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Abstract

We study the asymptotic regime of strong electric fields that leads from the Vlasov–Poisson
system to the Incompressible Euler equations. We also deal with the Vlasov–Poisson–Fokker–
Planck system which induces dissipative effects. The originality consists in considering a situation
with a finite total charge confined by a strong external field. In turn, the limiting equation is set
in a bounded domain, the shape of which is determined by the external confining potential. The
analysis extends to the situation where the limiting density is non–homogeneous and where the
Euler equation is replaced by the Lake Equation, also called Anelastic Equation.
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1 Introduction

1.1 The Vlasov-Poisson equation in a confining potential

We are interested in the behavior as ε tends to 0 of the solutions of the following Vlasov equation

∂tfε + v · ∇xfε −
(

1

ε
∇xΦext +∇xΦε

)
· ∇vfε = 0, (V)

where the potential Φε is defined self-consistently by the Poisson equation

∆xΦε = −1

ε
ρε, ρε(t, x) =

∫
fε(t, x, v) dv, (P)
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Figure 1: Snapshot of a 2D simulation of confined charged particles. Particles are subjected to the combination
of a harmonic and isotropic external potential, a strong Coulomb repulsion, a friction and a noise. An external
force has been added from the left to the right in the lower half of the cloud, in order to set the particles in
motion. Left: instantaneous locally averaged density field. The density is almost uniform inside a ball, and
almost zero outside. Right: instantaneous locally averaged velocity field. (By courtesy of A. Olivetti [34].)

and where ε−1Φext is a strong external potential applied to the system. The problem holds in the
entire space: x ∈ RN , v ∈ RN and it is completed by an initial data with finite charge

fε

∣∣∣
t=0

= f init
ε ,

∫∫
f init
ε dv dx = m ∈ (0,∞). (1)

Notice that Φε is of size ε−1 and we shall consider the applied potential 1
εΦext also of size ε−1.

The problem is motivated by the study of non neutral plasmas (see [12] for a review): these are
collections of particles all with the same sign of charge, for instance pure electron, or pure ion
plasmas. There are several methods to confine such a plasma, among which the Paul trap, which
uses an oscillating electric field. The Penning trap, which uses a combination of static electric and
magnetic fields, is also standard, but (V) is not directly relevant to this situation since there is no
magnetic field in it. A non neutral plasma picture has also been used to describe trapped neutral
atoms [31], in the regime where multiple diffusion of quasi resonant photons induces an effective
interaction force between atoms which is formally similar to a Coulomb force [40]. In this case,
the system is however dissipative; a standard way to take this effect into account is to add to (V)
a Fokker-Planck operator acting on velocities [9]. We will also discuss this situation. In these
physical examples, the small ε limit is indeed relevant in many experimental situations. Figure 1
corresponds to a numerical simulation of such an experiment. It strongly suggests the existence of a
limiting fluid model where the density is nothing but the characteristic function of a ball. Our goal
is to justify that, indeed, a simpler model, purely of hydrodynamic type, can be used to describe
the particles in this asymptotic limit.

In fact, we shall see that the limiting model holds in a domain the shape of which depends on
the external potential Φext. But, to start with, we can consider a quadratic and isotropic potential,
say:

Φext(x) =
1

2N
|x|2 (2)

where we remind the reader that N stands for the space dimension. It corresponds to the case
displayed in Figure 1. The confining potential ε−1Φext tends to strongly localize in space the
particle density. On the support of the limiting density ρ, the electric force ε−1∇xΦext + ∇xΦε
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should be of order one. By (P), this imposes that ∆Φext + ε∆Φε = ε∇x · (ε−1∇xΦext +∇xΦε) =
∆Φext − ρε = 1 − ρε is of order O(ε) on the support of ρ for the potential (2). Clearly, due to
the condition of finite charge (1), the limiting density cannot be constant uniformly on the whole
space. The intuition is that the limiting density has the same radial symmetries as both the external
potential (2) and the Poisson kernel, see (14) below. Actually, we shall prove some convergence of
ρε to

ne(x) = 1B(0,R)(x), (3)

where 1U denotes the characteristic function of the set U . The radius R depends on the total
mass m so that the charge constraint (1) is fulfilled. In order to find a hydrodynamic description
of the particles, it is convenient to associate to the particle distribution function fε the following
macroscopic quantities

Current: Jε(t, x)
def
=

∫
v fε(t, x, v) dv,

Kinetic pressure: Pε(t, x)
def
=

∫
v ⊗ v fε(t, x, v) dv.

It turns out that the current looks like

Jε(t, x) = ρε(t, x)Vε(t, x) −−−→
ε→0

ne(x)V (t, x) = 1B(0,R)(x)V (t, x), (4)

where V solves the Incompressible Euler system in B(0, R):{
∂tV +∇x · (V ⊗ V ) +∇xp = 0,
∇x · V = 0,

(IE)

with an appropriate initial condition, and no flux boundary condition on ∂B(0, R). In (IE), the
pressure p appears as the Lagrange multiplier associated with the constraint that V is divergence
free. This incompressibility condition comes from charge conservation: integrating (V) with respect
to the velocity variable v, we get

∂tρε +∇x · Jε = 0. (5)

Letting ε go to 0, with (3) and (4), we deduce that V is solenoidal. Obtaining the evolution equation
for V is more intricate.

The analysis of such asymptotic problems goes back to [5], where a specific modulated energy
method was introduced. It has been revisited in [30], still by using a modulated energy method,
but which is able to account for oscillations present within the system. Accordingly, more general
initial data can be dealt with in [30]. However, these results hold either on the torus TN , or in
the whole space with data having infinite charge, that is

∫∫
f(x, v) dv dx = ∞. A case with finite

charge, but a different Poisson equation which leads to a compressible hydrodynamic limit, has
been considered in [19], again with a modulated energy. Our goal in this article is twofold:

• To prove the convergence to (IE) in the case of a trapped system, with finite charge. Even
though our proof also relies on a modulated energy functional, there are new difficulties: the
shape of the domain on which the limiting equation (IE) holds is determined by the external
potential Φext, and a careful treatment of the boundary is needed.

• To prove the convergence to the analog of (IE) in the case of a trapped dissipative system.

Both improvements are relevant for experiments on non neutral plasmas or large magneto-optical
traps.

1.2 Statement of the results

In what follows we shall deal with a smooth solution (t, x) 7→ V (t, x) ∈ RN (possibly defined on a
small enough time interval [0, T ]) of the incompressible Euler equation (IE) set on the ball B(0, R),
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completed with no-flux boundary condition

V (t, x) · ν(x)
∣∣∣
|x|=R

= 0, (6)

where ν(x) denotes the outward unit vector at x ∈ ∂B(0, R) (namely ν(x) = x/|x|). We work with
solutions V that belongs to L∞(0, T ;Hs(B(0, R))), for a certain s > 0 large enough.

Theorem 1.1 ([38]-[39]) Let V init : B(0, R) → RN be a divergence free vector field in Hs, with
s > 1 + N/2, satisfying the no flux condition V init · ν = 0 on ∂B(0, R). There exists T > 0 and a
unique solution V ∈ L∞(0, T ;Hs(B(0, R))) of (IE) with the no flux condition (6). Moreover, we
have

sup
0≤t≤T

(
‖V (t)‖Hs + ‖∂tV (t)‖Hs−1 + ‖∇xp(t)‖Hs + ‖∂t∇xp(t)‖Hs−1

)
≤ C(T )

for some positive constant C(T ) depending on T and the initial datum.

If N = 1, the only divergence free vector field V init satisfying (6) is V init ≡ 0 and then the solution
given in Theorem 1.1 is V ≡ 0.

For further purposes, we need to consider an extension V of the solution V to (IE) with (6),
defined on the whole space and compactly supported. Namely we require V ∈ L∞(0, T ;Hs(RN ))
to satisfy

V
∣∣∣
B(0,R)

= V, V
∣∣∣
RN\B(0,2R)

= 0, V (t, x) · ν(x)
∣∣∣
|x|=R

= 0. (7)

For the construction of such an extension, we refer to [27, Chapter I: Theorem 2.1 p. 17 & Theorem
8.1 p. 42]. For an extension which is in addition divergence–free, see Lemma B.1 in the appendix.

In order to state our first result, we need to introduce an auxiliary potential function Φe.
Suppose that (3) indeed holds true. Then, by using (P) and ∆Φext = 1 for the potential (2), we
infer, for ε→ 0,

∆(Φext + εΦε) = ∆Φext − ρε → ∆Φext − 1B(0,R) = 1RN\B(0,R).

Moreover, since we want the electric force ε−1∇xΦext + ∇xΦε = ε−1(∇xΦext + ε∇xΦε) to be of
order one on the ball B(0, R), this imposes Φext + εΦε to be close to a constant, say zero, on the
ball B(0, R). It is therefore natural to look for a solution Φe to the Poisson problem

∆Φe(x) = 1− ne(x) = 1RN\B(0,R), Φe = 0 in B(0, R). (8)

In this specific case, we can find an explicit radially symmetric solution:

Φe(x) = 1RN\B(0,R) ×



|x|2

2N
+

RN

N(N − 2)|x|N−2
− R2

2(N − 2)
if N > 2,

|x|2 −R2

4
− R2

2
ln(|x|/R) if N = 2,

1

2
(|x| −R)2 if N = 1.

(9)

With Φe and ne in hand, we split the Poisson equation (P) as follows, where ne is defined in (3),

∆xΦε(t, x) =
1− ne(x)

ε
+
ne(x)− ρε(t, x)

ε
− 1

ε
∆Φext =

1

ε
∆xΦe(x) +

1√
ε

∆xΨε(t, x)− 1

ε
∆Φext,

namely, we have

Φε(x) +
1

ε
Φext =

1

ε
Φe(x) +

1√
ε

Ψε(t, x), ∆xΨε(t, x) =
1√
ε

(ne(x)− ρε(t, x)), (10)
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where Ψε represents the fluctuations of the potential. According to [5], we introduce a modulated
energy:

HV ,ε
def
=

1

2

∫∫
|v − V |2 fε dv dx+

1

2

∫
|∇xΨε|2 dx+

1

ε

∫∫
Φe fε dv dx.

When the external potential is given by (2), we shall establish the following statement1.

Theorem 1.2 Let V init ∈ Hs(B(0, R)) satisfy ∇x ·V init = 0 and the no flux condition (6). Denote
by V the solution, on [0, T ], to (IE) with the no flux condition (6) given in Theorem 1.1. Consider
V a smooth extension of V satisfying the conditions (7). Let f init

ε : RN×RN → [0,∞) be a sequence
of integrable functions that satisfy the following requirements

∫∫
f init
ε dv dx = m,

lim
ε→0

{
1

2

∫∫
|v − V init|2 f init

ε dv dx+
1

2

∫
|∇xΨinit

ε |2 dx+
1

ε

∫∫
Φe f

init
ε dv dx

}
= 0.

(11)

Then, the associated solution fε of the Vlasov–Poisson equation (V)–(P) satisfies, as ε→ 0,

i) ρε converges to ne in C0([0, T ]; M 1(RN )− weak− ?);

ii) HV ,ε converges to 0 uniformly on [0, T ];

iii) Jε converges to J in M 1([0, T ] × RN ) weakly-?, the limit J lies in L∞(0, T ;L2(RN )) and
satisfies J

∣∣
[0,T ]×B(0,R)

= V , ∇x · J = 0 and J · ν(x)
∣∣
∂B(0,R)

= 0.

Remark 1.3 (i) Here, we were not very precise about the type of solutions to the Vlasov–Poisson
system (V)–(P) we are considering. We refer to [35, 28] for the construction of global regular
solutions to the system and some extra conditions to ensure the propagation of regularity. There
are also weaker notions of solutions (weak solutions or renormalized solutions) to which our theorem
can apply. We refer the reader to the introduction of [28] for a discussion about these solutions.

(ii) The second part of the hypothesis (11) imposes that the initial modulated energy is small;
this is a strong hypothesis on the initial data. When the problem is set on the torus, or on the whole
space with infinite charge, it can be relaxed, see [30]. In the present framework, going beyond (11)
would certainly require a fine description of boundary layers on {|x| = R}. Assuming (11), point
ii) of the theorem then ensures that the modulated energy remains small at later times. As typical
initial data satisfying (11), we can take

f init
ε (x, v) =

ne(x)− δε∆χ(x)

σNε
G

(
v − V init(x)

σε

)
,

where χ ∈ C∞c (B(0, R)) and where G is a nonnegative function that belongs to the Schwartz space
and satisfies

∫
Gdv = 1 (for instance, G is a normalized Gaussian G(v) = (2π)−N/2 exp(−|v|2/2)).

Then, we choose σε → 0 as ε→ 0 and δε = o(
√
ε) (so that ne− δε∆χ ≥ 0 for ε small enough). In-

deed, we easily obtain
∫∫

Φe f
init
ε dv dx = 0,

∫∫
|v−V init|2 f init

ε dv dx = σ2
ε(
∫
|v|2G(v) dv)(

∫
ne dx)→

0 and Ψε = δε/
√
εχ, hence

∫
|∇xΨinit

ε |2 dx = δ2
ε/ε

∫
|∇xχ|2 dx→ 0.

We wish to extend this analysis by dealing with more general external potentials. We distinguish
two situations depending on the expression of the external potential:

• The quadratic potential

Φext(x) =
1

2

N∑
j=1

x2
j

λ2
j

, (12)

1Throughout the paper, we denote by M 1(X) the space of bounded measures on X ⊂ RD. It identifies with the dual
space of the separable space C0

0 (X) of the continuous functions that vanish at infinity.
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ext
= Cteφ

Supp( n  )
e

Figure 2: Some level sets of Φext and the support of ne.

with λj > 0, 1 ≤ j ≤ N , in dimension N ≥ 2 is typical to model non neutral plasmas [12]
or magneto-optical traps experiments. In this case ∆Φext is still a constant, that therefore
determines the value of the (uniform) particle density ne on its support. But the problem has
lost its symmetries and the shape of the support becomes non trivial. We shall see that ρε
tends to a uniform distribution ne, supported in an ellipsoid. However, we point out that the
support of ne does not coincide with a level set of Φext. An example with N = 2 is given in
Figure 2. The potential Φe can be computed rather explicitly, and Theorem 1.2 generalizes
directly. See Section 2.1 for a precise statement.

• In the case of a non quadratic potential, under suitable hypotheses on Φext, the limiting
density ne still has a compact support K and is still given on K by ne = ∆Φext. However,
ne is clearly no longer constant on K. The identification of K and ne relies on variational
techniques, with connection to the obstacle problem. It is still possible to prove the analog of
Theorem 1.2, but, since ne becomes non homogeneous, instead of (IE) the limiting equations
are now the so-called Lake Equations, see e. g. [26]:{

∂tV + V · ∇xV +∇xp = 0,
∇x · (neV ) = 0.

