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Finding the sum of any series from a given

general term∗

Leonhard Euler

1. When I had considered more carefully what I explained by the geometrical
method in the previous paper1 on the summation of series and when I had
investigated the same method of summation analytically, I saw that what I had
extracted geometrically could be deduced from a special method of summation
that I had already mentioned three years earlier in a paper on the summation
of series2. But I had not thought about this more since then. Having examined
more deeply the effectiveness of the analytical method, I perceived that not only
was the formula discovered geometrically contained in it, but also that by means
of it more could be accomplished by adding more terms, so that it would show
the true sum absolutely. The geometrical method however seems to find these
same terms with the greatest difficulty.

2. In the former paper on the summation of series, if x is the general term
of index n of some series, I exhibited in a universal way the following form for
the summatory term

∫

xdn +
x

2
+

dx

12dn
−

d3x

720dn3
+ etc.,

in which the differentials of x over powers of the differential dn, which is assumed
constant, are destroyed, because x is taken to be given by n,3 so that an algebraic
sum is obtained if of course xdn admits integration. In the integration of xdn

indeed a constant ought to be added such that the whole expression vanishes
by putting n = 0.

3. Now since I have set out in this paper to describe more accurately this
formula and its use, before everything else I shall explain how I discovered

∗Presented to the St. Petersburg Academy on October 13, 1735. Originally published
as Inventio summae cuiusque seriei ex dato termino generali, Commentarii academiae sci-
entiarum Petropolitanae 8 (1741), 9–22. E47 in the Eneström index. Translated from the
Latin by Jordan Bell, Department of Mathematics, University of Toronto, Toronto, Ontario,
Canada. Email: jordan.bell@gmail.com

1Translator: Methodus universalis serierum convergentium summas quam proxime inve-

niendi, E46.
2Translator: Methodus generalis summandi progressiones, E25, §2.
3Translator: My best reading is that since dn is small but fixed, if dkx = 0 for some k then

d
k

x

dnk
= 0 and also for all higher powers.
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the formula. I used some singular arguments which offer much to Analysis,
partly new and partly already known, which however as far as I recall are not
demonstrated clearly enough elsewhere.

4. It follows from the nature of infinitesimal calculus that if y depends in
any fixed way on x, if x + dx is put in place of x then y will turn into y + dy.
Now, if x is then increased by the element dx, that is x is changed to x + 2dx,
then in place of y we will have y + 2dy + ddy. And if x is again increased with
dx, then y will transform into y+3dy+3ddy+d3y, where the coefficients are the
same as those of the powers of a binomial. From here it follows that if x + mdx

is put in place of x, then y will take on this form

y +
m

1
dy +

m(m − 1)

1 · 2
ddy +

m(m − 1)(m − 2)

1 · 2 · 3
d3y + etc.

5. Now for our purpose let m be an infinitely large number such that mdx

represents a finite quantity; putting x+mdx in place of x, y will have this value

y +
mdy

1
+

m2d2y

1 · 2
+

m3d3y

1 · 2 · 3
+

m4d4y

1 · 2 · 3 · 4
+ etc.

Now if we let mdx = a or m = a
dx

, if x + a is put for x, then y will assume this
form

y +
ady

1dx
+

a2ddy

1 · 2dx2
+

a3d3y

1 · 2 · 3dx3
+ etc.,

in which all the terms are of finite magnitude.

6. This series, which exhibits the transformed value of y if x + a is put
in place of x, was first found by the very insightful Taylor in the Methodus

incrementorum directa et inversa, and he applied it to many excellent uses.
The first result that follows is the raising of a binomial to any power. So if the
value of (x + a)m is sought, I put

y = xm

and if x + a is put in place of x, the value of y will be (x + a)m. Since therefore

dy = mxm−1dx, d2y = m(m − 1)xm−2dx2

and so on, it will be

(x + a)m = xm +
maxm−1

1
+

m(m − 1)a2xm−2

1 · 2
+ etc.

