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Abstract

This paper is devoted to Ser’s and Hasse’s series representations for the zeta-
functions, as well as to several closely related results. The notes concerning Ser’s
and Hasse’s representations are given as theorems, while the related expansions are
given either as separate theorems or as formulæ inside the remarks and corollaries.
In the first theorem, we show that the famous Hasse’s series for the zeta-function,
obtained in 1930 and named after the German mathematician Helmut Hasse, is
equivalent to an earlier expression given by a little-known French mathematician
Joseph Ser in 1926. In the second theorem, we derive a similar series representation
for the zeta-function involving the Cauchy numbers of the second kind (Nørlund
numbers). In the third theorem, with the aid of some special polynomials, we gen-
eralize the previous results to the Hurwitz zeta-function. In the fourth theorem, we
obtain a similar series with Gregory’s coefficients of higher order, which may also
be regarded as a functional equation for the zeta-functions. In the fifth theorem,
we extend the results of the third theorem to a class of Dirichlet series. As a conse-
quence, we obtain several globally convergent series for the zeta-functions. They are
complementary to Hasse’s series, contain the same finite differences and also gener-
alize Ser’s results. In the paper, we also show that Hasse’s series may be obtained
much more easily by using the theory of finite differences, and we demonstrate that
there exist numerous series of the same nature. In the sixth theorem, we show that
Hasse’s series is a simple particular case of a more general class of series involving
the Stirling numbers of the first kind. All the expansions derived in the paper lead,
in turn, to the series expansions for the Stieltjes constants, including new series
with rational terms only for Euler’s constant, for the Maclaurin coefficients of the
regularized Hurwitz zeta-function, for the logarithm of the gamma-function, for the
digamma and trigamma functions. Throughout the paper, we also mention several
“unpublished” contributions of Charles Hermite, which were very close to the re-
sults of Hasse and Ser. Finally, in the Appendix, we prove an interesting integral
representation for the Bernoulli polynomials of the second kind, formerly known as
the Fontana–Bessel polynomials.

1Fellow of the Steklov Institute of Mathematics at St. Petersburg, Russia.
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1. Introduction

The Euler–Riemann zeta-function

ζ(s) ≡
∞∑

n=1

n−s =
∞∏

n=1

(
1− p−s

n

)−1
,

Re s > 1

pn ∈ P ,

and its most common generalization, the Hurwitz zeta-function

ζ(s, v) ≡
∞∑

n=0

(n+ v)−s ,
Re s > 1

v ∈ C \{0,−1,−2, . . .} ,

ζ(s) = ζ(s, 1), are some of the most important special functions in analysis and
number theory. They were studied by many famous mathematicians, including
Stirling, Euler, Malmsten, Clausen, Kinkelin, Riemann, Hurwitz, Lerch, Landau,
and continue to receive considerable attention from modern researchers. In 1930, the
German mathematician Helmut Hasse published a paper [37], in which he obtained
and studied these globally convergent series for the ζ–functions

ζ(s) =
1

s− 1

∞∑

n=0

1

n+ 1

n∑

k=0

(−1)k
(
n

k

)
(k + 1)1−s , (1)

ζ(s, v) =
1

s− 1

∞∑

n=0

1

n+ 1

n∑

k=0

(−1)k
(
n

k

)
(k + v)1−s , (2)

containing finite differences ∆n11−s and ∆nv1−s respectively.2 Hasse also re-
marked3 that the first series is quite similar to the Euler transformation of the

η-function series η(s) ≡
∞∑

n=1
(−1)n+1n−s =

(
1− 21−s

)
ζ(s) , Re s > 0 , i.e.

ζ(s) =
1

1− 21−s

∞∑

n=0

1

2n+1

n∑

k=0

(−1)k
(
n

k

)
(k + 1)−s , (3)

the expression which, by the way, was earlier given by Mathias Lerch [48]4 and
later rediscovered by Jonathan Sondow [70], [26]. Formulæ (1)–(2) have become
widely known, and in the literature they are often referred to as Hasse’s formulæ
for the ζ-functions. At the same time, it is not so well known that 4 years earlier,
a little-known French mathematician Joseph Ser published a paper [66] containing
very similar results.5 In particular, he showed that

ζ(s) =
1

s− 1

∞∑

n=0

1

n+ 2

n∑

k=0

(−1)k
(
n

k

)
(k + 1)−s, (4)

2For the definition of the finite difference operator, see (32).
3Strictly speaking, the remark was communicated to him by Konrad Knopp.
4Interestingly, Lerch did not notice that his result is simply Euler’s transformation of η(s).
5Moreover, as we come to show in Remark 2, series (2) is also a particular case of a more general

formula obtained by Nørlund in 1923 (although the formula may, of course, be much older).
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and also gave this curious series

ζ(s) =
1

s− 1
+

∞∑

n=0

∣∣Gn+1

∣∣
n∑

k=0

(−1)k
(
n

k

)
(k + 1)−s = (5)

=
1

s− 1
+

1

2
+

1

12

(
1− 2−s

)
+

1

24

(
1− 2 · 2−s + 3−s

)
+ . . .

[66, Eq. (4), p. 1076]6, [9, p. 382], to which Charles Hermite was also very close
already in 1900.7 The numbers Gn appearing in the latter expansion are known
as Gregory’s coefficients and may also be called by some authors (reciprocal) log-
arithmic numbers, Bernoulli numbers of the second kind, normalized generalized
Bernoulli numbers B(n−1)

n and B(n)
n (1),8 and normalized Cauchy numbers of the

first kind C1,n. They are rational and may be defined either via their generating
function

z

ln(1 + z)
= 1 +

∞∑

n=1

Gn z
n, |z| < 1 , (6)

or explicitly via the recurrence relation

Gn =
(−1)n−1

n+ 1
+

n−1∑

k=1

(−1)n+1−kGk

n+ 1− k
, G1 =

1

2
, n = 2, 3, 4, . . . (7)

see, e.g., [69, p. 10], [6], [54, pp. 261–262, § 61], [44, p. 143], [45, p. 423, Eq. (30)],
or via

Gn =
C1,n

n!
= − B(n−1)

n

(n− 1)n!
=

B(n)
n (1)

n!
=

1ˆ
0

(
x

n

)
dx

=
1

n!

1ˆ
0

(x− n+ 1)n dx =
1

n!

n∑

l=1

S1(n, l)

l + 1
, (8)

where n is a natural number, (x)n ≡ x (x + 1) (x + 2) · · · (x + n − 1) stands for
the Pochhammer symbol (also known as the rising factorial) and S1(n, l) are the

6Our formula (5) is a corrected version of the original Ser’s formula (4) [66, p. 1076] (we also
corrected this formula in our previous work [9, p. 382]). In Ser’s formula (4), the corrections
which need to be done are the following. First, in the second line of (2) the last term should be
(−1)n(n+1)−s and not (−1)nn−s. Second, in equation (3), “(1-x((2-x)” should read “(1-x)(2-x)”.
Third, the region of convergence of formula (4), p. 1076, should be s ∈ C\{1} and not s < 1. Note
also that Ser’s pn+1 are equal to our |Gn|. We, actually, carefully examined 5 different hard copies
of [66] (from the Institut Henri Poincaré, from the École Normale Supérieure Paris, from the
Université Pierre-et-Marie-Curie, from the Université de Strasbourg and from the Bibliothèque
nationale de France), and all of them contained the same misprints.

7Charles Hermite even aimed to obtain a more general expression (see, for more details, Theo-
rem 3 and footnote 19).

8See (52) hereafter and also [57, pp. 145–147, 462], [53, pp. 127, 129, 135, 182]. Note also that

B
(n−1)
n = B

(n−1)
n (0) from (52).
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Stirling numbers of the first kind, which are the coefficients in the expansion of the
falling factorial, and hence of the binomial coeffcient,9

(x− n+ 1)n = n!

(
x

n

)
= x (x − 1) (x− 2) · · · (x− n+ 1) =

n∑

l=1

S1(n, l)x
l. (9)

Gregory’s coefficients are alternating Gn = (−1)n−1|Gn| and decreasing in absolute

value; they behave as
(
n ln2 n

)−1
at n → ∞ and may be bounded from below and

from above accordingly to formulæ (55)–(56) from [10].10 The first few coefficients
are: G1 = +1/2 , G2 = −1/12 , G3 = +1/24 , G4 = −19/720 , G5 = +3/160 , G6 =
−863/60 480 ,. . . 11 For more information about these important numbers, see [10,
pp. 410–415], [9, p. 379], and the literature given therein (nearly 50 references).

2. On the Equivalence Between Ser’s and Hasse’s Representations for
the Euler–Riemann Zeta-function

One may immediately see that Hasse’s representation (1) and Ser’s representation
(4) are very similar, so one may question whether these expressions are equivalent
or not. The paper written by Ser [66] is much less cited than that by Hasse [37],
and in the few works in which both of them are cited, these series are treated as
different and with no connection between them.12 However, as we shall show later,
this is not true.

In one of our previous works [9, p. 382], we already noticed that these two series
are, in fact, equivalent, but this was stated in a footnote and without a proof.13

Below, we provide a rigorous proof of this statement.

Theorem 1. Ser’s representation for the ζ-function [66, p. 1076, Eq. (7)]

ζ(s) =
1

s− 1

∞∑

n=0

1

n+ 2

n∑

k=0

(−1)k
(
n

k

)
(k + 1)−s , s ∈ C \{1} , (10)

9For more information about S1(n, l), see [10, Sect. 2] and numerous references given therein.
Here we use exactly the same definition for S1(n, l) as in the cited reference.

10For the asymptotics of Gn and their history, see [11, Sect. 3].
11Numerators and denominators of Gn may also be found in OEIS A002206 and A002207 re-

spectively.
12A simple internet search with “Google scholar” indicates that Hasse’s paper [37] is cited more

than 50 times, while Ser’s paper [66] is cited only 12 times (including several on-line resources
such as [75], as well as some incorrect items), and all the citations are very recent. These citations
mainly regard an infinite product for eγ , e.g.,[71], [12], [21], [20], and we found only two works
[26], [29], where both articles [66] and [37] were cited simultaneously and in the context of series
representations for ζ(s).

13We, however, indicated that a recurrence relation for the binomial coefficients should be used
for the proof.
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and Hasse’s representation for the ζ-function [37, pp. 460–461]

ζ(s) =
1

s− 1

∞∑

n=0

1

n+ 1

n∑

k=0

(−1)k
(
n

k

)
(k + 1)1−s , s ∈ C \{1} , (11)

are equivalent in the sense that one series is a rearranged version of the other.

Proof. In view of the fact that

1

k + 1

(
n

k

)
=

1

n+ 1

(
n+ 1

k + 1

)
and that

1

(n+ 2)(n+ 1)
=

1

n+ 1
− 1

n+ 2
,

Ser’s formula (10), multiplied by the factor s− 1, may be written as:

(s− 1) ζ(s) =
∞∑

n=0

1

n+ 2

n∑

k=0

(−1)k
(
n

k

)
(k + 1)−s

=
∞∑

n=0

1

(n+ 2)(n+ 1)

n∑

k=0

(−1)k
(
n+ 1

k + 1

)
(k + 1)1−s

=
∞∑

n=0

1

n+ 1

n∑

k=0

(−1)k
(
n+ 1

k + 1

)
(k + 1)1−s −

−
∞∑

n=0

1

n+ 2

n∑

k=0

(−1)k
(
n+ 1

k + 1

)
(k + 1)1−s =

= 1 +
∞∑

n=1

1

n+ 1

n∑

k=0

(−1)k
(
n+ 1

k + 1

)
(k + 1)1−s −

−
∞∑

n=1

1

n+ 1

n−1∑

k=0

(−1)k
(

n

k + 1

)
(k + 1)1−s =

= 1 +
∞∑

n=1

(−1)n

(n+ 1)s
+

∞∑

n=1

1

n+ 1

n−1∑

k=0

(−1)k

(k + 1)s−1

{(
n+ 1

k + 1

)
−
(

n

k + 1

)}

= 1 +
∞∑

n=1

(−1)n

(n+ 1)s
+

∞∑

n=1

1

n+ 1

n−1∑

k=0

(−1)k

(k + 1)s−1

(
n

k

)

= 1 +
∞∑

n=1

1

n+ 1

n∑

k=0

(−1)k

(k + 1)s−1

(
n

k

)
=

∞∑

n=0

1

n+ 1

n∑

k=0

(−1)k

(k + 1)s−1

(
n

k

)
,

where, between the seventh and eighth lines, we resorted to the recurrence relation
for the binomial coefficients. The last line is identical with Hasse’s formula (11).
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Thus, series (10) and (11) are equivalent in the sense that (11) may be obtained by
an appropriate rearrangement of terms in (10) and vice versa. It is also interesting
that Hasse’s series for ζ(s) may be obtained from that for ζ(s, v) by simply setting
v = 1, while Ser’s series for ζ(s), as we come to see later, is obtained from a much
more complicated formula for ζ(s, v); see (129)–(128) hereafter.