(LE)

Such model — also referred to as the Anelastic Equations — arise in the modelling of at-
mospheric flows [32]; we refer the reader to [29] for the justification of a derivation from the
compressible Navier-Stokes system. As a matter of fact, we can observe that the first equation
in (LE) may be writen in the following conservative form ∂t(neV )+∇x ·(neV ⊗V )+ne∇xp = 0.
The construction of Φe and K, and a precise statement of the corresponding convergence the-
orem can be found in Section 2.2.

Motivated by actual experiments, we will also generalize the results to the case where a Fokker-
Planck operator acting on velocities is added to Eq. (V). Our starting point then becomes:

∂tfε + v · ∇xfε −∇xΦε · ∇vfε = Lfε, (VFP)
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with

Lf = ∇v · (vf + θ∇vf) = θ∇v ·
(
M0,θ∇v

(
f

M0,θ

))
, M0,θ(v) =

1

(2πθ)N/2
e−|v|

2/(2θ),

for some θ > 0. Equation (VFP) is still coupled to the Poisson equation (P). Using a modified
modulated energy, we are able to show in this case that solutions fε of (VFP) and (P) with well-
prepared data converge when ε and θ tends to 0 in the sense of Theorem 1.2 to neV , where V is
now the solution of the Lake Equation with friction{

∂tV + V · ∇xV +∇xp+ V = 0,
∇x · (neV ) = 0.

(13)

On the boundary, we still have the no-flux condition (6). For the sake of completeness, the necessary
analog of Theorem 1.1 for the systems (LE) and (13) is sketched in appendix A. See Section 4 for
a precise statement on the asymptotic behavior of (VFP) and its proof.

2 The limit density ne and total potential Φe

As said above, we have a clear intuition and explicit formulae for the equilibrium distribution ne

and the potential Φe in the specific case of the isotropic external potential (2). Let us discuss in
further details how Φext determines ne and its support, and how the auxiliary potential Φe, which
plays a crucial role in the analysis through the decomposition (10), can be defined.

We remind the reader the definition of the fundamental solution, hereafter denoted Γ, of (−∆)
(mind the sign) in the whole space RN :

Γ(x)
def
=



1

N(N − 2)|BRN (0, 1)| · |x|N−2
if N > 2,

− ln |x|
2π

if N = 2,

−|x|
2

if N = 1.

(14)

2.1 The case of a general quadratic potential

Let us consider in this section the case of a quadratic potential (12). We have ∆Φext =
∑N
j=1

1
λ2
j
> 0

which is constant in space. It gives the value of the equilibrium density on its support since we still
expect ρε → 1K∆Φext. But it remains to determine this support Supp(ne) = K ⊂ RN on which we
have the volume constraint

m =

∫
ne dx = |K|

N∑
j=1

1

λ2
j

coming from (1). Note that a quick computation reveals that K can be neither radially symmetric,
nor a level set of Φext.

In order to extend Theorem 1.2 for a potential as in (12), we need to construct a domain K ⊂ RN
and a function Φe : RN → R such that

∆Φe(x) =

 N∑
j=1

1

λ2
j

1RN\K, Φe = 0 in K. (15)

The starting point is the observation that given a = (a1, ..., aN ) ∈ (R∗+)N , then the characteristic
function of the ellipsoid

Ka = {x ∈ RN ;

N∑
j=1

x2
j/a

2
j ≤ 1}
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generates an electric potential which is quadratic inside the ellipsoid. This can be found for instance
in [22, Chapter VII, § 6]; the computation there is for N = 3, but the extension to the case N ≥ 3 is
straightforward, and the two-dimensional case is treated by using arguments from complex analysis
in [17].

For x ∈ RN , we denote by σa(x) the largest solution of the equation

N∑
j=1

x2
j

a2
j + ς

= 1

(with ς ∈ R as unknown). Consequently, x ∈ Ka holds if and only if σa(x) ≤ 0. By convention,
σa(0) = −∞. This quantity can be seen as an equivalent of the radial coordinate in the ellipsoidal
coordinate system. It allows us to construct a solution to (15) where K is an ellipsoid, the coefficients
of which depend on the mass m and the λj ’s.

Proposition 2.1 Let a = (a1, ..., aN ) ∈ (R∗+)N .
(i) [22] If N ≥ 3, then

Γ ?1Ka(x) =
1

4

 N∏
j=1

aj

×


∫ +∞

σa(x)

1−
N∑
j=1

x2
j

a2
j + s

  N∏
j=1

(a2
j + s)

−1/2

ds if σa(x) ≥ 0,

∫ +∞

0

1−
N∑
j=1

x2
j

a2
j + s

  N∏
j=1

(a2
j + s)

−1/2

ds if σa(x) ≤ 0.

(ii) If N = 2, then

Γ?1Ka(x) =
1

4
(a1a2)×



− ln

(
σa(x) +

a2
1 + a2

2

2
+
√

(a2
1 + σa(x))(a2

2 + σa(x))

)
−
∫ +∞

σa(x)

2∑
j=1

x2
j

a2
j + s

ds√
(a2

1 + s)(a2
2 + s)

if σa(x) ≥ 0,

− ln

(
1

2
(a1 + a2)2

)
−
∫ +∞

0

2∑
j=1

x2
j

a2
j + s

ds√
(a2

1 + s)(a2
2 + s)

if σa(x) ≤ 0.

Remark 2.2 An alternative point of view for the two dimensional case is to work with the electric
field instead of the potential. We refer to [17] for expressions of the electric field generated by
ellipses in N = 2. In the case of a uniform charge distribution, the electric field is linear inside the
ellipse, with the same coefficients for the quadratic terms as those coming from the expression in
(ii).

We define the mapping Z : (R∗+)N → (R∗+)N by

Zj(α) =

∫ +∞

0

1

αj + s

 N∏
j=1

(αj + s)

−1/2

ds > 0. (16)

From Proposition 2.1, we know that the potential generated by 1Ka
is quadratic inside Ka, up to an

additive constant. The coefficients of the quadratic terms are the −(
∏N
j=1 aj)Zk(α)/4, 1 ≤ k ≤ N .

The idea to make the connexion with the external potential Φext is now to adapt the aj ’s so
that the quadratic terms in Γ ? 1Ka (inside Ka) cancel out the quadratic terms of Φext, so that

(∆Φext)Γ ? 1Ka
+ Φext is constant in Ka. We observe that

∏N
j=1 aj is related to the total charge of

the ellipsoid Ka since

m =

∫
ne = |Ka|

N∑
j=1

λ−2
j = |BRN (0, 1)|

 N∏
j=1

aj

 N∑
j=1

λ−2
j .
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We shall thus need to solve equations in a of the form Z(a2
1, ..., a

2
N ) = z, where z ∈ (R∗+)N is given.

Therefore, we are interested in showing that Z : (R∗+)N → (R∗+)N is a smooth diffeomorphism.
When N = 2, explicit computations may be carried out.

Proposition 2.3 Assume N = 2. Then, for any α ∈ (R∗+)2

Z(α) = (Z1(α),Z2(α)) =

(
2

α1 +
√
α1α2

,
2

α2 +
√
α1α2

)
.

Moreover, Z : (R∗+)2 → (R∗+)2 is a smooth diffeomorphism and its inverse is given by

Z−1(z) = ((Z−1)1(z), (Z−1)2(z)) =

(
2z2

z1(z1 + z2)
,

2z1

z2(z1 + z2)

)
.

Proof. The explicit formula for Z(α) comes by computing the Abelian integral∫ +∞

0

ds

(α1 + s)3/2(α2 + s)1/2
=

∫ +∞

0

d

ds

(
2

α2 − α1

√
α1 + s

α2 + s

)
ds =

2

α1 +
√
α1α2

,

for α1 6= α2, and the formula holds true when α1 = α2 as well. The formula for the inverse then
follows by direct substitution.

For N ≥ 3, we no longer have simple expressions for Z. However, we shall prove that Z :
(R∗+)N → (R∗+)N is a smooth diffeomorphism by using the fact that Z : (R∗+)N → (R∗+)N is a
gradient vector field associated with a strictly concave function.

Proposition 2.4 Assume N ≥ 2 and let us define the function ζ : (R∗+)N → R by:

ζ(α) =

 −
∫ +∞

0

(
N∏
k=1

(αk + s)

)−1/2

ds if N ≥ 3

4 ln(
√
α1 +

√
α2) if N = 2.

Then, ζ : (R∗+)N → R is smooth, strictly concave and it satisfies ∇ζ = Z. Furthermore, ∇ζ =
Z : (R∗+)N → (R∗+)N is a smooth diffeomorphism and for any z ∈ (R∗+)N , Z−1(z) is the unique
minimizer for

inf
α∈(R∗+)N

(z · α− ζ(α)) . (17)

In (17) we recognize the minimization problem that defines the Legendre transform of ζ. This
gives a way to compute numerically Z−1(z) through the minimization of a convex function.

Proof. The smoothness of ζ is clear and ∇ζ = Z follows from direct computations. If N = 2, the
strict concavity of ζ is straightforward and the fact that ∇ζ = Z : (R∗+)2 → (R∗+)2 is a smooth
diffeomorphism comes from Proposition 2.3: for any z ∈ (R∗+)2, Z−1(z) is a critical point of the
strictly convex (since ζ is strictly concave) function α 7→ z ·α− ζ(α), hence is the unique minimizer
of that function. We assume now N ≥ 3. Then, for each s ∈ R+, the function

$s : α ∈ (R∗+)N 7→

(
N∏
k=1

(αk + s)

)−1/2

is logarithmically strictly convex since ln ◦$s(α) = (−1/2)
∑N
k=1 ln(αk + s) and Hess(ln ◦$s, α) =

(1/2)Diag((α1 + s)−2, ..., (αN + s)−2). Consequently, −ζ(α) =
∫ +∞

0
$s(α) ds is a strictly convex

function of α. Let us show that the Jacobian determinant of Z never vanishes, that is Hess(ζ, α)
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is everywhere negative definite. For that purpose, for v ∈ RN , we write −vTHess(ζ, α)v =∫ +∞
0

vTHess($s, α)v ds, and thus it suffices to show that Hess($s, α) is positive definite for any
s ≥ 0. Now, we write $s(α) = exp(ln ◦$s(α)), thus ∂2

j,k$s(α) = exp(ln ◦$s(α))[∂2
j,k(ln ◦$s)(α) +

∂j(ln ◦$s)(α)∂k(ln ◦$s)(α)]. Therefore, if v 6= 0, we obtain

vTHess($s, α)v =$s(α)

vTHess(ln ◦$s, α)v +

 N∑
j=1

vj∂j(ln ◦$s)(α)

2


≥$s(α)vTHess(ln ◦$s, α)v = $s(α)

N∑
j=1

v2
j

2(αj + s)2
> 0,

as wished.
Let us now fix z ∈ (R∗+)N and consider the minimization problem (17). In view of the negativity

of ζ, this infimum µ belongs to [0,+∞). Since ζ is strictly concave, this problem has at most one
minimizer. Let us show that it has at least one by considering a minimizing sequence (αn)n≥0 ∈
(R∗+)N . We claim that the sequence (αn)n≥0 is bounded. Indeed, we have z ·αn−ζ(αn)→ µ ∈ R+,
and since ζ ≤ 0, this implies z · αn = ζ(αn) + µ+ o(1) ≤ µ+ o(1). Using that all components of z
are positive, the claim follows. As a consequence, we may assume, up to a subsequence, that there
exists α = (α1, ..., αN ) ∈ RN+ such that αn → α as n→ +∞. In particular, ζ(αn) = z ·αn−µ+o(1)
converges. We now prove that at most two components of α vanish. For otherwise, Fatou’s lemma
would yield

+∞ =

∫ +∞

0

(
N∏
k=1

(αk + s)

)−1/2

ds =

∫ +∞

0

lim inf
n→+∞

(
N∏
k=1

(αnk + s)

)−1/2

ds

≤ lim inf
n→+∞

∫ +∞

0

(
N∏
k=1

(αnk + s)

)−1/2

ds = lim inf
n→+∞

(−ζ(αn)),

contradicting the convergence of (ζ(αn))n∈N. It remains to show that α has no zero component to
ensure that µ + o(1) = z · αn − ζ(αn) → z · α − ζ(α) so that α ∈ (R∗+)N is actually a minimizer
for (17). We then assume that α1 = 0, for instance, and show that for sufficiently small δ > 0,
z · (δ, α2, ..., αN )−ζ(δ, α2, ..., αN ) < z · (0, α2, ..., αN )−ζ(0, α2, ..., αN ). This reaches a contradiction
for n large enough. We thus compute

D(δ) =
(
z · (δ, α2, ..., αN )− ζ(δ, α2, ..., αN )

)
−
(
z · (0, α2, ..., αN )− ζ(0, α2, ..., αN )

)
= z1δ +

∫ +∞

0

(δ + s)−1/2

(
N∏
k=2

(αk + s)

)−1/2

ds−
∫ +∞

0

s−1/2

(
N∏
k=2

(αk + s)

)−1/2

ds

= δ
(
z1 −

∫ +∞

0

1

s1/2(δ + s)1/2[s1/2 + (δ + s)1/2]

(
N∏
k=2

(αk + s)

)−1/2

ds
)
.

As δ → 0, we have, by monotone convergence,

∫ +∞

0

(∏N
k=2(αk + s)

)−1/2

s1/2(δ + s)1/2[s1/2 + (δ + s)1/2]
ds→

∫ +∞

0

1

2s3/2

(
N∏
k=2

(αk + s)

)−1/2

ds = +∞,

hence for δ sufficiently small, D(δ) < 0, as claimed. Therefore, α ∈ (R∗+)N and α is a minimizer
for (17). It then follows that ∇ζ(α) = z as wished.