7. Then by doing the following the Taylor series lets us find approximately a
root of this equation. Let us have an equation involving an unknown z, namely
Z = 0, where Z is a quantity composed in some known way from the unknown
z. Then take x as a value nearly equal to z, and let the quantity of Z which

2



occurs when x is put in place of z be put = y, so that if x were the true value
of z then y = 0.

8. Now since x differs from the true value of z by a certain amount, put the
true value of z to be x + a. It is thus clear that if in y we put x + a in place of
x then y will vanish. And indeed if one puts x+ a in place of x then y will turn
into

y +
ady

1dx
+

a2ddy

1 · 2dx2
+

a3d3y

1 · 2 · 3dx3
+ etc.

From this it follows that

0 = y +
ady

1dx
+

a2ddy

1 · 2dx2
+ etc.

9. Since x is set to be very close to z, a will be a very small quantity, so
that beside the first two terms all the following ones will vanish. By doing this
it arises that a = −

ydx

dy
and so z = x −

ydx

dy
, which is a value much nearer to z

than x. Thus for the equation

z3
− 3z − 20 = 0

it will be

y = x3
− 3x − 20 and

dy

dx
= 3x2

− 3

and hence

z = x −

x3
− 3x − 20

3xx − 3
=

2x3 + 20

3xx − 3
.

Now by first taking x = 3 it will be z = 3 1

12
, and then repeating this for a

second time taking this value in place of x will lead to a value even closer to z.

10. Next, if some condition is stipulated on the function y by which it is to
have a particular relation to x, then the above formula will turn into an equation
which contains the character of y. Thus if y is a function of x that vanishes by
putting x = 0, I put a = −x; for thus it turns out that x + a = 0 and it will be

0 = y −

xdy

1dx
+

x2ddy

1 · 2dx2
−

x3d3y

1 · 2 · 3dx3
+ etc.

or

y =
xdy

1dx
−

x2ddy

1 · 2dx2
+

x3d3y

1 · 2 · 3dx3
− etc.

The nature of all functions of x which vanish by putting x = 0 are contained in
this equation.

11. If we write
∫

zdx for y, it will be

dy = zdx, ddy = dzdx, d3y = d2zdx etc.;

3



substituting these values in we get

∫

zdx =
xz

1
−

x2dz

1 · 2dx
+

x3ddz

1 · 2 · 3dx2
− etc.,

in which equation the integral of zdx is expressed by an infinite series. And this
is the general quadrature of curves which the most insightful Johann Bernoulli
gave in the Acta eruditorum of Leipzig; however, he did not attach the analysis
which led to this series.

12. However disregarding this, which pertains less to our purpose, I return
to series. Therefore let us have some series

A + B + C + D + · · · + X,

in which A denotes the first term, B the second, and X that whose index is x,
so that X is the general term of the given series. Let us also put the sum of
this progression to be

A + B + C + D + · · · + X = S;

S will be the summatory term, and if the series is determined it will be composed
from x and fixed as much as X is.

13. Now because S will exhibit the sum of as many terms from the series as
there are unities in x, if x − 1 is written in place of x in S, we will obtain the
previous sum with the final term X removed. This substitution therefore turns
S into S −X . Let us compare this with the above formula; it will be S = y and
a = −1, from which the transformed value of S, or S − X , it will be

= S −

dS

1dx
+

ddS

1 · 2dx2
−

d3S

1 · 2 · 3dx3
+ etc.,

from which this equation arises:

X =
dS

1dx
−

ddS

1 · 2dx2
+

d3S

1 · 2 · 3dx3
−

d4S

1 · 2 · 3 · 4dx4
+ etc.