Corollary 1. The Stieltjes constants γm may be given by the following series

γm = − 1

m+ 1

∞∑

n=0

1

n+ 2

n∑

k=0

(−1)k
(
n

k

)
lnm+1(k + 1)

k + 1
, m ∈ N0 , (12)

γm = − 1

m+ 1

∞∑

n=0

1

n+ 1

n∑

k=0

(−1)k
(
n

k

)
lnm+1(k + 1) , m ∈ N0 , (13)

γm =
∞∑

n=0

∣∣Gn+1

∣∣
n∑

k=0

(−1)k
(
n

k

)
lnm(k + 1)

k + 1
, m ∈ N . (14)

Proof. The Stieltjes constants γm , m ∈ N0, are the coefficients appearing in the
regular part of the Laurent series expansion of ζ(s) about its unique pole s = 1

ζ(s) =
1

s− 1
+ γ +

∞∑

m=1

(−1)mγm
m!

(s− 1)m , s ∈ C \{1} , (15)

and γ0 = γ.14 Since the function (s− 1)ζ(s) is holomorphic on the entire complex
s–plane, it may be expanded into the Taylor series. The latter expansion, applied to
(10) and (11) in a neighborhood of s = 1, produces formulæ (12)–(13). Proceeding
similarly with ζ(s) − (s− 1)−1 and Ser’s formula (5) yields (14).

Corollary 2. The normalized Maclaurin coefficients δm of the regular function
ζ(s)− (s− 1)−1 admit the following series representation

δm =
∞∑

n=0

∣∣Gn+1

∣∣
n∑

k=0

(−1)k
(
n

k

)
lnm(k + 1) , m ∈ N . (16)

Proof. Analogously to the Stieltjes constants γm, may be introduced the normalized
Maclaurin coefficients δm of the regular function ζ(s) − (s− 1)−1

ζ(s) =
1

s− 1
+

1

2
+

∞∑

m=1

(−1)mδm
m!

sm , s ∈ C \{1}. (17)

They are important in the study of the ζ-function and are polynomially related to
the Stieltjes constants: δ1 = 1

2 ln 2π− 1 , δ2 = γ1 +
1
2γ

2 − 1
2 ln

22π− 1
24π

2 +2 , . . . 15

14For more information on γm , see [30, p. 166 et seq.], [10], [8], and the literature given therein.
15For more information on δm , see, e.g., [47], [67], [27], [30, p. 168 et seq.].
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Now, from Ser’s formula (5), it follows that

∞∑

n=0

∣∣Gn+1

∣∣
n∑

k=0

(−1)k
(
n

k

)
(k + 1)−s =

1

2
+

∞∑

m=1

(−1)mδm
m!

sm .

Expanding the left-hand side into the Maclaurin series and equating the coefficients
of sm yield (16).

3. A Series for the Zeta-function With the Cauchy Numbers of the Sec-
ond Kind (Nørlund Numbers)

An appropriate rearrangement of terms in another series of Ser, formula (5), also
leads to an interesting result. In particular, we may deduce a series very similar to
(5), but containing the normalized Cauchy numbers of the second kind Cn instead
of Gn.

The normalized Cauchy numbers of the second kind Cn, related to the ordi-
nary Cauchy numbers of the second kind C2,n as Cn ≡ C2,n/n! (numbers C2,n are
also known as signless generalized Bernoulli numbers and signless Nørlund numbers∣∣B(n)

n

∣∣ = (−1)nB(n)
n ), appear in the power series expansion of

[
(1± z) ln(1± z)

]−1

and of ln ln(1± z) in a neighborhood of zero

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z

(1 + z) ln(1 + z)
= 1 +

∞∑

n=1

Cn (−z)n , |z| < 1 ,

ln ln(1 + z) = ln z +
∞∑

n=1

Cn

n
(−z)n , |z| < 1 ,

(18)

and may also be defined explicitly:

Cn ≡ C2,n

n!
=

(−1)nB(n)
n

n!
= (−1)n

1ˆ
0

(
x− 1

n

)
dx =

=
1

n!

1ˆ
0

(x)n dx =
1

n!

n∑

l=1

|S1(n, l)|
l + 1

, n ∈ N .

(19)

They also are linked to Gregory’s coefficients via the recurrence relation Cn−1 −
Cn = |Gn| , which is sometimes written as

Cn = 1−
n∑

k=1

∣∣Gk

∣∣ , n ∈ N . 16 (20)
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The numbers Cn are positive rational and always decrease with n; they behave
as ln−1 n at n → ∞ and may be bounded from below and from above accordingly
to formulæ (53)–(54) from [10]. The first few values are: C1 = 1/2 , C2 = 5/12 ,
C3 = 3/8 , C4 = 251/720 , C5 = 95/288 , C6 = 19 087/60 480 , . . .17 For more information
on the Cauchy numbers of the second kind, see [57, pp. 150–151], [28, p. 12], [58],
[53, pp. 127–136], [5, vol. III, pp. 257–259], [24, pp. 293–294, no 13], [39, 1, 80, 61],
[10, pp. 406, 410, 414–415, 428–430], [9].

Theorem 2. The ζ-function may be represented by the following globally convergent
series

ζ(s) =
1

s− 1
+ 1−

∞∑

n=0

Cn+1

n∑

k=0

(−1)k
(
n

k

)
(k + 2)−s = (21)

=
1

s− 1
+ 1− 2−s−1 − 5

12

(
2−s − 3−s

)
− 3

8

(
2−s − 2 · 3−s + 4−s

)
− . . .

s ∈ C \{1}, where Cn are the normalized Cauchy numbers of the second kind.

Proof. Using Fontana’s identity
∑

|Gn| = 1 , where the summation extends over
positive integers n, see, e.g., [10, p. 410, Eq. (20)], Ser’s formula (5) takes the form

ζ(s) =
1

s− 1
+ 1 +

∞∑

n=1

∣∣Gn+1

∣∣
n∑

k=1

(−1)k
(
n

k

)
(k + 1)−s . (22)

Now, by taking into account that Cn−1 − Cn = |Gn| , and by employing the recur-
rence property of the binomial coefficients

(
n+ 1

k

)
−
(
n

k

)
=

(
n

k − 1

)
,

we find that

ζ(s)− 1

s− 1
− 1 =

16This formula incorrectly appears in [42, p. 267, 269]: in several places, the formulæ for ψn(−1)
should contain the sum with the upper bound n instead of n+ 1.

17See also OEIS A002657 and A002790, which are the numerators and denominators respectively
of C2,n = n!Cn.
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=
∞∑

n=1

Cn

n∑

k=1

(−1)k
(
n

k

)
(k + 1)−s −

∞∑

n=1

Cn+1

n∑

k=1

(−1)k
(
n

k

)
(k + 1)−s

=
∞∑

n=0

Cn+1

n+1∑

k=1

(−1)k
(
n+ 1

k

)
(k + 1)−s −

∞∑

n=1

Cn+1

n∑

k=1

(−1)k
(
n

k

)
(k + 1)−s

= −C1 2
−s +

∞∑

n=1

Cn+1

{
n+1∑

k=1

(−1)k
(
n+ 1

k

)
(k + 1)−s −

n∑

k=1

(−1)k
(
n

k

)
(k + 1)−s

}

= −C1 2
−s +

∞∑

n=1

Cn+1

{
(−1)n+1

(n+ 2)s
+

n∑

k=1

(−1)k
(

n

k − 1

)
(k + 1)−s

}

= −C1 2
−s −

∞∑

n=1

Cn+1

n∑

k=0

(−1)k
(
n

k

)
(k + 2)−s , (23)

which is the same as (21), since C1 2−s is the zeroth term of the last sum. The
global convergence of (21) follows from that of (5).

Corollary 3. The Stieltjes constants may be represented by the following series

γm = −
∞∑

n=0

Cn+1

n∑

k=0

(−1)k
(
n

k

)
lnm(k + 2)

k + 2
, m ∈ N0 . (24)

Proof. Proceeding analogously to the proof of Corollary 1, we obtain the required
result. Moreover, for Euler’s constant γ = γ0, we have an expression which may be
simplified thanks to the fact (−1)n∆nx−1

∣∣
x=2

=
[
(n+ 1) (n+ 2)

]−1
, so that

γ = 1−
∞∑

n=0

Cn+1

n∑

k=0

(−1)k

k + 2

(
n

k

)
= 1−

∞∑

n=0

Cn+1

(n+ 1) (n+ 2)
=

= 1− 1

4
− 5

72
− 1

32
− 251

14 400
− 19

1728
− 19 087

2 540 160
− . . .

This series was already encountered in earlier works [10, p. 380, Eq. (34)], [9, p. 429,
Eq. (95)].

Corollary 4. The coefficients δm admit the following series representation

δm = −
∞∑

n=0

Cn+1

n∑

k=0

(−1)k
(
n

k

)
lnm(k + 2) , m ∈ N . (25)

Proof. Analogous to Corollary 2, except that we replace (5) by (21).
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4. Generalizations of Series With Gregory’s Coefficients and Cauchy
Numbers of the Second Kind to the Hurwitz Zeta-function and to
Some Dirichlet Series

Theorem 3. The Hurwitz zeta-function ζ(s, v) may be represented by the following
globally series s ∈ C \{1} with the finite difference ∆nv−s

ζ(s, v) =
v1−s

s− 1
+

∞∑

n=0

∣∣Gn+1

∣∣
n∑

k=0

(−1)k
(
n

k

)
(k + v)−s =

v1−s

s− 1
+

1

2
v−s +

+
1

12

[
v−s − (1 + v)−s

]
+

1

24

[
v−s − 2(1 + v)−s + (2 + v)−s

]
+ . . . , (26)

where Re v > 0 ,

ζ(s, v) =
(v − 1)1−s

s− 1
−

∞∑

n=0

Cn+1

n∑

k=0

(−1)k
(
n

k

)
(k + v)−s =

(v − 1)1−s

s− 1
− 1

2
v−s −

− 5

12

[
v−s − (1 + v)−s

]
− 3

8

[
v−s − 2 (1 + v)−s + (2 + v)−s)

]
− . . . , (27)

where Re v > 1 , and

ζ(s, v) =
1

m (s− 1)

m−1∑

n=0

(v+a+n)1−s+
1

m

∞∑

n=0

(−1)nNn+1,m(a)
n∑

k=0

(−1)k
(
n

k

)
(k+v)−s

(28)
where Re v > −Rea , Rea ! −1 and Nn,m(a) are the polynomials defined by

Nn,m(a) ≡ 1

n!

a+mˆ
a

(x−n+1)n dx =

a+mˆ
a

(
x

n

)
dx = ψn+1(a+m)−ψn+1(a) , (29)

or equivalently by their generating function

(1 + z)a+m − (1 + z)a

ln(1 + z)
=

∞∑

n=0

Nn,m(a) zn , |z| < 1 . (30)

The function ψn(x) is the antiderivative of the binomial coefficient and is also known
as the Bernoulli polynomials of the second kind and the Fontana–Bessel polynomi-
als. All these series are similar to Hasse’s series (2) and contain the same finite
difference ∆nv−s.

Proof. First variant of proof of (26): Expanding the function ζ(s, x) into the
Gregory–Newton interpolation series (also known as the forward difference formula)
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in a neighborhood of x = v, yields

ζ(s, x+ v) = ζ(s, v) +
∞∑

n=1

(
x

n

)
∆nζ(s, v) = ζ(s, v) +

∞∑

n=1

(x− n+ 1)n
n!

∆nζ(s, v) ,

(31)
where ∆nf(v) is the nth finite forward difference of f(x) at point v

∆f(v) ≡ ∆f(x)
∣∣
x=v

=
{
f(x+ 1)− f(x)

}∣∣
x=v

= f(v + 1)− f(v) ,

. . . . . .