We may now construct a solution to (15).
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Corollary 2.5 (Construction of the function Φe for quadratic potentials). Let N ≥ 2 and
assume that

Φext(x) =
1

2

N∑
j=1

x2
j

λ2
j

,

with λj > 0, 1 ≤ j ≤ N . Let us also fix m > 0. Then, there exists a unique a ∈ (R∗+)N such that

|Ka|

 N∑
j=1

1

λ2
j

 = m and
m

2|BRN (0, 1)|
∑N
k=1 λ

−2
k

Z(a2
1, ..., a

2
N ) =

(
1

λ2
j

)
1≤j≤N

. (18)

Therefore, there exists a constant κ, depending only on the λj’s, N and m such that the function

Φe = Φext +

 N∑
j=1

1

λ2
j

Γ ? 1Ka + κ

is convex and satisfies

−∆Φe =

 N∑
j=1

1

λ2
j

1RN\Ka
with, furthermore, Φe = 0 in Ka and Φe > 0 in RN \ Ka. (19)

Proof. We define λ > 0 such that λ−2 =
∑N
j=1 λ

−2
j and the constant κ by the formulas 4κ =

−λ−2
(∏N

j=1 aj

) ∫ +∞
0

(∏N
j=1(a2

j + s)
)−1/2

ds if N ≥ 3 and 4κ = −λ−2(a1a2) ln((a1 + a2)2/2) if

N = 2. The existence (and uniqueness) of a satisfying the conditions (18) then ensures that Φe = 0
in Ka and −∆Φe = λ−21RN\Ka

. Then, from the formulas in Proposition 2.1, we get, in {σa > 0},

4λ2∏N
j=1 aj

Φe(x) = Γ ? 1Ka
(x) +

4λ2∏N
j=1 aj

Φext(x) +
4λ2∏N
j=1 aj

κ

=

∫ +∞

σa(x)

1−
N∑
j=1

x2
j

a2
j + s

 N∏
j=1

(a2
j + s)

−1/2

ds

+

N∑
k=1

x2
k

∫ +∞

0

 N∏
j=1

(a2
j + s)

−1/2

ds

a2
j + s

−
∫ +∞

0

 N∏
j=1

(a2
j + s)

−1/2

ds

=

∫ σa(x)

0

 N∑
j=1

x2
j

a2
j + s

− 1

 N∏
j=1

(a2
j + s)

−1/2

ds. (20)

The last integral is positive if σa(x) > 0 since, when 0 ≤ s < σa(x),
∑N
j=1

x2
j

a2j+s
−1 >

∑N
j=1

x2
j

a2j+σa(x)
−

1 = 0. In order to see that Φe is convex, we notice that Φe ≡ 0 in {σa ≤ 0} = Ka and that, from
(20), we have, when σa(x) > 0, and for any direction ω ∈ SN−1,

∂2
ωΦe(x) =

∏N
j=1 aj

2λ2

∫ σa(x)

0

 N∑
j=1

ω2
j

a2
j + s

 N∏
j=1

(a2
j + s)

−1/2

ds

+

∏N
j=1 aj

λ2

 N∑
j=1

xjωj
a2
j + σa(x)

2 N∑
j=1

x2
j

(a2
j + σa(x))2

 N∏
j=1

(a2
j + σa(x))

−1/2

,
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since
∑n
j=1 x

2
j/(a

2
j + σa(x)) = 1, which is indeed > 0.

Clearly, the ellipsoid Ka is not a level set of the external potential Φext (except when all the
λj ’s are all equal). It is interesting to study the limiting case of a very asymmetric external
potential. For instance in N = 2, we consider a trapping potential (12) with a large aspect ratio
A = λ1/λ2 � 1. Direct computations (using Proposition 2.3) lead to

a1 =

√
m

π

λ1√
1 +

λ2
2

λ2
1

; a2 =

√
m

π

λ2√
1 +

λ2
1

λ2
2

.

Hence
a1

a2
=
λ2

1

λ2
2

= A2

Thus, the aspect ratio of the particles’ cloud is much larger than the aspect ratio of the external
potential: this is an effect of the strong repulsion, see Figure 2 for a typical picture. A similar
phenomenon occurs in higher dimensions. For N = 3 with cylindrical symmetry, explicit formulae
corresponding to our Z function are given for instance in [41]. It is easy to check that for a strongly
oblate external potential (“pancake shape”), the aspect ratio of the cloud is again of the order of
the square of the aspect ratio of the external potential. We can now state the analog of Theorem 1.2
for a general quadratic Φext.

Theorem 2.6 Let Φext be any quadratic potential (12) to which we associate, by virtue of Corol-

lary 2.5, the ellipsoid Ka and the potential Φe. Let V init ∈ Hs(
◦
Ka) satisfy ∇x · V init = 0 in

◦
Ka

and the no flux condition (6) on ∂Ka. Denote by V the solution on [0, T ] to (IE) with the no flux
condition (6) given in Theorem 1.1 and consider V init a smooth extension of V in RN satisfying
the following conditions, where R > 0 is such that Ka ⊂ B(0, R),

V
∣∣∣
Ka

= V, V
∣∣∣
RN\B(0,2R)

= 0, V (t, x) · ν(x)
∣∣∣
∂Ka

= 0.

Let f init
ε : RN × RN → [0,∞) be a sequence of integrable functions that satisfy (11). Then, the

associated solution fε of the Vlasov–Poisson equation (V)–(P) satisfies, as ε→ 0,

i) ρε converges to ne =
(∑N

j=1 λ
−2
j

)
1Ka

in C0(0, T ; M 1(RN )− weak− ?);

ii) HV ,ε converges to 0 uniformly on [0, T ];

iii) Jε converges to J in M 1([0, T ] × RN ) weakly-?, the limit J lies in L∞(0, T ;L2(RN )) and
satisfies J

∣∣
[0,T ]×Ka

= V , ∇x · J = 0 and J · ν(x)
∣∣
∂Ka

= 0.

The existence of a smooth extension V of V on RN satisfying the above mentioned constraints
follows from [27, Chapter I: Theorem 2.1 p. 17 & Theorem 8.1 p. 42]. See Lemma B.1 in the
appendix for a divergence-free extension.

2.2 The case of a general potential

We wish now to extend the above results to a general confining potential. When Φext is not
quadratic, the equilibrium density ne cannot be expected to be constant on its support. In turn,
the limiting equation will be more complicated than the Incompressible Euler system. Besides, the
determination of the domain K = {Φe = 0} is a non trivial issue, and its geometry might be quite
involved [37]. In the following we write Ω = K̊ for the interior of K.

The pair (ne,Ω) should be thought of through energetic consideration. As it will be detailed
below, the total energy of the system (V)-(P) is∫∫

|v|2

2
fε dv dx+

1

2ε

∫
Φερε dx+

1

ε

∫
Φextρε dx.
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It is natural to investigate solutions whose energy does not diverge when ε tends to 0. Hence we are
interested in configurations close to the ground state ne defined by the variational problem where
only the electrostatic part of the energy is involved: namely, we wish to minimize

E [ρ]
def
=

∫
Φext(x) dρ(x) +

1

2

∫∫
Γ(x− y) dρ(y) dρ(x),

for a fixed m > 0 over the convex subset M +
ext(m) made of nonnegative Borel measures ρ of total

mass m > 0 such that
∫

Φext dρ is finite. This problem, which is often referred to as the generalized
Gauss variational problem, is quite classical and the basis of the theory dates back to [16]. We
refer the reader to [36, Chapter 1] for the case N = 2, and to [7, Theorem 1.2] when N ≥ 3 for
the existence of a minimizer under suitable assumptions on Φext. In what follows, we shall assume
that Φext fulfils the following requirements:

h1) Φext : RN → R+ is continuous, nonnegative and satisfies Φext(x)→ +∞ as |x| → +∞,

h2) If N = 2 or N = 1, we have lim
|x|→+∞

(Φext + mΓ)(x) = +∞.

The following statement collects from [7, 36, 37] the results we shall need.

Theorem 2.7 We assume that the potential Φext satisfies the hypotheses h1) and h2).
(i) The functional E is strictly convex on M +

ext(m).
(ii) The problem

inf
{
E [ρ] ; ρ ∈M +

ext(m)
}

(21)

has a unique minimizer ne which has a compact support of positive capacity. Moreover, there exists
a constant C∗ such that{

Γ ? ne + Φext ≥ C∗ quasi everywhere,
Γ ? ne + Φext = C∗ quasi everywhere on Supp(ne).

(22)

(iii) Conversely, assume that ρ0 ∈M +
ext(m) and C0 are such that{

Γ ? ρ0 + Φext ≥ C0 quasi everywhere,
Γ ? ρ0 + Φext = C0 quasi everywhere on Supp(ρ0).

Then, ρ0 is the minimizer for (21): ρ0 = ne.

We then define the potential Φe
def
= Γ ? ne + Φext − C∗. The constant C∗ in (22) is called the

modified Robin constant and quasi everywhere (q. e.) means up a set of zero capacity (which is a
bit stronger than to be Lebesgue-negligible); see [37, Definition 2.11]. IfN = 1, (22) holds pointwise.

Proof. The statements for N ≥ 3 can be found in [7, Theorem 1.2]. When N = 2, we refer the
reader to [36, Theorem 1.3 for (ii) and Theorem 3.3 for (iii)]. If N = 2, the strict convexity (i) is
not explicited in [36]. Thus we give proofs of (i) for N = 2, and (i)-(iii) for N = 1.

The argument for (i) is that if ρ0, ρ1 ∈M +
ext(m) and θ ∈ (0, 1), then

E [(1− θ)ρ0 + θρ1]− (1− θ)E [ρ0]− θE [ρ1]

=
1

2

∫∫
Γ(x− y) d[(1− θ)ρ0 + θρ1](y) d[(1− θ)ρ0 + θρ1](x)

− 1

2
(1− θ)

∫∫
Γ(x− y) dρ0(y) dρ0(x)− 1

2
θ

∫∫
Γ(x− y) dρ1(y) dρ1(x)

= − 1

2
θ(1− θ)

∫∫
Γ(x− y) d[ρ0 − ρ1](y) d[ρ0 − ρ1](x).
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Unless ρ0 = ρ1, the last integral is shown to be positive if N ≥ 3 in [7, Lemma 3.1]. The case N = 2
is dealt with in [36, Lemma 1.8], under the restriction that ρ0− ρ1 has compact support. Actually,

the method used in [7], which consists in writing Γ(x) as an integral of Gaussians e−|x|
2/2t, can be

extended to the case N = 2 as we check now. The starting point is the equality (see [2, equation
(12)])

ln
1

r
=

∫ +∞

0

1

2t

(
e−r

2/2t − e−1/2t
)

dt.

Therefore, denoting ρ
def
= ρ0 − ρ1 and r

def
= |x − y| and using the dominated convergence theorem

(on each of the sets {|x− y| < 1} and {|x− y| ≥ 1}), we obtain∫∫
ln

1

|x− y|
dρ(y) dρ(x) = lim

T→+∞

∫ T

1/T

1

2t

∫∫ (
e−r

2/2t − e−1/2t
)

dρ(y) dρ(x) dt

= lim
T→+∞

∫ T

1/T

1

2t

∫∫
e−r

2/2t dρ(y) dρ(x) dt

= lim
T→+∞

∫ T

1/T

1

4π

∫∫ ∫
e−t|ξ|

2/2−iξ·(x−y) dξ dρ(y) dρ(x) dt

= lim
T→+∞

∫ T

1/T

∫
1

4π
e−t|ξ|

2/2|ρ̂(ξ)|2 dξ dt

=

∫
1

2π|ξ|2
|ρ̂(ξ)|2 dξ,

where, for the second equality, we use
∫

dρ = 0, and for the third one, we write e−r
2/2t as the

Fourier transform of a two dimensional Gaussian. This clearly shows that
∫∫

Γ(x− y) dρ(y) dρ(x)
is positive unless ρ = 0, ensuring the strict convexity of E on M +

ext(m). When N = 1, we argue in
a similar way by observing that

−r =

∫ +∞

0

1√
2πt

(
e−r

2/2t − 1
)

dt.

Indeed, e−r
2/2t − 1 =

∫ r
0
∂u(e−u

2/2t) du = −
∫ r

0
(u/t)e−u

2/2t du, thus

−
∫ +∞

0

1√
t

(
e−r

2/2t − 1
)

dt =

∫ +∞

0

1√
t

∫ r

0

(u/t)e−u
2/2t dudt =

∫ r

0

∫ +∞

0

u

t3/2
e−u

2/2t dtdu

=

∫ r

0

∫ +∞

0

2
√

2e−τ
2

dτ du =

∫ r

0

√
2π du = r

√
2π,

where we have used the change of variable τ = u/
√

2t. Owing to this relation, we can follow the
same lines as above:

−1

2

∫∫
|x− y|dρ(y) dρ(x) = lim

T→+∞

∫ T

1/T

1

2
√

2πt

∫∫ (
e−r

2/2t − 1
)

dρ(y) dρ(x) dt

= lim
T→+∞

∫ T

1/T

1

2
√

2πt

∫∫
e−r

2/2t dρ(y) dρ(x) dt

= lim
T→+∞

∫ T

1/T

1

4π

∫∫ ∫
e−tξ

2/2−iξ(x−y) dξ dρ(y) dρ(x) dt

= lim
T→+∞

∫ T

1/T

∫
1

4π
e−tξ

2/2|ρ̂(ξ)|2 dξ dt

=

∫
1

2π|ξ|2
|ρ̂(ξ)|2 dξ.
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It only remains to prove (ii)-(iii) for N = 1. This is tackled in [37], but with Γ(x) = − ln |x|. The
very same arguments apply to the case Γ(x) = −|x|/2.

Remark 2.8 To motivate the above computation, one can remark that for N ≥ 1 and under the
condition

∫
dρ = 0, we have, at least formally,∫∫

Γ(x− y) dρ(y) dρ(x) =

∫
|∇∆−1ρ|2dx = (2π)−N

∫
1

|ξ|2
|ρ̂(ξ)|2 dξ.

The minimization of the functional E is connected to an obstacle problem. This connection is
explained in details in [37, Section 2.5].

Proposition 2.9 If ne is the minimizer of Theorem 2.7, then h = Γ ? ne is the unique solution to
the obstacle problem

To find φ ∈ H1
loc(RN ) such that∫

∇φ · ∇(g − φ) dx ≥ 0,

holds for any g ∈ H1
loc(RN ), with g − φ compactly supported and φ ≥ ψ q. e.

where ψ(x)
def
= C∗ − Φext(x).

We then define the coincidence set

K def
= {Φe = 0} = {Γ ? ne = C∗ − Φext}

and claim that K is compact. Indeed, as |x| → +∞, we have −Γ ? ne(x) ∼ −mΓ(x) and Φext(x) +
mΓ(x) � 1 whatever is the dimension N by h1)-h2), thus K = {Γ ? ne = C∗ − Φext} is bounded.
Moreover, by (22), the set Supp(ne) \ K has zero capacity. We give some examples in section 2.3
below where Supp(ne) ( K, due to the presence of points or regions where ∆Φext vanishes. These
points are precisely defined in [20, Section 3.6] and called ’shallow points’ and it is shown in this
paper (see Proposition 3.12 there) that it is possible to pass from Supp(ne) to K by simply adding
these ’shallow points’. This fact is illustrated in section 2.3 below.

