2, ξ)|sp+N
dxdtdξ

+ C1

∫

Ω

∫ δ0

0

∫

BN−1

δ0

d
(

U(x + (0, ξ) + t
2~e1), U(x + t~e1)

)p

|(t/2, ξ)|sp+N
dxdtdξ.
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Setting y ≡ x+(0, ξ)+ t
2~e1 in the first integral and x′ ≡ x+t~e1, y′ ≡ x+(0, ξ)+ t

2~e1 = x′+(0, ξ)− t
2~e1

in the second integral, so that |x − y| = |x′ − y′| = |(t/2, ξ)|, we conclude

∫

Ω

∫ δ0

0

d(U(x), U(x + t~e1))
p

tsp+1
dxdt ≤ C1Λ(u),

and the proof of the left-hand side inequality in (35) is complete. �

3.2 Proof of Proposition 7

By standard localization, we can reduce the study to the case where, locally, Ω is the half-space
R

N
+ = R

N−1 × (0,+∞). Suppose the result proved for N = 2, namely Ω = (a, b) × (0, 1) and

‖u‖
W

s− 1
p ,p

((a,b),X)
≤ C1|u|

W
s− 1

p ,p
((a,b),X)

≤ C|u|W s,p((a,b)×(0,1),X).

Then, the general result follows using Lemma 9 and integrating this inequality. We assume then
N = 2, Ω = (0, 1) × (0, 1), and the trace is on (0, 1) × {0}. Let u ∈ W s,p(Ω, X), with 0 < s < 1 < sp
(if s = p = 1, there is nothing to prove, the trace is only in L1(∂Ω, X)). We extend u by reflection
across the boundary as a map, still denoted u, on (−1, 2) × (0, 1).

The case s = 1. If f ∈ W 1,p(Ω, R), then the standard estimate for traces (see, e.g. [4], Chapter 5,
Theorem 3) starts with the inequality, for x, t ∈ (0, 1),

∣

∣

∣
f(x, 0) − f(x + t, 0)

∣

∣

∣
≤

∣

∣

∣
f(x, 0) − f(x, t)

∣

∣

∣
+

∣

∣

∣
f(x, t) − f(x + t, t)

∣

∣

∣
+

∣

∣

∣
f(x + t, t) − f(x + t, 0)

∣

∣

∣
, (40)

which implies

1

t

∣

∣f(x, 0)− f(x+ t, 0)
∣

∣

∣
≤ 1

t

∫ t

0
|∂2f |(x, τ) dτ +

1

t

∫ t

0
|∂1f |(x+ τ, t) dτ +

1

t

∫ t

0
|∂1f |(x+ t, τ) dτ. (41)

The classical estimate for traces, namely |tr(f)|1− 1

p
,p ≤ C|∇f |Lp comes then from the majorization

of the Lp norm of the right-hand side of the above inequality (see for instance the proof of Theorem
3, Chapter 5, in [4]):

||rhs of (41)||Lp(x,t) ≤ C|∇f |Lp . (42)

Turning back to the estimate for u, for a.e. x ∈ (0, 1), we apply (41) to f ≡ d(u(·), u(x, 0)) ∈
W 1,p(Ω, R). Then, we use |∇f | ≤ C|∇u|1 and obtain

1

t
d(u(x + t, 0),u(x, 0)) =

1

t

∣

∣

∣
f(x, 0) − f(x + t, 0)

∣

∣

∣

≤ 1

t

∫ t

0
|∇u|1(x, τ) dτ +

1

t

∫ t

0
|∇u|1(x + τ, t) dτ +

1

t

∫ t

0
|∇u|1(x + t, τ) dτ. (43)

Estimating the Lp norm of the right-hand side of (43) using (42), we obtain the desired estimate

||tr(u)||p
W

1− 1
p ,p

=
∣

∣

∣

∣

∣

∣

1

t
d(tr(u)(x + t), tr(u)(x))

∣

∣

∣

∣

∣

∣

p

Lp(x,t)
≤ CpE

p(u).

The case 0 < s < 1 < sp. We first define the trace of u ∈ W s,p(Ω, X) as a map in Lp(∂Ω, X)
exactly as in [12], section 1.12, using the Sobolev inequality, for v ∈ W s,p((0, 1), X),

d(v(x), v(y)) ≤ C|v|W s,p |x − y|s−
1

p . (44)
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Next, the analogue of (43) writes

d(u(x + t, 0), u(x, 0)) ≤ d(u(x, t), u(x, 0)) + d(u(x + t, t), u(x, t)) + d(u(x + t, t), u(x + t, 0)). (45)

Dividing by ts and taking the Lp(x, t) norm yields

‖u‖p

W
s− 1

p ,p
≤

∫

Ω

2

tsp
d(u(x, 0), u(x, t))p dtdx +

∫

Ω

1

tsp
d(u(x + t, t), u(x, t))p dtdx. (46)