∆nf(v) = ∆n−1f(v + 1)−∆n−1f(v) = . . . (32)

. . . =
n∑

k=0

(−1)k
(
n

k

)
f(n− k + v) = (−1)n

n∑

k=0

(−1)k
(
n

k

)
f(v + k)

with ∆0f(v) ≡ f(v) by convention18. Since the operator of finite difference ∆n is
linear and because ζ(s, v+1) = ζ(s, v)−v−s, it follows from (32) that ∆nζ(s, v) =
−∆n−1v−s . Formula (31), therefore, becomes

ζ(s, v) =
∞∑

n=0

(x+ v + n)−s +
∞∑

n=1

(x− n+ 1)n
n!

∆n−1v−s . (33)

Integrating termwise the latter equality over x ∈ [0, 1] and accounting for the fact
that

1ˆ
0

(x+ v)−sdx =
1

s− 1

{
v1−s − (v + 1)1−s

}
, (34)

as well as using (8), we have

ζ(s, v) =
1

s− 1

{ ∞∑

n=0

(v + n)1−s −
∞∑

n=0

(v + 1 + n)1−s

}
+

∞∑

n=1

Gn ∆
n−1v−s

=
v1−s

s− 1
+

∞∑

n=0

Gn+1 ∆
nv−s , (35)

which is identical with (26), because Gn+1 = (−1)n|Gn+1| and

∆nv−s ≡ ∆nx−s
∣∣
x=v

= (−1)n
n∑

k=0

(−1)k
(
n

k

)
(k + v)−s . (36)

18Note, however, that due to the fact that finite differences may be defined in slightly different
ways and that there also exist forward, central, backward and other finite differences, our definition
for ∆nf(v) may not be shared by others. Thus, some authors call the quantity (−1)n∆nf(v) the
nth finite difference, see, e.g., [74, p. 270, Eq. (14.17)] (we also employed the latter definition in
[10, p. 413, Eq. (39)]). For more details on the Gregory–Newton interpolation formula, see, e.g.,
[40, § 9·02], [53, pp. 57–59], [42, pp. 184, 219 et seq., 357], [13, Ch. III], [36, Ch. 1 & 9], [57], [76],
[46, Ch. 3], [33, p. 192], [50, Ch. V], [43, Ch. III, pp. 184–185], [52], [68], [60, p. 31].
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The reader may also note that if we put v = 1 in (33) and (36), then we obtain
Ser’s formulæ (3) and (2) respectively.

Second variant of proof of (26): Consider the generating equation for the numbers
Gn, formula (6). Dividing it by z and then putting z = e−x − 1 yields

1

1− e−x
=

1

x
+
∣∣G1

∣∣+
∞∑

n=1

∣∣Gn+1

∣∣ (1− e−x)n (37)

=
1

x
+
∣∣G1

∣∣+
∞∑

n=1

∣∣Gn+1

∣∣
n∑

k=0

(−1)k
(
n

k

)
e−kx , x > 0 ,

since |Gn+1| = (−1)nGn+1 . Now, using the well–known integral representation of
the Hurwitz ζ-function

ζ(s, v) =
1

Γ(s)

∞̂

0

e−vx xs−1

1− e−x
dx

and Euler’s formulæ

v1−s

s− 1
=

1

Γ(s)

∞̂

0

e−vx xs−2 dx , v−s =
1

Γ(s)

∞̂

0

e−vx xs−1 dx ,

we obtain

ζ(s, v) − v1−s

s− 1
−
∣∣G1

∣∣ v−s =
1

Γ(s)

∞̂

0

e−vx xs−1

{
1

1− e−x
− 1

x
−
∣∣G1

∣∣
}

dx

=
1

Γ(s)

∞∑

n=1

∣∣Gn+1

∣∣
n∑

k=0

(−1)k
(
n

k

) ∞̂

0

e−(k+v)x xs−1 dx

=
∞∑

n=1

∣∣Gn+1

∣∣
n∑

k=0

(−1)k
(
n

k

)
(k + v)−s.

Remarking that
∣∣G1

∣∣ v−s is actually the term corresponding to n = 0 in the sum on
the right yields (26).19

19It seems appropriate to note here that Charles Hermite in 1900 tried to use a similar method to
derive a series with Gregory’s coefficients for ζ(s, v), but his attempt was not succesfull. A careful
analysis of his derivations [38, p. 69], [59, vol. IV, p. 540], reveals that Hermite’s errors is due to the

incorrect expansion of
(
1− e−x

)−1
into the series with ωn , which, in turn, led him to an incorrect

formula for R(a, s) ≡ ζ(s, a).20 These results were never published during Hermite’s lifetime and
appeared only in epistolary exchanges with the Italian mathematician Salvatore Pincherle, who
published them in [38] several months after Hermite’s death. Later, these letters were reprinted
in [59].

20On p. 69 in [38] and p. 540 in [59, vol. IV] in the expansion for
(
1− e−x

)−1
the term ω1

should be replaced by ω2 and ωn by ωn+1. Note that Hermite’s ωn = |Gn|.



INTEGERS: 18A (2018) 13

First variant of proof of (27). Integrating term–by–term the right–hand side of
(33) over x ∈ [−1, 0] and remarking that

1

n!

0ˆ
−1

(x − n+ 1)n dx =

0ˆ
−1

(
x

n

)
dx =

1ˆ
0

(
x− 1

n

)
dx = (−1)nCn , (38)

we have

ζ(s, v) =
1

s− 1

{ ∞∑

n=0

(v − 1 + n)1−s −
∞∑

n=0

(v + n)1−s

}
+

∞∑

n=1

(−1)nCn ∆
n−1v−s

=
(v − 1)1−s

s− 1
−

∞∑

n=0

Cn+1 (−1)n∆nv−s , (39)

which coincides with (27) by virtue of (36).

Second variant of proof of (27). In order to obtain (27), we also may proceed
analogously to the demonstration of Theorem 2, in which we replace (5) by (26). The
unity appearing from Fontana’s series in (21) becomes v−s and the term (k + 2)−s

becomes (k + 1 + v)−s, that is to say

ζ(s, v) =
v1−s

s− 1
+ v−s −

∞∑

n=0

Cn+1

n∑

k=0

(−1)k
(
n

k

)
(k + v + 1)−s , (40)

Re v > 0. Using the recurrence relation ζ(s, v) = ζ(s, v + 1) + v−s and rewriting
the final result for v instead of v + 1, we immediately obtain (27).

Proof of (28). Our method of proof, which uses the Gregory–Newton interpolation
formula, may be further generalized. By introducing polynomialsNn,m(a) according
to (29), and by integrating (33) over x ∈ [a, a+m] , we have

ζ(s, v) =
1

m (s− 1)

{
ζ(s−1, v+a)−ζ(s−1, v+a+m)

}
+

1

m

∞∑

n=1

Nn,m(a)∆n−1v−s.

(41)
Simplifying the expression in curly brackets and reindexing the latter sum immedi-
ately yields

ζ(s, v) =
1

m (s− 1)

m−1∑

n=0

(v + a+ n)1−s +
1

m

∞∑

n=0

Nn+1,m(a)∆nv−s, (42)

which is identical with (28). Note that expansions (26)–(27) are both particular
cases of (28) at m = 1. Formula (26) is obtained by setting a = 0, while (27)
corresponds to a = −1.
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Corollary 5. The Euler–Riemann ζ-function admits the following general expan-
sions

ζ(s) =
1

m (s− 1)

m∑

n=1

(a+ n)1−s +
1

m

∞∑

n=0

(−1)nNn+1,m(a)
n∑

k=0

(−1)k
(
n

k

)
(k + 1)−s

(43)
a > −1, m ∈ N, and

ζ(s) = 1+
1

m (s− 1)

m∑

n=1

(a+1+n)1−s+
1

m

∞∑

n=0

(−1)nNn+1,m(a)
n∑

k=0

(−1)k
(
n

k

)
(k+2)−s

(44)
a > −2, m ∈ N, containing finite differences ∆n1−s and ∆n2−s respectively. Ser’s
series (5) and our series from Theorem 2 are particular cases of the above expan-
sions.21

Proof. On the one hand, setting v = 1 in (42) we immediately obtain (43). On
the other hand, putting v + 1 instead of v and using the relation ζ(s, v + 1) =
ζ(s, v)− v−s, equality (42) takes the form

ζ(s, v) = v−s+
1

m (s− 1)

m∑

n=1

(v+a+n)1−s+
1

m

∞∑

n=0

Nn+1,m(a)∆n(v+1)−s. (45)

At point v = 1, this equality becomes (44). Continuing the process, we may also
obtain similar formulæ for ζ(s) containing finite differences ∆n3−s, ∆n4−s,. . .

Remark 1, related to the polynomials Nn,m(a). Polynomials Nn,m(a) gener-
alize many special numbers and have a variety of interesting properties. First of all,
we remark that Nn,m(a) are polynomials of degree n in a with rational coefficients.
This may be seen from the fact that

Nn,m(a) ≡ 1

n!

a+mˆ
a

(x− n+ 1)n dx =
1

n!

n∑

l=1

S1(n, l)

l + 1

{
(a+m)l+1 − al+1

}
(46)

=
1

n!

n∑

l=1

S1(n, l)

l + 1

l∑

k=0

akml+1−k

(
l + 1

k

)
,

where n and m are positive integers. This formula is quite simple and very handy
for the calculation of Nn,m(a) with the help of CAS. It is therefore clear that for any
a ∈ Q, polynomials Nn,m(a) are simply rational numbers. Some of such examples
may be of special interest

Nn,1(−1) = (−1)nCn , Nn,1(0) = Gn , N2n,1(n− 1) = M2n ,

21We have Ser’s formula when putting a = 0, m = 1 in (43), and our Theorem 2 if setting
a = −1, m = 1 in (44).
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where Mn are central difference coefficients M2 = −1/12 , M4 = +11/720 , M6 =
−191/60 480 , M8 = +2497/3 628 800 , . . . , see, e.g., [64], [40, § 9·084], [53, p. 186],
OEIS A002195 and A002196. The derivative of Nn,m(a) is

∂Nn,m(a)

∂a
=

(a+m− n+ 1)n − (a− n+ 1)n
n!

=

(
a+m

n

)
−
(
a

n

)
. (47)

Polynomials Nn,m(a) are related to many other special polynomials. This can be
readily seen from the generating equation forNn,m(a), which we gave in (30) without
the proof. Let us now prove it. On the one hand, on integrating (1 + z)x between
x = a and x = a+m we undoubtedly have

a+mˆ
a

(1 + z)x dx =
(1 + z)a+m − (1 + z)a

ln(1 + z)
. (48)

On the other hand, the same integral may be calculated by expanding (1+z)x into
the binomial series

a+mˆ
a

(1 + z)x dx =
∞∑

n=0

zn
a+mˆ
a

(
x

n

)
dx =

∞∑

n=0

znNn,m(a) (49)

by virtue of the uniform convergence. Equating both expressions yields (30). There
is also a more direct way to prove the same result and, in addition, to explicitly
determine N0,m(a). Using (46) and accounting for the absolute convergence, we
have for the right part of (30)

∞∑

n=1

Nn,m(a) zn =
∞∑

l=1

(a+m)l+1 − al+1

l + 1

∞∑

n=1

S1(n, l)

n!
zn

︸ ︷︷ ︸
lnl(1+z)/l!

=
1

ln(1 + z)
·

(50)

·
{ ∞∑

l=2

[
(a+m) ln(1 + z)

]l

l!
−

∞∑

l=2

[
a ln(1 + z)

]l

l!