For a general potential Φext, the variational viewpoint and the theory of the obstacle problem
provide a definition for the equilibrium distribution ne, the domain K (which is not always the
support of ne) and the potential Φe. The regularity of Φext is not “transferred” to the solution Φe

or Γ?ne beyond C1,1 regularity (see [13], [6]) since the Laplacian of these functions is discontinuous.
In addition, the topology of K is difficult to analyse in general: K may have empty interior or may
exhibit cusps. Hence, these regularity issues for both K and ne need to be discussed individually.
Let us then list the properties, which very likely are far from optimal, that we need to deal with
the asymptotic regime: there exists s > 1 +N/2 such that

H1) K has a non empty interior Ω and ∂Ω is of class C1.

H2) Φext ∈ Cs+3(RN ), ∆Φext is bounded away from zero on K.

The C1 regularity assumption H1) on ∂Ω excludes the presence of cusps in K. Let us point out
two regularity results derived from the obstacle problem theory.

Proposition 2.10 Let Φext be a potential satisfying h1) and h2) and consider ne the minimizer

of (21) given by Theorem 2.7 and let K def
= {Φe = 0}.

i) [23] Assume that H1) and H2) are satisfied. Then Ω̄ = K and the boundary ∂Ω is Cs+1.

ii) [13], [6], [20] Assume that Φext ∈ C1,1(RN ). Then, Γ ? ne ∈ C1,1 and ne = 1Ω(∆Φext) as
measures.
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Remark 2.11 A consequence of ii) is that, in (22), we may replace ’quasi everywhere’ by ’every-
where’ since all the functions involved are continuous. Note that H2) then implies that ne is Cs+1

and bounded from below on K.

Remark 2.12 Under the low regularity assumption Φext ∈ C1(RN ) and when N ≥ 2, it follows
from [6, Theorem 2] that Γ ?ne ∈ C1. This prevents the singular part of the measure ne from being
a Dirac mass or a finite sum of Dirac masses, since the fundamental solution Γ is unbounded (if
N ≥ 2) near the origin. This however may happen in dimension 1 (see the examples in section 2.3
below) and in these cases, the relation ne = 1Ω(∆Φext) (as measures) might not be true.

Proof. For the first point, notice that Ω̄ = K by H1). In addition, we also have from [23, Theorem
1] or [14, Chapter 2, Theorem 1.1], since we assume that ∆Φext ∈ Cs+1

loc (RN ) and does not vanish
on K, that the boundary ∂Ω is automatically of class Cs+1 (and even Cs+1+β for any β ∈ (0, 1)).
If Φext is analytic, then ∂Ω is also analytic.

For the second statement, we first invoke the regularity result of [13] (see also [6], [14]) saying
that since Φext ∈ Cs+3(RN ) ⊂ C1,1(RN ), then Γ ? ne belongs to C1,1(RN ). Consequently, in the
distributional sense, the compactly supported measure ne = −∆(Γ?ne) belongs to L∞(RN ). Since
Γ ? ne = C∗ − Φext in Ω (q. e., hence everywhere by continuity of the functions), we infer that
ne = ∆Φext in Ω. If we make the assumption H1), ∂Ω is of class C1 and we then deduce that
ne = (∆Φext)1Ω as a measure. If assumption H1) is not satisfied, then, as noticed in [20, Theorem
3.10], it follows from [24, Chapter 2, Lemma A.4] that ne = ∆Φext holds almost everywhere in K,
which concludes.

With these assumptions H1) and H2), we can establish the following statement, where we point
out that the limit problem is the Lake Equation (LE) instead of the mere incompressible Euler
system, since now the equilibrium distribution ne is inhomogeneous. We obviously need a smooth
enough solution to the Lake Equation (LE): we may refer to the works [26], [33] (when the domain
Ω is simply connected) and [25] (without simple connectedness assumption on the domain Ω), which
rely on a vorticity formulation à la Yudovitch and are then restricted to the dimension N = 2. We
provide in the appendix (see Theorem A.1) a well-posedness result analogous to Theorem 1.1 valid
in any dimension and without simple connectedness assumption on Ω.

Theorem 2.13 Let Φext be a potential satisfying h1) and h2) and consider ne the minimizer of

(21) given by Theorem 2.7 and let K def
= {Φe = 0}. Assume in addition that H1) and H2) are

satisfied. Let V init ∈ Hs(Ω) satisfy ∇x · (neV
init) = 0 in Ω and the no flux condition (6). Denote

by V the solution on [0, T ] to the Lake Equation (LE), with the no flux condition (6) and initial
condition V init, given in Theorem A.1 and consider V init a smooth extension of V init satisfying the
following conditions, where R > 0 is such that Ω ⊂ B(0, R),

V
∣∣∣
Ω

= V, V
∣∣∣
RN\B(0,2R)

= 0, V (t, x) · ν(x)
∣∣∣
∂Ω

= 0.

Let f init
ε : RN × RN → [0,∞) be a sequence of integrable functions that satisfy (11). Then, the

associated solution fε of the Vlasov–Poisson equation (V)–(P) satisfies, as ε→ 0,

i) ρε converges to ne in C0(0, T ; M 1(RN )− weak− ?);
ii) HV ,ε converges to 0 uniformly on [0, T ];

iii) Jε converges to J in M 1([0, T ] × RN ) weakly-?, the limit J lies in L∞(0, T ;L2(RN )) and
satisfies J

∣∣
[0,T ]×Ω

= V , ∇x · J = 0 and J · ν(x)
∣∣
∂Ω

= 0.

The existence of a smooth extension V of V follows from [27, Chapter I: Theorem 2.1 p. 17 &
Theorem 8.1 p. 42].

For convex potentials Φext, the only situation where we have been able to check the hypotheses
H1) and H2) (except the quadratic potentials for which ∆Φext is constant) is the case of the space
dimension N = 1 (see Proposition 2.14) and the case of a radial potential (see Proposition 2.15
below).
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2.3 About hypothesis H1) for convex potentials Φext

For the problem we have in mind, it is natural to assume that the confining potential Φext is smooth
and convex. In this case, one may think that the coincidence set K or Supp(ne) is convex. We
have not been able to find such a result in the literature for a general convex, coercive and smooth
enough confining potential Φext. Actually, the obstacle problem is, in most cases, set on a bounded
convex domain G with suitable boundary conditions instead of the whole space RN .

For the obstacle problem in bounded convex domains G, we can find a convexity result for the
coincidence set K in [15, Theorem 6.1] in the specific assumptions that ∆Φext is constant and with
the boundary condition Γ ? ne = 1 + ψ = 1 + C∗ − Φext on ∂G. Just after [15, Theorem 6.1], an
example is given (in a bounded convex domain G) showing that the assumption Φext smooth and
strictly convex (and Γ ? ne > ψ on ∂G) is not sufficient to guarantee that K is convex. Roughly
speaking, ∆Φext is constant for quadratic potentials.

Turning back to the obstacle problem in the whole space RN , the only convexity result we are
aware of is [6, Corollary 7], which corresponds to the case where ∆Φext is constant. Extending this
result to space depending functions ∆Φext is a delicate issue (see however [14, Chapter 2, section
3], which is not sufficient for our situation).

In the one dimensional case and for a convex potential Φext, there is a simple characterization
of K, as explicited in the following Proposition.

Proposition 2.14 (The one dimensional case with a convex potential) Assume that N =
1 and that Φext : R→ R is of class C1, piecewise C2, nonnegative, convex (i.e. Φ′ext is nondecreas-
ing) and that Φext(x) − m|x|/2 � 1 for |x| � 1 (so that h1) and h2) are satisfied). We denote by
∂Φ′ext the piecewise continuous function associated with the second order derivative of Φext. Then,
the minimizer ne for (21) is given by

ne = (∂Φ′ext)
∣∣∣
]a−,a+[

(23)

where a+ and a− are defined by the equations

m

2
= Φ′ext(a+) and − m

2
= Φ′ext(a−). (24)

Furthermore, Supp(ne) = Supp(∂Φ′ext) ∩ [a−, a+] and {Φe = 0} = [a−, a+]. In addition, the
potential Φe is convex.

Proof. As a first observation, notice that (24) has at least one (possibly non unique) solution since
Φ′ext is continuous, nondecreasing and tends to ≥ m/2 (resp. ≤ −m/2) in view of our hypothesis.
If the limit at +∞ is m/2, it follows from the convexity of Φext that Φext(x)− Φext(y) ≤ m/2.

cici

(resp. −∞) (resp. −m/2) Since Φ′ext is nondecreasing, and if b+ > a+ also solves m/2 =
Φ′ext(b+), this implies that, on [a+, b+], Φ′ext ≡ m/2, thus ∂Φ′ext ≡ 0 and this does not change ne.

Let us use the characterization (iii) in Theorem 2.7 and look for the measure ne under the form

ne = (∂Φ′ext)
∣∣∣
]a−,a+[

, which is piecewise continuous. This function ne satisfies the mass constraint

if and only if

m =

∫ a+

a−

∂Φ′ext dx = Φ′ext(a+)− Φ′ext(a−). (25)

Now, let us compute Γ ? ne + Φext in [a−, a+] and investigate under which condition this function
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Figure 3: The potential Φext and the corresponding measure ne for example 2

is constant (in [a−, a+]). Elementary computations give, for a− ≤ x ≤ a+:

Γ ? ne(x) = − 1

2

∫ a+

a−

|y − x|(∂Φ′ext)(y) dy

= − 1

2
Φ′ext(a+)(a+ − x) +

1

2
Φ′ext(a−)(x− a−) +

1

2

∫ a+

a−

sgn(y − x)Φ′ext(y) dy

= − 1

2
Φ′ext(a+)(a+ − x) +

1

2
Φ′ext(a−)(x− a−) +

1

2
Φext(a+) +

1

2
Φext(a−)− Φext(x).

As a consequence, Γ ? ne + Φext is constant in [a−, a+] if and only if Φ′ext(a+) + Φ′ext(a−) = 0.
Combining this with the mass constraint Φ′ext(a+)−Φ′ext(a−) = m yields the relation (24). It then
follows that, on [a−, a+],

Γ ? ne + Φext = C∗
def
=

1

2
(Φext(a+) + Φext(a−)− a+Φ′ext(a+)− a−Φ′ext(a−))

=
1

2
(Φext(a+) + Φext(a−))− m

4
(a+ − a−).

It remains to check that Γ ? ne + Φext ≥ C∗ in R. To see this, note that Φe
def
= Γ ? ne + Φext−C∗ is

convex since its (distributional) second order derivative is equal to the piecewise continuous function
∂xΦ′ext1R\[a−,a+], and Φe ≡ 0 on [a−, a+], hence is ≥ 0 everywhere. This finishes the proof.

Let us give some examples illustrating Proposition 2.14.

Example 1 (1D): If Φext is of class C2 and Φ′′ext is positive on R, then ne(x) = Φ′′ext(x)1[a−,a+](x)
and is absolutely continuous with respect to the Lebesgue measure. We then have Supp(ne) =
[a−, a+].
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Example 2 (1D): the potential Φext is C1, piecewise C2, but is affine on the interval [α−, α+]
(hence it is not strictly convex), where its slope belongs to ]−m/2,+m/2[ (see figure 3). In addition,
the second order derivative Φ′′ext is discontinuous at α− and continuous at α+ and ∂Φ′ext is positive
except on [α−, α+]. In this case, we may still define a± as the unique solutions to Φ′ext(a±) = ±m/2,
and we have Supp(ne) = [a−, α−]∪ [α+, a+] ( [a−, a+] = {Φe = 0} and this is then a disconnected
set. If the slope in the region [α−, α+] where Φext is affine does not belong to ]−m/2,+m/2[, then
the support of ne is an interval as in Example 1.

Example 1 fits the hypotheses of Theorem 2.13, but not Example 2 since ne is not bounded
away from zero (near α+). In particular, for Example 2, we have to face new difficulties in solving
the Cauchy problem (see Theorem A.1) for the Lake Equation (LE). If in the one dimensional
situation one can easily check that the support of ne (instead of K) is smooth, in a similar higher
dimensional case, the regularity of Supp (ne) is certainly not easy to analyse since we can not
rely on the results in [23, Theorem 1] or [14, Chapter 2, Theorem 1.1]. All these issues motivate
hypothesis H2).

Let us give now examples which do not fit the regularity hypotheses required in Proposition
2.14. These expressions are justified through the characterization (iii) in Theorem 2.7 and simple
computation of Γ ? ne.

Example 3 (1D): Take the potential Φext(x) = |x|. Then, hypothesis h2) exactly means m < 1.
In that case, we have ne = mδ0 and Supp(ne) = {0} = {Φe = 0}.

Example 4 (1D): Take two reals a < b and a convex potential Φext which is affine on ] −∞, a],
on [a, b] and on [b,+∞[. Assume also that h2) is satisfied, that is m < min(Φ′ext(+∞),−Φ′ext(−∞)).

Then, ne = min

(
1

2

(
m +

Φext(b)− Φext(a)

b− a

)
+

,m

)
δa+min

(
1

2

(
m− Φext(b)− Φext(a)

b− a

)
+

,m

)
δb.

As a consequence:

- if −m <
Φext(b)− Φext(a)

b− a
< m, then Supp(ne) = {a, b} and {Φe = 0} = [a, b];

- if
Φext(b)− Φext(a)

b− a
≤ −m, then ne = mδb and Supp(ne) = {b} = {Φe = 0};

- if
Φext(b)− Φext(a)

b− a
≥ m, then ne = mδa and Supp(ne) = {a} = {Φe = 0}.

Example 5 (1D): Consider the potential Φext(x) = |x|+ x2/2 + max(x− 1, 0):
- if m ≤ 2, then ne = mδ0, Γ ? ne(x) = −m|x|/2 and Supp(ne) = {0} = {Φe = 0};
- if 2 ≤ m ≤ 4, then ne = 2δ0 + 1[−m/2+1,m/2−1] and Supp(ne) = [−m/2 + 1,m/2− 1] = {Φe = 0};
- if 4 ≤ m ≤ 6, then ne = 2δ0 +(m/2−2)δ1 +1[−m/2+1,1] and Supp(ne) = [−m/2+1, 1] = {Φe = 0};
- if m ≥ 6, then ne = 2δ0 + δ1 + 1[−m/2+1,m/2−2] and Supp(ne) = [−m/2 + 1,m/2− 2] = {Φe = 0}.

Examples 3, 4 and 5 show that the single convexity hypothesis on Φext does not guarantee that
ne is a restriction of the nonnegative measure ∂2

xΦext (in the distributional sense). It appears in
these examples that ne is nondecreasing with respect to the mass m, and thus that we always have
ne ≤ ∂2

xΦext in the distributional sense. It is an open problem to determine whether this holds true
in higher dimensions. Here again, these issues motivate the regularity assumptions on Φext in H2).