14. Therefore by means of this equation, the general term of any series is
found from the given summatory term. However, since this is already very easy,
it would be superfluous to use this method for finding the general term from
the summatory term. Rather this equation is most useful if all the terms are
expanded, and it can thus be applied to all uses. For by a known method the
series

X =
dS

1dx
−

ddS

1 · 2dx2
+

d3S

1 · 2 · 3dx3
− etc.

can be inverted, so that from the general term X the summatory term S can
be determined, which is desired most.
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15. Let us therefore put

dS

dx
= αX +

βdX

dx
+

γddX

dx2
+

δd3X

dx3
+

ǫd4X

dx4
+ etc.,

so it will be

S = α

∫

Xdx + βX +
γdX

dx
+

δddX

dx2
+ etc.

Next, it will be

ddS

dx2
=

αdX

dx
+

βddX

dx2
+

γd3X

dx3
+

δd4X

dx4
+ etc.

and
d3S

dx3
=

αddX

dx2
+

βd3X

dx3
+

γd4X

dx4
+ etc.

and
d4S

dx4
=

αd3X

dx3
+

βd4X

dx4
+ etc.

and then
d5S

dx5
=

αd4X

dx4
+ etc.

16. Let us substitute the series in place of each of the terms of the above
series, and put the similar terms among these equal to 0. By doing this, the
coefficients α, β, γ etc. will be determined as follows

α = 1,

β =
α

2
,

γ =
β

2
−

α

6
,

δ =
γ

2
−

β

6
+

α

24
,

ǫ =
δ

2
−

γ

6
+

β

24
−

α

120
,

ζ =
ǫ

2
−

δ

6
+

γ

24
−

β

120
+

α

720
etc.

17. Thus the coefficients α, β, γ, δ etc. constitute a series of such a nature
that each term is determined by all the preceding terms, with the first term
being = 1. Also, the numbers which all the final terms need to be divided by
constitute the progression called hypergeometric by Wallis

2, 6, 24, 120, 720, 5040 etc.
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However, this series of coefficients α, β, γ etc. is thus constituted that I could
hardly believe that each could be exhibited by some general term.

18. Therefore for our purposes we should be contented with the series of
coefficients being continued as far as we want, which can easily be done perfectly
from the law of the progression. I have worked out this series as follows,

+ 1, +
1

1 · 2
, +

1

1 · 2 · 3 · 2
, +0, −

1

1 · 2 · 3 · 4 · 5 · 6
, −0, +

1

1 · 2 · 3 · 4 · 5 · 6 · 7 · 6
, +0,

−

3

1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10
, −0, +

5

1 · · · 11 · 6
, +0, −

691

1 · · ·13 · 210
, −0,

+
35

1 · · · 15 · 2
, +0,−

3617

1 · · ·17 · 30
etc.

It is notable that in this series all the even terms besides the second vanish.

19. Therefore if these terms are substituted in place of α, β, γ etc., we will
obtain the following summatory term

S =

∫

Xdx +
X

1 · 2
+

dX

1 · 2 · 3 · 2dx
−

d3X

1 · 2 · 3 · 4 · 5 · 6dx3
+

d5X

1 · · · 7 · 6dx5

−

3d7X

1 · · · 9 · 10dx7
+

5d9X

1 · · · 11 · 6dx9
−

691d11X

1 · · · 13 · 210dx11

+
35d13X

1 · · · 15 · 2dx13
−

3617d15X

1 · · · 17 · 30dx15
+ etc.

20. This series has an important use in finding the sums of algebraic progres-
sions, in which x does not appear in the denominator of the general term. For
this reason x will have positive exponents everywhere, and hence some differen-
tial of it will vanish and thus the series will stop, and therefore the summatory
term will be represented by a finite number of terms. Immediately we see that
all the terms which do not contain x can be ignored, since already some constant
needs to be added in

∫

Xdx, to make S = 0 when we put x = 0.

21. To clearly see the use of this formula, it is worthwhile to offer some
examples. Thus let X = x, that is, let the series to be summed be

1 + 2 + 3 + · · · + x;

since
∫

Xdx =
x2

2

the sum will be

S =
x2 + x

2
;

for dX
dx

is constant and is therefore ignored, and the following differentials spon-
taneously vanish.
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Next let X = x2, or let this be the series to be summed

1 + 4 + 9 + · · · + x2;

it will be
∫

Xdx =
x3

3
and

dX

dx
= 2x

and hence the sum of the series is

S =
x3

3
+

x2

2
+

x

6
.