}
=

(1 + z)a+m − (1 + z)a

ln(1 + z)
− m,

where we used the generating equation for the Stirling numbers of the first kind,
see, e.g., [10, p. 408], [9, p. 369]. Hence, N0,m(a) = m. Polynomials Nn,m(a) are,

therefore, close to the Stirling polynomials, to Van Veen’s polynomials K(z)
n [72],

to various generalizations of the Bernoulli numbers/polynomials, including the so–
called Nørlund polynomials [55, p. 602], which are also known as the generalized
Bernoulli polynomials of the second kind [19, p. 324, Eq. (2.1)], and to many other
special polynomials, see, e.g., [5, Vol. III, § 19], [53, Ch. VI], [49, Vol. I, § 2.8],
[18], [57], [58], [34], [35], [78] [15], [14], [62], [45], [63]. The most close connection
seems to exist with the Bernoulli polynomials of the second kind, also known as
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the Fontana–Bessel polynomials, which are denoted by ψn(x) by Jordan [41], [42,
Ch. 5], [19, p. 324],22 and have the following generation function

z (z + 1)x

ln(z + 1)
=

∞∑

n=0

ψn(x) z
n , |z| < 1 ; (51)

see, e.g., [42, Ch. 5, p. 279, Eq. (8)], [19, p. 324, Eq. (1.11)], and with the Bernoulli

polynomials of higher order, usually denoted by B(s)
n (x), and defined via

zs exz

(ez − 1)s
=

∞∑

n=0

B(s)
n (x)

n!
zn , |z| < 2π ; (52)

see, e.g., [53, pp. 127–135], [19, p. 323, Eq. (1.4)], [56], [57, p. 145], [58], [5, Vol. III,
§ 19.7]. Indeed, using formula (51), we have for the left part of (30)

(1 + z)a+m − (1 + z)a

ln(1 + z)
=

∞∑

n=0

{
ψn(a+m)− ψn(a)

}
zn−1

=
∞∑

n=0

{
ψn+1(a+m)− ψn+1(a)

}
zn

since ψ0(x) = 1 .25 Comparing the latter expression to the right part of (30) imme-
diately yields

Nn,m(a) = ψn+1(a+m)− ψn+1(a) =
m−1∑

k=0

ψn(a+ k) , n ∈ N0 , (53)

since ∆ψn+1(x) = ψn(x) , see, e.g., [42, pp. 265, 268]. In particular, for m = 1 we
simply have

Nn,1(a) = ψn(a) . (54)

Another way to prove (53) is to recall that
(
x
n

)
dx = dψn+1(x) , see, e.g., [41, p. 130],

[42, p. 265]. Hence, the antiderivative of the falling factorial is, up to a function
of n, precisely the function ψn+1(x). By virtue of this important property, formula

22These polynomials and/or those equivalent or closely related to them, were rediscovered in
numerous works and by numerous authors (compare, for example, works [51, p. 1916], [79, p. 3998],
[62, § 5.3.2], or compare the Fontana–Bessel polynomials from [4]23with ψn(x) introduced by
Jordan in the above–cited works and also with polynomials Pn+1(y) employed by Coffey in [23,
p. 450]), so we give here only the most frequent notations and definitions for them.

23Apparently in [4] Appell refers to Bessel’s work [6] of 1811, which is also indirectly mentioned
by Vacca in [73]. In [6], we find some elements related to the polynomials ψn(x), as well as to
Nn,m(a), but Bessel did not perform their systematical study. In contrast, he studied quite a lot
a particular case of them leading to Gregory’s coefficients Gn = ψn(0), A0, A′, A′′, . . . in Bessel’s
notations, see [6, pp. 10–11], [73, p. 207]. In this context, it may be interesting to remark that
Ser [65], [3], investigated polynomials ψn(x) more in details [he denoted them Pn+1(y)], and this
before Jordan, and also calculated several series with Gn.
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(53) follows immediately from our definition of Nn,m(a) given in the statement of

the theorem. Furthermore, from (52) it follows that B(n)
n (x + 1) = n!ψn(x) , see,

e.g., [53, p. 135], [19, Eq. (2.1) & (2.11)], [57, p. 147], whence

Nn,m(a) =
1

(n+ 1)!

{
B(n+1)

n+1 (a+m+ 1)− B(n+1)
n+1 (a+ 1)

}
, n ∈ N0 . (55)

This clearly displays a close connection between Nn,m(a) and the Bernoulli poly-
nomials of both varieties. The latter have been the object of much research by
Nørlund24 [56], [57], [58], [53, Ch. VI], Jordan [41], [42, Ch. 5], Carlitz [19] and
some other authors. The polynomials Nn,m(a) may also be given by the following
integrals

Nn,m(a) =
(−1)n

π

∞̂

0

π cosπa− sinπa lnx

(1 + x)n+1
·
[
(−x)m − 1

]
xa

ln2 x+ π2
dx (56)

=
(−1)n

π

∞̂

0

π cosπa+ sinπa lnx

(1 + x)n+1
·
[
(−1)m − xm

]
xn−m−a−1

ln2 x+ π2
dx ,

provided that m and n are positive integers, and −1 " a " n − 1 and −1 − a "
m " n− a− 1. These representations follow from (53) and this formula

ψn(x) =
(−1)n+1

π

∞̂

0

π cosπx− sinπx ln z

(1 + z)n
· zx dz

ln2 z + π2
, −1 " x " n−1 , (57)

whose proof we put in the Appendix. At this stage, it may be useful to provide
explicit expressions for the first few polynomials Nn,m(a)

N0,m(a) = m

N1,m(a) = ma+ 1
2m

2 (58)

N2,m(a) = 1
2ma2 + 1

2am
2 − 1

2am+ 1
6m

3 − 1
4m

2

N3,m(a) = 1
3am+ 1

6m
2 − 1

2a
2m− 1

2am
2 − 1

6m
3 + 1

6a
3m+ 1

4a
2m2 + 1

6am
3 + 1

24m
4

and so on. They may be obtained either directly from (46), or from the similar
formulæ for the polynomials ψn(x)

ψn(x) =
1

(n− 1)!

n−1∑

l=0

S1(n− 1, l)

l + 1
xl+1 + Gn , n ∈ N, 25 (59)

24Also written Nörlund.
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where S1(0, 0) = 1 , and from (53). Finally, we remark that the complete asymp-
totics of the polynomials Nn,m(a) at large n are given by

Nn,m(a) ∼ (−1)n+1

π na+1

∞∑

l=0

1

lnl+1 n
·
[
sinπa · Γ(a+ 1)

](l)
,

n → ∞
Rea ! −1

, (60)

where (l) stands for the lth derivative, and m is a finite natural number. In partic-
ular, retaining first two terms, we have

Nn,m(a) ∼ (−1)n+1

π na+1 lnn
·
{
sinπa · Γ(a+ 1) + (61)

+
π cosπa · Γ(a+ 1) + sinπa · Γ(a+ 1) ·Ψ(a+ 1)

lnn

}

at n → ∞. Both results can be obtained without difficulty from the complete
asymptotics of B(n)

n (x) given by Nørlund [58, p. 38]. Note that if a ∈ N0, the first
term of asymptotics (60)–(61) vanishes, and thus Nn,m(a) decreases slightly faster.
Remark also that making a → 0 and a → −1 in (60)–(61), we find the asymptotics
of numbers Gn and Cn respectively.26

Theorem 4. For any positive integer k > 1, the ζ-functions ζ(s, v) and ζ(s) obey
the following functional relationships

ζ(s, v) = −
k−1∑

l=1

(k − l + 1)l
(s− l)l

· ζ(s− l, v) +
k∑

l=1

(k − l + 1)l
(s− l)l

· vl−s + (62)

+ k
∞∑

n=0

(−1)nG(k)
n+1

n∑

k=0

(−1)k
(
n

k

)
(k + v)−s ,

and

ζ(s) = −
k−1∑

l=1

(k − l + 1)l
(s− l)l

ζ(s− l) +
k

s− k
+ k

∞∑

n=0

(−1)nG(k)
n+1

n∑

k=0

(−1)k
(
n

k

)
(k + 1)−s

25In particular, ψ1(x) = x + 1
2 , ψ2(x) = 1

2x
2 − 1

12 , ψ3(x) = 1
6x

3 − 1
4x

2 + 1
24 , ψ4(x) =

1
24x

4 − 1
6x

3 + 1
6x

2 − 19
720 , etc. see, e.g., [42, p. 272]. The value ψ0(x) = 1 cannot be computed

with the help of this formula and directly follows from the generating equation (51) (the limit of
the left part when z → 0 tends to 1 independently of x). Note also that ψn(0) = Gn , except for
n = 0. Formula (59) may also be found in [42, p. 267] with a little corection to take into account:
the upper bound of the sum in (6) should read n instead of n+ 1.

26In [10, p. 414, Eq. (51)], we obtained the complete asymptotics for Cn = C2,n/n! =
∣∣B(n)

n

∣∣/n!
at large n. However, it seems appropriate to notice that the equivalent result may be straightfor-

wardly derived from Nørlund’s asymptotics of B(n)
n (x) , since B(n)

n (0) = B(n)
n , see [58, pp. 27, 38,

40].
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respectively, where G(k)
n are Gregory’s coefficients of higher order defined as

G(k)
n ≡ 1

n!

n∑

l=1

S1(n, l)

l + k
. (63)

In fact, we come to prove a more general result, of which the above formulæ are two
particular cases.

Proof. Let ρ(x) be the normalized weight such that

a+mˆ
a

ρ(x) dx = 1 , and let N (ρ)
n,m(a) ≡ 1

n!

a+mˆ
a

(x− n+ 1)n ρ(x) dx .

Performing the same procedure as in the case of (28) and assuming the uniform
convergence, we obtain

ζ(s, v) =
∞∑

n=0

a+mˆ
a

ρ(x)

(v + x+ n)s
dx

︸ ︷︷ ︸
Fn,m,a[ρ(x)]

+
∞∑

n=1

N (ρ)
n,m(a)∆n−1v−s . (64)

Albeit this generalization appears rather theoretical, it, however, may be use-
ful if the functional Fn,m,a[ρ(x)] admits a suitable closed–form and if the series∑

Fn,m,a[ρ(x)] converges. Thus, if we simply put ρ(x) = 1/m, then we retrieve our
formula (28). If we put ρ(x) = k xk−1, where k ∈ N, and set a = 0, m = 1, then it
is not difficult to see that

N (kxk−1)
n,1 (0) =

k

n!

n∑

l=1

S1(n, l)

l + k
≡ kG(k)

n , (65)

Now, remarking that the repeated integration by parts yields

ˆ
xk−1(v + x+ n)−s dx =

1

k

k−1∑

l=1

(−1)l+1(v + x+ n)l−s · xk−l · (k − l+ 1)l
(1− s)l

+

+
(−1)k+1(v + x+ n)k−s · (k − 1)!

(1− s)k
, (66)

and evaluating the infinite series
∑

Fn,1,0[k xk−1], formula (64) reduces to the de-
sired result stated in (62), since (1 − s)l = (−1)l(s − l)l. Note that we have (26)
as a particular case of (62) at k = 1. Moreover, if we put v = 1 and simplify the
second sum in the first line, then we immediately arrive at this curious formula for
the ζ-function

ζ(s) = −
k−1∑

l=1

(k − l + 1)l
(s− l)l

· ζ(s− l) +
k

s− k
+ k

∞∑

n=0

G(k)
n+1∆

n1−s , (67)
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which is also announced in Theorem 4.

It is interesting to remark that formula (48) from [10, p. 414] also contains similar
shifted values of the ζ-functions.27 Another functional relationship of the same kind
was discovered by Allouche et al. in [2, Sect. 3, p. 362].

Nota Bene. The numbers G(k)
n are yet another generalization of Gregory’s co-

efficients Gn = G(1)
n , and we already encountered them in [10, pp. 413–414]. In

the latter, we, inter alia, showed that
∣∣G(k)

n

∣∣ ∼ n−1 ln−k−1 n at n → ∞ and also

evaluated the series
∑

(−1)nG(k)
n /n for k = 2, 3, 4, . . . [10, Eqs. 38, 50]. Besides,

although it is much easier to define G(k)
n via the finte sum with the Stirling numbers

of the first kind (63), they equally may be defined via the generating function

z
(−1)k+1(k − 1)!

lnk(1 + z)
+ (1+z)

k−1∑

l=1

(−1)l+1(k − l + 1)l−1

lnl(1 + z)
=

1

k
+

∞∑

n=1

G(k)
n zn , (68)

where |z| < 1 and k ∈ N .28 This formula may be obtained by proceeding in the
manner analogous to (50) and coincides with (6) at k = 1. Note that the left part
of (68) contains the powers of ln−1(1 + z) up to and including k, the fact which

prompted us to call G(k)
n Gregory’s coefficients of higher order.