The other situation where we may verify hypothesis H1) is the radial case (see [7, Corollary
1.4] for a related result in dimension N ≥ 3 for C2 potentials Φext). Let ϕext : R+ → R+ be a
nondecreasing function of class C1 and piecewise C2. Consider now the potential Φext : RN → R
given by Φext(x) = ϕext(|x|). It is then clear that ϕext is convex if and only if Φext is convex.

Proposition 2.15 (The radial case with a convex potential) Assume that N ≥ 2 and that
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Φext : RN → R is as above. Then, the minimizer ne for (21) is given by

ne(x) = 1B(0,R)(x)∆Φext(x), (26)

where R is defined by the equation

m =

∫
B(0,R)

∆Φext(x) dx or , equivalently , N |B(0, 1)|RN−1ϕ′ext(R) = m. (27)

Furthermore, Supp(ne) = B̄(0, R) \ B(0, Rmin), where Rmin
def
= max{ϕ′ext = 0} ≤ R. In addition,

the potential Φe is convex.

Proof. The existence of R is clear. We may have non uniqueness only in the case where Φext is
constant on a ball B(0, R0) (of positive radius), since ϕ′ext is nondecreasing. The potential Φe may
be searched for under the form of a radial function, and we find the expressions

Φe(x) = (ϕext(R)− ϕext(|x|) + ϕ′ext(R)Γ(R))1B(0,R) + ϕ′ext(R)Γ(x)1RN\B(0,R),

where Γ(R) stands for Γ(y) for any y ∈ ∂B(0, R).

Let us give some examples illustrating Proposition 2.15.

Example 1 (radial): If ϕext is of class C2 and ϕ′′ext is positive on R+, then ne(x) = 1B(0,R)(x)∆Φext(x)
and is absolutely continuous with respect to the Lebesgue measure. We then have Supp(ne) =
B̄(0, R).

Example 2 (radial): The potential ϕext is C1, piecewise C2, but is constant on the interval
[0, R0] (hence it is not strictly convex). It does not matter whether the second order derivative of
ϕext is continuous or not at R0. We define R ≥ R0 > 0 by the relation m =

∫
B(0,R)

∆Φext dx,

or, equivalently, N |B(0, 1)|RN−1ϕ′ext(R) = m. Then, ne = 1B(0,R)\B(0,R0)∆Φext, Supp(ne) =
B̄(0, R) \ B(0, R0) ( B̄(0, R) = {Φe = 0} and this set is then neither starshaped nor simply con-
nected. Here again, if ϕext ∈ C2, this potential does not fit hypothesis H2) since ∆Φext is not
bounded away from 0 near R0.

Let us give now examples which do not fit the regularity hypotheses required in Proposition
2.14. These expressions are justified through the characterization (iii) in Theorem 2.7 and simple
computation of Γ ? ne.

Example 3 (radial): Take the potential ϕext(r) = r, that is Φext(x) = |x|. Then, ∆Φext =
(N − 1)/r > 0, ne = (N − 1)|x|−11B(0,R), with N |B(0, 1)|RN−1 = m, and Supp(ne) = B̄(0, R) =
{Φe = 0}.

Example 5 (radial): Consider the potential ϕext(r) = r + max(r − 1, 0):
- if m ≤ N |B(0, 1)|, then ne = (N−1)|x|−11B(0,R), with R = (m/N |B(0, 1)|)1/N−1 and Supp(ne) =
B̄(0, R) = {Φe = 0};
- if N |B(0, 1)| ≤ m ≤ 2N |B(0, 1)|, then ne = (N − 1)|x|−11B(0,1) + (m − N |B(0, 1)|)δ∂B(0,1) and
Supp(ne) = B̄(0, 1) = {Φe = 0};
- if m ≥ 2N |B(0, 1)|, then ne = (N−1)|x|−11B(0,1)+N |B(0, 1)|δ∂B(0,1)+2(N−1)|x|−11B(0,R)\B(0,1),
where R ≥ 1 is such that 2N |B(0, 1)|(RN−1 − 1) + N |B(0, 1)| = m, and Supp(ne) = B̄(0, R) =
{Φe = 0}.

Since we assume ϕext convex and with 0 as a minimum point, it follows that ϕext has a right-
derivative at 0, hence the singularity in 1/|x| at the origin for ne is the worst we can have. The
radial Example 5 also shows that we may have Dirac masses on a sphere (of positive radius).
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Our next results guarantees that K has non empty interior when the confining potential Φext is
C1 and convex.

Proposition 2.16 We assume that 0 is a minimum point of Φext and that the potential Φext is of
class C1 and convex. Then, there exists r0 > 0 such that Br0(0) ⊂ K. In particular, K has non
empty interior.

Proof. We follow the argument of [24, Chapter 5, Theorem 6.2], where we work on h
def
= Γ ? ne and

shall use that it is a solution to the obstacle problem given in Proposition 2.9 with the obstacle
ψ = C∗ − Φext.

We first consider the case N ≥ 3 and notice that Supp(ne) has a positive capacity: we fix some
a ∈ Supp(ne) such that C∗ = h(a) + Φext(a) (see (22)). Now, since N ≥ 3, we observe that (with
cN > 0) h(a) = Γ ? ne(a) = cN | · |2−N ? ne > 0 and that 0 is actually a global minimum point of
Φext, thus C∗ > Φext(a) ≥ Φext(0) and it follows that ψ(0) = C∗−Φext(0) > 0. On the other hand,
h(x) ∼ mΓ(x) tends to 0 < ψ(0) at infinity, thus there exists an R0 > 0 such that h(x) ≤ ψ(0)/2

when |x| ≥ R0. For x0 that will be close to 0, we let v(x)
def
= ψ(x0) + (x − x0) · ∇ψ(x0) be the

affine tangent to ψ at x0. Since ψ is concave (Φext is convex), we have ψ ≤ v in RN . Furthermore,
if x0 is sufficiently close to 0 (depending on R0), then ∇ψ(x0) is small (since ψ is C1 and achieves
a minimum at 0) and thus v > ψ(0)/2 > 0 on ∂B(0, R0). Since ∆v ≡ 0, we may now apply [24,
Chapter 4, Theorem 8.3] to infer h ≤ v in B(0, R0) (this is a maximum type principle proved using

the comparison function g
def
= min(h, v)1B(0,R0) + h1RN\B(0,R0) in the formulation of the obstacle

problem given in Proposition 2.9). In particular, ψ(x0) ≤ h(x0) ≤ v(x0) = ψ(x0), which means
that, as wished, x0 ∈ K.

Let us now turn to the dimensions N = 2 and N = 1. Then, it may happen that ψ(0) ≤ 0, but
since h(x) ∼ mΓ(x) tends to −∞ < ψ(0) at infinity, the previous argument still applies.

If one is able to prove that K is convex and assuming that Φext satisfies H2), then H1) is
automatically true. Indeed, any point of ∂K has then a positive density and we may then apply
the regularity result of L. Caffarelli (see e.g., [14, Chapter 2, Theorem 3.10]) which ensures that
∂Ω is of class C1 (hence Cs+1 by H2)).

We conclude with a result from [20, Theorem 3.24] on the topology of K valid only in space
dimension two (the proof uses complex analysis).

Proposition 2.17 ([20]) We assume N = 2. Suppose that Φext is of class C2 and that its Hessian
is everywhere positive definite. Then, supp(ne) is simply connected, and equal to the closure of its
interior. Moreover, if Φext is C2,α for some α ∈]0, 1[, then ∂K is a C1,β Jordan curve, for some
β ∈]0, 1[.

The above result does not prevent cusps in ∂K, but just says that the boundary ∂K possesses
a C1,β parametrization.

3 Asymptotic analysis

This section is devoted to the analysis of the asymptotic regime ε → 0. We shall point out the
difficulties and necessary adaptations between the case of quadratic potentials, Theorem 1.2 and
Theorem 2.6, and the general case, Theorem 2.13. For the existence theory of the Vlasov–Poisson
equation, we refer the reader to [1] for weak solutions and more recently to [28, 35] where strong
solutions and regularity issues are discussed. Further details and references can be found in the
survey [18].
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3.1 A useful estimate on Φe

Before we turn to the analysis of the asymptotic regime ε→ 0, it is convenient to set up an estimate
that describes the behavior of Φe close to the neighborhood of ∂K. In the isotropic case, Φext being
given by (2), the potential Φe is defined by (9), and we observe that there exists C > 0 such that

0 ≤ (|x| −R) |∇xΦe(x)| ≤ C Φe(x) (28)

holds for any x with |x| ≥ R. More generally, for a quadratic potential (12), we can establish the
following property, based on the formulas in Section 2.1.

Lemma 3.1 Let Φe be the quadratic potential defined as in Corollary 2.5. Let V : RN → RN be
smooth, compactly supported and such that V · ν

∣∣
∂Ka

= 0. Then, there exists a positive constant C,

depending only on N , Φext and V such that we have, for any x ∈ RN ,

|V · ∇Φe(x)| ≤ CΦe(x). (29)

Proof. Since V is compactly supported and Φe is positive in {σa > 0}, we just need to prove the

inequality for x close to ∂Ka, that is for σa(x) small. We still define λ > 0 so that λ−2 =
∑N
j=1 λ

−2
j .

From (20), and by Taylor expansion of the integral, we infer that for 0 < σa(x)� 1 and 1 ≤ k ≤ N ,

λ2∂kΦe(x) =
xk
2

 N∏
j=1

aj


σa(x)

1

a2
k

 N∏
j=1

a2
j

−1/2

+O(σ2
a(x))

 =
xkσa(x)

2a2
k

+O(σ2
a(x)).

Let X (x) stands for the vector with components xk/a
2
k. In particular, for 0 < σa(x)� 1, we get

|∇Φe(x)| = O(σa(x)) and
∇Φe(x)

|∇Φe(x)|
=

X (x)

|X (x)|
+O(σa(x)), (30)

where the unit vector field x 7→ X (x)
|X (x)| is smooth near ∂Ka and is the (outward) normal on ∂Ka.

Now, observe that

0 = ∂k

 N∑
j=1

x2
j

a2
j + σa(x)

 = 2
xk

a2
k + σa(x)

−

 N∑
j=1

x2
j

(a2
j + σa(x))2

 ∂kσa(x)

= 2
xk
a2
k

− ∂kσa(x)

 N∑
j=1

x2
j

a4
j

+O(σa(x)).

Therefore, for 0 < σa(x)� 1 and 1 ≤ k ≤ N , we have

λ2∂kΦe(x) =
1

4
σa(x)∂kσa(x)

 N∑
j=1

x2
j

a4
j

+O(σ2
a(x)) =

1

8
∂k

σ2
a(x)

 N∑
j=1

x2
j

a4
j

+O(σ2
a(x)).

As a consequence,

λ2Φe(x) =
1

8
σ2
a(x)

 N∑
j=1

x2
j

a4
j

+O(σ3
a(x)) ≥ σ2

a(x)

C
, (31)

holds for some C > 0. Going back to (30), we arrive at

V (x) · ∇Φe(x) = V (x) ·
(
∇Φe(x)

|∇Φe(x)|

)
× |∇Φe(x)| = V (x) ·

(
X (x)

|X (x)|
+O(σa(x))

)
×O(σa(x))

= (O(σa(x)) +O(σa(x)))×O(σa(x)) = O(σ2
a(x)) = O(Φe(x)),
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by (31) and since V · X
|X | vanishes when σa = 0 in view of the no flux condition satisfied by V .

This finishes the proof.

In the more general setting considered in Theorem 2.13, the result is the following and simply
relies on the use of a local chart.

Lemma 3.2 We assume that ∂Ω is of class C1 and that H2) is satisfied. Then, there exists a
constant C such that, for any x ∈ RN ,

|V · ∇Φe(x)| ≤ CΦe(x). (32)

Proof. We have already seen that ∂Ω is actually of class Cs+1. Since Φe is positive in RN \ K and
V has compact support, by a compactness argument, it suffices to show that (32) holds near any
point a ∈ ∂Ω. Possibly translating and rotating the axis, we assume a = 0 and that the inward
normal to Ω at a = 0 is e1 = (1, 0, ..., 0). We let x1 = Θ(x⊥), where x⊥ = (x2, ..., xN ), be a C2

parametrization of ∂Ω near 0, with ∇Θ(0) = 0, hence Θ(x⊥) = O(|x⊥|2).

We now consider the function ϕ : RN → R defined by ϕ(y)
def
= Φe(y1 + Θ(y⊥), y⊥), where

y⊥ = (y2, ..., yN ) ∈ RN−1. Then, ϕ(y) = 0 when y1 ≥ 0, hence, for 2 ≤ j ≤ N and 1 ≤ k ≤ N and
if y1 = 0, ∂kϕ(y) = ∂2

j,kϕ(y) = 0; moreover, ∂2
1,1ϕ(0, y⊥) = ∆Φext(0, y⊥) in view of the equality

∆Φext(x) = ∆xΦe(x) = (∆yϕ− (∆⊥Θ)∂1ϕ+
∑N
j=2(∂jΘ)2∂2

1,jϕ)(x1−Θ(x⊥), x⊥) in {x1 ≤ Θ(x⊥)}.
It follows from these relations that, by the Taylor formula and by using ∆Φext(0) > 0 and

y1 = x1 −Θ(x⊥) ≤ 0,

ϕ(y) = ϕ(y)− ϕ(0, y⊥)− y1∂1ϕ(0, y⊥) = y2
1

∫ 1

0

(1− t)∂2
1ϕ(ty1, y⊥) dt ≥ y2

1

C
,

and we deduce

Φe(x) ≥ (x1 −Θ(x⊥))2

C
. (33)

Still by the Taylor formula, we have, for 2 ≤ j ≤ N ,

∂jϕ(y) = y2
1

∫ 1

0

(1− t)∂3
1,1,jϕ(ty1, y⊥) dt = O(y2

1)

and

∂1ϕ(y) = y1∂
2
1ϕ(0, y⊥) + y2

1

∫ 1

0

(1− t)∂3
1ϕ(ty1, y⊥) dt = y1∆Φext(0, y⊥) +O(y2

1).

Now, we write ∂1Φe(x) = ∂1ϕ(y) (with y = (x1 − Θ(x⊥), x⊥)) and ∇⊥Φe(x) = ∇⊥ϕ(y) −
∂1ϕ(y)∇⊥Θ(y⊥), thus

V (x)·∇Φe(x) = V1(x)∂1Φe(x)+V⊥(x)·∇⊥Φe(x) = V1(x)∂1ϕ(y)+V⊥(x)·∇⊥ϕ(y)−∂1ϕ(y)V⊥(x)·∇⊥Θ(y⊥).