22. Now let the general series of powers of the natural numbers be given

1 + 2n + 3n + 4n + 5n + etc.,

whose general term is xn. One will therefore have X = xn and

∫

Xdx =
xn+1

n + 1
.

Furthermore the differentials will be thus obtained,

dX

dx
= nxn−1,

d3X

dx3
= n(n − 1)(n − 2)xn−3,

d5X

dx5
= n(n − 1)(n − 2)(n − 3)(n − 4)xn−5

etc.

Therefore with these values substituted the summatory term of the given series
will be

S =
xn+1

n + 1
+

xn

2
+

nxn−1

2 · 6
−

n(n − 1)(n − 2)xn−3

2 · 3 · 4 · 30
+

n(n − 1)(n − 2)(n − 3)(n − 4)xn−5

2 · 3 · 4 · 5 · 6 · 42

−

n(n − 1) · · · (n − 6)xn−7

2 · 3 · · · 8 · 30
+

n(n − 1) · · · (n − 8)5xn−9

2 · 3 · · · 10 · 66
−

n(n − 1) · · · (n − 10)691xn−11

2 · 3 · · · 12 · 2730

+
n(n − 1) · · · (n − 12)7xn−13

2 · 3 · · · 14 · 6
−

n(n − 1) · · · (n − 14)3617xn−15

2 · 3 · · · 16 · 510
+ etc.

The above series α, β, γ etc. should be continued as far necessary for this series,
which is worth continuing.

23. Thus from this general summation of the series whose general term is
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xn, sums of series of particular powers can be constructed, as follows,

∫

x1 =
x2

2
+

x

2
,

∫

x2 =
x3

3
+

x2

2
+

x

6
,

∫

x3 =
x4

4
+

x3

2
+

x2

4
,

∫

x4 =
x5

5
+

x4

2
+

x3

3
−

x

30
,

∫

x5 =
x6

6
+

x5

2
+

5x4

12
−

x2

12
,

∫

x6 =
x7

7
+

x6

2
+

x5

2
−

x3

6
+

x

42
,

∫

x7 =
x8

8
+

x7

7
+

7x6

12
−

7x4

24
+

x2

12
,

∫

x8 =
x9

9
+

x8

2
+

2x7

3
−

7x5

15
+

2x3

9
−

x

30
,

∫

x9 =
x10

10
+

x9

2
+

3x8

4
−

7x6

10
+

x4

2
−

3x2

20
,

∫

x10 =
x11

11
+

x10

2
+

5x9

6
− x7 + x5

−

x3

2
+

5x

66
,

∫

x11 =
x12

12
+

x11

2
+

11x10

12
−

11x8

8
+

11x6

6
−

11x4

8
+

5x2

12
,

∫

x12 =
x13

13
+

x12

2
+ x11

−

11x9

6
+

22x7

7
−

33x5

10
+

5x3

3
−

691x

2730
,

∫

x13 =
x14

14
+

x13

2
+

13x12

12
−

143x10

60
+

143x8

28
−

143x6

20
+

65x4

12
−

691x2

420
,

∫

x14 =
x15

15
+

x14

2
+

7x13

6
−

91x11

30
+

143x9

18
−

143x7

10
+

91x5

6
−

691x3

90
+

7x

6
,

∫

x15 =
x16

16
+

x15

2
+

5x14

4
−

91x12

24
+

143x10

12
−

429x8

16
+

455x6

12
−

691x4

24
+

35x2

4
,

∫

x16 =
x17

17
+

x16

2
+

4x15

3
−

14x13

3
+

52x11

3
−

143x9

3
+

260x7

3
−

1382x5

15

+
140x3

3
−

3617x

510
.