Theorem 5. Let u ≡ {un}n!0 be the sequence of bounded complex numbers and
let denote ∆un = un+1 − un , ∆2un = ∆(∆un) = un+2 − 2un+1 + un , and so on,
exactly as in (32). Consider now the following functional

ζ(s, v,u) =
∞∑

n=0

un

(v + n)s
,

Re s > 1

v ∈ C \{0,−1,−2, . . .} ,

generalizing the Euler–Riemann ζ-function ζ(s) = ζ(s, 1,1), the Hurwitz ζ-function
ζ(s, v) = ζ(s, v,1), the functional F (s) from [2, Sect. 3, p. 362] F (s) = ζ(s, 1,u).
The Dirichlet series ζ(s, v,u) admits two following series representations

ζ(s, v,u) =
1

m (s− 1)

m−1∑

n=0

ζ(s− 1, v + a+ n+ 1,∆u) +

+
u0

m (s− 1)

m−1∑

n=0

(v + a+ n)1−s − 1

m

∞∑

n=1

(−1)nNn,m(a) ζ(s, v + n,∆nu) +

+
1

m

∞∑

n=0

(−1)nNn+1,m(a)
n∑

l=0

∆lu0

n−l∑

k=0

(−1)k
(
n− l

k

)
(k + l + v)−s (69)

27Formula (48) from [10] and its proof were first released on 5 January 2015 in the 6th arXiv
version of the paper. 28 September 2015, a particular case of the same formula for nonnegative
integer s was also presented by Xu, Yan and Shi [77, p. 94, Theorem 2.9], who, apparently, were
not aware of the arXiv preprint of our work [10] (we have not found the preprint of [77]).

28For k = 1 the sum over l should be taken as 0.
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and

ζ(s, v,u) =
1

m (s− 1)

m−1∑

n=0

{
ζ(s− 1, v + a+ n+ 1,∆u) + u0(v + a+ n)1−s

}
+

+
1

m

∞∑

n=1

Nn,m(a)∆n−1ζ(s, v + 1,∆u) +

+
u0

m

∞∑

n=0

(−1)nNn+1,m(a)
n∑

k=0

(−1)k
(
n

k

)
(k + v)−s , (70)

where ∆nu ≡ {∆nul}l!0 and the operator ∆0 does nothing by convention.

Proof. From the definition of ζ(s, v,u) it follows that this Dirichlet series possesses
the following recurrence relation in v

∆ζ(s, v,u) ≡ ζ(s, v + 1,u)− ζ(s, v,u) =
∞∑

n=0

−∆un

(v + n+ 1)s
− u0v

−s

= −ζ(s, v + 1,∆u)− u0v
−s . (71)

The second–order recurrence relation reads

∆2ζ(s, v,u) ≡ ∆
(
∆ζ(s, v,u)

)
= ζ(s, v + 2,∆2u) +∆u0(v + 1)−s − u0∆v−s ,

and more generally we have

∆kζ(s, v,u) = (−1)kζ(s, v + k,∆ku) +
k−1∑

l=0

(−1)l+1 ·∆lu0 ·∆k−1−l(v + l)−s .

Writing the Gregory–Newton interpolation formula for ζ(s, x+ v,u) we, therefore,
obtain

ζ(s, x + v,u) = ζ(s, v,u) +
∞∑

n=1

(x− n+ 1)n
n!

∆nζ(s, v,u) =

= ζ(s, v,u) +
∞∑

n=1

(−1)n(x− n+ 1)n
n!

ζ(s, v + n,∆nu) +

+
∞∑

n=1

(x− n+ 1)n
n!

n−1∑

l=0

(−1)l+1 ·∆lu0 ·∆n−1−l(v + l)−s.

Effecting the term–by–term integration over the interval x ∈ [a, a+m] yields

ζ(s, v,u) =
1

m (s− 1)

{
ζ(s − 1, v + a,u)− ζ(s− 1, v + a+m,u)

}
−

− 1

m

∞∑

n=1

(−1)nNn,m(a) ζ(s, v + n,∆nu)−
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− 1

m

∞∑

n=1

Nn,m(a)
n−1∑

l=0

(−1)l+1 ·∆lu0 ·∆n−1−l(v + l)−s.

Finally, simplifying the expression in curly brackets

ζ(s− 1, v + a,u)− ζ(s− 1, v + a+m,u) = (72)

=
m−1∑

n=0

[
ζ(s− 1, v + a+ n,u)− ζ(s− 1, v + a+ n+ 1,u)

]

︸ ︷︷ ︸
−∆ζ(s−1,v+a+n,u)

=

=
m−1∑

n=0

ζ(s− 1, v + a+ n+ 1,∆u) + u0

m−1∑

n=0

(v + a+ n)1−s,

we arrive at

ζ(s, v,u) =
1

m (s− 1)

m−1∑

n=0

{
ζ(s− 1, v + a+ n+ 1,∆u) + u0(v + a+ n)1−s

}
−

− 1

m

∞∑

n=1

(−1)nNn,m(a) ζ(s, v + n,∆nu) − (73)

− 1

m

∞∑

n=1

Nn,m(a)
n−1∑

l=0

(−1)l+1 ·∆lu0 ·∆n−1−l(v + l)−s,

which is a generalization of (42) to the Dirichlet series ζ(s, v,u) .

Now, from Eq. (72) we may also proceed in a slightly different manner. Applying
operator ∆n−1 to (71) gives

∆nζ(s, v,u) = −∆n−1ζ(s, v + 1,∆u)− u0∆
n−1v−s.

Therefore, (72) becomes

ζ(s, x + v,u) = ζ(s, v,u)−
∞∑

n=1

(x− n+ 1)n
n!

∆n−1ζ(s, v + 1,∆u) −

−u0

∞∑

n=1

(x− n+ 1)n
n!

∆n−1v−s. (74)

Integrating termwise over x ∈ [a, a+m] and accounting for (72) yields

ζ(s, v,u) =
1

m (s− 1)

m−1∑

n=0

{
ζ(s− 1, v + a+ n+ 1,∆u) + u0(v + a+ n)1−s

}
+

+
1

m

∞∑

n=1

Nn,m(a)∆n−1ζ(s, v + 1,∆u) +
u0

m

∞∑

n=1

Nn,m(a)∆n−1v−s , (75)
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which, unlike (73), directly relates ζ(. . . , . . . ,u) to ζ(. . . , . . . ,∆u).

Although formulæ (73), (75) may seem quite theoretical, they both have a multi-
tude of interesting applications and consequences for the concrete L-functions. For
example, if un is a polynomial of degree k − 1 in n, the k-th finite difference ∆ku
vanishes and so do higher differences. Hence ζ(s, v+n,∆nu) = 0 for n ! k and the
right part of the previous equation becomes much simpler. On the other hand, if un

is a polynomial in n, the considered L-function may always be written as a linear
combination of the ζ-functions, so that we have a relation between the ζ-functions
of arguments s, s − 1, s − 2, . . . We come to discuss some of such examples in the
next Corollary.

Corollary 6. The following formulæ relating the ζ-functions of different arguments
and types hold

(
v + a+ 1

2m− 1
)
· ζ(s, v) = −ζ(s− 1, v + a)

s− 1
+ ζ(s − 1, v) + (76)

+
1

m (s− 1)

m−1∑

n=0

m− n− 1

(v + a+ n)s−1
+

+
1

m

∞∑

n=0

(−1)nNn+2,m(a)
n∑

k=0

(−1)k
(
n

k

)
(k + v)−s ,

(
v + a− 1

2

)
· ζ(s, v) = − ζ(s− 1, v + a)

s− 1
+ ζ(s− 1, v) + (77)

+
∞∑

n=0

(−1)nψn+2(a)
n∑

k=0

(−1)k
(
n

k

)
(k + v)−s ,

(
v + a

)
· ζ(s, v) = (v + a)1−s

2 (s− 1)
− ζ(s− 1, v + a)

s− 1
+ ζ(s− 1, v) + (78)

+
1

2

∞∑

n=0

(−1)nNn+2,2(a)
n∑

k=0

(−1)k
(
n

k

)
(k + v)−s ,

(
v − 1

2

)
· ζ(s, v) = s− 2

s− 1
· ζ(s− 1, v) +

∞∑

n=0

(−1)nGn+2

n∑

k=0

(−1)k
(
n

k

)
(k + v)−s ,

(79)

m

2
· ζ(s) =

s− 2

s− 1
· ζ(s− 1) +

mH(s−1)
m −H(s−2)

m

m (s− 1)
+ (80)
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+
1

m

∞∑

n=0

(−1)nNn+2,m(0)
n∑

k=0

(−1)k
(
n

k

)
(k + 1)−s,

ζ(s) =
2(s− 2)

s− 1
· ζ(s− 1) + 2

∞∑

n=0

(−1)nGn+2

n∑

k=0

(−1)k
(
n

k

)
(k + 1)−s, (81)

ζ(s− 1, a)

s− 1
=

a1−s

s− 1
−
(
a+ 1

2m
)
· ζ(s) + ζ(s− 1) +

+
1

m (s− 1)

m∑

n=1

m− n

(a+ n)s−1
+ (82)

+
1

m

∞∑

n=0

(−1)nNn+2,m(a)
n∑

k=0

(−1)k
(
n

k

)
(k + 1)−s ,

where m is a natural number and H(s)
m is the generalized harmonic number (see

p. 36).

Proof. Let un = P1(n) = α+ βn, where α and β are some coefficients. Then,

u0 = α , ∆un = β, ∆2un = 0 , . . . , ∆kun = 0 ,

and hence ζ(s, v,∆u) = βζ(s, v) . On the other hand, from a simple arithmetic
argument it also follows that

ζ(s, v,u) = (α − βv) ζ(s, v) + β ζ(s− 1, v) .

Using the recurrence relation of the Hurwitz ζ-function and the fact that

∆n−1ζ(s, v + 1) = −∆n−2v−s −∆n−1v−s, (83)

as well as recalling that N1,m(a) = ma+ 1
2m

2 (see (58)) and setting, for simplicity,
α = 1 and β = 1,29 formula (75) becomes

(
1− v − a− 1

2m
)
ζ(s, v) =

1

m (s− 1)

m−1∑

n=0

{
ζ(s− 1, v + a+ n+ 1) +

+ (v + a+ n)1−s
}

− ζ(s− 1, v) − 1

m

∞∑

n=0

Nn+2,m(a)∆nv−s . (84)

29It is possible to perform these calculations with arbitrary α and β, but the resulting expressions
become very cumbersome.
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By recursively decreasing the second argument in ζ(s− 1, v+ a+n+1) , we obtain
the following functional relationship

(
1− v − a− 1

2m
)
ζ(s, v) =

ζ(s− 1, v + a)

s− 1
− ζ(s− 1, v) − (85)

− 1

m (s− 1)

m−1∑

n=0

m− n− 1

(v + a+ n)s−1
− 1

m

∞∑

n=0

Nn+2,m(a)∆nv−s ,

where m ∈ N and the first sum in the second line should be taken as zero for
m = 1. This is our formula (76) and it has many interesting particular cases.
For instance, for m = 1 and m = 2 we obtain (77) and (78) respectively, since
Nn+2,1(a) = ψn+2(a). Furthermore, making a = 0 we get (79), because ψn(0) = Gn.
Setting v = 1 and a ∈ N0 gives us corresponding expressions for ζ(s). For example,
at v = 1 and a = 0 relationship (85) becomes

m

2
ζ(s) =

s− 2

s− 1
ζ(s−1)+

1

m (s− 1)

m∑

n=1

m− n

ns−1
+

1

m

∞∑

n=0

Nn+2,m(0)∆n1−s, (86)

where the finite sum in the middle may be also written in terms of the generalized
harmonic numbers; we, thus, arrive at (80). Furthermore, putting m = 1 we obtain
a strikingly simple funtional relationship with Gregory’s coefficients, equation (81).
From (85) we may also obtain a relationship between ζ(s) and ζ(s, a). Putting
v = 1 gives us relationship (82). Finally, proceeding similarly with un = P2(n) and
using

∆nζ(s, v,u) = ∆n−2ζ(s, v + 2,∆2u) +∆u0∆
n−2(v + 1)−s − u0∆

n−1v−s ,

we may obtain formulæ relating ζ-functions of arguments s, s − 1 and s − 2. The
same procedure may be applied to un = P3(n) and so on.