Note that ∇⊥ϕ(y) = O(y2
1). Furthermore, since V · ν = 0 on ∂Ω = {x1 = Θ(x⊥)} and ν(x) =

(1,−∇⊥Θ(x⊥))/|(1,−∇⊥Θ(x⊥))|, we deduce

V (x) · ∇Φe(x) =O(y2
1) + ∂1ϕ(y)

(
[V1(x)− V⊥(x) · ∇⊥Θ(x⊥)]− [V1(Θ(x⊥), x⊥)− V⊥(Θ(x⊥), x⊥) · ∇⊥Θ(x⊥)]

)
=O(y2

1) +O(|y1|)×O(|x1 −Θ(x⊥)|) = O(y2
1).

We conclude by using (33).
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3.2 Basic a priori estimates

Now that we have in hand the limiting density profile ne and the associated potential field Φe, we
derive some basic a priori estimates from (V)–(P).

Using the splitting of Poisson equation as in (10), (V) recasts as

∂tfε + v · ∇xfε −
1

ε
∇xΦe · ∇vfε −

1√
ε
∇xΨε · ∇vfε = 0.

Let us compute the time variation of the following energies:

• Kinetic energy

d

dt

∫∫
|v|2

2
fε dv dx = −1

ε

∫∫
v · ∇xΦe fε dv dx− 1√

ε

∫∫
v · ∇xΨε fε dv dx,

• Leading order potential energy

d

dt

∫∫
Φe fε dv dx =

∫∫
v · ∇xΦe fε dv dx,

• Fluctuations potential energy

d

dt

1

2

∫
|∇xΨε|2 dx =

∫
∇xΨε · ∂t∇xΨε dx = −

∫
Ψε∂t

(ne − ρε√
ε

)
dx

= −
∫

Ψε
1√
ε
∇x ·

(∫
vfε dv

)
dx =

1√
ε

∫∫
v · ∇xΨε fε dv dx.

By summing these relations, we conclude with the following claim (which applies for all three cases
for Φext).

Proposition 3.3 The solution (fε,Φε = 1
εΦe + 1√

ε
Ψε) of (V)–(P) satisfies the following energy

conservation equality

d

dt

{∫∫
|v|2

2
fε dv dx+

1

ε

∫∫
Φe fε dv dx+

1

2

∫
|∇xΨε|2 dx

}
= 0.

Furthermore, the total charge is conserved∫∫
fε(t, x, v) dv dx =

∫∫
fε(0, x, v) dv dx = m.

3.3 Convergence of the density and the current

We assume a uniform bound on the energy at the initial time, namely

sup
0<ε<1

∫∫
1

2
|v|2 f init

ε dv dx+
1

ε

∫∫
Φe f

init
ε dv dx+

1

2

∫
|∇xΨinit

ε |2 dx <∞, (34)

where Ψinit
ε solves the Poisson equation (10). Then, Proposition 3.3 ensures that the energy remains

uniformly bounded for positive times. Thus, possibly at the price of extracting subsequences, we
can suppose that

fε ⇀ f weakly-? in M 1([0, T ]× RN × RN ), ρε =

∫
fε dv ⇀ ρ weakly-? in M 1([0, T ]× RN ).

Going back to the Poisson equation, we observe that

ne − ρε =
√
ε∇x · (∇xΨε)

where, by Proposition 3.3, ∇xΨε is bounded in L∞(0, T ;L2(RN )). Consequently, we establish the
following claim.
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Lemma 3.4 The sequence ρε converges to ne = ρ strongly in L∞(0, T ;H−1(RN )) and weakly-? in
M 1([0, T ]×RN ). The limit f is supported in [0, T ]×Ω̄×RN . The sequence Jε =

∫
vfε dv is bounded

in L∞(0, T ;L1(RN )); it admits a subsequence which converges, say weakly−? in M 1([0, T ]×RN );
the limit J is divergence free, supported in [0, T ]× Ω̄ and may be written

∫
vf dv = neW for some

W ∈M 1([0, T ]× RN ).

Proof. Proposition 3.3 tells us that |v|2fε is bounded in L∞(0, T ;L1(RN ×RN )). Hence, by using
Cauchy-Schwarz’ inequality, we get∫

|Jε|dx ≤
∫∫
|v|
√
fε
√
fε dv dx ≤

(∫∫
|v|2 fε dv dx

)1/2(∫∫
fε dv dx

)1/2

, (35)

which leads to the asserted uniform estimate on the current. We can thus also assume Jε ⇀ J
weakly−? in M 1([0, T ]×RN ). Furthermore, since the second order moment in v of fε is uniformly
bounded, we check that

ρ =

∫
f dv, J =

∫
v f dv.

Note that ρε and Jε satisfy (5). Letting ε go to 0 yields

∂tρ+∇x · J = 0 = ∂tne +∇x · J = 0 +∇x · J = 0.

Thus, J is divergence-free. Finally, since lim|x|→∞Φe(x) = +∞ and the second order moment in v
of fε is uniformly bounded, {fε, ε > 0} is tight, and we can write∫ T

0

∫∫
fε dv dxdt =mT =

∫ T

0

∫
ρε dx dt

−−−→
ε→0

∫ T

0

∫∫
f dv dxdt = mT =

∫ T

0

∫
ρ dx dt = T

∫
ne dx

=

∫ T

0

∫∫
Ω

f dv dxdt+

∫ T

0

∫∫
RN\Ω

f dv dxdt

=

∫ T

0

∫
Ω

ne dxdt =

∫ T

0

∫
Ω

ρ dx dt

=

∫ T

0

∫∫
Ω

f dv dxdt =

∫ T

0

∫
Ω

ne dxdt

=

∫ T

0

∫
Ω

ρdxdt =

∫ T

0

∫∫
Ω

f dv dxdt.

It proves that supp(f) ⊂ [0, T ] × Ω × RN , and thus supp(J) ⊂ [0, T ] × Ω. In particular, we note
that f([0, T ]× ∂Ω× RN ) = 0, and J([0, T ]× ∂Ω) = 0.

In order to define the normal trace of J over ∂Ω (that is the sphere ∂B(0, R) in the case (2)),
we shall use the theory introduced in [8]. As a consequence of the discussion above, we start by
observing that J belongs to the set DM ext(RN ) of extended divergence-measure fields over RN ,
see [8, Definition 1.1]. Therefore, according to [8, Theorem 3.1], J admits a normal trace J · ν

∣∣
∂Ω

defined as a continuous linear functional over Lip(γ, ∂Ω), γ > 1 (see [8, Equation (2.1)]) with〈
J · ν

∣∣
∂Ω
, φ
〉

=

∫
Ω

φ̂∇x · J +

∫
Ω

J · ∇xφ̂,

where the function φ̂ ∈ Lip(γ,Ω) in the right-hand side is an extension of φ ∈ Lip(γ, ∂Ω). However,
by ∇x · J = 0 and the support property on J , we can rewrite〈

J · ν
∣∣
∂Ω
, φ
〉

= 0 +

∫
RN

J · ∇xφ̂ = −
〈
∇x · J, φ̂

〉
= 0.
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Another way to see this is to observe that the normal trace from Ω must be the same as the normal
trace from RN \ Ω, which is clearly zero since J has support in Ω. Consequently,

J · ν
∣∣
Ω

= 0 in [C(0, T ;Lip(γ,Ω))]∗.

Remark that this is not a pointwise relation. In particular, it may happen that J init
ε · ν

∣∣
Ω

=

ρεV
init
ε · ν

∣∣
Ω

is nonzero, but this does not prevent the time integral of J · ν
∣∣
Ω

to vanish.

3.4 Passing to the limit: modulated energy

We now study the modulated energy

HV ,ε =
1

2

∫∫
|v − V |2 fε dv dx+

1

2

∫
|∇xΨε|2 dx+

1

ε

∫∫
Φe fε dv dx,

where all the terms integrated are nonnegative. Let us compute as follows

d

dt
HV ,ε =

d

dt

∫∫ ( |V |2
2
− V · v

)
fε dv dx =

d

dt

∫ (
ρε
|V |2

2
− V · Jε

)
dx,

by using Proposition 3.3. We thus have

d

dt
HV ,ε =

∫
(ρεV − Jε) · ∂tV dx+

∫
|V |2

2
∂tρε dx−

∫
V · ∂tJε dx.

Here, we are assuming that the solution fε of the Vlasov–Poisson system (V)–(P) is regular
enough so that we can perform all the calculations that follow. Integrating the Vlasov equation,
we obtain

∂tJε +∇x · Pε +
1√
ε
ρε∇xΨε +

1

ε
ρε∇xΦe = 0, (36)

where we rewrite

1√
ε
ρε∇xΨε =

ρε − ne√
ε
∇xΨε +

ne√
ε
∇xΨε = −∆xΨε∇xΨε +

ne√
ε
∇xΨε,

and

∆xΨε∇xΨε = ∇x ·
(
∇xΨε ⊗∇xΨε

)
−∇x

( |∇xΨε|2

2

)
.

Combining these relations to the charge conservation (5) and integration by parts, we arrive at

d

dt
HV ,ε =

∫
(ρεV − Jε) · ∂tV dx+

∫
Jε · ∇x

(
|V |2

2

)
dx

−
∫
DxV : (Pε −∇xΨε ⊗∇xΨε) dx+

∫
∇x · V

|∇xΨε|2

2
dx

+
1

ε

∫
ρεV · ∇xΦe dx+

∫
ne√
ε
V · ∇xΨε dx,

where DxV stands for the jacobian matrix of the vector field V . For the last integral, since ne is
supported in Ω, we write it as ∫

Ω

ne√
ε
V · ∇xΨε dx = 0

by integration by parts and using that ∇x · (neV ) = 0 in Ω and the no-flux condition (6).
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Let us set

PV ,ε
def
=

∫
(v − V )⊗ (v − V ) fε dv = Pε − V ⊗ Jε − Jε ⊗ V + ρεV ⊗ V .

A direct substitution leads to

d

dt
HV ,ε =

∫
(ρεV − Jε) ·

(
∂tV + (V · ∇x)V

)
dx

−
∫
DxV : (PV ,ε −∇xΨε ⊗∇xΨε) dx

+

∫
∇x · V

|∇xΨε|2

2
dx+

1

ε

∫
ρεV · ∇xΦe dx.

(37)

We shall use the shorthand notation A . B when the inequality A ≤ CB holds for some constant
C > 0, the value of which might vary from a line to another. As a matter of fact, we can dominate
the second and third integrals of the right-hand side by

‖DxV ‖∞
(∫∫

|v − V |2fε dv dx+

∫
|∇xΨε|2 dx

)
≤ ‖DxV ‖∞ HV ,ε.

Let us distinguish the case of the isotropic potential in order to point out the difficulties. When
Φext is given by (2), we remind the reader that Φe is supported in {|x| ≥ R}, radially symmetric
and increasing in |x|, see (9). Combining this with (28) allows us to estimate the last term in (37)
as follows: ∣∣∣∣1ε

∫
ρεV · ∇xΦe dx

∣∣∣∣ =

∣∣∣∣∣1ε
∫
{|x|>R}

ρε
V · x/|x|
|x| −R

(|x| −R)|∇xΦe|dx

∣∣∣∣∣
.

1

ε

∫
{|x|>R}

ρεΦe dx

∥∥∥∥V · x/|x|
|x| −R

∥∥∥∥
∞

. HV ,ε,

where we have used that V ·x/|x|
|x|−R belongs to L∞(RN ) since V is smooth, compactly supported, and

V · ν = 0 on ∂B(0, R). For a quadratic external potential (12), we can proceed similarly by using
Lemma 3.1. When dealing with a general potential, we made hypothesis H2) so that Lemma 3.2
applies and (29) allows us to estimate∣∣∣∣1ε

∫
ρεV · ∇xΦe dx

∣∣∣∣ . 1

ε

∫
ρεΦe dx . HV ,ε.

Therefore, we obtain
d

dt
HV ,ε . HV ,ε + rε (38)

where we have set

rε
def
=

∫
(ρεV − Jε) ·

(
∂tV + (V · ∇x)V

)
dx.

The Grönwall lemma yields

HV ,ε(t) ≤ eCt
(

HV ,ε(0) +

∫ t

0

e−Cτrε(τ) dτ

)
,

for a certain constant C > 0. The assumption (11) on the initial data is that limε→0 HV ,ε(0) = 0.

Hence, we are left with the task of proving that
∫ t

0
rε(τ) dτ tends to 0 as ε→ 0. We have∫ t

0

rε(τ) dτ −−−→
ε→0

∫ t

0

∫
(neV − J) ·

(
∂tV + (V · ∇x)V

)
dxdτ

=

∫ t

0

∫
Ω

(neV − J) ·
(
∂tV + (V · ∇x)V

)
dx dτ

= −
∫ t

0

∫
Ω

(neV − J) · ∇xp dxdτ = 0,
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since neV and J are divergence free on Ω and their normal trace vanish.

It is worth pointing out that the regularity assumption of the sequence of solutions fε was only
made to justify the computations leading to (38). If one consider less regular solutions, we have
to assume that these solutions were constructed through a regularization procedure and that the
previous calculations were done on these regularizations and hence (38) will still hold.

3.5 Identification of the limit

Let us observe that if the initial datum satisfies (11), then (34) holds true. Let us first justify i):
we shall show that

∫
ρεχdx →

∫
neχdx uniformly on [0, T ] as ε → 0 for any χ ∈ C0

0 (RN ). We
start by observing that ∣∣∣∣∫ ρε(t, x)χ(x) dx

∣∣∣∣ ≤ m‖χ‖∞ (39)

holds for any χ ∈ C0
0 (RN ). Next, consider χ ∈ C1

c (RN ). The charge conservation (5) yields

d

dt

∫
ρε(t, x)χ(x) dx =

∫
∂tρεχdx = −

∫
∇x · Jε χdx =

∫
Jε · ∇xχdx,

hence the uniform bound (35) on Jε implies a uniform bound on d
dt

∫
ρε(t, x)χ(x) dx for 0 ≤ t ≤ T .