24. But if on the other hand x does not always have positive exponents
in the general term of a series, then too the expression will come out to be a
sum of infinitely many terms, because series of this kind do not admit general
summation, but rather involve quadratures. Still though, I have observed that
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by means of this formula this type of series can easily be summed very closely.
This has a great utility in series which converge slowly and others that are
difficult to sum. I will explain through examples how this is done.

25. Thus before any others I will first consider the harmonic series

1 +
1

2
+

1

3
+

1

4
+ etc.,

whose general term is 1

x
, and let S be the summatory term which is sought. So

it is X = 1

x
and

∫

Xdx = Const. + lx.

And then

dX

dx
=

−1

x2
,

d3X

dx3
=

−1 · 2 · 3

x4
,

d5X

dx5
=

−1 · 2 · 3 · 4 · 5

x6
etc.

Substituting these yields

S = Const. + lx +
1

2x
−

1

12x2
+

1

120x4
−

1

252x6
+

1

240x8
−

1

132x10

+
691

32760x12
−

1

12x14
+ etc.,

where the constant that is added needs to be such that by putting x = 0 it
makes S = 0. Certainly however the constant cannot be determined from this,
because all the terms are infinitely large.

26. Indeed to determine the constant another case should be considered, in
which the sum of the series is known; this can be obtained if a certain number
of terms are gathered into a single sum. Therefore let us add the first 10 terms

1 +
1

2
+

1

3
+ . . . +

1

10

whose sum turns out to be

= 2, 9289682539682539;

this should be equal to the sum of the terms from the formula, namely

Const.+l10+
1

20
−

1

1200
+

1

1200000
−

1

252000000
+

1

24000000000
−

1

1320000000000
+etc.

With this done, because one finds that

l10 = 2, 302585092994045684

the added constant will be

= 0, 5772156649015329
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and with this determined once, any sum of terms of this series can be found.

27. I have investigated the sum of 100, 1000, 10000 etc. terms of the series
1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ etc. by this rule, and I have found the following,

∫

10 = 2, 9289682539682539,

∫

100 = 5, 1873775176396203,

∫

1000 = 7, 4854708605503449,

∫

10000 = 9, 7876060360443823,

∫

100000 = 12, 0901461298634280,

∫

1000000 = 14, 3927267228657236.

28. If the first term of the series, 1, is taken, it will be S = 1 and x = 1, and
hence lx = 0. From the equation we therefore get

0, 4227843350984670 =
1

2
−

1

12
+

1

120
−

1

252
+

1

240
−

1

132
+

691

32760
−

1

12
+ etc.

This series is very irregular and not even convergent, and the sum is found only
approximately. However the sum of the series continued to infinity will be

= l∞ + 0, 5772156649015329,

which happens by putting x = ∞.

29. Now let us proceed to considering this series

1 +
1

3
+

1

5
+

1

7
+

1

9
+ etc.

in which X = 1

2x−1
and

∫

Xdx = Const. +
1

2
l(2x − 1)

and also

dX

dx
=

−2

(2x − 1)2
,

d3X

dx3
=

−2 · 4 · 6

(2x − 1)4
,

d5X

dx5
=

−2 · 4 · 6 · 8 · 10

(2x − 1)6
etc.

With these found, the sum of the proposed series will be

S = Const. +
1

2
l(2x − 1) +

1

2(2x − 1)
−

1

6(2x − 1)2
+

1

15(2x − 1)4
−

8

63(2x − 1)6

+
8

15(2x− 1)8
−

128

32(2x− 1)10
+

256 · 691

4095(2x− 1)12
−

2048

3(2x − 1)14
+

1024 · 3617

255(2x− 1)16
− etc.
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30. The constant quantity in this case cannot be determined as easily as
that in the previous case by actual addition of several terms. Indeed in this case
a great help is that this constant can be determined from the preceding one.
Namely the sum of the series

1 +
1

3
+

1

5
+

1

7
+ etc.

continued to infinity is = Const. + 1

2
l∞. Let us subtract the harmonic series

from twice this series; we will have

1 −

1

2
+

1

3
−

1

4
+ etc.,

whose sum it turns out is l2. Therefore it will be

l2 = 2const. + l∞− l∞− 0, 577215 etc.

and hence the constant that is sought is

= 0, 6351814227307392.