Corollary 7. The generalized Stieltjes constants γm(v) may be given by the fol-
lowing series representations

γm(v) = − lnm+1 v

m+ 1
+

∞∑

n=0

∣∣Gn+1

∣∣
n∑

k=0

(−1)k
(
n

k

)
lnm(k + v)

k + v
, (87)

where Re v > 0,

γm(v) = − lnm+1(v − 1)

m+ 1
−

∞∑

n=0

Cn+1

n∑

k=0

(−1)k
(
n

k

)
lnm(k + v)

k + v
, (88)

where Re v > 1,

γm(v) = − 1

r (m+ 1)

r−1∑

l=0

lnm+1(v + a+ l) + (89)

+
1

r

∞∑

n=0

(−1)nNn+1,r(a)
n∑

k=0

(−1)k
(
n

k

)
lnm(k + v)

k + v
,
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where r ∈ N, Re a > −1 and Re v > −Rea, and

γm(v) =
1

1− v − a− 1
2r

{
(−1)m

m+ 1
ζ(m+1)(0, v + a) − (−1)mζ(m)(0, v) +

+
1

r (m+ 1)

r−2∑

n=0

(r − n− 1) lnm+1(v + a+ n) −

− 1

r

∞∑

n=0

(−1)nNn+2,r(a)
n∑

k=0

(−1)k
(
n

k

)
lnm(k + v)

k + v

}
(90)

under the same conditions.

Proof. The generalized Stieltjes constants γm(v) , m ∈ N0, v ∈ C \{0,−1,−2, . . .},
are introduced analogously to the ordinary Stieltjes constants

ζ(s, v) =
1

s− 1
−Ψ(v) +

∞∑

m=1

(−1)mγm(v)

m!
(s− 1)m , s ∈ C \{1}, (91)

with γ0(v) = −Ψ(v) , see, e.g., [8, p. 541, Eq. (14)].30 Thus, from expansions (26),
(27), (28) and (85), by proceeding in the same manner as in Corollary 1, we deduce
the announced series representations.31 Notice also that the above formulæ may
be rewritten in a slightly different way by means of the recurrence relation for the
generalized Stieltjes constants γm(v + 1) = γm(v)− v−1 lnmv .

Remark 2, related to the digamma function (the Ψ-function) and to
Euler’s constant γ. Since

(−1)n∆nv−1 =
n!

(v)n+1
(92)

we have for the zeroth Stieltjes constant, and hence for the digamma function Ψ(v),
the following expansions

Ψ(v) = ln v −
∞∑

n=1

∣∣Gn

∣∣ (n− 1)!

(v)n
, Re v > 0 , (93)

Ψ(v) = ln(v − 1) +
∞∑

n=1

Cn (n− 1)!

(v)n
, Re v > 1 , (94)

Ψ(v) = ln(v + a) +
∞∑

n=1

(−1)n ψn(a) (n− 1)!

(v)n
, (95)

30For more information on γm(v) , see [7], [8], and the literature given in the last reference. Note
that since ζ(s, 1) = ζ(s), the generalized Stieltjes constants γm(1) = γm.

31It may also be noted that the particular case m = 1 of (87) was earlier given by Coffey [22,
p. 2052, Eq. (1.18)].
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Ψ(v) =
1

r

r−1∑

l=0

ln(v + a+ l) +
1

r

∞∑

n=1

(−1)n Nn,r(a) (n− 1)!

(v)n
, (96)

Ψ(v) =
1

1
2r + v + a− 1

{
lnΓ(v + a) + v − 1

2
ln 2π − 1

2
+

+
1

r

r−2∑

n=0

(r − n− 1) ln(v + a+ n) +
1

r

∞∑

n=1

(−1)nNn+1,r(a) (n− 1)!

(v)n

}
, (97)

with r ∈ N, Re a > −1 and Re v > −a, because of (54).32 First two representations
coincide with the not well-known Binet–Nørlund expansions for the digamma func-
tion [10, pp. 428–429, Eqs. (91)–(94)],33 while (95)–(97) seem to be new. From (93)
and (94), it also immediately follows that ln(v − 1) < Ψ(v) < ln v for v > 1 , since
the sums with Gn and Cn keep their sign.34 We may also obtain series expansions
for the digamma function from (62), but the resulting expressions strongly depend
on k. For instance, putting k = 2 and expanding both sides into the Laurent series
(91), we obtain the following formula

Ψ(v) = 2 lnΓ(v)− 2v ln v + 2v + 2 ln v − ln 2π + 2
∞∑

n=1

(−1)n G(2)
n (n− 1)!

(v)n
, (98)

which relates the Γ-function to its logarithmic derivative.35 For higher k these ex-
pressions become quite cumbersome and also imply the derivatives of the ζ-function
at negative integers. In particular, for k = 3, we deduce

Ψ(v) = 3 lnΓ(v)− 6ζ′(−1, v) + 3v2 ln v − 3

2
v2 − 6v ln(v) + (99)

+3v + 3 ln v − 3

2
ln 2π +

1

2
+ 3

∞∑

n=1

(−1)n G(3)
n (n− 1)!

(v)n
,

provided the convergence of the last series. Formula (98) is also interesting in that
it gives series with rational terms for lnΓ(v) if v ∈ Q (we only need to use Gauss’
digamma theorem for this [8, p. 584, Eq. (B.4)]). Note also that all series (93)–(99)
converge very rapidly for large v. For instance, putting in (96) or in (97) v = 2π ,

32In the last formula the sum in the middle should be taken as zero for r = 1. Note also that
ζ(0, x) = 1

2 − x and ζ′(0, x) = lnΓ(x) − 1
2 ln 2π . Similarly to (95) formulæ (89)–(90) and (97)

may also be written in terms of ψn(a) instead of Nn,r(a) when r = 1, see (54).
33Formula (94) reduces to [10, p. 429, Eq. (94), first formula] by putting v instead of v − 1 and

by making use of the recurrence relationship for the digamma function Ψ(v + 1) = Ψ(v) + v−1.
34This simple and important result is not new, but its derivation from (93) and (94) seems to

be novel, and in addition, is elementary.
35There were many attempts aiming to find possible relationships between these two functions.

For instance, in 1842 Carl Malmsten, by trying to find such a relationship, obtained a variant of
Gauss’ theorem for Ψ(v) at v ∈ Q, see [7, p. 37, Eq. (23)], [8, p. 584, Eq. (B.4)].
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a = 3, m = 2, and taking only 10 terms in the last sum, we get the value of Ψ(2π)
with 9 correct digits.

Putting in the previous formulæ for the digamma function argument v ∈ Q, we
may also obtain series with rational terms for Euler’s constant. The most simple is
to put v = 1. In this case, formula (93) reduces to the famous Fontana–Mascheroni
series

Ψ(1) = −γ = −
∞∑

n=1

∣∣Gn

∣∣
n

, (100)

see, e.g., [73, p. 207], [8, p. 539], [10, pp. 406, 413,429–430], [9, p. 379], while (96)
gives us

γ = − 1

m

m∑

l=1

ln(a+ l)− 1

m

∞∑

n=1

(−1)n Nn,m(a)

n
,

m ∈ N
a > −1

. (101)

This series generalizes (100) to a large family of series (we have the aforementioned
series at a = 0 since Nn,1(0) = ψn(0) = Gn). For example, setting a = − 1

2 and
m = 1 (the mean value between a = −1 corresponding to the coefficients Cn and
a = 0 corresponding to Gn), we have, by virtue of (54), the following series

γ = ln 2−
∞∑

n=1

(−1)nNn,1

(
− 1

2

)

n
= ln 2−

∞∑

n=1

(−1)n ψn

(
− 1

2

)

n
=

= ln 2− 0− 1

48
− 1

72
− 223

23 040
− 103

14 400
− 32 119

5 806 080
− 1111

250 880
− . . . (102)

relating two fundamental constants γ and ln 2. This series, however, converges quite
slowly, as

∑
n−3/2 ln−1n by virtue of (61). A more rapidly convergent series may

be obtained by setting large integer a. At the same time, it should be noted that
precisely for large a, first terms of the series may unexpectedly grow, but after some
term they decrease and the series converges. For instance, taking a = 7, we have

γ = −3 ln 2−
∞∑

n=1

(−1)n ψn(7)

n
= −3 ln 2 +

15

2
− 293

24
+

+
1079

72
− . . .− 8183

9 331 200
− 530 113

4 790 016 000
− . . . (103)

Also, the pattern of the sign is not obvious, but for the large index n all the terms
should be negative. By the way, adding the series with a = − 1

2 to that with a = 1,
we eliminate ln 2 and thus get a series with rational terms only for Euler’s constant

γ =
∞∑

n=1

(−1)n+1

2n

{
ψn

(
− 1

2

)
+ ψn(1)

}
=

3

4
− 11

96
− 1

72
− 311

46 080
−

− 5

1152
− 7291

2 322 432
− 243

100 352
− 14 462 317

7 431 782 400
− . . . (104)
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converging at the same rate as
∑

n−3/2 ln−1n . Other choices of a are also possible
in order to get series with rational terms only for γ.36 In fact, it is not difficult to
show that we can eliminate the logarithm by properly choosing a, namely

γ =
∞∑

n=1

(−1)n+1

2n

{
ψn(a) + ψn

(
− a

1 + a

)}
, a > −1 , (105)

which, at a ∈ Q , represents a huge family of series with rational terms only for
Euler’s constant. This series converges at the same rate as

∑
n−a−2 ln−1n for

−1 < a " 0 and
∑

n− a+2
a+1 ln−1n for a ! 0, except for the integer values of a for

which ln−1n should be replaced by ln−2n . In other words, the rate of convergence
of (105) cannot be worse than

∑
n−1−ε ln−1n , where ε is a positive however small

parameter, and better than
∑

n−2 ln−2n . More generally, from (101) it follows
that if a1, . . . , ak and m are chosen so that (1 + a1)m · · · (1 + ak)m = 1 , then

γ =
1

mk

∞∑

n=1

(−1)n+1

n

k∑

l=1

Nn,m(al) , a1, . . . , ak > −1 . (106)

Furthermore, if for some q1, . . . , qk and m, the quantities a1, . . . , ak are chosen so
that (1 + a1)q1m · · · (1 + ak)qkm = 1 , then we have a more general formula

γ =
1

m (q1 + . . .+ qk)

∞∑

n=1

(−1)n+1

n

k∑

l=1

ql Nn,m(al) , a1, . . . , ak > −1 , (107)

which is the most complete generalization of the Fontana–Mascheroni series (100).

Analogously, one can obtain the series expansions for γ from (97). Indeed, putting
for simplicity v = 1 in the latter expression yields

γ = − 2

m+ 2a

{
lnΓ(a+ 1)− 1

2
ln 2π +

1

2
+

1

m

m−1∑

n=1

(m− n) ln(a+ n)+

+
1

m

∞∑

n=1

(−1)nNn+1,m(a)

n

}
, (108)

where m ∈ N and Re a > −1. For m = 1 the sum in the middle should be taken as
zero, so that

γ = − 2

1 + 2a

{
lnΓ(a+ 1)− 1

2
ln 2π +

1

2
+

∞∑

n=1

(−1)n ψn+1(a)

n

}
, Rea > −1 .

(109)

36For a list of the most known series with the rational terms only for Euler’s constant, see, e.g.,
[9, p. 379]. From the historical viewpoint it may also be interesting to note that series (36) from
[9, p. 380], in its second form, was also given by F. Franklin already in 1883 in a paper read at
a meeting of the University Mathematical Society [32]. Moreover, this series, of course, may be
even much older since it is obtained by a quite elementary technique.
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At integer and demi–integer values of a, we have a quite simple expression for
Euler’s constant γ, which does not contain the Γ-function; conversely, it may also
be regarded as yet another series for lnΓ(z). Another interesting consequence of
this formula is that it readily permits to obtain an interesting series for the digamma
function. By multiplying both sides of this formula by m+ 2a and by calculating
the derivative of the resulting expression with respect to a, see (47), we obtain

Ψ(a+ 1) = −γ − 1

m

m−1∑

n=1

m− n

a+ n
− 1

m

∞∑

n=1

(−1)n

n

{(
a+m

n+ 1

)
−
(

a

n+ 1

)}
,

(110)
where m = 2, 3, 4, . . . and Rea > −1. At m = 1, we directly get the result from
(109)

Ψ(a+ 1) = −γ −
∞∑

n=1

(−1)n

n

dψn+1(a)

da
= −γ −

∞∑

n=1

(−1)n

n

(
a

n

)
, Re a > −1 ,

(111)
the series which is sometimes attributed to Stern [57, p. 251].