To estimate the second integral in (46), we write the scaled version of (44)

d(u(x + t, t), u(x, t))p ≤ Ctsp−1

∫ t

0

∫ t

0
d(u(x + y, t), u(x + y + z, t))p dydz

zsp+1
,

thus,

∫

Ω

1

tsp
d(u(x + t, t),u(x, t))p dtdx

≤ C

∫ 1

0

1

t

∫ t

0

∫ t

0

∫ 1

0
d(u(x + y, t), u(x + y + z, t))p dxdz

zsp+1
dydt

≤ C

∫ 1

0

1

t

∫ t

0

(

∫ 1

0

∫ 2

0
d(u(x, t), u(x + z, t))p dxdz

zsp+1

)

dydt = C‖u‖p
W s,p . (47)

For the first integral in (46), we first choose a 1 ≤ q < p such that sq > 1 (which is possibe since
sp > 1 and p > 1 since 0 < s < 1). Then, we also write the scaled version of (44)

d(u(x, 0), u(x, t))q ≤ C(q)tsq
∫ 1

0

∫ t

0
d(u(x, ty), u(x, ty + z))q dzdy

zsq+1
.

We divide by tsq and take the L
p
q (x, t) norm, then use successively the triangle inequality for integrals

(second line),
∫ 1
0 y−q/p dy < ∞ since p > q > 0 and set τ = ty ∈ [0, y] ⊂ [0, 1] (fifth line), and finally

Hölder inequality with the measure dz
z , to infer

(

∫ 1

0
d(u(x, 0), u(x, t))p dt

tsp

)
q
p ≤ C

∣

∣

∣

∣

∣

∣

∫ 1

0

∫ 1

0
d(u(x, ty), u(x, ty + z))q dzdy

zsq+1

∣

∣

∣

∣

∣

∣

L
p
q
t (0,1)

≤ C

∫ 1

0

∣

∣

∣

∣

∣

∣

∫ 1

0
d(u(x, ty), u(x, ty + z))q dz

zsq+1

∣

∣

∣

∣

∣

∣

L
p
q
t (0,1)

dy

= C

∫ 1

0

(

∫ 1

0

[

∫ 1

0
d(u(x, ty), u(x, ty + z))q dz

zsq+1

]
p
q
dt

)
q
p

dy

≤ C

∫ 1

0

(

∫ 1

0

[

∫ 1

0
d(u(x, τ), u(x, τ + z))q dz

zsq+1

]
p
q
dτ

)
q
p dy

y
q
p

= C ′
(

∫ 1

0

[

∫ 1

0

(d(u(x, τ), u(x, τ + z))

zs

)q dz

z

]
p
q
dτ

)
q
p

≤ C
(

∫ 1

0

∫ 1

0

d(u(x, τ), u(x, τ + z))p

zsp+1
dzdτ

)
q
p
. (48)

Combining (47) and (48) with (46), we obtain ‖u‖
W

s− 1
p ,p ≤ C‖u‖W s,p . �
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Remark 15 To define traces from W s,p(Ω, X) into W
s− 1

p
,p
(∂Ω, X) for 1 < s < 2, one has to impose

some smoothness to X to define ∇u. If X = E is a smooth riemannian manifold complete, but
possibly non-compact, and isometrically embedded in R

q, then we set for s > 1 and 1 ≤ p ≤ ∞
W s,p(Ω, E) ≡ W s,p(Ω, Rq) ∩ Lp(Ω, E). Assume for instance s − 1

p < 1 < s < 2, then

tr : W s,p(Ω, E) → W s− 1

p
,p(∂Ω, E).

The case s − 1
p ≥ 1 follows direcly from standard trace theory and the fact that the trace of a map

in W 1,p(Ω, E) is in Lp(∂Ω, E) (from [12], section 1.12).

Proof of Remark 15. We just point out the modifications to make in the proof of Proposition 7.
Inequality (45) becomes

‖u‖p

W
s− 1

p ,p
≤ 2

∫ 1

0

∫ 1

0
d(u(x, h), u(x, t + h))p dtdx

tsp
+

∫ 1

0

∫ 1

0
d(u(x + t, t + h), u(x, t + h))p dtdx

tsp
.

For the second integral, we write as before the Sobolev embedding into Hölder continuous functions

d(u(x + t, t + h), u(x, t + h))p

≤ Ctsp−1
(

∫ t

0
|∂1u|p(x + y, t + h) dy +

∫ t

0

∫ t

0
|∂1u(x + y, t + h) − ∂1u(x + y + z, t + h)|p dydz

zsp

)

.

For the first integral, we write

d(u(x, t + h), u(x, h))

≤ Cts−1
(

∫ t

0
|∂1u|1(x + y, t + h) dy +

∫ t

0

∫ t

0
|∂1u(x + y, t + h) − ∂1u(x + y + z, t + h)| dydz

zs

)

,

and argue as for the case 0 < s < 1. �
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