By virtue of the Ascoli-Arzelà theorem, the set
{
t 7→

∫
ρε(t, x)χ(x) dx, ε > 0

}
is therefore relatively

compact in C([0, T ]) for any fixed χ ∈ C1
c (RN ). This property extends to any χ ∈ C0

0 (RN ) by virtue
of (39). Indeed, for any δ > 0, we can pick χδ ∈ C1

c (RN ) such that ‖χ − χδ‖∞ ≤ δ/m. It follows
that ∫

ρε(t, x)χ(x) dx =

∫
ρε(t, x)(χ− χδ)(x) dx+

∫
ρε(t, x)χδ(x) dx

where, owing to (39), the former integral is uniformly dominated by δ and the latter lies in a
compact set of C([0, T ]). Therefore

{
t 7→

∫
ρε(t, x)χ(x) dx, ε > 0

}
can be covered by a finite

number of balls with radius 2δ in C([0, T ]). Finally, since C0
0 (RN ) is separable, we apply a diagonal

argument to extract a subsequence such that
∫
ρε(t, x)χ(x) dx converges uniformly in C([0, T ]) for

any element χ of a numerable dense set in C0
0 (RN ). By uniqueness of the limit, we find

lim
ε→0

∫
ρε(t, x)χ(x) dx =

∫
neχdx.

Going back to (39), we check that the convergence holds for any χ ∈ C0
0 (RN ).

The manipulations detailed in the previous Section prove ii). In order to establish iii), it is
convenient to introduce the following functional: given λ a non negative bounded measure on
[0, T ]× RN , and µ a vector valued bounded measure on [0, T ]× RN , we set

K (λ, µ)
def
= sup

Θ

{∫
µ ·Θ− 1

2

∫
λ|Θ|2

}
where the supremum is taken over continuous functions Θ : [0, T ] × RN → RN . According to [4,
Prop. 3.4], we have:

Lemma 3.5 ([4]) If µ is absolutely continuous with respect to λ, denoting by V the Radon-Nikodym
derivative of µ with respect to λ, we have

K (λ, µ) =
1

2

∫
λ|V|2 ∈ [0,∞],

otherwise K (λ, µ) = +∞.
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Clearly (λ, µ) 7→ K (λ, µ) is a convex and lower semi–continuous (for the weak-? convergence)
functional. Let η : [0, T ] → [0,∞) be a continuous non negative function. Reasoning as in [5], we
show that J ∈ L∞(0, T ;L2(RN )) since

K (ηρε, ηJε) =
1

2

∫ T

0

∫
RN

|Jε(t, x)|2

ρε(t, x)
η(t) dxdt

=
1

2

∫ T

0

∫
RN

1

ρε(t, x)

∣∣∣∣∫
RN

v
√
fε(t, x, v)

√
fε(t, x, v) dv

∣∣∣∣2 η(t) dx dt

≤ 1

2

∫ T

0

∫∫
RN×RN

|v|2fε(t, x, v) η(t) dv dxdt .
∫ T

0

η dt

becomes, as ε tends to 0
K (ηne, ηJ) . ‖η‖L1(0,T ).

Reasoning the same way, we get

K (ρε, Jε − ρεV ) =
1

2

∫ T

0

∫
RN

|Jε − ρεV |2

ρε
dxdt

≤ 1

2

∫ T

0

∫∫
RN×RN

|v − V |2fε dv dxdt ≤
∫ T

0

HV ,ε dt.

It follows that K (ne, J − neV ) = 0, which identifies the limit J and ends the proof of iii).
Finally, we can check that the initial data for the limit equation is meaningful by establishing

some time–compactness on the sequence Jε. Let

WR =
{

Θ : [0, T ]× RN → RN , Θ of class C1, supp(Θ) ⊂ [0, T ]× Ω, ∇x · (neΘ) = 0
}
,

which is a closed subspace of the Banach space C1 (endowed with the sup norm for the function
and its first order derivatives). Multiplying (36) by a function in WR, we shall get rid of the stiff
terms. Indeed, for such a trial function Θ, we deduce from (36)

d

dt

∫
Jε ·Θ dx =

∫
Jε · ∂tΘ dx−

∫
Θ · (∇x · Pε) dx− 1√

ε

∫
ρεΘ · ∇xΨε dx, (40)

since Θ · ∇xΦe = 0 pointwise in view of the supports. By using the estimates deduced from
Proposition 3.3, we observe that the first two terms are bounded in L∞(0, T ). For the last one, we
use the Poisson equation (10) and integration by parts to infer

1√
ε

∫
ρεΘ · ∇xΨε dx =

1√
ε

∫
neΘ · ∇xΨε dx−

∫
∆xΨεΘ · ∇xΨε dx

= 0 +

∫
∇xΨε · ∇x(Θ · ∇xΨε) dx

=
1

2

∫
Θ · ∇x(|∇xΨε|2) dx+

∑
1≤j,k≤N

∫
∂xj

Ψε∂xj
Θk∂xk

Ψε dx

where we have used that neΘ(t, ·) is divergence free. For quadratic external potentials, an inte-
gration by parts shows that the first integral is zero (since neΘ is divergence free). In any cases,
the right hand side can be dominated by ‖∇Θ‖∞‖∇Ψε‖L∞(0,T ;L2(RN )) and it is thus bounded in
L∞(0, T ). Reporting this into (40) allows us to conclude that

d

dt

∫
Jε ·Θ dx is bounded in L∞(0, T ).

Since WR is separable, we can boil down a diagonal argument to justify that Jε is relatively compact
in C0(0, T ; W ′

R −weak− ?): we can assume that the extracted subsequence is such that
∫
Jε ·Θ dx

converges uniformly on [0, T ] for any Θ ∈ WR.
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4 Asymptotic analysis of the Vlasov–Poisson–Fokker–Planck
system

In this Section we state and prove a Theorem analogous to Theorem 1.2 when the basic equation
is (VFP), which includes a Fokker–Planck operator, coupled with (P).

For the well-posedness issues of the system (VFP) coupled to (P), we refer the reader to [3, 10].
The role of the external potential is precisely investigated in [11]. The associated moment system
reads {

∂tρε +∇x · Jε = 0,
∂tJε +∇x · Pε + ρε∇xΦε = −Jε,

where we still use the notation Jε =
∫
vfε dv, Pε =

∫
v ⊗ vfε dv. As ε → 0, we expect as before

that ρε → ne = 1Ω∆Φext and that the behavior of the current is driven by the Lake Equation with
friction {

∂tV + V · ∇xV +∇xp = −V,
∇x · (neV ) = 0.

(LEf )

If Φext is quadratic as in (12) (possibly isotropic), the domain Ω is an ellipsoid (possibly a ball) as
in Section 2.1 and (LEf ) becomes the Incompressible Euler system with friction{

∂tV +∇x · (V ⊗ V ) +∇xp = −V,
∇x · V = 0.

(41)

For a more general confining potential Φext, we make assumptions h1), h2), H1) and H2) as in
Section 2.2. Since we work with finite charge data, the limit equation (LEf ) holds in Ω, completed
with the no flux boundary condition (6), namely

V (t, x) · ν(x)
∣∣∣
∂Ω

= 0.

Like in the previous section we associate with V , smooth solution of (LEf ), a smooth compactly

supported extension V defined on [0, T ]× RN such that V · ν(x)
∣∣∣
∂Ω

= 0.

We shall investigate this asymptotics in the specific case where the “temperature” θ = θε goes
to 0 as ε → 0. In this context, we can derive an analog of Proposition 3.3 that accounts for the
dissipation mechanisms induced by the Fokker–Planck operator.

Proposition 4.1 The solution (fε,Φε = 1
εΦe+ 1√

ε
Ψε) of (VFP)–(P) satisfies the following entropy

dissipation inequality

d

dt

{
1

2

∫∫
|v|2 fε dv dx+

1

ε

∫∫
Φe fε dv dx+ θε

∫∫
fε ln(fε) dv dx+

1

2

∫
|∇xΨε|2 dx

}
= −Dε

where we denote

Dε =

∫∫
|v
√
fε + 2θε∇v

√
fε|2 dv dx ≥ 0.

Furthermore, the total charge is conserved∫∫
fε(t, x, v) dv dx =

∫∫
fε(0, x, v) dv dx = m.

Uniform estimates are not directly included in this statement since the function z 7→ z ln(z) changes
sign. Nevertheless, we can establish such uniform estimates.
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Corollary 4.2 We assume that there exists some (large) λ > 1 such that∫
exp(−λΦext) dx <∞. (42)

We suppose also that 0 < ε ≤ 1/(8λ) and 0 < θε ≤ 1. Let f init
ε : RN × RN → [0,∞) be a sequence

of integrable functions that satisfy the following requirements∫∫
f init
ε dv dx = m,

sup
0<ε≤1/(8λ), 0<θε≤1

{
1

2

∫∫
|v|2 f init

ε dv dx+ θε

∫∫
f init
ε |ln(f init

ε )|dv dx

+
1

2

∫
|∇xΨinit

ε |2 dx+
1

ε

∫∫
Φe f

init
ε dv dx

}
<∞,

(43)

with

∆xΨinit
ε =

1√
ε

(
ne −

∫
f init
ε dv

)
.

Let 0 < T < ∞ and let (fε,Φε = 1
εΦe + 1√

ε
Ψε) be the associated solution of (VFP)–(P). Then,

uniformly for 0 < ε ≤ 1/(8λ) and 0 < θε ≤ 1:

i) fε(1 + |v|2 + θε|ln(fε)|) + ε−1Φefε is bounded in L∞(0, T ;L1(RN × RN )) ,

ii) ∇xΨε is bounded in L∞(0, T ;L2(RN )),

iii) Dε is bounded in L1(0, T ).

Remark 4.3 In any dimension N ≥ 1, (42) is always true for quadratic potentials. If N = 1 or
N = 2, hypothesis (42) is satisfied if h2) is, since Φext(x) + mΓ(x) → +∞ when |x| → +∞ and
that Γ(x) = −|x|/2 or − ln |x|/(2π). Therefore, hypothesis (42) needs to be verified only for N ≥ 3.

Proof. We first observe that hypothesis (42) implies∫
exp(−λΦe) dx <∞.

Indeed, we have Φe = Γ ? ne − C∗ + Φext ≥ Φext − C∗. We write, for h ≥ 0,

fε ln(fε) ≤ fε|ln(fε)| = fε ln(fε)− 2fε ln(fε)
(
1e−h≤fε≤1 + 10≤fε<e−h

)
≤ fε ln(fε) + 2hfε +

4

e
e−h/2, (44)

and denote

Eε(fε) =
1

2

∫∫
|v|2 fε dv dx+

1

ε

∫∫
Φe fε dv dx+

1

2

∫
|∇xΨε|2 dx.

We now use (44) with h(x, v) = |v|2/(8θε) + Φe(x)/(4εθε) to infer

θε

∫∫
fε ln(fε) dv dx ≤ θε

∫∫
fε|ln(fε)|dv dx ≤ θε

∫∫
fε ln(fε) dv dx+

θε
2
Eε(fε) (45)

+ θε
4

e

∫∫
exp(−|v|2/(16θε)− Φe(x)/(8εθε)) dv dx.

The last term is equal to

θε
4

e

∫
exp(−|v|2/(16θε) dv

∫
exp(−Φe(x)/(8εθε)) dx ≤ θε

4

e

∫
exp(−|v|2/16) dv

∫
exp(−λΦe(x)) dx,
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thus tends to zero as θε → 0 (uniformly for 0 < ε < 1/(8λ)). Using the dissipation of the entropy
given in Proposition 4.1, we then infer

Eε(f
init
ε ) + θε

∫∫
f init
ε |ln(f init

ε )|dv dx ≥ Eε(f
init
ε ) + θε

∫∫
f init
ε ln(f init

ε ) dv dx

≥ Eε(fε) + θε

∫∫
fε ln(fε) dv dx

≥ Eε(fε) + θε

∫∫
fε|ln(fε)|dv dx− θε

2
Eε(fε) + oθε→0(1)

and the conclusion follows since θε ≤ 1.

Untill the end of the Section, we shall make hypothesis (42). Since we are dealing with the
regime

0 < ε� 1, 0 < θε � 1,

the estimates in Proposition 4.2 do not provide L1-weak compactness on the particle distribution
function and its moments; we still need to work with convergences in spaces of finite measures. The
first step in the investigation of the asymptotic behavior is summarized in the following claim.

Lemma 4.4 We make assumptions (42) and (43). Up to a subsequence, we can assume that
fε converges to f weakly–? in M 1((0, T ) × RN × RN ). Then, ρε converges to ne =

∫
f dv in

L∞(0, T ;H−1(RN )) and in C0(0, T ; M 1(RN )−weak–?). Moreover, we can assume that Jε ⇀ J =∫
vf dv in M 1([0, T ]× RN ), the limit J is divergence–free and supported in [0, T ]× Ω̄.

Proof. We follow the arguments of the previous Section. We identify the limit of ρε by coming
back to the Poisson equation

√
ε∇x · ∇xΨε = ne − ρε. The time compactness then appears as a

consequence of the charge conservation, together with the estimates on the current. We obtain the
L∞(0, T ;L1(RN )) estimate on Jε as in (35). Letting ε go to 0 in the charge conservation equation,
we obtain ∂tne + ∇x · J = 0 = ∇x · J . Still reproducing the arguments of the previous section,
based on the conservation of the total charge, we arrive at the following conclusion:

supp(f) ⊂ [0, T ]× Ω̄× RN , supp(J) ⊂ [0, T ]× Ω̄.

Furthermore, J belongs to the set DM ext(RN ), it admits a normal trace J · ν
∣∣
∂Ω

, which actually
vanishes.

It remains to identify the limit J . As in the case of the pure Vlasov–Poisson equation, the idea
consists in introducing a suitable functional intended to compare fε to the expected limit. Let
Nε : RN → (0,∞) be a given function such that∫

Nε dx = m =

∫
ne dx =

∫∫
f(0, x, v) dv dx

and let us set

MV ,θε(t, x, v) =
1

(2πθε)N/2
exp

(
−|v − V (t, x)|2

2θε

)
.