It is also possible to deduce series expansions with rational terms for Euler’s
constant from series (98). Putting v = 1, we obtain the following series

γ = ln 2π − 2− 2
∞∑

n=1

(−1)nG(2)
n

n
= ln 2π − 2 +

2

3
+

+
1

24
+

7

540
+

17

2880
+

41

12 600
+

731

362 880
+ . . . (112)

converging at the same rate as
∑

n−2 ln−3 n (see Nota Bene on p. 20). It is in-
teresting that the numerators of this series, except in its first term, coincide with
those of the third row of the inverse Akiyama-Tanigawa algorithm from 1/n (see
OEIS A193546) while its denominator does not seem to be known to the OEIS. In
fact, the reader may easily verify that all these series are new, and at the moment
of writing of this paper were not known to the OEIS [except (112)].

Corollary 8. The generalized Maclaurin coefficients δm(v) of the regular function
ζ(s, v)− (s− 1)−1 admit the following series representations

δm(v) = fm(v) +
∞∑

n=0

∣∣Gn+1

∣∣
n∑

k=0

(−1)k
(
n

k

)
lnm(k + v) , (113)

δm(v) = fm(v − 1)−
∞∑

n=0

Cn+1

n∑

k=0

(−1)k
(
n

k

)
lnm(k + v) , (114)

δm(v) =
1

r

r−1∑

l=0

fm(v + a+ l) +
1

r

∞∑

n=0

(−1)n Nn+1,r(a)
n∑

k=0

(−1)k
(
n

k

)
lnm(k + v) ,

(115)
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where we let

fm(v) = (−1)mm!

{
1− v − v

m∑

k=1

(−1)k
lnk v

k!

}

for brevity.

Proof. Generalizing expansion (17) to the Hurwitz ζ-function, we may introduce
δm(v), m ∈ N, v ∈ C \{0,−1,−2, . . .}, as the coefficients in the expansion

ζ(s, v) =
1

s− 1
+

3

2
− v +

∞∑

m=1

(−1)mδm(v)

m!
sm , s ∈ C \{1} . (116)

It is, therefore, not difficult to see that δm(v) = (−1)m
{
ζ(m)(0, v) + m!

}
. The

desired formulæ are obtained by a direct differentiation of (26)–(28) respectively.
Similarly to the generalized Stieltjes constants, functions δm(v) enjoy a recurrence
relation δm(v + 1) = δm(v)− lnmv , which may be used to rewrite (113)–(114) in a
slightly different form if necessary.

Remark 3, related to the logarithm of the Γ-function. Recalling that δ1(v) =
− lnΓ(v)+ 1

2 ln 2π− 1 and noticing that f1(v) = v− 1− v ln v , gives us these three
series expansions

lnΓ(v) = v ln v − v +
1

2
ln 2π −

∞∑

n=0

∣∣Gn+1

∣∣
n∑

k=0

(−1)k
(
n

k

)
ln(k + v) , (117)

where Re v > 0 ,

lnΓ(v) = (v − 1) ln(v − 1)− v + 1+
1

2
ln 2π +

∞∑

n=0

Cn+1

n∑

k=0

(−1)k
(
n

k

)
ln(k + v) ,

(118)
where Re v > 1 , and

lnΓ(v) =
1

r

r−1∑

l=0

(v + a+ l) ln(v + a+ l)− v − a− r

2
+

1

2
ln 2π + (119)

+
1

2
− 1

r

∞∑

n=0

(−1)nNn+1,r(a)
n∑

k=0

(−1)k
(
n

k

)
ln(k + v) ,

Re v > −Re a , Re a > −1, r ∈ N for the logarithm of the Γ-function. First
of these representations is equivalent to a little-known formula for the logarithm of
the Γ-function, which appears in epistolary exchanges between Charles Hermite and
Salvatore Pincherle dating back to 1900 [38, p. 63, two last formulæ], [59, vol. IV,
p. 535, third and fourth formulæ], while the second and the third representations
seem to be novel.
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Note also that the parameter a, in all the expansions in which it appears, plays
the role of the “rate of convergence”: the greater this parameter, the faster the
convergence, especially if a is an integer.

Remark 4, related to some similar expansions containing the same finite
differences. It seems appropriate to note that there exist other expansions of the
same nature, which merit being mentioned here. For instance

lnΓ(v + x) = lnΓ(v) +
∞∑

n=0

(−1)n
(

x

n+ 1

) n∑

k=0

(−1)k
(
n

k

)
ln(k + v) , (120)

lnΓ(v) = −v +
1

2
+

1

2
ln 2π +

∞∑

n=0

1

n+ 1

n∑

k=0

(−1)k
(
n

k

)
(k + v) ln(k + v) , (121)

Ψ(v) =
∞∑

n=0

1

n+ 1

n∑

k=0

(−1)k
(
n

k

)
ln(k + v) , (122)

γm(v) = − 1

m+ 1

∞∑

n=0

1

n+ 1

n∑

k=0

(−1)k
(
n

k

)
lnm+1(k + v) , m ∈ N ; (123)

see, e.g., [38, p. 59], [59, vol. IV, p. 531], [57, p. 251], [26], [25]. The three latter for-
mulæ are usually deduced from Hasse’s series (2), but they equally may be obtained
from a more general formula

dF (v)

dv
=

∞∑

n=0

(−1)n

n+ 1
∆n+1F (v) = −

∞∑

n=1

1

n

n∑

k=0

(−1)k
(
n

k

)
F (v + k) , (124)

which is a well–known result in the theory of finite differences, see, e.g., [57, pp. 240–
242]. Moreover, Hasse’s series itself (2) is a simple consequence of this formula.
Putting F (v) = ζ(s, v), we actually have

∆ζ(s, v) = ζ(s, v+1)− ζ(s, v) = −v−s and
∂ζ(s, v)

∂v
= −s ζ(s+1, v) . (125)

Hence, (124) reads

s ζ(s+ 1, v) =
∞∑

n=0

(−1)n

n+ 1
∆nv−s =

∞∑

n=0

(−1)n

n+ 1

n∑

k=0

(−1)k
(
n

k

)
(v + k)−s. (126)

Rewriting this expression for s−1 instead of s and then dividing both sides by s−1
immediately yield Hasse’s series (2).

It is also evident that expressions containing the fractions 1
n+1 are more simple

than those with the coefficients Gn, Cn or Nn,m(a). Applying (124) to the Dirichlet
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series ζ(s, v,u) introduced in Theorem 5 and proceeding analogously, we may obtain
without difficulty the following result

ζ(s, v,u) =
1

s− 1

∞∑

n=0

(−1)n

n+ 1
∆nζ(s− 1, v + 1,∆u) +

u0

s− 1

∞∑

n=0

(−1)n

n+ 1
∆nv1−s

(127)
which is the analog of (75). Considering again ζ(s, v,u) with un = 1+ n, we easily
derive the following functional relationship

(v − 1) ζ(s, v) =
s− 2

s− 1
ζ(s − 1, v) − 1

s− 1

∞∑

n=0

(−1)n

n+ 2
∆nv1−s , s ∈ C \{1, 2} ,

(128)
or explicitly

ζ(s, v) =
1

(v − 1) (s− 1)

{
(s− 2) ζ(s− 1, v)−

∞∑

n=0

1

n+ 2

n∑

k=0

(−1)k
(
n

k

)
(k + v)1−s

}
,

(129)
s ∈ C \{1, 2} , which is, in some senses, analogous to (79) and which is yet another
generalization of Ser’s formula (4).37 Another functional relationship for ζ(s) may
be obtained by setting v = 1

2 , because ζ
(
s, 1

2

)
=
(
2s − 1

)
ζ(s) [this obviously also

applies to other formulæ we obtained for ζ(s, v)]. Now, multiply both sides of the
latter equality by s−1 and expand it into the Taylor series about (s−1).38 Equating
the coefficients of (s− 1)1 yields the following relationship between the gamma and
the digamma functions

Ψ(v) =
1

v − 1

{
lnΓ(v) + v − 1

2
ln 2π − 1

2
−

∞∑

n=0

1

n+ 2

n∑

k=0

(−1)k
(
n

k

)
ln(k + v)

}
.

(130)
Similarly, by equating the coefficients of (s − 1)m+1 we have for the generalized
Stieltjes constants

γm(v) =
1

v − 1

{
(−1)mζ(m)(0, v)− (−1)m

m+ 1
ζ(m+1)(0, v)+ (131)

+
1

m+ 1

∞∑

n=0

1

n+ 2

n∑

k=0

(−1)k
(
n

k

)
lnm+1(k + v)

}
,

where m ∈ N, Re v > 0 and where the right part should be regarded as a limit when
v = 1.39

37We precisely obtain the latter as a particular case of (128) when v = 1.
38The ζ-functions should be expanded into the Laurent series accordingly to (91).
39It is interesting to compare this formula with (90).



INTEGERS: 18A (2018) 34

Furthermore, proceeding similarly and using formula (67) from [57, p. 241], one
may obtain the following expansions

ζ(s) =
1

s− 1

∞∑

n=0

Hn+1

n∑

k=0

(−1)k
(
n

k

)
(k + 2)1−s , (132)

ζ(s, v − 1) =
1

s− 1

∞∑

n=0

Hn+1

n∑

k=0

(−1)k
(
n

k

)
(k + v)1−s , (133)

lnΓ(v − 1) = −v +
3

2
+

1

2
ln 2π +

∞∑

n=0

Hn+1

n∑

k=0

(−1)k
(
n

k

)
(k + v) ln(k + v) , (134)

Ψ(v − 1) =
∞∑

n=0

Hn+1

n∑

k=0

(−1)k
(
n

k

)
ln(k + v) , (135)

γ = −
∞∑

n=0

Hn+1

n∑

k=0

(−1)k
(
n

k

)
ln(k + 2) , (136)

γm = − 1

m+ 1

∞∑

n=0

Hn+1

n∑

k=0

(−1)k
(
n

k

)
lnm+1(k + 2) , (137)

γm(v − 1) = − 1

m+ 1

∞∑

n=0

Hn+1

n∑

k=0

(−1)k
(
n

k

)
lnm+1(k + v) , (138)

where Re v > 1 , m is a natural number and Hn = 1 + 1
2 + 1

3 + . . .+ 1
n is the nth

harmonic number. Using the corresponding recurrence relations, these formulæ may
also be written for v instead of v−1 in the left part. Besides, for the Dirichlet series
ζ(s, v,u) from Theorem 5, we also have

ζ(s, v − 1,u) =
1

s− 1

∞∑

n=0

(−1)nHn+1 ∆
nζ(s− 1, v + 1,∆u) +

+
u0

s− 1

∞∑

n=0

(−1)nHn+1 ∆
nv1−s.

If, for example, un = n+ 1 , then

ζ(s, v − 1) =
1

(v − 2) (s− 1)

{
(v − 1)1−s + (s− 2) ζ(s− 1, v − 1)− (139)

−
∞∑

n=0

Hn+2

n∑

k=0

(−1)k
(
n

k

)
(k + v)1−s

}
,
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s ∈ C \{1, 2}, Re v > 1. By expanding both sides of this formula into the Laurent
series about s = 1, we get

Ψ(v − 1) =
1

v − 2

{
lnΓ(v) + v − 3

2
− 1

2
ln 2π − (140)

−
∞∑

n=0

Hn+2

n∑

k=0

(−1)k
(
n

k

)
ln(k + v)

}
,

γm(v − 1) =
1

v − 2

{
− lnm+1(v − 1)

m+ 1
+ (−1)mζ(m)(0, v − 1)− (141)

− (−1)m

m+ 1
ζ(m+1)(0, v − 1) +

1

m+ 1

∞∑

n=0

Hn+2

n∑

k=0

(−1)k
(
n

k

)
lnm+1(k + v)

}

holding for Re v > 1. If, in addition, we set v = 2 in (139), we get

ζ(s) =
1

s− 1

{
−1 +

∞∑

n=0

Hn+2

n∑

k=0

(−1)k
(
n

k

)
(k + 2)−s

}
, s ∈ C \{1} , (142)

and hence

γ = −
∞∑

n=0

Hn+2

n∑

k=0

(−1)k
(
n

k

)
ln(k + 2)

k + 2
, (143)

γm = − 1

m+ 1

∞∑

n=0

Hn+2

n∑

k=0

(−1)k
(
n

k

)
lnm+1(k + 2)

k + 2
, m ∈ N . (144)

Finally, differentiating (130) with respect to v and simplifying the sum with the
binomial coefficients yields a formula for the trigamma function Ψ1(v)

Ψ1(v) =
1

v − 1

{
1−

∞∑

n=0

n!