31. I proceed now to more complicated series, and I consider

1 +
1

4
+

1

9
+

1

16
+ etc.

the reciprocals of the squares, whose general term is 1

x2 = X . Therefore it will
be

∫

Xdx = Const. −
1

x

and
dX

dx
=

−2

x3
,

d3X

dx3
=

−2 · 3 · 4

x5
,

d5X

dx5
=

−2 · 3 · 4 · 5 · 6

x7
etc.

With these substituted it will be

1 +
1

4
+

1

9
+

1

16
+ . . . +

1

x2
= S

= Const.−
1

x
+

1

2x2
−

1

6x3
+

1

30x5
−

1

42x7
+

1

30x9
−

5

66x11
+

691

2730x13
−

7

6x15
+etc.

where the constant quantity should be determined from a special case.

32. Thus I actually added the first ten terms of this series and I found that
their sum is

1, 549767731166540.

Since in this case x = 10, if this is added to

1

10
−

1

200
+

1

6000
−

1

3000000
+

1

420000000
−

1

30000000000
+

1

1320000000000

−

691

27300000000000000
+

7

6000000000000000
− etc.,
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one gets an added constant = 1, 64493406684822643647. And this constant is
equal to the sum of the series continued to infinity; for by putting x = ∞ it will
be S = Const., with all the terms vanishing.

33. In a similar way for the reciprocals of the cubes

1 +
1

8
+

1

27
+

1

64
+ etc.

if the first ten terms are added, this sum is obtained

1, 197531985674193.

Whence one finds that the constant which should be added in the summation
of this series is

= 1, 202056903159594.

And this number is equal to the sum of the series

1 +
1

8
+

1

27
+

1

64

continued to infinity.

And for the biquadrates

1 +
1

16
+

1

81
+ etc.

the sum is
= 1, 0823232337110824.

34. Let us now consider by this method the series by which the area of the
circle whose diameter is 1 is exhibited, namely

1 −

1

3
+

1

5
−

1

7
+

1

9
− etc.

or
2

1 · 3
+

2

5 · 7
+

2

9 · 11
+

2

13 · 15
+ etc.,

whose general term is
2

(4x − 3)(4x − 1)

or resolving into factors
1

4x − 3
−

1

4x − 1
.

For finding the approximate sum of this series,

X =
1

4x − 3
−

1

4x − 1

12



and
∫

Xdx = Const. −
1

4
l
4x − 1

4x − 3

and then

dX

dx
=

−4

(4x − 3)2
+

4

(4x − 1)2
,

d3X

dx3
=

−4 · 8 · 12

(4x − 3)4
+

4 · 8 · 12

(4x − 1)4
etc.

From this the sum of the series

2

1 · 3
+

2

5 · 7
+ . . . +

2

(4x − 3)(4x − 1)
+ etc.

will be

S = Const. −
1

4
l
4x− 1

4x− 3
+

1

2

(

1

4x − 3
−

1

4x − 1

)

−

1

3

(

1

(4x − 3)2
−

1

(4x − 1)2

)

+
8

15

(

1

(4x − 3)4
−

1

(4x − 1)4

)

−

256

63

(

1

(4x − 3)6
−

1

(4x − 1)6

)

+
1024

15

(

1

(4x − 3)8
−

1

(4x − 1)8

)

−

48

33

(

1

(4x − 3)10
−

1

(4x − 1)10

)

+ etc.

Truly even if ten terms of this series are added it will not converge enough so
that a proper constant could be exhibited. But four times the constant is equal
to the periphery of a circular whose diameter is = 1.
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