A natural candidate to replace the functional HV ,ε would be the relative entropy of fε with respect
to ne(x)MV ,θε(t, x, v) associated with the non-negative convex function z 7→ z ln(z)−z+1, namely∫∫ (

fε ln

(
fε

neMV ,θε

)
− fε + neMV ,θε

)
dv dx,

but the first term is clearly meaningless since ne has compact support. Therefore, we introduce

Nε(x) =
m

Zε
exp

(
− Φe(x)

εθε

)
, where Zε =

∫
exp

(
− Φe(y)

εθε

)
dy, (46)
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and the following modulated functional

H FP
V ,ε = θε

∫∫ (
fε ln

(
fε

NεMV ,θε

)
− fε + NεMV ,θε

)
dv dx+

1

2

∫
|∇xΨε|2 dx. (47)

In fact, H FP
V ,ε is up to the term 1

2

∫
|∇xΨε|2 dx, nothing but the relative entropy of fε with respect to

NεMV ,θε associated with the non-negative convex function G : (0,+∞) 3 z 7→ z ln(z)−z+1. This
implies in particular that the integrand in the first integral of (47) is simply G(fε)−G(NεMV ,θε)−
G′(fε)(fε − NεMV ,θε), thus pointwise nonnegative, and vanishes only when fε = NεMV ,θε . By
definition of Nε and MV ,θε and using the fact

∫∫
fε dv dx = m =

∫∫
NεMV ,θε dv dx in view of our

normalizations, we infer

H FP
V ,ε = θε

∫∫
fε ln(fε) dv dx+

1

2

∫∫
|v − V |2 fε dv dx+

1

ε

∫
Φefε dv dx (48)

+
1

2

∫
|∇xΨε|2 dx+

1

2
Nmθε ln(2πθε)− θεm ln

(
m

Zε

)
= HV ,ε + θε

∫∫
fε ln(fε) dv dx+

1

2
Nmθε ln(2πθε)− θεm ln

(
m

Zε

)
.

This second expression of H FP
V ,ε justifies the choice we have made for Nε. Actually, for our purpose,

the exact normalization
∫∫

NεMV ,θε dv dx = m is not necessary, though natural in a modulated
entropy argument, only the fact that ln(NεMV ,θε) ≈ −Φe(x)/(εθε)− |v − V |2/(2θε) is used. This
is related to the fact that the temperature θε is small in the regime we are considering.

Let us now compare HV ,ε and H FP
V ,ε more precisely. As a first step, note that, on the one hand,

θε ln(2πθε)→ 0

when θε → 0; and on the other hand, that

|Ω| =
∫

Ω

exp
(
− Φe(y)

εθε

)
dy ≤ Zε =

∫
exp

(
− Φe(y)

εθε

)
dy ≤

∫
exp

(
− λΦe(y)

)
dy < +∞

if θε ≤ 1 and ε ≤ 1/(8λ), thus, as θε → 0,

θεm ln

(
m

Zε

)
→ 0.

The inequality (45) implies

HV ,ε = H FP
V ,ε − θε

∫∫
fε ln(fε) dv dx− 1

2
Nmθε ln(2πθε) + θεm ln

(
m

Zε

)
≤ H FP

V ,ε − θε
∫∫

fε ln(fε)1fε≤1 dv dx+ oε→0(1)

≤ 2H FP
V ,ε + oε→0(1). (49)

Then, let us compute the time derivative of the modulated entropy H FP
V ,ε. We get

d

dt
H FP

V ,ε =
d

dt

{
θε

∫∫
fε ln(fε) dv dx+

1

2

∫∫
|v − V |2 fε dv dx+

1

ε

∫
Φefε dv dx

+
1

2

∫
|∇xΨε|2 dx

}
=

d

dt

{
θε

∫∫
fε ln(fε) dv dx+

1

2

∫∫
|v|2 fε dv dx+

1

ε

∫
Φefε dv dx+

1

2

∫
|∇xΨε|2 dx

}
+

d

dt

{
−
∫∫

v · V fε dv dx+
1

2

∫∫
|V |2fε dv dx

}
.
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Bearing in mind the computation for proving Proposition 4.1, we obtain

d

dt
H FP

V ,ε = −Dε +
d

dt

{
−
∫
Jε · V dx+

1

2

∫
ρε|V |2 dx

}
.

Reasoning as in the previous section, and by using the moment equations, we are led to

d

dt
H FP

V ,ε = −Dε +

∫
V · Jε dx

+

∫
(ρεV − Jε) ·

(
∂tV + (V · ∇x)V

)
dx

−
∫
DV : (PV ,ε −∇xΨε ⊗∇xΨε) dx+

1

ε

∫
ρεV · ∇xΦe dx,

using once again that ∇x · (neV ) = 0 and the no-flux condition (6). Let us set

DV ,ε =

∫∫ ∣∣(v − V )
√
fε + 2θε∇v

√
fε
∣∣2 dv dx ≥ 0.

We rewrite

Dε = DV ,ε −
∫
ρε|V |2 dx+ 2

∫
V · Jε dx.

Accordingly, we can reorganize terms as follows

d

dt
H FP

V ,ε = −DV ,ε +

∫
(ρεV − Jε) ·

(
∂tV + (V · ∇x)V + V

)
dx

−
∫
DV : (PV ,ε −∇xΨε ⊗∇xΨε) dx+

1

ε

∫
ρεV · ∇xΦe dx.

We can summarize the previous manipulations within the following inequality

d

dt
H FP

V ,ε + DV ,ε ≤
1

ε

∫
ρεV · ∇xΦe dx+ rε +

∫
DV : (PV ,ε −∇xΨε ⊗∇xΨε) dx, (50)

where, for any 0 < t ≤ T ,∫ t

0

rε dτ =

∫ t

0

∫
(ρεV − Jε)(∂τV − V · ∇xV + V ) dxdτ

tends to 0 as ε→ 0. We wish to strengthen this result as follows.

Lemma 4.5 We make assumptions (42) and (43) and suppose that θε → 0 as ε→ 0. We have

d

dt
H FP

V ,ε + DV ,ε . H FP
V ,ε + rε

where, for any 0 < t ≤ T , limε→0

∫ t
0
rε dτ = 0.

Proof. We can also reproduce the arguments in the previous section used to estimate

1

ε

∫
ρεV · ∇xΦe dx .

1

ε

∫
ρεΦe dx.

For the last term in (50), we have∫
DV : (PV ,ε −∇xΨε ⊗∇xΨε) dx ≤ ‖DV ‖∞

(∫∫
|v − V |2fε dv dx+

∫
|∇xΨε|2 dx

)
,
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so that, using (49),

d

dt
H FP

V ,ε + DV ,ε .
1

ε

∫∫
fεΦe dv dx+

1

2

∫∫
|v − V |2fε dv dx+

1

2

∫
|∇xΨε|2 dx+ rε

. H FP
V ,ε + rε + oε→0(1).

It allows us to conclude by coming back to (50).

Let us now state our main result concerning the Vlasov-Poisson-Fokker-Planck system. We
recall that we may work either with a quadratic potential Φext (and then the domain Ω) is an
ellipsoid), or with a general potential where h1), h2), H1) and H2) are satisfied.

Theorem 4.6 If N ≥ 3, we make assumption (42), that is we assume that there exists some
(large) λ > 1 such that ∫

exp(−λΦext) dx <∞.

Denote by V the solution, on [0, T ], to the Lake Equation with friction (LEf ) with the no-flux
condition (6) given by Theorem A.1 and consider a smooth extension V to V . Let f init

ε : RN×RN →
[0,∞) be a sequence of integrable functions satisfying∫∫

f init
ε dv dx = m and H FP

V ,ε(f
init
ε )→ 0,

where H FP
V ,ε is defined in (47). Consider then the associated solutions fε of the Vlasov–Poisson–

Fokker–Planck equation (VFP)–(P). Then, we have, as ε→ 0 and θε → 0,

i) ρε converges to ne in C0(0, T ; M 1(RN )− weak− ?);
ii) H FP

V ,ε → 0 uniformly on [0, T ];

iii) Jε converges to J in M 1([0, T ]× RN ), where J
∣∣
[0,T ]×Ω

= V , ∇x · J = 0 and J · ν(x)
∣∣
∂Ω

= 0.

Remark 4.7 We have seen (see Remark 4.3) that the integrability assumption
∫

exp(−λΦext) dx <
∞ is automatically satisfied if N = 1, 2 by h2) or for quadratic potentials. When N ≥ 3, it is also
true if Φext is convex and tends to +∞ at infinity.

Remark 4.8 One may construct an admissible family of initial conditions following the lines of
Remark 1.3. In particular, taking G a normalized Gaussian, it is enough to choose θε and σε such
that θε

∫
fε ln fε → 0, which imposes θε lnσε → 0.

Proof. It is clear that if H FP
V ,ε(f

init
ε )→ 0, then (43) is satisfied. Item i) has already been discussed.

Applying the Grönwall lemma, we deduce readily that ii) holds from Lemma 4.5. Coming back to
(49), we infer that

∫∫
|v−V |2fε dv dx tends to 0. Then, we appeal to Lemma 3.5 to conclude that

J belongs to L∞(0, T ;L2(RN )) and that J = neV . We can also justify some time–compactness as
in the pure Vlasov–Poisson case.

A Smooth solutions of the Lake Equations

Theorem A.1 Let Ω be a smooth (∂Ω of class Cs+1 is enough) bounded open set in RN , γ be a
real constant, s ∈ N such that s > 1 + N/2 and ne : Ω → R in Hs+1 such that infΩ ne > 0. Let
V init : Ω→ RN be a divergence free vector field in Hs satisfying the no flux condition V init · ν = 0
on ∂Ω. There exists T > 0 and a unique solution V ∈ L∞(0, T ;Hs(B(0, R))) of{

∂tV + V · ∇xV +∇xp = −γV,
∇x · (neV ) = 0,
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with the no flux condition (6). Moreover, we have

sup
0≤t≤T

(
‖V (t)‖Hs + ‖∂tV (t)‖Hs−1 + ‖∇xp(t)‖Hs + ‖∂t∇xp(t)‖Hs−1

)
≤ C(T )

for some positive constant C(T ) depending on γ, T , ne and the initial datum.

Proof. The scheme of proof is exactly the same as in [38]. We shall denote V̂
def
= neV , which is

divergence free. Applying ∇ · (ne .) to the equation, we see that the pressure p satisfies, for any t,
the elliptic equation

−∇x · (ne∇xp) =∇x · (neV · ∇xV ) = ∇x ·
(
V̂ · ∇x

(
1

ne
V̂

))
= V̂ · ∇x

(
∇x ·

(
1

ne
V̂

))
+

∑
1≤j,k≤N

∂j V̂k∂k

(
V̂j
ne

)

= V̂ · ∇x
(
V̂ · ∇x

(
1

ne

))
+

∑
1≤j,k≤N

∂j V̂k∂k

(
V̂j
ne

)
, (51)

where we have used that V̂ is divergence free as well as the identity ∇x ·(V ·∇xU)−V ·∇x(∇x ·U) =∑
1≤j,k≤N ∂jVk∂kUj . We may further impose a suitable Neumann boundary condition for p on ∂Ω.

We recall that for σ > N/2, Hσ is an algebra. Notice that if V ∈ Hs, with s > 1 +N/2, then the
right-hand side of (51) is in Hs−1 and∥∥∥∥∥∥V̂ · ∇x

(
V̂ · ∇x

(
1

ne

))
+

∑
1≤j,k≤N

∂j V̂k∂k

(
V̂j
ne

)∥∥∥∥∥∥
Hs−1

≤ C‖V ‖2Hs ,

where C depends on infΩ ne (which is assumed positive) and the Hs+1 norm of ne.
Since ne is in Hs+1 and bounded away from zero and since the boundary is assumed of class

Cs+1, it follows from classical elliptic estimates that (51) endowed with the Neumann condition on

∂Ω has a unique solution p ∈ Hs+1(Ω)
∣∣∣
R
, enjoying the estimate

‖p‖Hs+1 ≤ C‖V ‖2Hs , (52)

where C depends on infΩ ne and the Hs+1 norm of ne. Assume now that V is a smooth solution

of (A.1) and let us perform an Hs estimate. For any α ∈
(
N ∪ {0}

)d
with |α| ≤ s, we have

d

dt

∫
Ω

|∂αV |2 dx = − 2

∫
Ω

∂αV · ∂α ((V · ∇x)V ) dx− 2

∫
Ω

∂αV · ∂α∇xp dx− 2γ

∫
Ω

|∂αV |2 dx

Using classical commutator estimates, the Sobolev imbedding Hs ⊂W 1,∞ and the Hs+1 estimate
(52) on p, we then deduce

d

dt

∫
Ω

|∂αV |2 dx ≤ − 2

∫
Ω

∂αV · ((V · ∇x)∂αV ) dx+ C(‖V ‖Hs + ‖V ‖2Hs + ‖V ‖3Hs).

We use integration by parts for the first integral (recall that V · ν = 0 on the boundary), which
then becomes

∫
Ω

(∇x · V )|∂αV |2 dx ≤ C‖V ‖3Hs . This yields

d

dt

∫
Ω

|∂αV |2 dx ≤ C(‖V ‖Hs + ‖V ‖2Hs + ‖V ‖3Hs),

and it follows that, for some T0 > 0 depending only on γ, ne and V init, we have ‖V ‖L∞(0,T0;Hs) ≤
2‖V init‖Hs . The conclusion of the theorem follows from a suitable viscous approximation where a
careful treatment of boundary terms is needed, see [39].
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B Construction of an extended divergence–free velocity

Lemma B.1 Let V ∈ L∞(0, T ;Hs(B(0, R),RN )) be a divergence free vector field in Hs, with
s > 1 + N/2, satisfying the no flux condition V · ν = 0 on ∂B(0, R). There exists a solenoidal
extension V of the vector field V defined on the whole space and compactly supported. Namely,
V ∈ L∞(0, T ;Hs(RN ,RN )) and it satisfies:
i) (7),
ii) ∇x · V = 0 in RN .

Proof. Let us assume N = 2 or N = 3. Since ∇x ·V = 0 in the ball B(0, R), which is convex, there
exists h ∈ L∞(0, T ;Hs+1(B(0, R),RN )) such that V = ∇×h. Then, by standard extension results
(see, e. g., [27, Chapter I: Theorem 2.1 p. 17 & Theorem 8.1 p. 42]), there exists an extension
h̃ ∈ L∞(0, T ;Hs+1(RN ,RN )) to h. Considering a cut-off function χ ∈ C∞c (RN ) such that χ(x) = 1
for x ∈ B(0, 3R/2) and denoting V = ∇× (χh̃), we see that V enjoys the desired properties. For
N ≥ 4, the construction is similar but involves differential forms. The arguments generalize to the
case where Ω is an ellipsoid.

Remark B.2 In the case of a general potential, ne is not uniform, and it is possible to construct
an extension V ∈ L∞(0, T ;Hs(RN ,RN )) which satisfies:
i) (7),
ii) ∇x · (neV ) = 0 in RN .

However, it requires further topological hypotheses on Ω. Assuming H1, and assuming also that
K is connected, and ∂Ω has a finite number of connected components, we may apply [21, Corollary
3.2]: neV is divergence free in the smooth domain Ω, hence we can construct a divergence free
extension J : [0, T ] × RN → RN to neV . Using a cut-off function, we may take J compactly
supported in an arbitrary neighborhood of K, the latter can be chosen so that ∆Φext remains > 0.
Finally, we set V = J /(∆Φext), which is well-defined even when ∆Φext vanishes.
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