(n+ 2) · (v)n+1

}
, Re v > 0 , (145)

where for v = 1 the right part should be calculated via an appropriated limiting
procedure. Similarly, from (135) we get

Ψ1(v − 1) =
∞∑

n=0

Hn+1 n!

(v)n+1
, Re v > 1 . (146)

which may also be written as

Ψ1(v) = v
∞∑

n=0

Hn+1 n!

(v)n+2
, Re v > 0 , (147)



INTEGERS: 18A (2018) 36

if we put v + 1 instead of v. These formulæ may be compared with

Ψ1(v) =
∞∑

n=0

n!

(n+ 1) · (v)n+1
, Re v > 0 , (148)

which may be readily obtained from (122) by following the same line of reasoning.

Theorem 6. 40 The function ζ(s, v) may be represented by the following series with
the Stirling numbers of the first kind

ζ(s, v) =
k!

(s− k)k

∞∑

n=0

∣∣S1(n+ k, k)
∣∣

(n+ k)!

n+k−1∑

l=0

(−1)l
(
n+ k − 1

l

)
(l + v)k−s (149)

=
k!

(s− k)k

∞∑

n=0

∣∣S1(n+ k, k)
∣∣

(n+ k)!

k−1∑

r=0

(−1)r
(
k − 1

r

) n∑

l=0

(−1)l
(
n

l

)
(l + r + v)k−s

where k ∈ N. It may also be written in terms of simpler numbers, especially for
small k; see (157) hereafter. For example, for k = 1, we obtain Hasse’s series (2);
for k = 2, we have

ζ(s, v) =
2

(s− 1)(s− 2)

∞∑

n=0

Hn+1

n+ 2

n+1∑

l=0

(−1)l
(
n+ 1

l

)
(l + v)2−s (150)

=
2

(s− 1)(s− 2)

∞∑

n=0

Hn+1

n+ 2

n∑

l=0

(−1)l
(
n

l

){
(l + v)2−s − (l + v + 1)2−s

}
,

for k = 3

ζ(s, v) =
3

(s− 1)(s− 2)(s− 3)

∞∑

n=0

H2
n+2 −H(2)

n+2

n+ 3

n+2∑

l=0

(−1)l
(
n+ 2

l

)
(l + v)3−s,

and so on, where H(s)
n = 1−s + 2−s + 3−s + . . .+ n−s are the generalized harmonic

numbers, also known as the incomplete ζ-function.

Proof. From the theory of finite differences, it is known that

dkF (v)

dvk
= k

∞∑

n=0

B(n+k)
n

(n+ k)n!
∆n+kF (v) , k ∈ N , (151)

where B(n+k)
n are the Bernoulli numbers of higher order, see, e.g., [57, p. 242].41

These numbers are the particular case of the Bernoulli polynomials of higher order

40We place this theorem after the other results because, on the one hand, it logically continues
the previous remark, and on the other hand, this result merits to be presented as a separate
theorem, rather than a simple formula in the text.

41This formula is actually a generalization of (124), which we get when k = 1.
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B(r)
n = B(r)

n (0), see (52), and for positive integers r > n they can be expressed in
terms of the Stirling numbers of the first kind. On the one hand, we have

{
ln(1 + z)

z

}s
=

∞∑

n=0

zn

n!

s

s+ n
B(n+s)

n , |z| < 1 , s ∈ C ; (152)

see, e.g., [57, p. 244], [53, p. 135]. On the other hand, the generating equation for
the Stirling numbers of the first kind reads9

lns(1 + z)

s!
=

∞∑

n=s

S1(n, s)

n!
zn =

∞∑

n=0

S1(n+ s, s)

(n+ s)!
zn+s , s ∈ N0 . (153)

Hence, if s is a nonnegative integer, we may equate the coefficients of zn+s in the
right-hand side of the two latter formulæ. This yields

B(n+s)
n =

(s− 1)!S1(n+ s, s)

(n+ 1)(n+ 2) · · · (n+ s− 1)
=

n! (s− 1)!

(n+ s− 1)!
S1(n+ s, s) , (154)

where n and s are both natural numbers, or equivalently

B(r)
n =

n! (r − n− 1)!

(r − 1)!
S1(r, r − n) , n, r ∈ N , r > n . (155)

Formula (151), therefore, takes the form

dkF (v)

dvk
= k!

∞∑

n=0

S1(n+ k, k)

(n+ k)!
∆n+kF (v) , k ∈ N , (156)

where it is appropriate to remark that

∣∣S1(n+ k, k)
∣∣

(n+ k)!
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

n+ 1
, k = 1

Hn+1

n+ 2
, k = 2

H2
n+2 −H(2)

n+2

2 (n+ 3)
, k = 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pk−1

(
H(1)

n+k−1,−H(2)
n+k−1, . . . , (−1)kH(k−1)

n+k−1

)

n+ k
, k ∈ N

(157)
where Pk−1 are the modified Bell polynomials defined by the following generating
function

exp

( ∞∑

n=1

xn
zn

n

)
=

∞∑

m=0

Pm(x1, · · · , xm) zm , (158)
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see, e.g., [24, p. 217], [31], [16], [17]. Now, the repeated differentiation of ζ(s, v)
yields

∂kζ(s, v)

∂vk
= (−1)k(s)k ζ(s+ k, v) , k ∈ N , (159)

and since ∆ζ(s, v) = ζ(s, v + 1)− ζ(s, v) = −v−s, formula (160) becomes

ζ(s+ k, v) =
(−1)k−1k!

(s)k

∞∑

n=0

S1(n+ k, k)

(n+ k)!
∆n+k−1v−s , k ∈ N . (160)

Rewriting this expression for s instead of s+k and using the fact that sgnS1(m,n) =
(−1)m±n , we arrive at

ζ(s, v) =
k!

(s− k)k

∞∑

n=0

∣∣S1(n+ k, k)
∣∣

(n+ k)!
(−1)n+k−1∆n+k−1vk−s , k ∈ N , (161)

which is identical with (165). The latter formula may also be written in terms of the
nth finite difference instead of the (n+ k − 1)th one. Indeed, since ∆n+k−1vk−s =
∆k−1

(
∆nvk−s

)
, then by virtue of (32), we have

ζ(s, v) =
k!

(s− k)k

∞∑

n=0

∣∣S1(n+ k, k)
∣∣

(n+ k)!

k−1∑

r=0

(−1)r
(
k − 1

r

)
(−1)n∆n(v+r)k−s , (162)

where k ∈ N. Particular cases of the above formulæ may be of interest. For instance,
if k = 1, then by virtue of (157) the latter formula immediately reduces to Hasse’s
series (2). If k = 2, then

ζ(s, v) =
2

(s− 1)(s− 2)

∞∑

n=0

Hn+1

n+ 2
(−1)n+1∆n+1v2−s (163)

=
2

(s− 1)(s− 2)

∞∑

n=0

Hn+1

n+ 2
(−1)n

{
∆nv2−s −∆n(v + 1)2−s

}
.

For k = 3, we get

ζ(s, v) =
3

(s− 1)(s− 2)(s− 3)

∞∑

n=0

H2
n+2 −H(2)

n+2

n+ 3
(−1)n+2∆n+2v3−s (164)

=
3

(s− 1)(s− 2)(s− 3)

∞∑

n=0

H2
n+2 −H(2)

n+2

n+ 3
(−1)n

{
∆nv3−s −

−2∆n(v + 1)3−s +∆n(v + 2)3−s
}

and so on.
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The formulæ obtained in the above theorem give rise to many interesting expres-
sions. For instance, putting v = 1 we get the following series representation for the
classic Euler–Riemann ζ-function

ζ(s) =
k!

(s− k)k

∞∑

n=0

∣∣S1(n+ k, k)
∣∣

(n+ k)!

n+k−1∑

l=0

(−1)l
(
n+ k − 1

l

)
(l + 1)k−s , (165)

k ∈ N. It is also interesting that the right of this expression, following the fraction
k!/(s− k)k, contains zeros of the first order at s = 2, 3, . . . , k , while it has a fixed
quantity when s → 1. This, perhaps, may be useful for the study of the Riemann
hypothesis, since the right part also contains the zeros in the strip 0 < Re s < 1.
Furthermore, expanding both sides of (165) into the Laurent series about s − 1,
s − 2, . . . one can obtain the series expansions for Ψ(v), γm(v), Ψ1(v), etc. For
example, the Laurent series in a neighborhood of s = 1 of (163) yields

Ψ(v) = −1− 2
∞∑

n=0

Hn+1

n+ 2

n+1∑

l=0

(−1)l
(
n+ 1

l

)
(l + v) ln(l + v) , (166)

while that in a neighborhood of s = 2 gives a series for the trigamma function

Ψ1(v) = −2
∞∑

n=0

Hn+1

n+ 2

n+1∑

l=0

(−1)l
(
n+ 1

l

)
ln(l + v) , (167)

which may also be obtained from (166) by a direct differentiation.
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Appendix. The Integral Formula for the Bernoulli Polynomials of the
Second Kind (Fontana–Bessel Polynomials) ψn(x)

Integral representation (57) may be obtained by various methods. Below we propose
a contour integration method, which leads quite rapidly to the desired result.

Rewrite the generating equation for ψn(x), formula (51), for u instead of z.
Setting z = −(1 + u) = (1 + u)e+iπ , or equivalently 1 + u = z e−iπ , the latter
formula becomes

z + 1

ln z − πi
(−z)x =

(z + 1) zxe−iπx

ln z − πi
=

∞∑

n=0

(−1)n−1ψn(x) (z + 1)n , |z + 1| < 1 .
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Figure 1: Integration contour C (r and R are radii of the small and big circles
respectively, where r ≪ 1 and R ≫ 1).

where in the right part we replaced e−iπ(n−1) by (−1)n−1 . Evaluating now the
following line integral along a contour C (see Fig. 1), and then letting R → ∞ ,
r → 0, we have42

‰

C

zxe−iπx

(1 + z)n (ln z − πi)
dz =

R̂

r

. . . +

ˆ

CR

. . . +

re2iπˆ

Re2iπ

. . . +

ˆ

Cr

. . .
R→∞
r→0= (168)

=

∞̂

0

{
e−πix

ln z − πi
− e+πix

ln z + πi

}
· zx dz

(1 + z)n
= 2i

∞̂

0

π cosπx − sinπx ln z

ln2 z + π2
· zx dz

(1 + z)n

since for R → ∞
∣∣∣∣∣∣

ˆ

CR

zx e−iπx

(1 + z)n (ln z − πi)
dz

∣∣∣∣∣∣
= O

(
1

Rn−x−1 lnR

)
= o(1) , n ! x+ 1 ,

and for r → 0
∣∣∣∣∣∣

ˆ

Cr

zx e−iπx

(1 + z)n (ln z − πi)
dz

∣∣∣∣∣∣
= O

(
rx+1

ln r

)
= o(1) , x ! −1 ,

where n ∈ N and x is assumed to be real. But the above contour integral may
also be evaluated by means of the Cauchy residue theorem. Since the integrand has

42Note that for the clarity we should keep zxe−iπx rather than simply (−z)x.
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only two singularities, a branch point at z = 0 which we excluded and a pole of the
(n+ 1)th order at z = eiπ = −1, the Cauchy residue theorem gives us

‰

C

zx e−iπx

(1 + z)n (ln z − πi)
dz = 2πi res

z=−1

zx e−iπx

(1 + z)n (ln z − πi)
= (169)

=
2πi

n!
· ∂n

∂zn
zx e−iπx (z + 1)

ln z − πi

∣∣∣∣
z=−1

= 2πi (−1)n−1ψn(x) .

Equating (168) with (169), therefore, yields

ψn(x) =
(−1)n+1

π

∞̂

0

π cosπx− sinπx ln z

(1 + z)n
· zx dz

ln2 z + π2
, (170)

where n ∈ N and −1 " x " n− 1 . This formula may also be written is a variety
of other forms, for example,

ψn(x) =
(−1)n+1

π

∞̂

0

π cosπx+ sinπx ln z

(1 + z)n
· z

n−x−2 dz

ln2 z + π2
(171)

=
(−1)n+1

π

+∞ˆ
−∞

π cosπx− v sinπx

(1 + ev)n
· ev(x+1)

v2 + π2
dv (172)

=
(−1)n+1

π

+∞ˆ
−∞

π cosπx+ v sinπx

(1 + ev)n
· e

v(n−x−1)

v2 + π2
dv (173)

with the same n and x. Note that at x = 0 we retrieve Schröder’s formulæ for Gn

[11].


